1 //===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the generic AliasAnalysis interface, which is used as the
10 // common interface used by all clients of alias analysis information, and
11 // implemented by all alias analysis implementations.  Mod/Ref information is
12 // also captured by this interface.
13 //
14 // Implementations of this interface must implement the various virtual methods,
15 // which automatically provides functionality for the entire suite of client
16 // APIs.
17 //
18 // This API identifies memory regions with the MemoryLocation class. The pointer
19 // component specifies the base memory address of the region. The Size specifies
20 // the maximum size (in address units) of the memory region, or
21 // MemoryLocation::UnknownSize if the size is not known. The TBAA tag
22 // identifies the "type" of the memory reference; see the
23 // TypeBasedAliasAnalysis class for details.
24 //
25 // Some non-obvious details include:
26 //  - Pointers that point to two completely different objects in memory never
27 //    alias, regardless of the value of the Size component.
28 //  - NoAlias doesn't imply inequal pointers. The most obvious example of this
29 //    is two pointers to constant memory. Even if they are equal, constant
30 //    memory is never stored to, so there will never be any dependencies.
31 //    In this and other situations, the pointers may be both NoAlias and
32 //    MustAlias at the same time. The current API can only return one result,
33 //    though this is rarely a problem in practice.
34 //
35 //===----------------------------------------------------------------------===//
36 
37 #ifndef LLVM_ANALYSIS_ALIASANALYSIS_H
38 #define LLVM_ANALYSIS_ALIASANALYSIS_H
39 
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/None.h"
42 #include "llvm/ADT/Optional.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/Analysis/MemoryLocation.h"
45 #include "llvm/IR/PassManager.h"
46 #include "llvm/Pass.h"
47 #include <cstdint>
48 #include <functional>
49 #include <memory>
50 #include <vector>
51 
52 namespace llvm {
53 
54 class AnalysisUsage;
55 class AtomicCmpXchgInst;
56 class BasicAAResult;
57 class BasicBlock;
58 class CatchPadInst;
59 class CatchReturnInst;
60 class DominatorTree;
61 class FenceInst;
62 class Function;
63 class InvokeInst;
64 class PreservedAnalyses;
65 class TargetLibraryInfo;
66 class Value;
67 
68 /// The possible results of an alias query.
69 ///
70 /// These results are always computed between two MemoryLocation objects as
71 /// a query to some alias analysis.
72 ///
73 /// Note that these are unscoped enumerations because we would like to support
74 /// implicitly testing a result for the existence of any possible aliasing with
75 /// a conversion to bool, but an "enum class" doesn't support this. The
76 /// canonical names from the literature are suffixed and unique anyways, and so
77 /// they serve as global constants in LLVM for these results.
78 ///
79 /// See docs/AliasAnalysis.html for more information on the specific meanings
80 /// of these values.
81 class AliasResult {
82 private:
83   static const int OffsetBits = 23;
84   static const int AliasBits = 8;
85   static_assert(AliasBits + 1 + OffsetBits <= 32,
86                 "AliasResult size is intended to be 4 bytes!");
87 
88   unsigned int Alias : AliasBits;
89   unsigned int HasOffset : 1;
90   signed int Offset : OffsetBits;
91 
92 public:
93   enum Kind : uint8_t {
94     /// The two locations do not alias at all.
95     ///
96     /// This value is arranged to convert to false, while all other values
97     /// convert to true. This allows a boolean context to convert the result to
98     /// a binary flag indicating whether there is the possibility of aliasing.
99     NoAlias = 0,
100     /// The two locations may or may not alias. This is the least precise
101     /// result.
102     MayAlias,
103     /// The two locations alias, but only due to a partial overlap.
104     PartialAlias,
105     /// The two locations precisely alias each other.
106     MustAlias,
107   };
108   static_assert(MustAlias < (1 << AliasBits),
109                 "Not enough bit field size for the enum!");
110 
111   explicit AliasResult() = delete;
AliasResult(const Kind & Alias)112   constexpr AliasResult(const Kind &Alias)
113       : Alias(Alias), HasOffset(false), Offset(0) {}
114 
Kind()115   operator Kind() const { return static_cast<Kind>(Alias); }
116 
hasOffset()117   constexpr bool hasOffset() const { return HasOffset; }
getOffset()118   constexpr int32_t getOffset() const {
119     assert(HasOffset && "No offset!");
120     return Offset;
121   }
setOffset(int32_t NewOffset)122   void setOffset(int32_t NewOffset) {
123     if (isInt<OffsetBits>(NewOffset)) {
124       HasOffset = true;
125       Offset = NewOffset;
126     }
127   }
128 
129   /// Helper for processing AliasResult for swapped memory location pairs.
130   void swap(bool DoSwap = true) {
131     if (DoSwap && hasOffset())
132       setOffset(-getOffset());
133   }
134 };
135 
136 static_assert(sizeof(AliasResult) == 4,
137               "AliasResult size is intended to be 4 bytes!");
138 
139 /// << operator for AliasResult.
140 raw_ostream &operator<<(raw_ostream &OS, AliasResult AR);
141 
142 /// Flags indicating whether a memory access modifies or references memory.
143 ///
144 /// This is no access at all, a modification, a reference, or both
145 /// a modification and a reference. These are specifically structured such that
146 /// they form a three bit matrix and bit-tests for 'mod' or 'ref' or 'must'
147 /// work with any of the possible values.
148 enum class ModRefInfo : uint8_t {
149   /// Must is provided for completeness, but no routines will return only
150   /// Must today. See definition of Must below.
151   Must = 0,
152   /// The access may reference the value stored in memory,
153   /// a mustAlias relation was found, and no mayAlias or partialAlias found.
154   MustRef = 1,
155   /// The access may modify the value stored in memory,
156   /// a mustAlias relation was found, and no mayAlias or partialAlias found.
157   MustMod = 2,
158   /// The access may reference, modify or both the value stored in memory,
159   /// a mustAlias relation was found, and no mayAlias or partialAlias found.
160   MustModRef = MustRef | MustMod,
161   /// The access neither references nor modifies the value stored in memory.
162   NoModRef = 4,
163   /// The access may reference the value stored in memory.
164   Ref = NoModRef | MustRef,
165   /// The access may modify the value stored in memory.
166   Mod = NoModRef | MustMod,
167   /// The access may reference and may modify the value stored in memory.
168   ModRef = Ref | Mod,
169 
170   /// About Must:
171   /// Must is set in a best effort manner.
172   /// We usually do not try our best to infer Must, instead it is merely
173   /// another piece of "free" information that is presented when available.
174   /// Must set means there was certainly a MustAlias found. For calls,
175   /// where multiple arguments are checked (argmemonly), this translates to
176   /// only MustAlias or NoAlias was found.
177   /// Must is not set for RAR accesses, even if the two locations must
178   /// alias. The reason is that two read accesses translate to an early return
179   /// of NoModRef. An additional alias check to set Must may be
180   /// expensive. Other cases may also not set Must(e.g. callCapturesBefore).
181   /// We refer to Must being *set* when the most significant bit is *cleared*.
182   /// Conversely we *clear* Must information by *setting* the Must bit to 1.
183 };
184 
isNoModRef(const ModRefInfo MRI)185 LLVM_NODISCARD inline bool isNoModRef(const ModRefInfo MRI) {
186   return (static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef)) ==
187          static_cast<int>(ModRefInfo::Must);
188 }
isModOrRefSet(const ModRefInfo MRI)189 LLVM_NODISCARD inline bool isModOrRefSet(const ModRefInfo MRI) {
190   return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef);
191 }
isModAndRefSet(const ModRefInfo MRI)192 LLVM_NODISCARD inline bool isModAndRefSet(const ModRefInfo MRI) {
193   return (static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef)) ==
194          static_cast<int>(ModRefInfo::MustModRef);
195 }
isModSet(const ModRefInfo MRI)196 LLVM_NODISCARD inline bool isModSet(const ModRefInfo MRI) {
197   return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustMod);
198 }
isRefSet(const ModRefInfo MRI)199 LLVM_NODISCARD inline bool isRefSet(const ModRefInfo MRI) {
200   return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustRef);
201 }
isMustSet(const ModRefInfo MRI)202 LLVM_NODISCARD inline bool isMustSet(const ModRefInfo MRI) {
203   return !(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::NoModRef));
204 }
205 
setMod(const ModRefInfo MRI)206 LLVM_NODISCARD inline ModRefInfo setMod(const ModRefInfo MRI) {
207   return ModRefInfo(static_cast<int>(MRI) |
208                     static_cast<int>(ModRefInfo::MustMod));
209 }
setRef(const ModRefInfo MRI)210 LLVM_NODISCARD inline ModRefInfo setRef(const ModRefInfo MRI) {
211   return ModRefInfo(static_cast<int>(MRI) |
212                     static_cast<int>(ModRefInfo::MustRef));
213 }
setMust(const ModRefInfo MRI)214 LLVM_NODISCARD inline ModRefInfo setMust(const ModRefInfo MRI) {
215   return ModRefInfo(static_cast<int>(MRI) &
216                     static_cast<int>(ModRefInfo::MustModRef));
217 }
setModAndRef(const ModRefInfo MRI)218 LLVM_NODISCARD inline ModRefInfo setModAndRef(const ModRefInfo MRI) {
219   return ModRefInfo(static_cast<int>(MRI) |
220                     static_cast<int>(ModRefInfo::MustModRef));
221 }
clearMod(const ModRefInfo MRI)222 LLVM_NODISCARD inline ModRefInfo clearMod(const ModRefInfo MRI) {
223   return ModRefInfo(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::Ref));
224 }
clearRef(const ModRefInfo MRI)225 LLVM_NODISCARD inline ModRefInfo clearRef(const ModRefInfo MRI) {
226   return ModRefInfo(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::Mod));
227 }
clearMust(const ModRefInfo MRI)228 LLVM_NODISCARD inline ModRefInfo clearMust(const ModRefInfo MRI) {
229   return ModRefInfo(static_cast<int>(MRI) |
230                     static_cast<int>(ModRefInfo::NoModRef));
231 }
unionModRef(const ModRefInfo MRI1,const ModRefInfo MRI2)232 LLVM_NODISCARD inline ModRefInfo unionModRef(const ModRefInfo MRI1,
233                                              const ModRefInfo MRI2) {
234   return ModRefInfo(static_cast<int>(MRI1) | static_cast<int>(MRI2));
235 }
intersectModRef(const ModRefInfo MRI1,const ModRefInfo MRI2)236 LLVM_NODISCARD inline ModRefInfo intersectModRef(const ModRefInfo MRI1,
237                                                  const ModRefInfo MRI2) {
238   return ModRefInfo(static_cast<int>(MRI1) & static_cast<int>(MRI2));
239 }
240 
241 /// The locations at which a function might access memory.
242 ///
243 /// These are primarily used in conjunction with the \c AccessKind bits to
244 /// describe both the nature of access and the locations of access for a
245 /// function call.
246 enum FunctionModRefLocation {
247   /// Base case is no access to memory.
248   FMRL_Nowhere = 0,
249   /// Access to memory via argument pointers.
250   FMRL_ArgumentPointees = 8,
251   /// Memory that is inaccessible via LLVM IR.
252   FMRL_InaccessibleMem = 16,
253   /// Access to any memory.
254   FMRL_Anywhere = 32 | FMRL_InaccessibleMem | FMRL_ArgumentPointees
255 };
256 
257 /// Summary of how a function affects memory in the program.
258 ///
259 /// Loads from constant globals are not considered memory accesses for this
260 /// interface. Also, functions may freely modify stack space local to their
261 /// invocation without having to report it through these interfaces.
262 enum FunctionModRefBehavior {
263   /// This function does not perform any non-local loads or stores to memory.
264   ///
265   /// This property corresponds to the GCC 'const' attribute.
266   /// This property corresponds to the LLVM IR 'readnone' attribute.
267   /// This property corresponds to the IntrNoMem LLVM intrinsic flag.
268   FMRB_DoesNotAccessMemory =
269       FMRL_Nowhere | static_cast<int>(ModRefInfo::NoModRef),
270 
271   /// The only memory references in this function (if it has any) are
272   /// non-volatile loads from objects pointed to by its pointer-typed
273   /// arguments, with arbitrary offsets.
274   ///
275   /// This property corresponds to the combination of the IntrReadMem
276   /// and IntrArgMemOnly LLVM intrinsic flags.
277   FMRB_OnlyReadsArgumentPointees =
278       FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::Ref),
279 
280   /// The only memory references in this function (if it has any) are
281   /// non-volatile stores from objects pointed to by its pointer-typed
282   /// arguments, with arbitrary offsets.
283   ///
284   /// This property corresponds to the combination of the IntrWriteMem
285   /// and IntrArgMemOnly LLVM intrinsic flags.
286   FMRB_OnlyWritesArgumentPointees =
287       FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::Mod),
288 
289   /// The only memory references in this function (if it has any) are
290   /// non-volatile loads and stores from objects pointed to by its
291   /// pointer-typed arguments, with arbitrary offsets.
292   ///
293   /// This property corresponds to the IntrArgMemOnly LLVM intrinsic flag.
294   FMRB_OnlyAccessesArgumentPointees =
295       FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::ModRef),
296 
297   /// The only memory references in this function (if it has any) are
298   /// reads of memory that is otherwise inaccessible via LLVM IR.
299   ///
300   /// This property corresponds to the LLVM IR inaccessiblememonly attribute.
301   FMRB_OnlyReadsInaccessibleMem =
302       FMRL_InaccessibleMem | static_cast<int>(ModRefInfo::Ref),
303 
304   /// The only memory references in this function (if it has any) are
305   /// writes to memory that is otherwise inaccessible via LLVM IR.
306   ///
307   /// This property corresponds to the LLVM IR inaccessiblememonly attribute.
308   FMRB_OnlyWritesInaccessibleMem =
309       FMRL_InaccessibleMem | static_cast<int>(ModRefInfo::Mod),
310 
311   /// The only memory references in this function (if it has any) are
312   /// references of memory that is otherwise inaccessible via LLVM IR.
313   ///
314   /// This property corresponds to the LLVM IR inaccessiblememonly attribute.
315   FMRB_OnlyAccessesInaccessibleMem =
316       FMRL_InaccessibleMem | static_cast<int>(ModRefInfo::ModRef),
317 
318   /// The function may perform non-volatile loads from objects pointed
319   /// to by its pointer-typed arguments, with arbitrary offsets, and
320   /// it may also perform loads of memory that is otherwise
321   /// inaccessible via LLVM IR.
322   ///
323   /// This property corresponds to the LLVM IR
324   /// inaccessiblemem_or_argmemonly attribute.
325   FMRB_OnlyReadsInaccessibleOrArgMem = FMRL_InaccessibleMem |
326                                        FMRL_ArgumentPointees |
327                                        static_cast<int>(ModRefInfo::Ref),
328 
329   /// The function may perform non-volatile stores to objects pointed
330   /// to by its pointer-typed arguments, with arbitrary offsets, and
331   /// it may also perform stores of memory that is otherwise
332   /// inaccessible via LLVM IR.
333   ///
334   /// This property corresponds to the LLVM IR
335   /// inaccessiblemem_or_argmemonly attribute.
336   FMRB_OnlyWritesInaccessibleOrArgMem = FMRL_InaccessibleMem |
337                                         FMRL_ArgumentPointees |
338                                         static_cast<int>(ModRefInfo::Mod),
339 
340   /// The function may perform non-volatile loads and stores of objects
341   /// pointed to by its pointer-typed arguments, with arbitrary offsets, and
342   /// it may also perform loads and stores of memory that is otherwise
343   /// inaccessible via LLVM IR.
344   ///
345   /// This property corresponds to the LLVM IR
346   /// inaccessiblemem_or_argmemonly attribute.
347   FMRB_OnlyAccessesInaccessibleOrArgMem = FMRL_InaccessibleMem |
348                                           FMRL_ArgumentPointees |
349                                           static_cast<int>(ModRefInfo::ModRef),
350 
351   /// This function does not perform any non-local stores or volatile loads,
352   /// but may read from any memory location.
353   ///
354   /// This property corresponds to the GCC 'pure' attribute.
355   /// This property corresponds to the LLVM IR 'readonly' attribute.
356   /// This property corresponds to the IntrReadMem LLVM intrinsic flag.
357   FMRB_OnlyReadsMemory = FMRL_Anywhere | static_cast<int>(ModRefInfo::Ref),
358 
359   // This function does not read from memory anywhere, but may write to any
360   // memory location.
361   //
362   // This property corresponds to the LLVM IR 'writeonly' attribute.
363   // This property corresponds to the IntrWriteMem LLVM intrinsic flag.
364   FMRB_OnlyWritesMemory = FMRL_Anywhere | static_cast<int>(ModRefInfo::Mod),
365 
366   /// This indicates that the function could not be classified into one of the
367   /// behaviors above.
368   FMRB_UnknownModRefBehavior =
369       FMRL_Anywhere | static_cast<int>(ModRefInfo::ModRef)
370 };
371 
372 // Wrapper method strips bits significant only in FunctionModRefBehavior,
373 // to obtain a valid ModRefInfo. The benefit of using the wrapper is that if
374 // ModRefInfo enum changes, the wrapper can be updated to & with the new enum
375 // entry with all bits set to 1.
376 LLVM_NODISCARD inline ModRefInfo
createModRefInfo(const FunctionModRefBehavior FMRB)377 createModRefInfo(const FunctionModRefBehavior FMRB) {
378   return ModRefInfo(FMRB & static_cast<int>(ModRefInfo::ModRef));
379 }
380 
381 /// Reduced version of MemoryLocation that only stores a pointer and size.
382 /// Used for caching AATags independent BasicAA results.
383 struct AACacheLoc {
384   const Value *Ptr;
385   LocationSize Size;
386 };
387 
388 template <> struct DenseMapInfo<AACacheLoc> {
389   static inline AACacheLoc getEmptyKey() {
390     return {DenseMapInfo<const Value *>::getEmptyKey(),
391             DenseMapInfo<LocationSize>::getEmptyKey()};
392   }
393   static inline AACacheLoc getTombstoneKey() {
394     return {DenseMapInfo<const Value *>::getTombstoneKey(),
395             DenseMapInfo<LocationSize>::getTombstoneKey()};
396   }
397   static unsigned getHashValue(const AACacheLoc &Val) {
398     return DenseMapInfo<const Value *>::getHashValue(Val.Ptr) ^
399            DenseMapInfo<LocationSize>::getHashValue(Val.Size);
400   }
401   static bool isEqual(const AACacheLoc &LHS, const AACacheLoc &RHS) {
402     return LHS.Ptr == RHS.Ptr && LHS.Size == RHS.Size;
403   }
404 };
405 
406 /// This class stores info we want to provide to or retain within an alias
407 /// query. By default, the root query is stateless and starts with a freshly
408 /// constructed info object. Specific alias analyses can use this query info to
409 /// store per-query state that is important for recursive or nested queries to
410 /// avoid recomputing. To enable preserving this state across multiple queries
411 /// where safe (due to the IR not changing), use a `BatchAAResults` wrapper.
412 /// The information stored in an `AAQueryInfo` is currently limitted to the
413 /// caches used by BasicAA, but can further be extended to fit other AA needs.
414 class AAQueryInfo {
415 public:
416   using LocPair = std::pair<AACacheLoc, AACacheLoc>;
417   struct CacheEntry {
418     AliasResult Result;
419     /// Number of times a NoAlias assumption has been used.
420     /// 0 for assumptions that have not been used, -1 for definitive results.
421     int NumAssumptionUses;
422     /// Whether this is a definitive (non-assumption) result.
423     bool isDefinitive() const { return NumAssumptionUses < 0; }
424   };
425   using AliasCacheT = SmallDenseMap<LocPair, CacheEntry, 8>;
426   AliasCacheT AliasCache;
427 
428   using IsCapturedCacheT = SmallDenseMap<const Value *, bool, 8>;
429   IsCapturedCacheT IsCapturedCache;
430 
431   /// Query depth used to distinguish recursive queries.
432   unsigned Depth = 0;
433 
434   /// How many active NoAlias assumption uses there are.
435   int NumAssumptionUses = 0;
436 
437   /// Location pairs for which an assumption based result is currently stored.
438   /// Used to remove all potentially incorrect results from the cache if an
439   /// assumption is disproven.
440   SmallVector<AAQueryInfo::LocPair, 4> AssumptionBasedResults;
441 
442   AAQueryInfo() : AliasCache(), IsCapturedCache() {}
443 
444   /// Create a new AAQueryInfo based on this one, but with the cache cleared.
445   /// This is used for recursive queries across phis, where cache results may
446   /// not be valid.
447   AAQueryInfo withEmptyCache() {
448     AAQueryInfo NewAAQI;
449     NewAAQI.Depth = Depth;
450     return NewAAQI;
451   }
452 };
453 
454 class BatchAAResults;
455 
456 class AAResults {
457 public:
458   // Make these results default constructable and movable. We have to spell
459   // these out because MSVC won't synthesize them.
460   AAResults(const TargetLibraryInfo &TLI) : TLI(TLI) {}
461   AAResults(AAResults &&Arg);
462   ~AAResults();
463 
464   /// Register a specific AA result.
465   template <typename AAResultT> void addAAResult(AAResultT &AAResult) {
466     // FIXME: We should use a much lighter weight system than the usual
467     // polymorphic pattern because we don't own AAResult. It should
468     // ideally involve two pointers and no separate allocation.
469     AAs.emplace_back(new Model<AAResultT>(AAResult, *this));
470   }
471 
472   /// Register a function analysis ID that the results aggregation depends on.
473   ///
474   /// This is used in the new pass manager to implement the invalidation logic
475   /// where we must invalidate the results aggregation if any of our component
476   /// analyses become invalid.
477   void addAADependencyID(AnalysisKey *ID) { AADeps.push_back(ID); }
478 
479   /// Handle invalidation events in the new pass manager.
480   ///
481   /// The aggregation is invalidated if any of the underlying analyses is
482   /// invalidated.
483   bool invalidate(Function &F, const PreservedAnalyses &PA,
484                   FunctionAnalysisManager::Invalidator &Inv);
485 
486   //===--------------------------------------------------------------------===//
487   /// \name Alias Queries
488   /// @{
489 
490   /// The main low level interface to the alias analysis implementation.
491   /// Returns an AliasResult indicating whether the two pointers are aliased to
492   /// each other. This is the interface that must be implemented by specific
493   /// alias analysis implementations.
494   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB);
495 
496   /// A convenience wrapper around the primary \c alias interface.
497   AliasResult alias(const Value *V1, LocationSize V1Size, const Value *V2,
498                     LocationSize V2Size) {
499     return alias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
500   }
501 
502   /// A convenience wrapper around the primary \c alias interface.
503   AliasResult alias(const Value *V1, const Value *V2) {
504     return alias(MemoryLocation::getBeforeOrAfter(V1),
505                  MemoryLocation::getBeforeOrAfter(V2));
506   }
507 
508   /// A trivial helper function to check to see if the specified pointers are
509   /// no-alias.
510   bool isNoAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
511     return alias(LocA, LocB) == AliasResult::NoAlias;
512   }
513 
514   /// A convenience wrapper around the \c isNoAlias helper interface.
515   bool isNoAlias(const Value *V1, LocationSize V1Size, const Value *V2,
516                  LocationSize V2Size) {
517     return isNoAlias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
518   }
519 
520   /// A convenience wrapper around the \c isNoAlias helper interface.
521   bool isNoAlias(const Value *V1, const Value *V2) {
522     return isNoAlias(MemoryLocation::getBeforeOrAfter(V1),
523                      MemoryLocation::getBeforeOrAfter(V2));
524   }
525 
526   /// A trivial helper function to check to see if the specified pointers are
527   /// must-alias.
528   bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
529     return alias(LocA, LocB) == AliasResult::MustAlias;
530   }
531 
532   /// A convenience wrapper around the \c isMustAlias helper interface.
533   bool isMustAlias(const Value *V1, const Value *V2) {
534     return alias(V1, LocationSize::precise(1), V2, LocationSize::precise(1)) ==
535            AliasResult::MustAlias;
536   }
537 
538   /// Checks whether the given location points to constant memory, or if
539   /// \p OrLocal is true whether it points to a local alloca.
540   bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false);
541 
542   /// A convenience wrapper around the primary \c pointsToConstantMemory
543   /// interface.
544   bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
545     return pointsToConstantMemory(MemoryLocation::getBeforeOrAfter(P), OrLocal);
546   }
547 
548   /// @}
549   //===--------------------------------------------------------------------===//
550   /// \name Simple mod/ref information
551   /// @{
552 
553   /// Get the ModRef info associated with a pointer argument of a call. The
554   /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
555   /// that these bits do not necessarily account for the overall behavior of
556   /// the function, but rather only provide additional per-argument
557   /// information. This never sets ModRefInfo::Must.
558   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx);
559 
560   /// Return the behavior of the given call site.
561   FunctionModRefBehavior getModRefBehavior(const CallBase *Call);
562 
563   /// Return the behavior when calling the given function.
564   FunctionModRefBehavior getModRefBehavior(const Function *F);
565 
566   /// Checks if the specified call is known to never read or write memory.
567   ///
568   /// Note that if the call only reads from known-constant memory, it is also
569   /// legal to return true. Also, calls that unwind the stack are legal for
570   /// this predicate.
571   ///
572   /// Many optimizations (such as CSE and LICM) can be performed on such calls
573   /// without worrying about aliasing properties, and many calls have this
574   /// property (e.g. calls to 'sin' and 'cos').
575   ///
576   /// This property corresponds to the GCC 'const' attribute.
577   bool doesNotAccessMemory(const CallBase *Call) {
578     return getModRefBehavior(Call) == FMRB_DoesNotAccessMemory;
579   }
580 
581   /// Checks if the specified function is known to never read or write memory.
582   ///
583   /// Note that if the function only reads from known-constant memory, it is
584   /// also legal to return true. Also, function that unwind the stack are legal
585   /// for this predicate.
586   ///
587   /// Many optimizations (such as CSE and LICM) can be performed on such calls
588   /// to such functions without worrying about aliasing properties, and many
589   /// functions have this property (e.g. 'sin' and 'cos').
590   ///
591   /// This property corresponds to the GCC 'const' attribute.
592   bool doesNotAccessMemory(const Function *F) {
593     return getModRefBehavior(F) == FMRB_DoesNotAccessMemory;
594   }
595 
596   /// Checks if the specified call is known to only read from non-volatile
597   /// memory (or not access memory at all).
598   ///
599   /// Calls that unwind the stack are legal for this predicate.
600   ///
601   /// This property allows many common optimizations to be performed in the
602   /// absence of interfering store instructions, such as CSE of strlen calls.
603   ///
604   /// This property corresponds to the GCC 'pure' attribute.
605   bool onlyReadsMemory(const CallBase *Call) {
606     return onlyReadsMemory(getModRefBehavior(Call));
607   }
608 
609   /// Checks if the specified function is known to only read from non-volatile
610   /// memory (or not access memory at all).
611   ///
612   /// Functions that unwind the stack are legal for this predicate.
613   ///
614   /// This property allows many common optimizations to be performed in the
615   /// absence of interfering store instructions, such as CSE of strlen calls.
616   ///
617   /// This property corresponds to the GCC 'pure' attribute.
618   bool onlyReadsMemory(const Function *F) {
619     return onlyReadsMemory(getModRefBehavior(F));
620   }
621 
622   /// Checks if functions with the specified behavior are known to only read
623   /// from non-volatile memory (or not access memory at all).
624   static bool onlyReadsMemory(FunctionModRefBehavior MRB) {
625     return !isModSet(createModRefInfo(MRB));
626   }
627 
628   /// Checks if functions with the specified behavior are known to only write
629   /// memory (or not access memory at all).
630   static bool doesNotReadMemory(FunctionModRefBehavior MRB) {
631     return !isRefSet(createModRefInfo(MRB));
632   }
633 
634   /// Checks if functions with the specified behavior are known to read and
635   /// write at most from objects pointed to by their pointer-typed arguments
636   /// (with arbitrary offsets).
637   static bool onlyAccessesArgPointees(FunctionModRefBehavior MRB) {
638     return !((unsigned)MRB & FMRL_Anywhere & ~FMRL_ArgumentPointees);
639   }
640 
641   /// Checks if functions with the specified behavior are known to potentially
642   /// read or write from objects pointed to be their pointer-typed arguments
643   /// (with arbitrary offsets).
644   static bool doesAccessArgPointees(FunctionModRefBehavior MRB) {
645     return isModOrRefSet(createModRefInfo(MRB)) &&
646            ((unsigned)MRB & FMRL_ArgumentPointees);
647   }
648 
649   /// Checks if functions with the specified behavior are known to read and
650   /// write at most from memory that is inaccessible from LLVM IR.
651   static bool onlyAccessesInaccessibleMem(FunctionModRefBehavior MRB) {
652     return !((unsigned)MRB & FMRL_Anywhere & ~FMRL_InaccessibleMem);
653   }
654 
655   /// Checks if functions with the specified behavior are known to potentially
656   /// read or write from memory that is inaccessible from LLVM IR.
657   static bool doesAccessInaccessibleMem(FunctionModRefBehavior MRB) {
658     return isModOrRefSet(createModRefInfo(MRB)) &&
659              ((unsigned)MRB & FMRL_InaccessibleMem);
660   }
661 
662   /// Checks if functions with the specified behavior are known to read and
663   /// write at most from memory that is inaccessible from LLVM IR or objects
664   /// pointed to by their pointer-typed arguments (with arbitrary offsets).
665   static bool onlyAccessesInaccessibleOrArgMem(FunctionModRefBehavior MRB) {
666     return !((unsigned)MRB & FMRL_Anywhere &
667              ~(FMRL_InaccessibleMem | FMRL_ArgumentPointees));
668   }
669 
670   /// getModRefInfo (for call sites) - Return information about whether
671   /// a particular call site modifies or reads the specified memory location.
672   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc);
673 
674   /// getModRefInfo (for call sites) - A convenience wrapper.
675   ModRefInfo getModRefInfo(const CallBase *Call, const Value *P,
676                            LocationSize Size) {
677     return getModRefInfo(Call, MemoryLocation(P, Size));
678   }
679 
680   /// getModRefInfo (for loads) - Return information about whether
681   /// a particular load modifies or reads the specified memory location.
682   ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc);
683 
684   /// getModRefInfo (for loads) - A convenience wrapper.
685   ModRefInfo getModRefInfo(const LoadInst *L, const Value *P,
686                            LocationSize Size) {
687     return getModRefInfo(L, MemoryLocation(P, Size));
688   }
689 
690   /// getModRefInfo (for stores) - Return information about whether
691   /// a particular store modifies or reads the specified memory location.
692   ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc);
693 
694   /// getModRefInfo (for stores) - A convenience wrapper.
695   ModRefInfo getModRefInfo(const StoreInst *S, const Value *P,
696                            LocationSize Size) {
697     return getModRefInfo(S, MemoryLocation(P, Size));
698   }
699 
700   /// getModRefInfo (for fences) - Return information about whether
701   /// a particular store modifies or reads the specified memory location.
702   ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc);
703 
704   /// getModRefInfo (for fences) - A convenience wrapper.
705   ModRefInfo getModRefInfo(const FenceInst *S, const Value *P,
706                            LocationSize Size) {
707     return getModRefInfo(S, MemoryLocation(P, Size));
708   }
709 
710   /// getModRefInfo (for cmpxchges) - Return information about whether
711   /// a particular cmpxchg modifies or reads the specified memory location.
712   ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
713                            const MemoryLocation &Loc);
714 
715   /// getModRefInfo (for cmpxchges) - A convenience wrapper.
716   ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX, const Value *P,
717                            LocationSize Size) {
718     return getModRefInfo(CX, MemoryLocation(P, Size));
719   }
720 
721   /// getModRefInfo (for atomicrmws) - Return information about whether
722   /// a particular atomicrmw modifies or reads the specified memory location.
723   ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc);
724 
725   /// getModRefInfo (for atomicrmws) - A convenience wrapper.
726   ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const Value *P,
727                            LocationSize Size) {
728     return getModRefInfo(RMW, MemoryLocation(P, Size));
729   }
730 
731   /// getModRefInfo (for va_args) - Return information about whether
732   /// a particular va_arg modifies or reads the specified memory location.
733   ModRefInfo getModRefInfo(const VAArgInst *I, const MemoryLocation &Loc);
734 
735   /// getModRefInfo (for va_args) - A convenience wrapper.
736   ModRefInfo getModRefInfo(const VAArgInst *I, const Value *P,
737                            LocationSize Size) {
738     return getModRefInfo(I, MemoryLocation(P, Size));
739   }
740 
741   /// getModRefInfo (for catchpads) - Return information about whether
742   /// a particular catchpad modifies or reads the specified memory location.
743   ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc);
744 
745   /// getModRefInfo (for catchpads) - A convenience wrapper.
746   ModRefInfo getModRefInfo(const CatchPadInst *I, const Value *P,
747                            LocationSize Size) {
748     return getModRefInfo(I, MemoryLocation(P, Size));
749   }
750 
751   /// getModRefInfo (for catchrets) - Return information about whether
752   /// a particular catchret modifies or reads the specified memory location.
753   ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc);
754 
755   /// getModRefInfo (for catchrets) - A convenience wrapper.
756   ModRefInfo getModRefInfo(const CatchReturnInst *I, const Value *P,
757                            LocationSize Size) {
758     return getModRefInfo(I, MemoryLocation(P, Size));
759   }
760 
761   /// Check whether or not an instruction may read or write the optionally
762   /// specified memory location.
763   ///
764   ///
765   /// An instruction that doesn't read or write memory may be trivially LICM'd
766   /// for example.
767   ///
768   /// For function calls, this delegates to the alias-analysis specific
769   /// call-site mod-ref behavior queries. Otherwise it delegates to the specific
770   /// helpers above.
771   ModRefInfo getModRefInfo(const Instruction *I,
772                            const Optional<MemoryLocation> &OptLoc) {
773     AAQueryInfo AAQIP;
774     return getModRefInfo(I, OptLoc, AAQIP);
775   }
776 
777   /// A convenience wrapper for constructing the memory location.
778   ModRefInfo getModRefInfo(const Instruction *I, const Value *P,
779                            LocationSize Size) {
780     return getModRefInfo(I, MemoryLocation(P, Size));
781   }
782 
783   /// Return information about whether a call and an instruction may refer to
784   /// the same memory locations.
785   ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call);
786 
787   /// Return information about whether two call sites may refer to the same set
788   /// of memory locations. See the AA documentation for details:
789   ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
790   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2);
791 
792   /// Return information about whether a particular call site modifies
793   /// or reads the specified memory location \p MemLoc before instruction \p I
794   /// in a BasicBlock.
795   /// Early exits in callCapturesBefore may lead to ModRefInfo::Must not being
796   /// set.
797   ModRefInfo callCapturesBefore(const Instruction *I,
798                                 const MemoryLocation &MemLoc,
799                                 DominatorTree *DT) {
800     AAQueryInfo AAQIP;
801     return callCapturesBefore(I, MemLoc, DT, AAQIP);
802   }
803 
804   /// A convenience wrapper to synthesize a memory location.
805   ModRefInfo callCapturesBefore(const Instruction *I, const Value *P,
806                                 LocationSize Size, DominatorTree *DT) {
807     return callCapturesBefore(I, MemoryLocation(P, Size), DT);
808   }
809 
810   /// @}
811   //===--------------------------------------------------------------------===//
812   /// \name Higher level methods for querying mod/ref information.
813   /// @{
814 
815   /// Check if it is possible for execution of the specified basic block to
816   /// modify the location Loc.
817   bool canBasicBlockModify(const BasicBlock &BB, const MemoryLocation &Loc);
818 
819   /// A convenience wrapper synthesizing a memory location.
820   bool canBasicBlockModify(const BasicBlock &BB, const Value *P,
821                            LocationSize Size) {
822     return canBasicBlockModify(BB, MemoryLocation(P, Size));
823   }
824 
825   /// Check if it is possible for the execution of the specified instructions
826   /// to mod\ref (according to the mode) the location Loc.
827   ///
828   /// The instructions to consider are all of the instructions in the range of
829   /// [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block.
830   bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
831                                  const MemoryLocation &Loc,
832                                  const ModRefInfo Mode);
833 
834   /// A convenience wrapper synthesizing a memory location.
835   bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
836                                  const Value *Ptr, LocationSize Size,
837                                  const ModRefInfo Mode) {
838     return canInstructionRangeModRef(I1, I2, MemoryLocation(Ptr, Size), Mode);
839   }
840 
841 private:
842   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
843                     AAQueryInfo &AAQI);
844   bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
845                               bool OrLocal = false);
846   ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call2,
847                            AAQueryInfo &AAQIP);
848   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
849                            AAQueryInfo &AAQI);
850   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
851                            AAQueryInfo &AAQI);
852   ModRefInfo getModRefInfo(const VAArgInst *V, const MemoryLocation &Loc,
853                            AAQueryInfo &AAQI);
854   ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc,
855                            AAQueryInfo &AAQI);
856   ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc,
857                            AAQueryInfo &AAQI);
858   ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc,
859                            AAQueryInfo &AAQI);
860   ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
861                            const MemoryLocation &Loc, AAQueryInfo &AAQI);
862   ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc,
863                            AAQueryInfo &AAQI);
864   ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc,
865                            AAQueryInfo &AAQI);
866   ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc,
867                            AAQueryInfo &AAQI);
868   ModRefInfo getModRefInfo(const Instruction *I,
869                            const Optional<MemoryLocation> &OptLoc,
870                            AAQueryInfo &AAQIP);
871   ModRefInfo callCapturesBefore(const Instruction *I,
872                                 const MemoryLocation &MemLoc, DominatorTree *DT,
873                                 AAQueryInfo &AAQIP);
874 
875   class Concept;
876 
877   template <typename T> class Model;
878 
879   template <typename T> friend class AAResultBase;
880 
881   const TargetLibraryInfo &TLI;
882 
883   std::vector<std::unique_ptr<Concept>> AAs;
884 
885   std::vector<AnalysisKey *> AADeps;
886 
887   friend class BatchAAResults;
888 };
889 
890 /// This class is a wrapper over an AAResults, and it is intended to be used
891 /// only when there are no IR changes inbetween queries. BatchAAResults is
892 /// reusing the same `AAQueryInfo` to preserve the state across queries,
893 /// esentially making AA work in "batch mode". The internal state cannot be
894 /// cleared, so to go "out-of-batch-mode", the user must either use AAResults,
895 /// or create a new BatchAAResults.
896 class BatchAAResults {
897   AAResults &AA;
898   AAQueryInfo AAQI;
899 
900 public:
901   BatchAAResults(AAResults &AAR) : AA(AAR), AAQI() {}
902   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
903     return AA.alias(LocA, LocB, AAQI);
904   }
905   bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false) {
906     return AA.pointsToConstantMemory(Loc, AAQI, OrLocal);
907   }
908   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc) {
909     return AA.getModRefInfo(Call, Loc, AAQI);
910   }
911   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2) {
912     return AA.getModRefInfo(Call1, Call2, AAQI);
913   }
914   ModRefInfo getModRefInfo(const Instruction *I,
915                            const Optional<MemoryLocation> &OptLoc) {
916     return AA.getModRefInfo(I, OptLoc, AAQI);
917   }
918   ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call2) {
919     return AA.getModRefInfo(I, Call2, AAQI);
920   }
921   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
922     return AA.getArgModRefInfo(Call, ArgIdx);
923   }
924   FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
925     return AA.getModRefBehavior(Call);
926   }
927   bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
928     return alias(LocA, LocB) == AliasResult::MustAlias;
929   }
930   bool isMustAlias(const Value *V1, const Value *V2) {
931     return alias(MemoryLocation(V1, LocationSize::precise(1)),
932                  MemoryLocation(V2, LocationSize::precise(1))) ==
933            AliasResult::MustAlias;
934   }
935   ModRefInfo callCapturesBefore(const Instruction *I,
936                                 const MemoryLocation &MemLoc,
937                                 DominatorTree *DT) {
938     return AA.callCapturesBefore(I, MemLoc, DT, AAQI);
939   }
940 };
941 
942 /// Temporary typedef for legacy code that uses a generic \c AliasAnalysis
943 /// pointer or reference.
944 using AliasAnalysis = AAResults;
945 
946 /// A private abstract base class describing the concept of an individual alias
947 /// analysis implementation.
948 ///
949 /// This interface is implemented by any \c Model instantiation. It is also the
950 /// interface which a type used to instantiate the model must provide.
951 ///
952 /// All of these methods model methods by the same name in the \c
953 /// AAResults class. Only differences and specifics to how the
954 /// implementations are called are documented here.
955 class AAResults::Concept {
956 public:
957   virtual ~Concept() = 0;
958 
959   /// An update API used internally by the AAResults to provide
960   /// a handle back to the top level aggregation.
961   virtual void setAAResults(AAResults *NewAAR) = 0;
962 
963   //===--------------------------------------------------------------------===//
964   /// \name Alias Queries
965   /// @{
966 
967   /// The main low level interface to the alias analysis implementation.
968   /// Returns an AliasResult indicating whether the two pointers are aliased to
969   /// each other. This is the interface that must be implemented by specific
970   /// alias analysis implementations.
971   virtual AliasResult alias(const MemoryLocation &LocA,
972                             const MemoryLocation &LocB, AAQueryInfo &AAQI) = 0;
973 
974   /// Checks whether the given location points to constant memory, or if
975   /// \p OrLocal is true whether it points to a local alloca.
976   virtual bool pointsToConstantMemory(const MemoryLocation &Loc,
977                                       AAQueryInfo &AAQI, bool OrLocal) = 0;
978 
979   /// @}
980   //===--------------------------------------------------------------------===//
981   /// \name Simple mod/ref information
982   /// @{
983 
984   /// Get the ModRef info associated with a pointer argument of a callsite. The
985   /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
986   /// that these bits do not necessarily account for the overall behavior of
987   /// the function, but rather only provide additional per-argument
988   /// information.
989   virtual ModRefInfo getArgModRefInfo(const CallBase *Call,
990                                       unsigned ArgIdx) = 0;
991 
992   /// Return the behavior of the given call site.
993   virtual FunctionModRefBehavior getModRefBehavior(const CallBase *Call) = 0;
994 
995   /// Return the behavior when calling the given function.
996   virtual FunctionModRefBehavior getModRefBehavior(const Function *F) = 0;
997 
998   /// getModRefInfo (for call sites) - Return information about whether
999   /// a particular call site modifies or reads the specified memory location.
1000   virtual ModRefInfo getModRefInfo(const CallBase *Call,
1001                                    const MemoryLocation &Loc,
1002                                    AAQueryInfo &AAQI) = 0;
1003 
1004   /// Return information about whether two call sites may refer to the same set
1005   /// of memory locations. See the AA documentation for details:
1006   ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
1007   virtual ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
1008                                    AAQueryInfo &AAQI) = 0;
1009 
1010   /// @}
1011 };
1012 
1013 /// A private class template which derives from \c Concept and wraps some other
1014 /// type.
1015 ///
1016 /// This models the concept by directly forwarding each interface point to the
1017 /// wrapped type which must implement a compatible interface. This provides
1018 /// a type erased binding.
1019 template <typename AAResultT> class AAResults::Model final : public Concept {
1020   AAResultT &Result;
1021 
1022 public:
1023   explicit Model(AAResultT &Result, AAResults &AAR) : Result(Result) {
1024     Result.setAAResults(&AAR);
1025   }
1026   ~Model() override = default;
1027 
1028   void setAAResults(AAResults *NewAAR) override { Result.setAAResults(NewAAR); }
1029 
1030   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
1031                     AAQueryInfo &AAQI) override {
1032     return Result.alias(LocA, LocB, AAQI);
1033   }
1034 
1035   bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
1036                               bool OrLocal) override {
1037     return Result.pointsToConstantMemory(Loc, AAQI, OrLocal);
1038   }
1039 
1040   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) override {
1041     return Result.getArgModRefInfo(Call, ArgIdx);
1042   }
1043 
1044   FunctionModRefBehavior getModRefBehavior(const CallBase *Call) override {
1045     return Result.getModRefBehavior(Call);
1046   }
1047 
1048   FunctionModRefBehavior getModRefBehavior(const Function *F) override {
1049     return Result.getModRefBehavior(F);
1050   }
1051 
1052   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
1053                            AAQueryInfo &AAQI) override {
1054     return Result.getModRefInfo(Call, Loc, AAQI);
1055   }
1056 
1057   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
1058                            AAQueryInfo &AAQI) override {
1059     return Result.getModRefInfo(Call1, Call2, AAQI);
1060   }
1061 };
1062 
1063 /// A CRTP-driven "mixin" base class to help implement the function alias
1064 /// analysis results concept.
1065 ///
1066 /// Because of the nature of many alias analysis implementations, they often
1067 /// only implement a subset of the interface. This base class will attempt to
1068 /// implement the remaining portions of the interface in terms of simpler forms
1069 /// of the interface where possible, and otherwise provide conservatively
1070 /// correct fallback implementations.
1071 ///
1072 /// Implementors of an alias analysis should derive from this CRTP, and then
1073 /// override specific methods that they wish to customize. There is no need to
1074 /// use virtual anywhere, the CRTP base class does static dispatch to the
1075 /// derived type passed into it.
1076 template <typename DerivedT> class AAResultBase {
1077   // Expose some parts of the interface only to the AAResults::Model
1078   // for wrapping. Specifically, this allows the model to call our
1079   // setAAResults method without exposing it as a fully public API.
1080   friend class AAResults::Model<DerivedT>;
1081 
1082   /// A pointer to the AAResults object that this AAResult is
1083   /// aggregated within. May be null if not aggregated.
1084   AAResults *AAR = nullptr;
1085 
1086   /// Helper to dispatch calls back through the derived type.
1087   DerivedT &derived() { return static_cast<DerivedT &>(*this); }
1088 
1089   /// A setter for the AAResults pointer, which is used to satisfy the
1090   /// AAResults::Model contract.
1091   void setAAResults(AAResults *NewAAR) { AAR = NewAAR; }
1092 
1093 protected:
1094   /// This proxy class models a common pattern where we delegate to either the
1095   /// top-level \c AAResults aggregation if one is registered, or to the
1096   /// current result if none are registered.
1097   class AAResultsProxy {
1098     AAResults *AAR;
1099     DerivedT &CurrentResult;
1100 
1101   public:
1102     AAResultsProxy(AAResults *AAR, DerivedT &CurrentResult)
1103         : AAR(AAR), CurrentResult(CurrentResult) {}
1104 
1105     AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
1106                       AAQueryInfo &AAQI) {
1107       return AAR ? AAR->alias(LocA, LocB, AAQI)
1108                  : CurrentResult.alias(LocA, LocB, AAQI);
1109     }
1110 
1111     bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
1112                                 bool OrLocal) {
1113       return AAR ? AAR->pointsToConstantMemory(Loc, AAQI, OrLocal)
1114                  : CurrentResult.pointsToConstantMemory(Loc, AAQI, OrLocal);
1115     }
1116 
1117     ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
1118       return AAR ? AAR->getArgModRefInfo(Call, ArgIdx)
1119                  : CurrentResult.getArgModRefInfo(Call, ArgIdx);
1120     }
1121 
1122     FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
1123       return AAR ? AAR->getModRefBehavior(Call)
1124                  : CurrentResult.getModRefBehavior(Call);
1125     }
1126 
1127     FunctionModRefBehavior getModRefBehavior(const Function *F) {
1128       return AAR ? AAR->getModRefBehavior(F) : CurrentResult.getModRefBehavior(F);
1129     }
1130 
1131     ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
1132                              AAQueryInfo &AAQI) {
1133       return AAR ? AAR->getModRefInfo(Call, Loc, AAQI)
1134                  : CurrentResult.getModRefInfo(Call, Loc, AAQI);
1135     }
1136 
1137     ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
1138                              AAQueryInfo &AAQI) {
1139       return AAR ? AAR->getModRefInfo(Call1, Call2, AAQI)
1140                  : CurrentResult.getModRefInfo(Call1, Call2, AAQI);
1141     }
1142   };
1143 
1144   explicit AAResultBase() = default;
1145 
1146   // Provide all the copy and move constructors so that derived types aren't
1147   // constrained.
1148   AAResultBase(const AAResultBase &Arg) {}
1149   AAResultBase(AAResultBase &&Arg) {}
1150 
1151   /// Get a proxy for the best AA result set to query at this time.
1152   ///
1153   /// When this result is part of a larger aggregation, this will proxy to that
1154   /// aggregation. When this result is used in isolation, it will just delegate
1155   /// back to the derived class's implementation.
1156   ///
1157   /// Note that callers of this need to take considerable care to not cause
1158   /// performance problems when they use this routine, in the case of a large
1159   /// number of alias analyses being aggregated, it can be expensive to walk
1160   /// back across the chain.
1161   AAResultsProxy getBestAAResults() { return AAResultsProxy(AAR, derived()); }
1162 
1163 public:
1164   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
1165                     AAQueryInfo &AAQI) {
1166     return AliasResult::MayAlias;
1167   }
1168 
1169   bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
1170                               bool OrLocal) {
1171     return false;
1172   }
1173 
1174   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
1175     return ModRefInfo::ModRef;
1176   }
1177 
1178   FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
1179     return FMRB_UnknownModRefBehavior;
1180   }
1181 
1182   FunctionModRefBehavior getModRefBehavior(const Function *F) {
1183     return FMRB_UnknownModRefBehavior;
1184   }
1185 
1186   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
1187                            AAQueryInfo &AAQI) {
1188     return ModRefInfo::ModRef;
1189   }
1190 
1191   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
1192                            AAQueryInfo &AAQI) {
1193     return ModRefInfo::ModRef;
1194   }
1195 };
1196 
1197 /// Return true if this pointer is returned by a noalias function.
1198 bool isNoAliasCall(const Value *V);
1199 
1200 /// Return true if this pointer refers to a distinct and identifiable object.
1201 /// This returns true for:
1202 ///    Global Variables and Functions (but not Global Aliases)
1203 ///    Allocas
1204 ///    ByVal and NoAlias Arguments
1205 ///    NoAlias returns (e.g. calls to malloc)
1206 ///
1207 bool isIdentifiedObject(const Value *V);
1208 
1209 /// Return true if V is umabigously identified at the function-level.
1210 /// Different IdentifiedFunctionLocals can't alias.
1211 /// Further, an IdentifiedFunctionLocal can not alias with any function
1212 /// arguments other than itself, which is not necessarily true for
1213 /// IdentifiedObjects.
1214 bool isIdentifiedFunctionLocal(const Value *V);
1215 
1216 /// A manager for alias analyses.
1217 ///
1218 /// This class can have analyses registered with it and when run, it will run
1219 /// all of them and aggregate their results into single AA results interface
1220 /// that dispatches across all of the alias analysis results available.
1221 ///
1222 /// Note that the order in which analyses are registered is very significant.
1223 /// That is the order in which the results will be aggregated and queried.
1224 ///
1225 /// This manager effectively wraps the AnalysisManager for registering alias
1226 /// analyses. When you register your alias analysis with this manager, it will
1227 /// ensure the analysis itself is registered with its AnalysisManager.
1228 ///
1229 /// The result of this analysis is only invalidated if one of the particular
1230 /// aggregated AA results end up being invalidated. This removes the need to
1231 /// explicitly preserve the results of `AAManager`. Note that analyses should no
1232 /// longer be registered once the `AAManager` is run.
1233 class AAManager : public AnalysisInfoMixin<AAManager> {
1234 public:
1235   using Result = AAResults;
1236 
1237   /// Register a specific AA result.
1238   template <typename AnalysisT> void registerFunctionAnalysis() {
1239     ResultGetters.push_back(&getFunctionAAResultImpl<AnalysisT>);
1240   }
1241 
1242   /// Register a specific AA result.
1243   template <typename AnalysisT> void registerModuleAnalysis() {
1244     ResultGetters.push_back(&getModuleAAResultImpl<AnalysisT>);
1245   }
1246 
1247   Result run(Function &F, FunctionAnalysisManager &AM);
1248 
1249 private:
1250   friend AnalysisInfoMixin<AAManager>;
1251 
1252   static AnalysisKey Key;
1253 
1254   SmallVector<void (*)(Function &F, FunctionAnalysisManager &AM,
1255                        AAResults &AAResults),
1256               4> ResultGetters;
1257 
1258   template <typename AnalysisT>
1259   static void getFunctionAAResultImpl(Function &F,
1260                                       FunctionAnalysisManager &AM,
1261                                       AAResults &AAResults) {
1262     AAResults.addAAResult(AM.template getResult<AnalysisT>(F));
1263     AAResults.addAADependencyID(AnalysisT::ID());
1264   }
1265 
1266   template <typename AnalysisT>
1267   static void getModuleAAResultImpl(Function &F, FunctionAnalysisManager &AM,
1268                                     AAResults &AAResults) {
1269     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1270     if (auto *R =
1271             MAMProxy.template getCachedResult<AnalysisT>(*F.getParent())) {
1272       AAResults.addAAResult(*R);
1273       MAMProxy
1274           .template registerOuterAnalysisInvalidation<AnalysisT, AAManager>();
1275     }
1276   }
1277 };
1278 
1279 /// A wrapper pass to provide the legacy pass manager access to a suitably
1280 /// prepared AAResults object.
1281 class AAResultsWrapperPass : public FunctionPass {
1282   std::unique_ptr<AAResults> AAR;
1283 
1284 public:
1285   static char ID;
1286 
1287   AAResultsWrapperPass();
1288 
1289   AAResults &getAAResults() { return *AAR; }
1290   const AAResults &getAAResults() const { return *AAR; }
1291 
1292   bool runOnFunction(Function &F) override;
1293 
1294   void getAnalysisUsage(AnalysisUsage &AU) const override;
1295 };
1296 
1297 /// A wrapper pass for external alias analyses. This just squirrels away the
1298 /// callback used to run any analyses and register their results.
1299 struct ExternalAAWrapperPass : ImmutablePass {
1300   using CallbackT = std::function<void(Pass &, Function &, AAResults &)>;
1301 
1302   CallbackT CB;
1303 
1304   static char ID;
1305 
1306   ExternalAAWrapperPass();
1307 
1308   explicit ExternalAAWrapperPass(CallbackT CB);
1309 
1310   void getAnalysisUsage(AnalysisUsage &AU) const override {
1311     AU.setPreservesAll();
1312   }
1313 };
1314 
1315 FunctionPass *createAAResultsWrapperPass();
1316 
1317 /// A wrapper pass around a callback which can be used to populate the
1318 /// AAResults in the AAResultsWrapperPass from an external AA.
1319 ///
1320 /// The callback provided here will be used each time we prepare an AAResults
1321 /// object, and will receive a reference to the function wrapper pass, the
1322 /// function, and the AAResults object to populate. This should be used when
1323 /// setting up a custom pass pipeline to inject a hook into the AA results.
1324 ImmutablePass *createExternalAAWrapperPass(
1325     std::function<void(Pass &, Function &, AAResults &)> Callback);
1326 
1327 /// A helper for the legacy pass manager to create a \c AAResults
1328 /// object populated to the best of our ability for a particular function when
1329 /// inside of a \c ModulePass or a \c CallGraphSCCPass.
1330 ///
1331 /// If a \c ModulePass or a \c CallGraphSCCPass calls \p
1332 /// createLegacyPMAAResults, it also needs to call \p addUsedAAAnalyses in \p
1333 /// getAnalysisUsage.
1334 AAResults createLegacyPMAAResults(Pass &P, Function &F, BasicAAResult &BAR);
1335 
1336 /// A helper for the legacy pass manager to populate \p AU to add uses to make
1337 /// sure the analyses required by \p createLegacyPMAAResults are available.
1338 void getAAResultsAnalysisUsage(AnalysisUsage &AU);
1339 
1340 } // end namespace llvm
1341 
1342 #endif // LLVM_ANALYSIS_ALIASANALYSIS_H
1343