1 /* $NetBSD: drm_fourcc.h,v 1.2 2021/12/18 23:45:46 riastradh Exp $ */ 2 3 /* 4 * Copyright 2011 Intel Corporation 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice (including the next 14 * paragraph) shall be included in all copies or substantial portions of the 15 * Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 21 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 22 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 23 * OTHER DEALINGS IN THE SOFTWARE. 24 */ 25 26 #ifndef DRM_FOURCC_H 27 #define DRM_FOURCC_H 28 29 #include "drm.h" 30 31 #if defined(__cplusplus) 32 extern "C" { 33 #endif 34 35 /** 36 * DOC: overview 37 * 38 * In the DRM subsystem, framebuffer pixel formats are described using the 39 * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the 40 * fourcc code, a Format Modifier may optionally be provided, in order to 41 * further describe the buffer's format - for example tiling or compression. 42 * 43 * Format Modifiers 44 * ---------------- 45 * 46 * Format modifiers are used in conjunction with a fourcc code, forming a 47 * unique fourcc:modifier pair. This format:modifier pair must fully define the 48 * format and data layout of the buffer, and should be the only way to describe 49 * that particular buffer. 50 * 51 * Having multiple fourcc:modifier pairs which describe the same layout should 52 * be avoided, as such aliases run the risk of different drivers exposing 53 * different names for the same data format, forcing userspace to understand 54 * that they are aliases. 55 * 56 * Format modifiers may change any property of the buffer, including the number 57 * of planes and/or the required allocation size. Format modifiers are 58 * vendor-namespaced, and as such the relationship between a fourcc code and a 59 * modifier is specific to the modifer being used. For example, some modifiers 60 * may preserve meaning - such as number of planes - from the fourcc code, 61 * whereas others may not. 62 * 63 * Vendors should document their modifier usage in as much detail as 64 * possible, to ensure maximum compatibility across devices, drivers and 65 * applications. 66 * 67 * The authoritative list of format modifier codes is found in 68 * `include/uapi/drm/drm_fourcc.h` 69 */ 70 71 #define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \ 72 ((__u32)(c) << 16) | ((__u32)(d) << 24)) 73 74 #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */ 75 76 /* Reserve 0 for the invalid format specifier */ 77 #define DRM_FORMAT_INVALID 0 78 79 /* color index */ 80 #define DRM_FORMAT_C8 fourcc_code('C', '8', ' ', ' ') /* [7:0] C */ 81 82 /* 8 bpp Red */ 83 #define DRM_FORMAT_R8 fourcc_code('R', '8', ' ', ' ') /* [7:0] R */ 84 85 /* 16 bpp Red */ 86 #define DRM_FORMAT_R16 fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */ 87 88 /* 16 bpp RG */ 89 #define DRM_FORMAT_RG88 fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */ 90 #define DRM_FORMAT_GR88 fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */ 91 92 /* 32 bpp RG */ 93 #define DRM_FORMAT_RG1616 fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */ 94 #define DRM_FORMAT_GR1616 fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */ 95 96 /* 8 bpp RGB */ 97 #define DRM_FORMAT_RGB332 fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */ 98 #define DRM_FORMAT_BGR233 fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */ 99 100 /* 16 bpp RGB */ 101 #define DRM_FORMAT_XRGB4444 fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */ 102 #define DRM_FORMAT_XBGR4444 fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */ 103 #define DRM_FORMAT_RGBX4444 fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */ 104 #define DRM_FORMAT_BGRX4444 fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */ 105 106 #define DRM_FORMAT_ARGB4444 fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */ 107 #define DRM_FORMAT_ABGR4444 fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */ 108 #define DRM_FORMAT_RGBA4444 fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */ 109 #define DRM_FORMAT_BGRA4444 fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */ 110 111 #define DRM_FORMAT_XRGB1555 fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */ 112 #define DRM_FORMAT_XBGR1555 fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */ 113 #define DRM_FORMAT_RGBX5551 fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */ 114 #define DRM_FORMAT_BGRX5551 fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */ 115 116 #define DRM_FORMAT_ARGB1555 fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */ 117 #define DRM_FORMAT_ABGR1555 fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */ 118 #define DRM_FORMAT_RGBA5551 fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */ 119 #define DRM_FORMAT_BGRA5551 fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */ 120 121 #define DRM_FORMAT_RGB565 fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */ 122 #define DRM_FORMAT_BGR565 fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */ 123 124 /* 24 bpp RGB */ 125 #define DRM_FORMAT_RGB888 fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */ 126 #define DRM_FORMAT_BGR888 fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */ 127 128 /* 32 bpp RGB */ 129 #define DRM_FORMAT_XRGB8888 fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */ 130 #define DRM_FORMAT_XBGR8888 fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */ 131 #define DRM_FORMAT_RGBX8888 fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */ 132 #define DRM_FORMAT_BGRX8888 fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */ 133 134 #define DRM_FORMAT_ARGB8888 fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */ 135 #define DRM_FORMAT_ABGR8888 fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */ 136 #define DRM_FORMAT_RGBA8888 fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */ 137 #define DRM_FORMAT_BGRA8888 fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */ 138 139 #define DRM_FORMAT_XRGB2101010 fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */ 140 #define DRM_FORMAT_XBGR2101010 fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */ 141 #define DRM_FORMAT_RGBX1010102 fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */ 142 #define DRM_FORMAT_BGRX1010102 fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */ 143 144 #define DRM_FORMAT_ARGB2101010 fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */ 145 #define DRM_FORMAT_ABGR2101010 fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */ 146 #define DRM_FORMAT_RGBA1010102 fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */ 147 #define DRM_FORMAT_BGRA1010102 fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */ 148 149 /* 150 * Floating point 64bpp RGB 151 * IEEE 754-2008 binary16 half-precision float 152 * [15:0] sign:exponent:mantissa 1:5:10 153 */ 154 #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */ 155 #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */ 156 157 #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */ 158 #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */ 159 160 /* packed YCbCr */ 161 #define DRM_FORMAT_YUYV fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */ 162 #define DRM_FORMAT_YVYU fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */ 163 #define DRM_FORMAT_UYVY fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */ 164 #define DRM_FORMAT_VYUY fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */ 165 166 #define DRM_FORMAT_AYUV fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */ 167 #define DRM_FORMAT_XYUV8888 fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */ 168 #define DRM_FORMAT_VUY888 fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */ 169 #define DRM_FORMAT_VUY101010 fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */ 170 171 /* 172 * packed Y2xx indicate for each component, xx valid data occupy msb 173 * 16-xx padding occupy lsb 174 */ 175 #define DRM_FORMAT_Y210 fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */ 176 #define DRM_FORMAT_Y212 fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */ 177 #define DRM_FORMAT_Y216 fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */ 178 179 /* 180 * packed Y4xx indicate for each component, xx valid data occupy msb 181 * 16-xx padding occupy lsb except Y410 182 */ 183 #define DRM_FORMAT_Y410 fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */ 184 #define DRM_FORMAT_Y412 fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */ 185 #define DRM_FORMAT_Y416 fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */ 186 187 #define DRM_FORMAT_XVYU2101010 fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */ 188 #define DRM_FORMAT_XVYU12_16161616 fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */ 189 #define DRM_FORMAT_XVYU16161616 fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */ 190 191 /* 192 * packed YCbCr420 2x2 tiled formats 193 * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile 194 */ 195 /* [63:0] A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */ 196 #define DRM_FORMAT_Y0L0 fourcc_code('Y', '0', 'L', '0') 197 /* [63:0] X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */ 198 #define DRM_FORMAT_X0L0 fourcc_code('X', '0', 'L', '0') 199 200 /* [63:0] A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */ 201 #define DRM_FORMAT_Y0L2 fourcc_code('Y', '0', 'L', '2') 202 /* [63:0] X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */ 203 #define DRM_FORMAT_X0L2 fourcc_code('X', '0', 'L', '2') 204 205 /* 206 * 1-plane YUV 4:2:0 207 * In these formats, the component ordering is specified (Y, followed by U 208 * then V), but the exact Linear layout is undefined. 209 * These formats can only be used with a non-Linear modifier. 210 */ 211 #define DRM_FORMAT_YUV420_8BIT fourcc_code('Y', 'U', '0', '8') 212 #define DRM_FORMAT_YUV420_10BIT fourcc_code('Y', 'U', '1', '0') 213 214 /* 215 * 2 plane RGB + A 216 * index 0 = RGB plane, same format as the corresponding non _A8 format has 217 * index 1 = A plane, [7:0] A 218 */ 219 #define DRM_FORMAT_XRGB8888_A8 fourcc_code('X', 'R', 'A', '8') 220 #define DRM_FORMAT_XBGR8888_A8 fourcc_code('X', 'B', 'A', '8') 221 #define DRM_FORMAT_RGBX8888_A8 fourcc_code('R', 'X', 'A', '8') 222 #define DRM_FORMAT_BGRX8888_A8 fourcc_code('B', 'X', 'A', '8') 223 #define DRM_FORMAT_RGB888_A8 fourcc_code('R', '8', 'A', '8') 224 #define DRM_FORMAT_BGR888_A8 fourcc_code('B', '8', 'A', '8') 225 #define DRM_FORMAT_RGB565_A8 fourcc_code('R', '5', 'A', '8') 226 #define DRM_FORMAT_BGR565_A8 fourcc_code('B', '5', 'A', '8') 227 228 /* 229 * 2 plane YCbCr 230 * index 0 = Y plane, [7:0] Y 231 * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian 232 * or 233 * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian 234 */ 235 #define DRM_FORMAT_NV12 fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */ 236 #define DRM_FORMAT_NV21 fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */ 237 #define DRM_FORMAT_NV16 fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */ 238 #define DRM_FORMAT_NV61 fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */ 239 #define DRM_FORMAT_NV24 fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */ 240 #define DRM_FORMAT_NV42 fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */ 241 242 /* 243 * 2 plane YCbCr MSB aligned 244 * index 0 = Y plane, [15:0] Y:x [10:6] little endian 245 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian 246 */ 247 #define DRM_FORMAT_P210 fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */ 248 249 /* 250 * 2 plane YCbCr MSB aligned 251 * index 0 = Y plane, [15:0] Y:x [10:6] little endian 252 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian 253 */ 254 #define DRM_FORMAT_P010 fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */ 255 256 /* 257 * 2 plane YCbCr MSB aligned 258 * index 0 = Y plane, [15:0] Y:x [12:4] little endian 259 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian 260 */ 261 #define DRM_FORMAT_P012 fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */ 262 263 /* 264 * 2 plane YCbCr MSB aligned 265 * index 0 = Y plane, [15:0] Y little endian 266 * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian 267 */ 268 #define DRM_FORMAT_P016 fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */ 269 270 /* 271 * 3 plane YCbCr 272 * index 0: Y plane, [7:0] Y 273 * index 1: Cb plane, [7:0] Cb 274 * index 2: Cr plane, [7:0] Cr 275 * or 276 * index 1: Cr plane, [7:0] Cr 277 * index 2: Cb plane, [7:0] Cb 278 */ 279 #define DRM_FORMAT_YUV410 fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */ 280 #define DRM_FORMAT_YVU410 fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */ 281 #define DRM_FORMAT_YUV411 fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */ 282 #define DRM_FORMAT_YVU411 fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */ 283 #define DRM_FORMAT_YUV420 fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */ 284 #define DRM_FORMAT_YVU420 fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */ 285 #define DRM_FORMAT_YUV422 fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */ 286 #define DRM_FORMAT_YVU422 fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */ 287 #define DRM_FORMAT_YUV444 fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */ 288 #define DRM_FORMAT_YVU444 fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */ 289 290 291 /* 292 * Format Modifiers: 293 * 294 * Format modifiers describe, typically, a re-ordering or modification 295 * of the data in a plane of an FB. This can be used to express tiled/ 296 * swizzled formats, or compression, or a combination of the two. 297 * 298 * The upper 8 bits of the format modifier are a vendor-id as assigned 299 * below. The lower 56 bits are assigned as vendor sees fit. 300 */ 301 302 /* Vendor Ids: */ 303 #define DRM_FORMAT_MOD_NONE 0 304 #define DRM_FORMAT_MOD_VENDOR_NONE 0 305 #define DRM_FORMAT_MOD_VENDOR_INTEL 0x01 306 #define DRM_FORMAT_MOD_VENDOR_AMD 0x02 307 #define DRM_FORMAT_MOD_VENDOR_NVIDIA 0x03 308 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04 309 #define DRM_FORMAT_MOD_VENDOR_QCOM 0x05 310 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06 311 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07 312 #define DRM_FORMAT_MOD_VENDOR_ARM 0x08 313 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09 314 315 /* add more to the end as needed */ 316 317 #define DRM_FORMAT_RESERVED ((1ULL << 56) - 1) 318 319 #define fourcc_mod_code(vendor, val) \ 320 ((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL)) 321 322 /* 323 * Format Modifier tokens: 324 * 325 * When adding a new token please document the layout with a code comment, 326 * similar to the fourcc codes above. drm_fourcc.h is considered the 327 * authoritative source for all of these. 328 */ 329 330 /* 331 * Invalid Modifier 332 * 333 * This modifier can be used as a sentinel to terminate the format modifiers 334 * list, or to initialize a variable with an invalid modifier. It might also be 335 * used to report an error back to userspace for certain APIs. 336 */ 337 #define DRM_FORMAT_MOD_INVALID fourcc_mod_code(NONE, DRM_FORMAT_RESERVED) 338 339 /* 340 * Linear Layout 341 * 342 * Just plain linear layout. Note that this is different from no specifying any 343 * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl), 344 * which tells the driver to also take driver-internal information into account 345 * and so might actually result in a tiled framebuffer. 346 */ 347 #define DRM_FORMAT_MOD_LINEAR fourcc_mod_code(NONE, 0) 348 349 /* Intel framebuffer modifiers */ 350 351 /* 352 * Intel X-tiling layout 353 * 354 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb) 355 * in row-major layout. Within the tile bytes are laid out row-major, with 356 * a platform-dependent stride. On top of that the memory can apply 357 * platform-depending swizzling of some higher address bits into bit6. 358 * 359 * This format is highly platforms specific and not useful for cross-driver 360 * sharing. It exists since on a given platform it does uniquely identify the 361 * layout in a simple way for i915-specific userspace. 362 */ 363 #define I915_FORMAT_MOD_X_TILED fourcc_mod_code(INTEL, 1) 364 365 /* 366 * Intel Y-tiling layout 367 * 368 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb) 369 * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes) 370 * chunks column-major, with a platform-dependent height. On top of that the 371 * memory can apply platform-depending swizzling of some higher address bits 372 * into bit6. 373 * 374 * This format is highly platforms specific and not useful for cross-driver 375 * sharing. It exists since on a given platform it does uniquely identify the 376 * layout in a simple way for i915-specific userspace. 377 */ 378 #define I915_FORMAT_MOD_Y_TILED fourcc_mod_code(INTEL, 2) 379 380 /* 381 * Intel Yf-tiling layout 382 * 383 * This is a tiled layout using 4Kb tiles in row-major layout. 384 * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which 385 * are arranged in four groups (two wide, two high) with column-major layout. 386 * Each group therefore consits out of four 256 byte units, which are also laid 387 * out as 2x2 column-major. 388 * 256 byte units are made out of four 64 byte blocks of pixels, producing 389 * either a square block or a 2:1 unit. 390 * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width 391 * in pixel depends on the pixel depth. 392 */ 393 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3) 394 395 /* 396 * Intel color control surface (CCS) for render compression 397 * 398 * The framebuffer format must be one of the 8:8:8:8 RGB formats. 399 * The main surface will be plane index 0 and must be Y/Yf-tiled, 400 * the CCS will be plane index 1. 401 * 402 * Each CCS tile matches a 1024x512 pixel area of the main surface. 403 * To match certain aspects of the 3D hardware the CCS is 404 * considered to be made up of normal 128Bx32 Y tiles, Thus 405 * the CCS pitch must be specified in multiples of 128 bytes. 406 * 407 * In reality the CCS tile appears to be a 64Bx64 Y tile, composed 408 * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks. 409 * But that fact is not relevant unless the memory is accessed 410 * directly. 411 */ 412 #define I915_FORMAT_MOD_Y_TILED_CCS fourcc_mod_code(INTEL, 4) 413 #define I915_FORMAT_MOD_Yf_TILED_CCS fourcc_mod_code(INTEL, 5) 414 415 /* 416 * Intel color control surfaces (CCS) for Gen-12 render compression. 417 * 418 * The main surface is Y-tiled and at plane index 0, the CCS is linear and 419 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in 420 * main surface. In other words, 4 bits in CCS map to a main surface cache 421 * line pair. The main surface pitch is required to be a multiple of four 422 * Y-tile widths. 423 */ 424 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6) 425 426 /* 427 * Intel color control surfaces (CCS) for Gen-12 media compression 428 * 429 * The main surface is Y-tiled and at plane index 0, the CCS is linear and 430 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in 431 * main surface. In other words, 4 bits in CCS map to a main surface cache 432 * line pair. The main surface pitch is required to be a multiple of four 433 * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the 434 * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces, 435 * planes 2 and 3 for the respective CCS. 436 */ 437 #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7) 438 439 /* 440 * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks 441 * 442 * Macroblocks are laid in a Z-shape, and each pixel data is following the 443 * standard NV12 style. 444 * As for NV12, an image is the result of two frame buffers: one for Y, 445 * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer). 446 * Alignment requirements are (for each buffer): 447 * - multiple of 128 pixels for the width 448 * - multiple of 32 pixels for the height 449 * 450 * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html 451 */ 452 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE fourcc_mod_code(SAMSUNG, 1) 453 454 /* 455 * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks 456 * 457 * This is a simple tiled layout using tiles of 16x16 pixels in a row-major 458 * layout. For YCbCr formats Cb/Cr components are taken in such a way that 459 * they correspond to their 16x16 luma block. 460 */ 461 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE fourcc_mod_code(SAMSUNG, 2) 462 463 /* 464 * Qualcomm Compressed Format 465 * 466 * Refers to a compressed variant of the base format that is compressed. 467 * Implementation may be platform and base-format specific. 468 * 469 * Each macrotile consists of m x n (mostly 4 x 4) tiles. 470 * Pixel data pitch/stride is aligned with macrotile width. 471 * Pixel data height is aligned with macrotile height. 472 * Entire pixel data buffer is aligned with 4k(bytes). 473 */ 474 #define DRM_FORMAT_MOD_QCOM_COMPRESSED fourcc_mod_code(QCOM, 1) 475 476 /* Vivante framebuffer modifiers */ 477 478 /* 479 * Vivante 4x4 tiling layout 480 * 481 * This is a simple tiled layout using tiles of 4x4 pixels in a row-major 482 * layout. 483 */ 484 #define DRM_FORMAT_MOD_VIVANTE_TILED fourcc_mod_code(VIVANTE, 1) 485 486 /* 487 * Vivante 64x64 super-tiling layout 488 * 489 * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile 490 * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row- 491 * major layout. 492 * 493 * For more information: see 494 * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling 495 */ 496 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED fourcc_mod_code(VIVANTE, 2) 497 498 /* 499 * Vivante 4x4 tiling layout for dual-pipe 500 * 501 * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a 502 * different base address. Offsets from the base addresses are therefore halved 503 * compared to the non-split tiled layout. 504 */ 505 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED fourcc_mod_code(VIVANTE, 3) 506 507 /* 508 * Vivante 64x64 super-tiling layout for dual-pipe 509 * 510 * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile 511 * starts at a different base address. Offsets from the base addresses are 512 * therefore halved compared to the non-split super-tiled layout. 513 */ 514 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4) 515 516 /* NVIDIA frame buffer modifiers */ 517 518 /* 519 * Tegra Tiled Layout, used by Tegra 2, 3 and 4. 520 * 521 * Pixels are arranged in simple tiles of 16 x 16 bytes. 522 */ 523 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1) 524 525 /* 526 * 16Bx2 Block Linear layout, used by desktop GPUs, and Tegra K1 and later 527 * 528 * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked 529 * vertically by a power of 2 (1 to 32 GOBs) to form a block. 530 * 531 * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape. 532 * 533 * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically. 534 * Valid values are: 535 * 536 * 0 == ONE_GOB 537 * 1 == TWO_GOBS 538 * 2 == FOUR_GOBS 539 * 3 == EIGHT_GOBS 540 * 4 == SIXTEEN_GOBS 541 * 5 == THIRTYTWO_GOBS 542 * 543 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format 544 * in full detail. 545 */ 546 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \ 547 fourcc_mod_code(NVIDIA, 0x10 | ((v) & 0xf)) 548 549 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \ 550 fourcc_mod_code(NVIDIA, 0x10) 551 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \ 552 fourcc_mod_code(NVIDIA, 0x11) 553 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \ 554 fourcc_mod_code(NVIDIA, 0x12) 555 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \ 556 fourcc_mod_code(NVIDIA, 0x13) 557 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \ 558 fourcc_mod_code(NVIDIA, 0x14) 559 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \ 560 fourcc_mod_code(NVIDIA, 0x15) 561 562 /* 563 * Some Broadcom modifiers take parameters, for example the number of 564 * vertical lines in the image. Reserve the lower 32 bits for modifier 565 * type, and the next 24 bits for parameters. Top 8 bits are the 566 * vendor code. 567 */ 568 #define __fourcc_mod_broadcom_param_shift 8 569 #define __fourcc_mod_broadcom_param_bits 48 570 #define fourcc_mod_broadcom_code(val, params) \ 571 fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val)) 572 #define fourcc_mod_broadcom_param(m) \ 573 ((int)(((m) >> __fourcc_mod_broadcom_param_shift) & \ 574 ((1ULL << __fourcc_mod_broadcom_param_bits) - 1))) 575 #define fourcc_mod_broadcom_mod(m) \ 576 ((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) << \ 577 __fourcc_mod_broadcom_param_shift)) 578 579 /* 580 * Broadcom VC4 "T" format 581 * 582 * This is the primary layout that the V3D GPU can texture from (it 583 * can't do linear). The T format has: 584 * 585 * - 64b utiles of pixels in a raster-order grid according to cpp. It's 4x4 586 * pixels at 32 bit depth. 587 * 588 * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually 589 * 16x16 pixels). 590 * 591 * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels). On 592 * even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows 593 * they're (TR, BR, BL, TL), where bottom left is start of memory. 594 * 595 * - an image made of 4k tiles in rows either left-to-right (even rows of 4k 596 * tiles) or right-to-left (odd rows of 4k tiles). 597 */ 598 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1) 599 600 /* 601 * Broadcom SAND format 602 * 603 * This is the native format that the H.264 codec block uses. For VC4 604 * HVS, it is only valid for H.264 (NV12/21) and RGBA modes. 605 * 606 * The image can be considered to be split into columns, and the 607 * columns are placed consecutively into memory. The width of those 608 * columns can be either 32, 64, 128, or 256 pixels, but in practice 609 * only 128 pixel columns are used. 610 * 611 * The pitch between the start of each column is set to optimally 612 * switch between SDRAM banks. This is passed as the number of lines 613 * of column width in the modifier (we can't use the stride value due 614 * to various core checks that look at it , so you should set the 615 * stride to width*cpp). 616 * 617 * Note that the column height for this format modifier is the same 618 * for all of the planes, assuming that each column contains both Y 619 * and UV. Some SAND-using hardware stores UV in a separate tiled 620 * image from Y to reduce the column height, which is not supported 621 * with these modifiers. 622 */ 623 624 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \ 625 fourcc_mod_broadcom_code(2, v) 626 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \ 627 fourcc_mod_broadcom_code(3, v) 628 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \ 629 fourcc_mod_broadcom_code(4, v) 630 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \ 631 fourcc_mod_broadcom_code(5, v) 632 633 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \ 634 DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0) 635 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \ 636 DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0) 637 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \ 638 DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0) 639 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \ 640 DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0) 641 642 /* Broadcom UIF format 643 * 644 * This is the common format for the current Broadcom multimedia 645 * blocks, including V3D 3.x and newer, newer video codecs, and 646 * displays. 647 * 648 * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles), 649 * and macroblocks (4x4 UIF blocks). Those 4x4 UIF block groups are 650 * stored in columns, with padding between the columns to ensure that 651 * moving from one column to the next doesn't hit the same SDRAM page 652 * bank. 653 * 654 * To calculate the padding, it is assumed that each hardware block 655 * and the software driving it knows the platform's SDRAM page size, 656 * number of banks, and XOR address, and that it's identical between 657 * all blocks using the format. This tiling modifier will use XOR as 658 * necessary to reduce the padding. If a hardware block can't do XOR, 659 * the assumption is that a no-XOR tiling modifier will be created. 660 */ 661 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6) 662 663 /* 664 * Arm Framebuffer Compression (AFBC) modifiers 665 * 666 * AFBC is a proprietary lossless image compression protocol and format. 667 * It provides fine-grained random access and minimizes the amount of data 668 * transferred between IP blocks. 669 * 670 * AFBC has several features which may be supported and/or used, which are 671 * represented using bits in the modifier. Not all combinations are valid, 672 * and different devices or use-cases may support different combinations. 673 * 674 * Further information on the use of AFBC modifiers can be found in 675 * Documentation/gpu/afbc.rst 676 */ 677 678 /* 679 * The top 4 bits (out of the 56 bits alloted for specifying vendor specific 680 * modifiers) denote the category for modifiers. Currently we have only two 681 * categories of modifiers ie AFBC and MISC. We can have a maximum of sixteen 682 * different categories. 683 */ 684 #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \ 685 fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL)) 686 687 #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00 688 #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01 689 690 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \ 691 DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode) 692 693 /* 694 * AFBC superblock size 695 * 696 * Indicates the superblock size(s) used for the AFBC buffer. The buffer 697 * size (in pixels) must be aligned to a multiple of the superblock size. 698 * Four lowest significant bits(LSBs) are reserved for block size. 699 * 700 * Where one superblock size is specified, it applies to all planes of the 701 * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified, 702 * the first applies to the Luma plane and the second applies to the Chroma 703 * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma). 704 * Multiple superblock sizes are only valid for multi-plane YCbCr formats. 705 */ 706 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK 0xf 707 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16 (1ULL) 708 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8 (2ULL) 709 #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4 (3ULL) 710 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL) 711 712 /* 713 * AFBC lossless colorspace transform 714 * 715 * Indicates that the buffer makes use of the AFBC lossless colorspace 716 * transform. 717 */ 718 #define AFBC_FORMAT_MOD_YTR (1ULL << 4) 719 720 /* 721 * AFBC block-split 722 * 723 * Indicates that the payload of each superblock is split. The second 724 * half of the payload is positioned at a predefined offset from the start 725 * of the superblock payload. 726 */ 727 #define AFBC_FORMAT_MOD_SPLIT (1ULL << 5) 728 729 /* 730 * AFBC sparse layout 731 * 732 * This flag indicates that the payload of each superblock must be stored at a 733 * predefined position relative to the other superblocks in the same AFBC 734 * buffer. This order is the same order used by the header buffer. In this mode 735 * each superblock is given the same amount of space as an uncompressed 736 * superblock of the particular format would require, rounding up to the next 737 * multiple of 128 bytes in size. 738 */ 739 #define AFBC_FORMAT_MOD_SPARSE (1ULL << 6) 740 741 /* 742 * AFBC copy-block restrict 743 * 744 * Buffers with this flag must obey the copy-block restriction. The restriction 745 * is such that there are no copy-blocks referring across the border of 8x8 746 * blocks. For the subsampled data the 8x8 limitation is also subsampled. 747 */ 748 #define AFBC_FORMAT_MOD_CBR (1ULL << 7) 749 750 /* 751 * AFBC tiled layout 752 * 753 * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all 754 * superblocks inside a tile are stored together in memory. 8x8 tiles are used 755 * for pixel formats up to and including 32 bpp while 4x4 tiles are used for 756 * larger bpp formats. The order between the tiles is scan line. 757 * When the tiled layout is used, the buffer size (in pixels) must be aligned 758 * to the tile size. 759 */ 760 #define AFBC_FORMAT_MOD_TILED (1ULL << 8) 761 762 /* 763 * AFBC solid color blocks 764 * 765 * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth 766 * can be reduced if a whole superblock is a single color. 767 */ 768 #define AFBC_FORMAT_MOD_SC (1ULL << 9) 769 770 /* 771 * AFBC double-buffer 772 * 773 * Indicates that the buffer is allocated in a layout safe for front-buffer 774 * rendering. 775 */ 776 #define AFBC_FORMAT_MOD_DB (1ULL << 10) 777 778 /* 779 * AFBC buffer content hints 780 * 781 * Indicates that the buffer includes per-superblock content hints. 782 */ 783 #define AFBC_FORMAT_MOD_BCH (1ULL << 11) 784 785 /* 786 * Arm 16x16 Block U-Interleaved modifier 787 * 788 * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image 789 * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels 790 * in the block are reordered. 791 */ 792 #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \ 793 DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL) 794 795 /* 796 * Allwinner tiled modifier 797 * 798 * This tiling mode is implemented by the VPU found on all Allwinner platforms, 799 * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3 800 * planes. 801 * 802 * With this tiling, the luminance samples are disposed in tiles representing 803 * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels. 804 * The pixel order in each tile is linear and the tiles are disposed linearly, 805 * both in row-major order. 806 */ 807 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1) 808 809 #if defined(__cplusplus) 810 } 811 #endif 812 813 #endif /* DRM_FOURCC_H */ 814