1 //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file is a part of MemorySanitizer, a detector of uninitialized
11 /// reads.
12 ///
13 /// The algorithm of the tool is similar to Memcheck
14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every
15 /// byte of the application memory, poison the shadow of the malloc-ed
16 /// or alloca-ed memory, load the shadow bits on every memory read,
17 /// propagate the shadow bits through some of the arithmetic
18 /// instruction (including MOV), store the shadow bits on every memory
19 /// write, report a bug on some other instructions (e.g. JMP) if the
20 /// associated shadow is poisoned.
21 ///
22 /// But there are differences too. The first and the major one:
23 /// compiler instrumentation instead of binary instrumentation. This
24 /// gives us much better register allocation, possible compiler
25 /// optimizations and a fast start-up. But this brings the major issue
26 /// as well: msan needs to see all program events, including system
27 /// calls and reads/writes in system libraries, so we either need to
28 /// compile *everything* with msan or use a binary translation
29 /// component (e.g. DynamoRIO) to instrument pre-built libraries.
30 /// Another difference from Memcheck is that we use 8 shadow bits per
31 /// byte of application memory and use a direct shadow mapping. This
32 /// greatly simplifies the instrumentation code and avoids races on
33 /// shadow updates (Memcheck is single-threaded so races are not a
34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow
35 /// path storage that uses 8 bits per byte).
36 ///
37 /// The default value of shadow is 0, which means "clean" (not poisoned).
38 ///
39 /// Every module initializer should call __msan_init to ensure that the
40 /// shadow memory is ready. On error, __msan_warning is called. Since
41 /// parameters and return values may be passed via registers, we have a
42 /// specialized thread-local shadow for return values
43 /// (__msan_retval_tls) and parameters (__msan_param_tls).
44 ///
45 ///                           Origin tracking.
46 ///
47 /// MemorySanitizer can track origins (allocation points) of all uninitialized
48 /// values. This behavior is controlled with a flag (msan-track-origins) and is
49 /// disabled by default.
50 ///
51 /// Origins are 4-byte values created and interpreted by the runtime library.
52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
53 /// of application memory. Propagation of origins is basically a bunch of
54 /// "select" instructions that pick the origin of a dirty argument, if an
55 /// instruction has one.
56 ///
57 /// Every 4 aligned, consecutive bytes of application memory have one origin
58 /// value associated with them. If these bytes contain uninitialized data
59 /// coming from 2 different allocations, the last store wins. Because of this,
60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in
61 /// practice.
62 ///
63 /// Origins are meaningless for fully initialized values, so MemorySanitizer
64 /// avoids storing origin to memory when a fully initialized value is stored.
65 /// This way it avoids needless overwriting origin of the 4-byte region on
66 /// a short (i.e. 1 byte) clean store, and it is also good for performance.
67 ///
68 ///                            Atomic handling.
69 ///
70 /// Ideally, every atomic store of application value should update the
71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store
72 /// of two disjoint locations can not be done without severe slowdown.
73 ///
74 /// Therefore, we implement an approximation that may err on the safe side.
75 /// In this implementation, every atomically accessed location in the program
76 /// may only change from (partially) uninitialized to fully initialized, but
77 /// not the other way around. We load the shadow _after_ the application load,
78 /// and we store the shadow _before_ the app store. Also, we always store clean
79 /// shadow (if the application store is atomic). This way, if the store-load
80 /// pair constitutes a happens-before arc, shadow store and load are correctly
81 /// ordered such that the load will get either the value that was stored, or
82 /// some later value (which is always clean).
83 ///
84 /// This does not work very well with Compare-And-Swap (CAS) and
85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW
86 /// must store the new shadow before the app operation, and load the shadow
87 /// after the app operation. Computers don't work this way. Current
88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean
89 /// value. It implements the store part as a simple atomic store by storing a
90 /// clean shadow.
91 ///
92 ///                      Instrumenting inline assembly.
93 ///
94 /// For inline assembly code LLVM has little idea about which memory locations
95 /// become initialized depending on the arguments. It can be possible to figure
96 /// out which arguments are meant to point to inputs and outputs, but the
97 /// actual semantics can be only visible at runtime. In the Linux kernel it's
98 /// also possible that the arguments only indicate the offset for a base taken
99 /// from a segment register, so it's dangerous to treat any asm() arguments as
100 /// pointers. We take a conservative approach generating calls to
101 ///   __msan_instrument_asm_store(ptr, size)
102 /// , which defer the memory unpoisoning to the runtime library.
103 /// The latter can perform more complex address checks to figure out whether
104 /// it's safe to touch the shadow memory.
105 /// Like with atomic operations, we call __msan_instrument_asm_store() before
106 /// the assembly call, so that changes to the shadow memory will be seen by
107 /// other threads together with main memory initialization.
108 ///
109 ///                  KernelMemorySanitizer (KMSAN) implementation.
110 ///
111 /// The major differences between KMSAN and MSan instrumentation are:
112 ///  - KMSAN always tracks the origins and implies msan-keep-going=true;
113 ///  - KMSAN allocates shadow and origin memory for each page separately, so
114 ///    there are no explicit accesses to shadow and origin in the
115 ///    instrumentation.
116 ///    Shadow and origin values for a particular X-byte memory location
117 ///    (X=1,2,4,8) are accessed through pointers obtained via the
118 ///      __msan_metadata_ptr_for_load_X(ptr)
119 ///      __msan_metadata_ptr_for_store_X(ptr)
120 ///    functions. The corresponding functions check that the X-byte accesses
121 ///    are possible and returns the pointers to shadow and origin memory.
122 ///    Arbitrary sized accesses are handled with:
123 ///      __msan_metadata_ptr_for_load_n(ptr, size)
124 ///      __msan_metadata_ptr_for_store_n(ptr, size);
125 ///  - TLS variables are stored in a single per-task struct. A call to a
126 ///    function __msan_get_context_state() returning a pointer to that struct
127 ///    is inserted into every instrumented function before the entry block;
128 ///  - __msan_warning() takes a 32-bit origin parameter;
129 ///  - local variables are poisoned with __msan_poison_alloca() upon function
130 ///    entry and unpoisoned with __msan_unpoison_alloca() before leaving the
131 ///    function;
132 ///  - the pass doesn't declare any global variables or add global constructors
133 ///    to the translation unit.
134 ///
135 /// Also, KMSAN currently ignores uninitialized memory passed into inline asm
136 /// calls, making sure we're on the safe side wrt. possible false positives.
137 ///
138 ///  KernelMemorySanitizer only supports X86_64 at the moment.
139 ///
140 //
141 // FIXME: This sanitizer does not yet handle scalable vectors
142 //
143 //===----------------------------------------------------------------------===//
144 
145 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h"
146 #include "llvm/ADT/APInt.h"
147 #include "llvm/ADT/ArrayRef.h"
148 #include "llvm/ADT/DepthFirstIterator.h"
149 #include "llvm/ADT/SmallSet.h"
150 #include "llvm/ADT/SmallString.h"
151 #include "llvm/ADT/SmallVector.h"
152 #include "llvm/ADT/StringExtras.h"
153 #include "llvm/ADT/StringRef.h"
154 #include "llvm/ADT/Triple.h"
155 #include "llvm/Analysis/TargetLibraryInfo.h"
156 #include "llvm/Analysis/ValueTracking.h"
157 #include "llvm/IR/Argument.h"
158 #include "llvm/IR/Attributes.h"
159 #include "llvm/IR/BasicBlock.h"
160 #include "llvm/IR/CallingConv.h"
161 #include "llvm/IR/Constant.h"
162 #include "llvm/IR/Constants.h"
163 #include "llvm/IR/DataLayout.h"
164 #include "llvm/IR/DerivedTypes.h"
165 #include "llvm/IR/Function.h"
166 #include "llvm/IR/GlobalValue.h"
167 #include "llvm/IR/GlobalVariable.h"
168 #include "llvm/IR/IRBuilder.h"
169 #include "llvm/IR/InlineAsm.h"
170 #include "llvm/IR/InstVisitor.h"
171 #include "llvm/IR/InstrTypes.h"
172 #include "llvm/IR/Instruction.h"
173 #include "llvm/IR/Instructions.h"
174 #include "llvm/IR/IntrinsicInst.h"
175 #include "llvm/IR/Intrinsics.h"
176 #include "llvm/IR/IntrinsicsX86.h"
177 #include "llvm/IR/LLVMContext.h"
178 #include "llvm/IR/MDBuilder.h"
179 #include "llvm/IR/Module.h"
180 #include "llvm/IR/Type.h"
181 #include "llvm/IR/Value.h"
182 #include "llvm/IR/ValueMap.h"
183 #include "llvm/InitializePasses.h"
184 #include "llvm/Pass.h"
185 #include "llvm/Support/AtomicOrdering.h"
186 #include "llvm/Support/Casting.h"
187 #include "llvm/Support/CommandLine.h"
188 #include "llvm/Support/Compiler.h"
189 #include "llvm/Support/Debug.h"
190 #include "llvm/Support/ErrorHandling.h"
191 #include "llvm/Support/MathExtras.h"
192 #include "llvm/Support/raw_ostream.h"
193 #include "llvm/Transforms/Instrumentation.h"
194 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
195 #include "llvm/Transforms/Utils/Local.h"
196 #include "llvm/Transforms/Utils/ModuleUtils.h"
197 #include <algorithm>
198 #include <cassert>
199 #include <cstddef>
200 #include <cstdint>
201 #include <memory>
202 #include <string>
203 #include <tuple>
204 
205 using namespace llvm;
206 
207 #define DEBUG_TYPE "msan"
208 
209 static const unsigned kOriginSize = 4;
210 static const Align kMinOriginAlignment = Align(4);
211 static const Align kShadowTLSAlignment = Align(8);
212 
213 // These constants must be kept in sync with the ones in msan.h.
214 static const unsigned kParamTLSSize = 800;
215 static const unsigned kRetvalTLSSize = 800;
216 
217 // Accesses sizes are powers of two: 1, 2, 4, 8.
218 static const size_t kNumberOfAccessSizes = 4;
219 
220 /// Track origins of uninitialized values.
221 ///
222 /// Adds a section to MemorySanitizer report that points to the allocation
223 /// (stack or heap) the uninitialized bits came from originally.
224 static cl::opt<int> ClTrackOrigins("msan-track-origins",
225        cl::desc("Track origins (allocation sites) of poisoned memory"),
226        cl::Hidden, cl::init(0));
227 
228 static cl::opt<bool> ClKeepGoing("msan-keep-going",
229        cl::desc("keep going after reporting a UMR"),
230        cl::Hidden, cl::init(false));
231 
232 static cl::opt<bool> ClPoisonStack("msan-poison-stack",
233        cl::desc("poison uninitialized stack variables"),
234        cl::Hidden, cl::init(true));
235 
236 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
237        cl::desc("poison uninitialized stack variables with a call"),
238        cl::Hidden, cl::init(false));
239 
240 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
241        cl::desc("poison uninitialized stack variables with the given pattern"),
242        cl::Hidden, cl::init(0xff));
243 
244 static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
245        cl::desc("poison undef temps"),
246        cl::Hidden, cl::init(true));
247 
248 static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
249        cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
250        cl::Hidden, cl::init(true));
251 
252 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
253        cl::desc("exact handling of relational integer ICmp"),
254        cl::Hidden, cl::init(false));
255 
256 static cl::opt<bool> ClHandleLifetimeIntrinsics(
257     "msan-handle-lifetime-intrinsics",
258     cl::desc(
259         "when possible, poison scoped variables at the beginning of the scope "
260         "(slower, but more precise)"),
261     cl::Hidden, cl::init(true));
262 
263 // When compiling the Linux kernel, we sometimes see false positives related to
264 // MSan being unable to understand that inline assembly calls may initialize
265 // local variables.
266 // This flag makes the compiler conservatively unpoison every memory location
267 // passed into an assembly call. Note that this may cause false positives.
268 // Because it's impossible to figure out the array sizes, we can only unpoison
269 // the first sizeof(type) bytes for each type* pointer.
270 // The instrumentation is only enabled in KMSAN builds, and only if
271 // -msan-handle-asm-conservative is on. This is done because we may want to
272 // quickly disable assembly instrumentation when it breaks.
273 static cl::opt<bool> ClHandleAsmConservative(
274     "msan-handle-asm-conservative",
275     cl::desc("conservative handling of inline assembly"), cl::Hidden,
276     cl::init(true));
277 
278 // This flag controls whether we check the shadow of the address
279 // operand of load or store. Such bugs are very rare, since load from
280 // a garbage address typically results in SEGV, but still happen
281 // (e.g. only lower bits of address are garbage, or the access happens
282 // early at program startup where malloc-ed memory is more likely to
283 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
284 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
285        cl::desc("report accesses through a pointer which has poisoned shadow"),
286        cl::Hidden, cl::init(true));
287 
288 static cl::opt<bool> ClEagerChecks(
289     "msan-eager-checks",
290     cl::desc("check arguments and return values at function call boundaries"),
291     cl::Hidden, cl::init(false));
292 
293 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
294        cl::desc("print out instructions with default strict semantics"),
295        cl::Hidden, cl::init(false));
296 
297 static cl::opt<int> ClInstrumentationWithCallThreshold(
298     "msan-instrumentation-with-call-threshold",
299     cl::desc(
300         "If the function being instrumented requires more than "
301         "this number of checks and origin stores, use callbacks instead of "
302         "inline checks (-1 means never use callbacks)."),
303     cl::Hidden, cl::init(3500));
304 
305 static cl::opt<bool>
306     ClEnableKmsan("msan-kernel",
307                   cl::desc("Enable KernelMemorySanitizer instrumentation"),
308                   cl::Hidden, cl::init(false));
309 
310 // This is an experiment to enable handling of cases where shadow is a non-zero
311 // compile-time constant. For some unexplainable reason they were silently
312 // ignored in the instrumentation.
313 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow",
314        cl::desc("Insert checks for constant shadow values"),
315        cl::Hidden, cl::init(false));
316 
317 // This is off by default because of a bug in gold:
318 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002
319 static cl::opt<bool> ClWithComdat("msan-with-comdat",
320        cl::desc("Place MSan constructors in comdat sections"),
321        cl::Hidden, cl::init(false));
322 
323 // These options allow to specify custom memory map parameters
324 // See MemoryMapParams for details.
325 static cl::opt<uint64_t> ClAndMask("msan-and-mask",
326                                    cl::desc("Define custom MSan AndMask"),
327                                    cl::Hidden, cl::init(0));
328 
329 static cl::opt<uint64_t> ClXorMask("msan-xor-mask",
330                                    cl::desc("Define custom MSan XorMask"),
331                                    cl::Hidden, cl::init(0));
332 
333 static cl::opt<uint64_t> ClShadowBase("msan-shadow-base",
334                                       cl::desc("Define custom MSan ShadowBase"),
335                                       cl::Hidden, cl::init(0));
336 
337 static cl::opt<uint64_t> ClOriginBase("msan-origin-base",
338                                       cl::desc("Define custom MSan OriginBase"),
339                                       cl::Hidden, cl::init(0));
340 
341 const char kMsanModuleCtorName[] = "msan.module_ctor";
342 const char kMsanInitName[] = "__msan_init";
343 
344 namespace {
345 
346 // Memory map parameters used in application-to-shadow address calculation.
347 // Offset = (Addr & ~AndMask) ^ XorMask
348 // Shadow = ShadowBase + Offset
349 // Origin = OriginBase + Offset
350 struct MemoryMapParams {
351   uint64_t AndMask;
352   uint64_t XorMask;
353   uint64_t ShadowBase;
354   uint64_t OriginBase;
355 };
356 
357 struct PlatformMemoryMapParams {
358   const MemoryMapParams *bits32;
359   const MemoryMapParams *bits64;
360 };
361 
362 } // end anonymous namespace
363 
364 // i386 Linux
365 static const MemoryMapParams Linux_I386_MemoryMapParams = {
366   0x000080000000,  // AndMask
367   0,               // XorMask (not used)
368   0,               // ShadowBase (not used)
369   0x000040000000,  // OriginBase
370 };
371 
372 // x86_64 Linux
373 static const MemoryMapParams Linux_X86_64_MemoryMapParams = {
374 #ifdef MSAN_LINUX_X86_64_OLD_MAPPING
375   0x400000000000,  // AndMask
376   0,               // XorMask (not used)
377   0,               // ShadowBase (not used)
378   0x200000000000,  // OriginBase
379 #else
380   0,               // AndMask (not used)
381   0x500000000000,  // XorMask
382   0,               // ShadowBase (not used)
383   0x100000000000,  // OriginBase
384 #endif
385 };
386 
387 // mips64 Linux
388 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = {
389   0,               // AndMask (not used)
390   0x008000000000,  // XorMask
391   0,               // ShadowBase (not used)
392   0x002000000000,  // OriginBase
393 };
394 
395 // ppc64 Linux
396 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = {
397   0xE00000000000,  // AndMask
398   0x100000000000,  // XorMask
399   0x080000000000,  // ShadowBase
400   0x1C0000000000,  // OriginBase
401 };
402 
403 // s390x Linux
404 static const MemoryMapParams Linux_S390X_MemoryMapParams = {
405     0xC00000000000, // AndMask
406     0,              // XorMask (not used)
407     0x080000000000, // ShadowBase
408     0x1C0000000000, // OriginBase
409 };
410 
411 // aarch64 Linux
412 static const MemoryMapParams Linux_AArch64_MemoryMapParams = {
413   0,               // AndMask (not used)
414   0x06000000000,   // XorMask
415   0,               // ShadowBase (not used)
416   0x01000000000,   // OriginBase
417 };
418 
419 // i386 FreeBSD
420 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = {
421   0x000180000000,  // AndMask
422   0x000040000000,  // XorMask
423   0x000020000000,  // ShadowBase
424   0x000700000000,  // OriginBase
425 };
426 
427 // x86_64 FreeBSD
428 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = {
429   0xc00000000000,  // AndMask
430   0x200000000000,  // XorMask
431   0x100000000000,  // ShadowBase
432   0x380000000000,  // OriginBase
433 };
434 
435 // x86_64 NetBSD
436 static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = {
437   0,               // AndMask
438   0x500000000000,  // XorMask
439   0,               // ShadowBase
440   0x100000000000,  // OriginBase
441 };
442 
443 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = {
444   &Linux_I386_MemoryMapParams,
445   &Linux_X86_64_MemoryMapParams,
446 };
447 
448 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = {
449   nullptr,
450   &Linux_MIPS64_MemoryMapParams,
451 };
452 
453 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = {
454   nullptr,
455   &Linux_PowerPC64_MemoryMapParams,
456 };
457 
458 static const PlatformMemoryMapParams Linux_S390_MemoryMapParams = {
459     nullptr,
460     &Linux_S390X_MemoryMapParams,
461 };
462 
463 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = {
464   nullptr,
465   &Linux_AArch64_MemoryMapParams,
466 };
467 
468 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = {
469   &FreeBSD_I386_MemoryMapParams,
470   &FreeBSD_X86_64_MemoryMapParams,
471 };
472 
473 static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = {
474   nullptr,
475   &NetBSD_X86_64_MemoryMapParams,
476 };
477 
478 namespace {
479 
480 /// Instrument functions of a module to detect uninitialized reads.
481 ///
482 /// Instantiating MemorySanitizer inserts the msan runtime library API function
483 /// declarations into the module if they don't exist already. Instantiating
484 /// ensures the __msan_init function is in the list of global constructors for
485 /// the module.
486 class MemorySanitizer {
487 public:
MemorySanitizer(Module & M,MemorySanitizerOptions Options)488   MemorySanitizer(Module &M, MemorySanitizerOptions Options)
489       : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins),
490         Recover(Options.Recover) {
491     initializeModule(M);
492   }
493 
494   // MSan cannot be moved or copied because of MapParams.
495   MemorySanitizer(MemorySanitizer &&) = delete;
496   MemorySanitizer &operator=(MemorySanitizer &&) = delete;
497   MemorySanitizer(const MemorySanitizer &) = delete;
498   MemorySanitizer &operator=(const MemorySanitizer &) = delete;
499 
500   bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI);
501 
502 private:
503   friend struct MemorySanitizerVisitor;
504   friend struct VarArgAMD64Helper;
505   friend struct VarArgMIPS64Helper;
506   friend struct VarArgAArch64Helper;
507   friend struct VarArgPowerPC64Helper;
508   friend struct VarArgSystemZHelper;
509 
510   void initializeModule(Module &M);
511   void initializeCallbacks(Module &M);
512   void createKernelApi(Module &M);
513   void createUserspaceApi(Module &M);
514 
515   /// True if we're compiling the Linux kernel.
516   bool CompileKernel;
517   /// Track origins (allocation points) of uninitialized values.
518   int TrackOrigins;
519   bool Recover;
520 
521   LLVMContext *C;
522   Type *IntptrTy;
523   Type *OriginTy;
524 
525   // XxxTLS variables represent the per-thread state in MSan and per-task state
526   // in KMSAN.
527   // For the userspace these point to thread-local globals. In the kernel land
528   // they point to the members of a per-task struct obtained via a call to
529   // __msan_get_context_state().
530 
531   /// Thread-local shadow storage for function parameters.
532   Value *ParamTLS;
533 
534   /// Thread-local origin storage for function parameters.
535   Value *ParamOriginTLS;
536 
537   /// Thread-local shadow storage for function return value.
538   Value *RetvalTLS;
539 
540   /// Thread-local origin storage for function return value.
541   Value *RetvalOriginTLS;
542 
543   /// Thread-local shadow storage for in-register va_arg function
544   /// parameters (x86_64-specific).
545   Value *VAArgTLS;
546 
547   /// Thread-local shadow storage for in-register va_arg function
548   /// parameters (x86_64-specific).
549   Value *VAArgOriginTLS;
550 
551   /// Thread-local shadow storage for va_arg overflow area
552   /// (x86_64-specific).
553   Value *VAArgOverflowSizeTLS;
554 
555   /// Are the instrumentation callbacks set up?
556   bool CallbacksInitialized = false;
557 
558   /// The run-time callback to print a warning.
559   FunctionCallee WarningFn;
560 
561   // These arrays are indexed by log2(AccessSize).
562   FunctionCallee MaybeWarningFn[kNumberOfAccessSizes];
563   FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes];
564 
565   /// Run-time helper that generates a new origin value for a stack
566   /// allocation.
567   FunctionCallee MsanSetAllocaOrigin4Fn;
568 
569   /// Run-time helper that poisons stack on function entry.
570   FunctionCallee MsanPoisonStackFn;
571 
572   /// Run-time helper that records a store (or any event) of an
573   /// uninitialized value and returns an updated origin id encoding this info.
574   FunctionCallee MsanChainOriginFn;
575 
576   /// Run-time helper that paints an origin over a region.
577   FunctionCallee MsanSetOriginFn;
578 
579   /// MSan runtime replacements for memmove, memcpy and memset.
580   FunctionCallee MemmoveFn, MemcpyFn, MemsetFn;
581 
582   /// KMSAN callback for task-local function argument shadow.
583   StructType *MsanContextStateTy;
584   FunctionCallee MsanGetContextStateFn;
585 
586   /// Functions for poisoning/unpoisoning local variables
587   FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn;
588 
589   /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin
590   /// pointers.
591   FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN;
592   FunctionCallee MsanMetadataPtrForLoad_1_8[4];
593   FunctionCallee MsanMetadataPtrForStore_1_8[4];
594   FunctionCallee MsanInstrumentAsmStoreFn;
595 
596   /// Helper to choose between different MsanMetadataPtrXxx().
597   FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size);
598 
599   /// Memory map parameters used in application-to-shadow calculation.
600   const MemoryMapParams *MapParams;
601 
602   /// Custom memory map parameters used when -msan-shadow-base or
603   // -msan-origin-base is provided.
604   MemoryMapParams CustomMapParams;
605 
606   MDNode *ColdCallWeights;
607 
608   /// Branch weights for origin store.
609   MDNode *OriginStoreWeights;
610 };
611 
insertModuleCtor(Module & M)612 void insertModuleCtor(Module &M) {
613   getOrCreateSanitizerCtorAndInitFunctions(
614       M, kMsanModuleCtorName, kMsanInitName,
615       /*InitArgTypes=*/{},
616       /*InitArgs=*/{},
617       // This callback is invoked when the functions are created the first
618       // time. Hook them into the global ctors list in that case:
619       [&](Function *Ctor, FunctionCallee) {
620         if (!ClWithComdat) {
621           appendToGlobalCtors(M, Ctor, 0);
622           return;
623         }
624         Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName);
625         Ctor->setComdat(MsanCtorComdat);
626         appendToGlobalCtors(M, Ctor, 0, Ctor);
627       });
628 }
629 
630 /// A legacy function pass for msan instrumentation.
631 ///
632 /// Instruments functions to detect uninitialized reads.
633 struct MemorySanitizerLegacyPass : public FunctionPass {
634   // Pass identification, replacement for typeid.
635   static char ID;
636 
MemorySanitizerLegacyPass__anonb9e144640211::MemorySanitizerLegacyPass637   MemorySanitizerLegacyPass(MemorySanitizerOptions Options = {})
638       : FunctionPass(ID), Options(Options) {
639     initializeMemorySanitizerLegacyPassPass(*PassRegistry::getPassRegistry());
640   }
getPassName__anonb9e144640211::MemorySanitizerLegacyPass641   StringRef getPassName() const override { return "MemorySanitizerLegacyPass"; }
642 
getAnalysisUsage__anonb9e144640211::MemorySanitizerLegacyPass643   void getAnalysisUsage(AnalysisUsage &AU) const override {
644     AU.addRequired<TargetLibraryInfoWrapperPass>();
645   }
646 
runOnFunction__anonb9e144640211::MemorySanitizerLegacyPass647   bool runOnFunction(Function &F) override {
648     return MSan->sanitizeFunction(
649         F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F));
650   }
651   bool doInitialization(Module &M) override;
652 
653   Optional<MemorySanitizer> MSan;
654   MemorySanitizerOptions Options;
655 };
656 
getOptOrDefault(const cl::opt<T> & Opt,T Default)657 template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) {
658   return (Opt.getNumOccurrences() > 0) ? Opt : Default;
659 }
660 
661 } // end anonymous namespace
662 
MemorySanitizerOptions(int TO,bool R,bool K)663 MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K)
664     : Kernel(getOptOrDefault(ClEnableKmsan, K)),
665       TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)),
666       Recover(getOptOrDefault(ClKeepGoing, Kernel || R)) {}
667 
run(Function & F,FunctionAnalysisManager & FAM)668 PreservedAnalyses MemorySanitizerPass::run(Function &F,
669                                            FunctionAnalysisManager &FAM) {
670   MemorySanitizer Msan(*F.getParent(), Options);
671   if (Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F)))
672     return PreservedAnalyses::none();
673   return PreservedAnalyses::all();
674 }
675 
run(Module & M,ModuleAnalysisManager & AM)676 PreservedAnalyses MemorySanitizerPass::run(Module &M,
677                                            ModuleAnalysisManager &AM) {
678   if (Options.Kernel)
679     return PreservedAnalyses::all();
680   insertModuleCtor(M);
681   return PreservedAnalyses::none();
682 }
683 
684 char MemorySanitizerLegacyPass::ID = 0;
685 
686 INITIALIZE_PASS_BEGIN(MemorySanitizerLegacyPass, "msan",
687                       "MemorySanitizer: detects uninitialized reads.", false,
688                       false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)689 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
690 INITIALIZE_PASS_END(MemorySanitizerLegacyPass, "msan",
691                     "MemorySanitizer: detects uninitialized reads.", false,
692                     false)
693 
694 FunctionPass *
695 llvm::createMemorySanitizerLegacyPassPass(MemorySanitizerOptions Options) {
696   return new MemorySanitizerLegacyPass(Options);
697 }
698 
699 /// Create a non-const global initialized with the given string.
700 ///
701 /// Creates a writable global for Str so that we can pass it to the
702 /// run-time lib. Runtime uses first 4 bytes of the string to store the
703 /// frame ID, so the string needs to be mutable.
createPrivateNonConstGlobalForString(Module & M,StringRef Str)704 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
705                                                             StringRef Str) {
706   Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
707   return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
708                             GlobalValue::PrivateLinkage, StrConst, "");
709 }
710 
711 /// Create KMSAN API callbacks.
createKernelApi(Module & M)712 void MemorySanitizer::createKernelApi(Module &M) {
713   IRBuilder<> IRB(*C);
714 
715   // These will be initialized in insertKmsanPrologue().
716   RetvalTLS = nullptr;
717   RetvalOriginTLS = nullptr;
718   ParamTLS = nullptr;
719   ParamOriginTLS = nullptr;
720   VAArgTLS = nullptr;
721   VAArgOriginTLS = nullptr;
722   VAArgOverflowSizeTLS = nullptr;
723 
724   WarningFn = M.getOrInsertFunction("__msan_warning", IRB.getVoidTy(),
725                                     IRB.getInt32Ty());
726   // Requests the per-task context state (kmsan_context_state*) from the
727   // runtime library.
728   MsanContextStateTy = StructType::get(
729       ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8),
730       ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8),
731       ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8),
732       ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */
733       IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy,
734       OriginTy);
735   MsanGetContextStateFn = M.getOrInsertFunction(
736       "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0));
737 
738   Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0),
739                                 PointerType::get(IRB.getInt32Ty(), 0));
740 
741   for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) {
742     std::string name_load =
743         "__msan_metadata_ptr_for_load_" + std::to_string(size);
744     std::string name_store =
745         "__msan_metadata_ptr_for_store_" + std::to_string(size);
746     MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction(
747         name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0));
748     MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction(
749         name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0));
750   }
751 
752   MsanMetadataPtrForLoadN = M.getOrInsertFunction(
753       "__msan_metadata_ptr_for_load_n", RetTy,
754       PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty());
755   MsanMetadataPtrForStoreN = M.getOrInsertFunction(
756       "__msan_metadata_ptr_for_store_n", RetTy,
757       PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty());
758 
759   // Functions for poisoning and unpoisoning memory.
760   MsanPoisonAllocaFn =
761       M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(),
762                             IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy());
763   MsanUnpoisonAllocaFn = M.getOrInsertFunction(
764       "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy);
765 }
766 
getOrInsertGlobal(Module & M,StringRef Name,Type * Ty)767 static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) {
768   return M.getOrInsertGlobal(Name, Ty, [&] {
769     return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage,
770                               nullptr, Name, nullptr,
771                               GlobalVariable::InitialExecTLSModel);
772   });
773 }
774 
775 /// Insert declarations for userspace-specific functions and globals.
createUserspaceApi(Module & M)776 void MemorySanitizer::createUserspaceApi(Module &M) {
777   IRBuilder<> IRB(*C);
778 
779   // Create the callback.
780   // FIXME: this function should have "Cold" calling conv,
781   // which is not yet implemented.
782   StringRef WarningFnName = Recover ? "__msan_warning_with_origin"
783                                     : "__msan_warning_with_origin_noreturn";
784   WarningFn =
785       M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), IRB.getInt32Ty());
786 
787   // Create the global TLS variables.
788   RetvalTLS =
789       getOrInsertGlobal(M, "__msan_retval_tls",
790                         ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8));
791 
792   RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy);
793 
794   ParamTLS =
795       getOrInsertGlobal(M, "__msan_param_tls",
796                         ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8));
797 
798   ParamOriginTLS =
799       getOrInsertGlobal(M, "__msan_param_origin_tls",
800                         ArrayType::get(OriginTy, kParamTLSSize / 4));
801 
802   VAArgTLS =
803       getOrInsertGlobal(M, "__msan_va_arg_tls",
804                         ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8));
805 
806   VAArgOriginTLS =
807       getOrInsertGlobal(M, "__msan_va_arg_origin_tls",
808                         ArrayType::get(OriginTy, kParamTLSSize / 4));
809 
810   VAArgOverflowSizeTLS =
811       getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty());
812 
813   for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
814        AccessSizeIndex++) {
815     unsigned AccessSize = 1 << AccessSizeIndex;
816     std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize);
817     SmallVector<std::pair<unsigned, Attribute>, 2> MaybeWarningFnAttrs;
818     MaybeWarningFnAttrs.push_back(std::make_pair(
819         AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt)));
820     MaybeWarningFnAttrs.push_back(std::make_pair(
821         AttributeList::FirstArgIndex + 1, Attribute::get(*C, Attribute::ZExt)));
822     MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction(
823         FunctionName, AttributeList::get(*C, MaybeWarningFnAttrs),
824         IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt32Ty());
825 
826     FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize);
827     SmallVector<std::pair<unsigned, Attribute>, 2> MaybeStoreOriginFnAttrs;
828     MaybeStoreOriginFnAttrs.push_back(std::make_pair(
829         AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt)));
830     MaybeStoreOriginFnAttrs.push_back(std::make_pair(
831         AttributeList::FirstArgIndex + 2, Attribute::get(*C, Attribute::ZExt)));
832     MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction(
833         FunctionName, AttributeList::get(*C, MaybeStoreOriginFnAttrs),
834         IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt8PtrTy(),
835         IRB.getInt32Ty());
836   }
837 
838   MsanSetAllocaOrigin4Fn = M.getOrInsertFunction(
839     "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
840     IRB.getInt8PtrTy(), IntptrTy);
841   MsanPoisonStackFn =
842       M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(),
843                             IRB.getInt8PtrTy(), IntptrTy);
844 }
845 
846 /// Insert extern declaration of runtime-provided functions and globals.
initializeCallbacks(Module & M)847 void MemorySanitizer::initializeCallbacks(Module &M) {
848   // Only do this once.
849   if (CallbacksInitialized)
850     return;
851 
852   IRBuilder<> IRB(*C);
853   // Initialize callbacks that are common for kernel and userspace
854   // instrumentation.
855   MsanChainOriginFn = M.getOrInsertFunction(
856     "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty());
857   MsanSetOriginFn =
858       M.getOrInsertFunction("__msan_set_origin", IRB.getVoidTy(),
859                             IRB.getInt8PtrTy(), IntptrTy, IRB.getInt32Ty());
860   MemmoveFn = M.getOrInsertFunction(
861     "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
862     IRB.getInt8PtrTy(), IntptrTy);
863   MemcpyFn = M.getOrInsertFunction(
864     "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
865     IntptrTy);
866   MemsetFn = M.getOrInsertFunction(
867     "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
868     IntptrTy);
869 
870   MsanInstrumentAsmStoreFn =
871       M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(),
872                             PointerType::get(IRB.getInt8Ty(), 0), IntptrTy);
873 
874   if (CompileKernel) {
875     createKernelApi(M);
876   } else {
877     createUserspaceApi(M);
878   }
879   CallbacksInitialized = true;
880 }
881 
getKmsanShadowOriginAccessFn(bool isStore,int size)882 FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore,
883                                                              int size) {
884   FunctionCallee *Fns =
885       isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8;
886   switch (size) {
887   case 1:
888     return Fns[0];
889   case 2:
890     return Fns[1];
891   case 4:
892     return Fns[2];
893   case 8:
894     return Fns[3];
895   default:
896     return nullptr;
897   }
898 }
899 
900 /// Module-level initialization.
901 ///
902 /// inserts a call to __msan_init to the module's constructor list.
initializeModule(Module & M)903 void MemorySanitizer::initializeModule(Module &M) {
904   auto &DL = M.getDataLayout();
905 
906   bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0;
907   bool OriginPassed = ClOriginBase.getNumOccurrences() > 0;
908   // Check the overrides first
909   if (ShadowPassed || OriginPassed) {
910     CustomMapParams.AndMask = ClAndMask;
911     CustomMapParams.XorMask = ClXorMask;
912     CustomMapParams.ShadowBase = ClShadowBase;
913     CustomMapParams.OriginBase = ClOriginBase;
914     MapParams = &CustomMapParams;
915   } else {
916     Triple TargetTriple(M.getTargetTriple());
917     switch (TargetTriple.getOS()) {
918       case Triple::FreeBSD:
919         switch (TargetTriple.getArch()) {
920           case Triple::x86_64:
921             MapParams = FreeBSD_X86_MemoryMapParams.bits64;
922             break;
923           case Triple::x86:
924             MapParams = FreeBSD_X86_MemoryMapParams.bits32;
925             break;
926           default:
927             report_fatal_error("unsupported architecture");
928         }
929         break;
930       case Triple::NetBSD:
931         switch (TargetTriple.getArch()) {
932           case Triple::x86_64:
933             MapParams = NetBSD_X86_MemoryMapParams.bits64;
934             break;
935           default:
936             report_fatal_error("unsupported architecture");
937         }
938         break;
939       case Triple::Linux:
940         switch (TargetTriple.getArch()) {
941           case Triple::x86_64:
942             MapParams = Linux_X86_MemoryMapParams.bits64;
943             break;
944           case Triple::x86:
945             MapParams = Linux_X86_MemoryMapParams.bits32;
946             break;
947           case Triple::mips64:
948           case Triple::mips64el:
949             MapParams = Linux_MIPS_MemoryMapParams.bits64;
950             break;
951           case Triple::ppc64:
952           case Triple::ppc64le:
953             MapParams = Linux_PowerPC_MemoryMapParams.bits64;
954             break;
955           case Triple::systemz:
956             MapParams = Linux_S390_MemoryMapParams.bits64;
957             break;
958           case Triple::aarch64:
959           case Triple::aarch64_be:
960             MapParams = Linux_ARM_MemoryMapParams.bits64;
961             break;
962           default:
963             report_fatal_error("unsupported architecture");
964         }
965         break;
966       default:
967         report_fatal_error("unsupported operating system");
968     }
969   }
970 
971   C = &(M.getContext());
972   IRBuilder<> IRB(*C);
973   IntptrTy = IRB.getIntPtrTy(DL);
974   OriginTy = IRB.getInt32Ty();
975 
976   ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
977   OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
978 
979   if (!CompileKernel) {
980     if (TrackOrigins)
981       M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] {
982         return new GlobalVariable(
983             M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
984             IRB.getInt32(TrackOrigins), "__msan_track_origins");
985       });
986 
987     if (Recover)
988       M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] {
989         return new GlobalVariable(M, IRB.getInt32Ty(), true,
990                                   GlobalValue::WeakODRLinkage,
991                                   IRB.getInt32(Recover), "__msan_keep_going");
992       });
993 }
994 }
995 
doInitialization(Module & M)996 bool MemorySanitizerLegacyPass::doInitialization(Module &M) {
997   if (!Options.Kernel)
998     insertModuleCtor(M);
999   MSan.emplace(M, Options);
1000   return true;
1001 }
1002 
1003 namespace {
1004 
1005 /// A helper class that handles instrumentation of VarArg
1006 /// functions on a particular platform.
1007 ///
1008 /// Implementations are expected to insert the instrumentation
1009 /// necessary to propagate argument shadow through VarArg function
1010 /// calls. Visit* methods are called during an InstVisitor pass over
1011 /// the function, and should avoid creating new basic blocks. A new
1012 /// instance of this class is created for each instrumented function.
1013 struct VarArgHelper {
1014   virtual ~VarArgHelper() = default;
1015 
1016   /// Visit a CallBase.
1017   virtual void visitCallBase(CallBase &CB, IRBuilder<> &IRB) = 0;
1018 
1019   /// Visit a va_start call.
1020   virtual void visitVAStartInst(VAStartInst &I) = 0;
1021 
1022   /// Visit a va_copy call.
1023   virtual void visitVACopyInst(VACopyInst &I) = 0;
1024 
1025   /// Finalize function instrumentation.
1026   ///
1027   /// This method is called after visiting all interesting (see above)
1028   /// instructions in a function.
1029   virtual void finalizeInstrumentation() = 0;
1030 };
1031 
1032 struct MemorySanitizerVisitor;
1033 
1034 } // end anonymous namespace
1035 
1036 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
1037                                         MemorySanitizerVisitor &Visitor);
1038 
TypeSizeToSizeIndex(unsigned TypeSize)1039 static unsigned TypeSizeToSizeIndex(unsigned TypeSize) {
1040   if (TypeSize <= 8) return 0;
1041   return Log2_32_Ceil((TypeSize + 7) / 8);
1042 }
1043 
1044 namespace {
1045 
1046 /// This class does all the work for a given function. Store and Load
1047 /// instructions store and load corresponding shadow and origin
1048 /// values. Most instructions propagate shadow from arguments to their
1049 /// return values. Certain instructions (most importantly, BranchInst)
1050 /// test their argument shadow and print reports (with a runtime call) if it's
1051 /// non-zero.
1052 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
1053   Function &F;
1054   MemorySanitizer &MS;
1055   SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
1056   ValueMap<Value*, Value*> ShadowMap, OriginMap;
1057   std::unique_ptr<VarArgHelper> VAHelper;
1058   const TargetLibraryInfo *TLI;
1059   Instruction *FnPrologueEnd;
1060 
1061   // The following flags disable parts of MSan instrumentation based on
1062   // exclusion list contents and command-line options.
1063   bool InsertChecks;
1064   bool PropagateShadow;
1065   bool PoisonStack;
1066   bool PoisonUndef;
1067 
1068   struct ShadowOriginAndInsertPoint {
1069     Value *Shadow;
1070     Value *Origin;
1071     Instruction *OrigIns;
1072 
ShadowOriginAndInsertPoint__anonb9e144640811::MemorySanitizerVisitor::ShadowOriginAndInsertPoint1073     ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I)
1074       : Shadow(S), Origin(O), OrigIns(I) {}
1075   };
1076   SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
1077   bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics;
1078   SmallSet<AllocaInst *, 16> AllocaSet;
1079   SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList;
1080   SmallVector<StoreInst *, 16> StoreList;
1081 
MemorySanitizerVisitor__anonb9e144640811::MemorySanitizerVisitor1082   MemorySanitizerVisitor(Function &F, MemorySanitizer &MS,
1083                          const TargetLibraryInfo &TLI)
1084       : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) {
1085     bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory);
1086     InsertChecks = SanitizeFunction;
1087     PropagateShadow = SanitizeFunction;
1088     PoisonStack = SanitizeFunction && ClPoisonStack;
1089     PoisonUndef = SanitizeFunction && ClPoisonUndef;
1090 
1091     // In the presence of unreachable blocks, we may see Phi nodes with
1092     // incoming nodes from such blocks. Since InstVisitor skips unreachable
1093     // blocks, such nodes will not have any shadow value associated with them.
1094     // It's easier to remove unreachable blocks than deal with missing shadow.
1095     removeUnreachableBlocks(F);
1096 
1097     MS.initializeCallbacks(*F.getParent());
1098     FnPrologueEnd = IRBuilder<>(F.getEntryBlock().getFirstNonPHI())
1099                         .CreateIntrinsic(Intrinsic::donothing, {}, {});
1100 
1101     if (MS.CompileKernel) {
1102       IRBuilder<> IRB(FnPrologueEnd);
1103       insertKmsanPrologue(IRB);
1104     }
1105 
1106     LLVM_DEBUG(if (!InsertChecks) dbgs()
1107                << "MemorySanitizer is not inserting checks into '"
1108                << F.getName() << "'\n");
1109   }
1110 
isInPrologue__anonb9e144640811::MemorySanitizerVisitor1111   bool isInPrologue(Instruction &I) {
1112     return I.getParent() == FnPrologueEnd->getParent() &&
1113            (&I == FnPrologueEnd || I.comesBefore(FnPrologueEnd));
1114   }
1115 
updateOrigin__anonb9e144640811::MemorySanitizerVisitor1116   Value *updateOrigin(Value *V, IRBuilder<> &IRB) {
1117     if (MS.TrackOrigins <= 1) return V;
1118     return IRB.CreateCall(MS.MsanChainOriginFn, V);
1119   }
1120 
originToIntptr__anonb9e144640811::MemorySanitizerVisitor1121   Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) {
1122     const DataLayout &DL = F.getParent()->getDataLayout();
1123     unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
1124     if (IntptrSize == kOriginSize) return Origin;
1125     assert(IntptrSize == kOriginSize * 2);
1126     Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false);
1127     return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8));
1128   }
1129 
1130   /// Fill memory range with the given origin value.
paintOrigin__anonb9e144640811::MemorySanitizerVisitor1131   void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr,
1132                    unsigned Size, Align Alignment) {
1133     const DataLayout &DL = F.getParent()->getDataLayout();
1134     const Align IntptrAlignment = DL.getABITypeAlign(MS.IntptrTy);
1135     unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
1136     assert(IntptrAlignment >= kMinOriginAlignment);
1137     assert(IntptrSize >= kOriginSize);
1138 
1139     unsigned Ofs = 0;
1140     Align CurrentAlignment = Alignment;
1141     if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) {
1142       Value *IntptrOrigin = originToIntptr(IRB, Origin);
1143       Value *IntptrOriginPtr =
1144           IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0));
1145       for (unsigned i = 0; i < Size / IntptrSize; ++i) {
1146         Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i)
1147                        : IntptrOriginPtr;
1148         IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment);
1149         Ofs += IntptrSize / kOriginSize;
1150         CurrentAlignment = IntptrAlignment;
1151       }
1152     }
1153 
1154     for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) {
1155       Value *GEP =
1156           i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr;
1157       IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment);
1158       CurrentAlignment = kMinOriginAlignment;
1159     }
1160   }
1161 
storeOrigin__anonb9e144640811::MemorySanitizerVisitor1162   void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin,
1163                    Value *OriginPtr, Align Alignment, bool AsCall) {
1164     const DataLayout &DL = F.getParent()->getDataLayout();
1165     const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1166     unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType());
1167     Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB);
1168     if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) {
1169       if (ClCheckConstantShadow && !ConstantShadow->isZeroValue())
1170         paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize,
1171                     OriginAlignment);
1172       return;
1173     }
1174 
1175     unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType());
1176     unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
1177     if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) {
1178       FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex];
1179       Value *ConvertedShadow2 =
1180           IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
1181       CallBase *CB = IRB.CreateCall(
1182           Fn, {ConvertedShadow2,
1183                IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), Origin});
1184       CB->addParamAttr(0, Attribute::ZExt);
1185       CB->addParamAttr(2, Attribute::ZExt);
1186     } else {
1187       Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp");
1188       Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1189           Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights);
1190       IRBuilder<> IRBNew(CheckTerm);
1191       paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize,
1192                   OriginAlignment);
1193     }
1194   }
1195 
materializeStores__anonb9e144640811::MemorySanitizerVisitor1196   void materializeStores(bool InstrumentWithCalls) {
1197     for (StoreInst *SI : StoreList) {
1198       IRBuilder<> IRB(SI);
1199       Value *Val = SI->getValueOperand();
1200       Value *Addr = SI->getPointerOperand();
1201       Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val);
1202       Value *ShadowPtr, *OriginPtr;
1203       Type *ShadowTy = Shadow->getType();
1204       const Align Alignment = assumeAligned(SI->getAlignment());
1205       const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1206       std::tie(ShadowPtr, OriginPtr) =
1207           getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true);
1208 
1209       StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment);
1210       LLVM_DEBUG(dbgs() << "  STORE: " << *NewSI << "\n");
1211       (void)NewSI;
1212 
1213       if (SI->isAtomic())
1214         SI->setOrdering(addReleaseOrdering(SI->getOrdering()));
1215 
1216       if (MS.TrackOrigins && !SI->isAtomic())
1217         storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr,
1218                     OriginAlignment, InstrumentWithCalls);
1219     }
1220   }
1221 
1222   /// Helper function to insert a warning at IRB's current insert point.
insertWarningFn__anonb9e144640811::MemorySanitizerVisitor1223   void insertWarningFn(IRBuilder<> &IRB, Value *Origin) {
1224     if (!Origin)
1225       Origin = (Value *)IRB.getInt32(0);
1226     assert(Origin->getType()->isIntegerTy());
1227     IRB.CreateCall(MS.WarningFn, Origin)->setCannotMerge();
1228     // FIXME: Insert UnreachableInst if !MS.Recover?
1229     // This may invalidate some of the following checks and needs to be done
1230     // at the very end.
1231   }
1232 
materializeOneCheck__anonb9e144640811::MemorySanitizerVisitor1233   void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin,
1234                            bool AsCall) {
1235     IRBuilder<> IRB(OrigIns);
1236     LLVM_DEBUG(dbgs() << "  SHAD0 : " << *Shadow << "\n");
1237     Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB);
1238     LLVM_DEBUG(dbgs() << "  SHAD1 : " << *ConvertedShadow << "\n");
1239 
1240     if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) {
1241       if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) {
1242         insertWarningFn(IRB, Origin);
1243       }
1244       return;
1245     }
1246 
1247     const DataLayout &DL = OrigIns->getModule()->getDataLayout();
1248 
1249     unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType());
1250     unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
1251     if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) {
1252       FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex];
1253       Value *ConvertedShadow2 =
1254           IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
1255       CallBase *CB = IRB.CreateCall(
1256           Fn, {ConvertedShadow2,
1257                MS.TrackOrigins && Origin ? Origin : (Value *)IRB.getInt32(0)});
1258       CB->addParamAttr(0, Attribute::ZExt);
1259       CB->addParamAttr(1, Attribute::ZExt);
1260     } else {
1261       Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp");
1262       Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1263           Cmp, OrigIns,
1264           /* Unreachable */ !MS.Recover, MS.ColdCallWeights);
1265 
1266       IRB.SetInsertPoint(CheckTerm);
1267       insertWarningFn(IRB, Origin);
1268       LLVM_DEBUG(dbgs() << "  CHECK: " << *Cmp << "\n");
1269     }
1270   }
1271 
materializeChecks__anonb9e144640811::MemorySanitizerVisitor1272   void materializeChecks(bool InstrumentWithCalls) {
1273     for (const auto &ShadowData : InstrumentationList) {
1274       Instruction *OrigIns = ShadowData.OrigIns;
1275       Value *Shadow = ShadowData.Shadow;
1276       Value *Origin = ShadowData.Origin;
1277       materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls);
1278     }
1279     LLVM_DEBUG(dbgs() << "DONE:\n" << F);
1280   }
1281 
1282   // Returns the last instruction in the new prologue
insertKmsanPrologue__anonb9e144640811::MemorySanitizerVisitor1283   void insertKmsanPrologue(IRBuilder<> &IRB) {
1284     Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {});
1285     Constant *Zero = IRB.getInt32(0);
1286     MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1287                                 {Zero, IRB.getInt32(0)}, "param_shadow");
1288     MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1289                                  {Zero, IRB.getInt32(1)}, "retval_shadow");
1290     MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1291                                 {Zero, IRB.getInt32(2)}, "va_arg_shadow");
1292     MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1293                                       {Zero, IRB.getInt32(3)}, "va_arg_origin");
1294     MS.VAArgOverflowSizeTLS =
1295         IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1296                       {Zero, IRB.getInt32(4)}, "va_arg_overflow_size");
1297     MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1298                                       {Zero, IRB.getInt32(5)}, "param_origin");
1299     MS.RetvalOriginTLS =
1300         IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1301                       {Zero, IRB.getInt32(6)}, "retval_origin");
1302   }
1303 
1304   /// Add MemorySanitizer instrumentation to a function.
runOnFunction__anonb9e144640811::MemorySanitizerVisitor1305   bool runOnFunction() {
1306     // Iterate all BBs in depth-first order and create shadow instructions
1307     // for all instructions (where applicable).
1308     // For PHI nodes we create dummy shadow PHIs which will be finalized later.
1309     for (BasicBlock *BB : depth_first(FnPrologueEnd->getParent()))
1310       visit(*BB);
1311 
1312     // Finalize PHI nodes.
1313     for (PHINode *PN : ShadowPHINodes) {
1314       PHINode *PNS = cast<PHINode>(getShadow(PN));
1315       PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr;
1316       size_t NumValues = PN->getNumIncomingValues();
1317       for (size_t v = 0; v < NumValues; v++) {
1318         PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
1319         if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
1320       }
1321     }
1322 
1323     VAHelper->finalizeInstrumentation();
1324 
1325     // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to
1326     // instrumenting only allocas.
1327     if (InstrumentLifetimeStart) {
1328       for (auto Item : LifetimeStartList) {
1329         instrumentAlloca(*Item.second, Item.first);
1330         AllocaSet.erase(Item.second);
1331       }
1332     }
1333     // Poison the allocas for which we didn't instrument the corresponding
1334     // lifetime intrinsics.
1335     for (AllocaInst *AI : AllocaSet)
1336       instrumentAlloca(*AI);
1337 
1338     bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 &&
1339                                InstrumentationList.size() + StoreList.size() >
1340                                    (unsigned)ClInstrumentationWithCallThreshold;
1341 
1342     // Insert shadow value checks.
1343     materializeChecks(InstrumentWithCalls);
1344 
1345     // Delayed instrumentation of StoreInst.
1346     // This may not add new address checks.
1347     materializeStores(InstrumentWithCalls);
1348 
1349     return true;
1350   }
1351 
1352   /// Compute the shadow type that corresponds to a given Value.
getShadowTy__anonb9e144640811::MemorySanitizerVisitor1353   Type *getShadowTy(Value *V) {
1354     return getShadowTy(V->getType());
1355   }
1356 
1357   /// Compute the shadow type that corresponds to a given Type.
getShadowTy__anonb9e144640811::MemorySanitizerVisitor1358   Type *getShadowTy(Type *OrigTy) {
1359     if (!OrigTy->isSized()) {
1360       return nullptr;
1361     }
1362     // For integer type, shadow is the same as the original type.
1363     // This may return weird-sized types like i1.
1364     if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
1365       return IT;
1366     const DataLayout &DL = F.getParent()->getDataLayout();
1367     if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
1368       uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType());
1369       return FixedVectorType::get(IntegerType::get(*MS.C, EltSize),
1370                                   cast<FixedVectorType>(VT)->getNumElements());
1371     }
1372     if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) {
1373       return ArrayType::get(getShadowTy(AT->getElementType()),
1374                             AT->getNumElements());
1375     }
1376     if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
1377       SmallVector<Type*, 4> Elements;
1378       for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
1379         Elements.push_back(getShadowTy(ST->getElementType(i)));
1380       StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
1381       LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
1382       return Res;
1383     }
1384     uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy);
1385     return IntegerType::get(*MS.C, TypeSize);
1386   }
1387 
1388   /// Flatten a vector type.
getShadowTyNoVec__anonb9e144640811::MemorySanitizerVisitor1389   Type *getShadowTyNoVec(Type *ty) {
1390     if (VectorType *vt = dyn_cast<VectorType>(ty))
1391       return IntegerType::get(*MS.C,
1392                               vt->getPrimitiveSizeInBits().getFixedSize());
1393     return ty;
1394   }
1395 
1396   /// Extract combined shadow of struct elements as a bool
collapseStructShadow__anonb9e144640811::MemorySanitizerVisitor1397   Value *collapseStructShadow(StructType *Struct, Value *Shadow,
1398                               IRBuilder<> &IRB) {
1399     Value *FalseVal = IRB.getIntN(/* width */ 1, /* value */ 0);
1400     Value *Aggregator = FalseVal;
1401 
1402     for (unsigned Idx = 0; Idx < Struct->getNumElements(); Idx++) {
1403       // Combine by ORing together each element's bool shadow
1404       Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx);
1405       Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB);
1406       Value *ShadowBool = convertToBool(ShadowInner, IRB);
1407 
1408       if (Aggregator != FalseVal)
1409         Aggregator = IRB.CreateOr(Aggregator, ShadowBool);
1410       else
1411         Aggregator = ShadowBool;
1412     }
1413 
1414     return Aggregator;
1415   }
1416 
1417   // Extract combined shadow of array elements
collapseArrayShadow__anonb9e144640811::MemorySanitizerVisitor1418   Value *collapseArrayShadow(ArrayType *Array, Value *Shadow,
1419                              IRBuilder<> &IRB) {
1420     if (!Array->getNumElements())
1421       return IRB.getIntN(/* width */ 1, /* value */ 0);
1422 
1423     Value *FirstItem = IRB.CreateExtractValue(Shadow, 0);
1424     Value *Aggregator = convertShadowToScalar(FirstItem, IRB);
1425 
1426     for (unsigned Idx = 1; Idx < Array->getNumElements(); Idx++) {
1427       Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx);
1428       Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB);
1429       Aggregator = IRB.CreateOr(Aggregator, ShadowInner);
1430     }
1431     return Aggregator;
1432   }
1433 
1434   /// Convert a shadow value to it's flattened variant. The resulting
1435   /// shadow may not necessarily have the same bit width as the input
1436   /// value, but it will always be comparable to zero.
convertShadowToScalar__anonb9e144640811::MemorySanitizerVisitor1437   Value *convertShadowToScalar(Value *V, IRBuilder<> &IRB) {
1438     if (StructType *Struct = dyn_cast<StructType>(V->getType()))
1439       return collapseStructShadow(Struct, V, IRB);
1440     if (ArrayType *Array = dyn_cast<ArrayType>(V->getType()))
1441       return collapseArrayShadow(Array, V, IRB);
1442     Type *Ty = V->getType();
1443     Type *NoVecTy = getShadowTyNoVec(Ty);
1444     if (Ty == NoVecTy) return V;
1445     return IRB.CreateBitCast(V, NoVecTy);
1446   }
1447 
1448   // Convert a scalar value to an i1 by comparing with 0
convertToBool__anonb9e144640811::MemorySanitizerVisitor1449   Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &name = "") {
1450     Type *VTy = V->getType();
1451     assert(VTy->isIntegerTy());
1452     if (VTy->getIntegerBitWidth() == 1)
1453       // Just converting a bool to a bool, so do nothing.
1454       return V;
1455     return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), name);
1456   }
1457 
1458   /// Compute the integer shadow offset that corresponds to a given
1459   /// application address.
1460   ///
1461   /// Offset = (Addr & ~AndMask) ^ XorMask
getShadowPtrOffset__anonb9e144640811::MemorySanitizerVisitor1462   Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) {
1463     Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy);
1464 
1465     uint64_t AndMask = MS.MapParams->AndMask;
1466     if (AndMask)
1467       OffsetLong =
1468           IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask));
1469 
1470     uint64_t XorMask = MS.MapParams->XorMask;
1471     if (XorMask)
1472       OffsetLong =
1473           IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask));
1474     return OffsetLong;
1475   }
1476 
1477   /// Compute the shadow and origin addresses corresponding to a given
1478   /// application address.
1479   ///
1480   /// Shadow = ShadowBase + Offset
1481   /// Origin = (OriginBase + Offset) & ~3ULL
1482   std::pair<Value *, Value *>
getShadowOriginPtrUserspace__anonb9e144640811::MemorySanitizerVisitor1483   getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy,
1484                               MaybeAlign Alignment) {
1485     Value *ShadowOffset = getShadowPtrOffset(Addr, IRB);
1486     Value *ShadowLong = ShadowOffset;
1487     uint64_t ShadowBase = MS.MapParams->ShadowBase;
1488     if (ShadowBase != 0) {
1489       ShadowLong =
1490         IRB.CreateAdd(ShadowLong,
1491                       ConstantInt::get(MS.IntptrTy, ShadowBase));
1492     }
1493     Value *ShadowPtr =
1494         IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
1495     Value *OriginPtr = nullptr;
1496     if (MS.TrackOrigins) {
1497       Value *OriginLong = ShadowOffset;
1498       uint64_t OriginBase = MS.MapParams->OriginBase;
1499       if (OriginBase != 0)
1500         OriginLong = IRB.CreateAdd(OriginLong,
1501                                    ConstantInt::get(MS.IntptrTy, OriginBase));
1502       if (!Alignment || *Alignment < kMinOriginAlignment) {
1503         uint64_t Mask = kMinOriginAlignment.value() - 1;
1504         OriginLong =
1505             IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask));
1506       }
1507       OriginPtr =
1508           IRB.CreateIntToPtr(OriginLong, PointerType::get(MS.OriginTy, 0));
1509     }
1510     return std::make_pair(ShadowPtr, OriginPtr);
1511   }
1512 
getShadowOriginPtrKernel__anonb9e144640811::MemorySanitizerVisitor1513   std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr,
1514                                                        IRBuilder<> &IRB,
1515                                                        Type *ShadowTy,
1516                                                        bool isStore) {
1517     Value *ShadowOriginPtrs;
1518     const DataLayout &DL = F.getParent()->getDataLayout();
1519     int Size = DL.getTypeStoreSize(ShadowTy);
1520 
1521     FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size);
1522     Value *AddrCast =
1523         IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0));
1524     if (Getter) {
1525       ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast);
1526     } else {
1527       Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size);
1528       ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN
1529                                                 : MS.MsanMetadataPtrForLoadN,
1530                                         {AddrCast, SizeVal});
1531     }
1532     Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0);
1533     ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0));
1534     Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1);
1535 
1536     return std::make_pair(ShadowPtr, OriginPtr);
1537   }
1538 
getShadowOriginPtr__anonb9e144640811::MemorySanitizerVisitor1539   std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB,
1540                                                  Type *ShadowTy,
1541                                                  MaybeAlign Alignment,
1542                                                  bool isStore) {
1543     if (MS.CompileKernel)
1544       return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore);
1545     return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment);
1546   }
1547 
1548   /// Compute the shadow address for a given function argument.
1549   ///
1550   /// Shadow = ParamTLS+ArgOffset.
getShadowPtrForArgument__anonb9e144640811::MemorySanitizerVisitor1551   Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
1552                                  int ArgOffset) {
1553     Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
1554     if (ArgOffset)
1555       Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
1556     return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
1557                               "_msarg");
1558   }
1559 
1560   /// Compute the origin address for a given function argument.
getOriginPtrForArgument__anonb9e144640811::MemorySanitizerVisitor1561   Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
1562                                  int ArgOffset) {
1563     if (!MS.TrackOrigins)
1564       return nullptr;
1565     Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
1566     if (ArgOffset)
1567       Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
1568     return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
1569                               "_msarg_o");
1570   }
1571 
1572   /// Compute the shadow address for a retval.
getShadowPtrForRetval__anonb9e144640811::MemorySanitizerVisitor1573   Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
1574     return IRB.CreatePointerCast(MS.RetvalTLS,
1575                                  PointerType::get(getShadowTy(A), 0),
1576                                  "_msret");
1577   }
1578 
1579   /// Compute the origin address for a retval.
getOriginPtrForRetval__anonb9e144640811::MemorySanitizerVisitor1580   Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
1581     // We keep a single origin for the entire retval. Might be too optimistic.
1582     return MS.RetvalOriginTLS;
1583   }
1584 
1585   /// Set SV to be the shadow value for V.
setShadow__anonb9e144640811::MemorySanitizerVisitor1586   void setShadow(Value *V, Value *SV) {
1587     assert(!ShadowMap.count(V) && "Values may only have one shadow");
1588     ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V);
1589   }
1590 
1591   /// Set Origin to be the origin value for V.
setOrigin__anonb9e144640811::MemorySanitizerVisitor1592   void setOrigin(Value *V, Value *Origin) {
1593     if (!MS.TrackOrigins) return;
1594     assert(!OriginMap.count(V) && "Values may only have one origin");
1595     LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << "  ==> " << *Origin << "\n");
1596     OriginMap[V] = Origin;
1597   }
1598 
getCleanShadow__anonb9e144640811::MemorySanitizerVisitor1599   Constant *getCleanShadow(Type *OrigTy) {
1600     Type *ShadowTy = getShadowTy(OrigTy);
1601     if (!ShadowTy)
1602       return nullptr;
1603     return Constant::getNullValue(ShadowTy);
1604   }
1605 
1606   /// Create a clean shadow value for a given value.
1607   ///
1608   /// Clean shadow (all zeroes) means all bits of the value are defined
1609   /// (initialized).
getCleanShadow__anonb9e144640811::MemorySanitizerVisitor1610   Constant *getCleanShadow(Value *V) {
1611     return getCleanShadow(V->getType());
1612   }
1613 
1614   /// Create a dirty shadow of a given shadow type.
getPoisonedShadow__anonb9e144640811::MemorySanitizerVisitor1615   Constant *getPoisonedShadow(Type *ShadowTy) {
1616     assert(ShadowTy);
1617     if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
1618       return Constant::getAllOnesValue(ShadowTy);
1619     if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) {
1620       SmallVector<Constant *, 4> Vals(AT->getNumElements(),
1621                                       getPoisonedShadow(AT->getElementType()));
1622       return ConstantArray::get(AT, Vals);
1623     }
1624     if (StructType *ST = dyn_cast<StructType>(ShadowTy)) {
1625       SmallVector<Constant *, 4> Vals;
1626       for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
1627         Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
1628       return ConstantStruct::get(ST, Vals);
1629     }
1630     llvm_unreachable("Unexpected shadow type");
1631   }
1632 
1633   /// Create a dirty shadow for a given value.
getPoisonedShadow__anonb9e144640811::MemorySanitizerVisitor1634   Constant *getPoisonedShadow(Value *V) {
1635     Type *ShadowTy = getShadowTy(V);
1636     if (!ShadowTy)
1637       return nullptr;
1638     return getPoisonedShadow(ShadowTy);
1639   }
1640 
1641   /// Create a clean (zero) origin.
getCleanOrigin__anonb9e144640811::MemorySanitizerVisitor1642   Value *getCleanOrigin() {
1643     return Constant::getNullValue(MS.OriginTy);
1644   }
1645 
1646   /// Get the shadow value for a given Value.
1647   ///
1648   /// This function either returns the value set earlier with setShadow,
1649   /// or extracts if from ParamTLS (for function arguments).
getShadow__anonb9e144640811::MemorySanitizerVisitor1650   Value *getShadow(Value *V) {
1651     if (!PropagateShadow) return getCleanShadow(V);
1652     if (Instruction *I = dyn_cast<Instruction>(V)) {
1653       if (I->getMetadata("nosanitize"))
1654         return getCleanShadow(V);
1655       // For instructions the shadow is already stored in the map.
1656       Value *Shadow = ShadowMap[V];
1657       if (!Shadow) {
1658         LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
1659         (void)I;
1660         assert(Shadow && "No shadow for a value");
1661       }
1662       return Shadow;
1663     }
1664     if (UndefValue *U = dyn_cast<UndefValue>(V)) {
1665       Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V);
1666       LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
1667       (void)U;
1668       return AllOnes;
1669     }
1670     if (Argument *A = dyn_cast<Argument>(V)) {
1671       // For arguments we compute the shadow on demand and store it in the map.
1672       Value **ShadowPtr = &ShadowMap[V];
1673       if (*ShadowPtr)
1674         return *ShadowPtr;
1675       Function *F = A->getParent();
1676       IRBuilder<> EntryIRB(FnPrologueEnd);
1677       unsigned ArgOffset = 0;
1678       const DataLayout &DL = F->getParent()->getDataLayout();
1679       for (auto &FArg : F->args()) {
1680         if (!FArg.getType()->isSized()) {
1681           LLVM_DEBUG(dbgs() << "Arg is not sized\n");
1682           continue;
1683         }
1684 
1685         bool FArgByVal = FArg.hasByValAttr();
1686         bool FArgNoUndef = FArg.hasAttribute(Attribute::NoUndef);
1687         bool FArgEagerCheck = ClEagerChecks && !FArgByVal && FArgNoUndef;
1688         unsigned Size =
1689             FArg.hasByValAttr()
1690                 ? DL.getTypeAllocSize(FArg.getParamByValType())
1691                 : DL.getTypeAllocSize(FArg.getType());
1692 
1693         if (A == &FArg) {
1694           bool Overflow = ArgOffset + Size > kParamTLSSize;
1695           if (FArgEagerCheck) {
1696             *ShadowPtr = getCleanShadow(V);
1697             setOrigin(A, getCleanOrigin());
1698             continue;
1699           } else if (FArgByVal) {
1700             Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset);
1701             // ByVal pointer itself has clean shadow. We copy the actual
1702             // argument shadow to the underlying memory.
1703             // Figure out maximal valid memcpy alignment.
1704             const Align ArgAlign = DL.getValueOrABITypeAlignment(
1705                 MaybeAlign(FArg.getParamAlignment()), FArg.getParamByValType());
1706             Value *CpShadowPtr =
1707                 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign,
1708                                    /*isStore*/ true)
1709                     .first;
1710             // TODO(glider): need to copy origins.
1711             if (Overflow) {
1712               // ParamTLS overflow.
1713               EntryIRB.CreateMemSet(
1714                   CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()),
1715                   Size, ArgAlign);
1716             } else {
1717               const Align CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
1718               Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base,
1719                                                  CopyAlign, Size);
1720               LLVM_DEBUG(dbgs() << "  ByValCpy: " << *Cpy << "\n");
1721               (void)Cpy;
1722             }
1723             *ShadowPtr = getCleanShadow(V);
1724           } else {
1725             // Shadow over TLS
1726             Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset);
1727             if (Overflow) {
1728               // ParamTLS overflow.
1729               *ShadowPtr = getCleanShadow(V);
1730             } else {
1731               *ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base,
1732                                                       kShadowTLSAlignment);
1733             }
1734           }
1735           LLVM_DEBUG(dbgs()
1736                      << "  ARG:    " << FArg << " ==> " << **ShadowPtr << "\n");
1737           if (MS.TrackOrigins && !Overflow) {
1738             Value *OriginPtr =
1739                 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset);
1740             setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr));
1741           } else {
1742             setOrigin(A, getCleanOrigin());
1743           }
1744 
1745           break;
1746         }
1747 
1748         if (!FArgEagerCheck)
1749           ArgOffset += alignTo(Size, kShadowTLSAlignment);
1750       }
1751       assert(*ShadowPtr && "Could not find shadow for an argument");
1752       return *ShadowPtr;
1753     }
1754     // For everything else the shadow is zero.
1755     return getCleanShadow(V);
1756   }
1757 
1758   /// Get the shadow for i-th argument of the instruction I.
getShadow__anonb9e144640811::MemorySanitizerVisitor1759   Value *getShadow(Instruction *I, int i) {
1760     return getShadow(I->getOperand(i));
1761   }
1762 
1763   /// Get the origin for a value.
getOrigin__anonb9e144640811::MemorySanitizerVisitor1764   Value *getOrigin(Value *V) {
1765     if (!MS.TrackOrigins) return nullptr;
1766     if (!PropagateShadow) return getCleanOrigin();
1767     if (isa<Constant>(V)) return getCleanOrigin();
1768     assert((isa<Instruction>(V) || isa<Argument>(V)) &&
1769            "Unexpected value type in getOrigin()");
1770     if (Instruction *I = dyn_cast<Instruction>(V)) {
1771       if (I->getMetadata("nosanitize"))
1772         return getCleanOrigin();
1773     }
1774     Value *Origin = OriginMap[V];
1775     assert(Origin && "Missing origin");
1776     return Origin;
1777   }
1778 
1779   /// Get the origin for i-th argument of the instruction I.
getOrigin__anonb9e144640811::MemorySanitizerVisitor1780   Value *getOrigin(Instruction *I, int i) {
1781     return getOrigin(I->getOperand(i));
1782   }
1783 
1784   /// Remember the place where a shadow check should be inserted.
1785   ///
1786   /// This location will be later instrumented with a check that will print a
1787   /// UMR warning in runtime if the shadow value is not 0.
insertShadowCheck__anonb9e144640811::MemorySanitizerVisitor1788   void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) {
1789     assert(Shadow);
1790     if (!InsertChecks) return;
1791 #ifndef NDEBUG
1792     Type *ShadowTy = Shadow->getType();
1793     assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy) ||
1794             isa<StructType>(ShadowTy) || isa<ArrayType>(ShadowTy)) &&
1795            "Can only insert checks for integer, vector, and aggregate shadow "
1796            "types");
1797 #endif
1798     InstrumentationList.push_back(
1799         ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
1800   }
1801 
1802   /// Remember the place where a shadow check should be inserted.
1803   ///
1804   /// This location will be later instrumented with a check that will print a
1805   /// UMR warning in runtime if the value is not fully defined.
insertShadowCheck__anonb9e144640811::MemorySanitizerVisitor1806   void insertShadowCheck(Value *Val, Instruction *OrigIns) {
1807     assert(Val);
1808     Value *Shadow, *Origin;
1809     if (ClCheckConstantShadow) {
1810       Shadow = getShadow(Val);
1811       if (!Shadow) return;
1812       Origin = getOrigin(Val);
1813     } else {
1814       Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
1815       if (!Shadow) return;
1816       Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
1817     }
1818     insertShadowCheck(Shadow, Origin, OrigIns);
1819   }
1820 
addReleaseOrdering__anonb9e144640811::MemorySanitizerVisitor1821   AtomicOrdering addReleaseOrdering(AtomicOrdering a) {
1822     switch (a) {
1823       case AtomicOrdering::NotAtomic:
1824         return AtomicOrdering::NotAtomic;
1825       case AtomicOrdering::Unordered:
1826       case AtomicOrdering::Monotonic:
1827       case AtomicOrdering::Release:
1828         return AtomicOrdering::Release;
1829       case AtomicOrdering::Acquire:
1830       case AtomicOrdering::AcquireRelease:
1831         return AtomicOrdering::AcquireRelease;
1832       case AtomicOrdering::SequentiallyConsistent:
1833         return AtomicOrdering::SequentiallyConsistent;
1834     }
1835     llvm_unreachable("Unknown ordering");
1836   }
1837 
makeAddReleaseOrderingTable__anonb9e144640811::MemorySanitizerVisitor1838   Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB) {
1839     constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1;
1840     uint32_t OrderingTable[NumOrderings] = {};
1841 
1842     OrderingTable[(int)AtomicOrderingCABI::relaxed] =
1843         OrderingTable[(int)AtomicOrderingCABI::release] =
1844             (int)AtomicOrderingCABI::release;
1845     OrderingTable[(int)AtomicOrderingCABI::consume] =
1846         OrderingTable[(int)AtomicOrderingCABI::acquire] =
1847             OrderingTable[(int)AtomicOrderingCABI::acq_rel] =
1848                 (int)AtomicOrderingCABI::acq_rel;
1849     OrderingTable[(int)AtomicOrderingCABI::seq_cst] =
1850         (int)AtomicOrderingCABI::seq_cst;
1851 
1852     return ConstantDataVector::get(IRB.getContext(),
1853                                    makeArrayRef(OrderingTable, NumOrderings));
1854   }
1855 
addAcquireOrdering__anonb9e144640811::MemorySanitizerVisitor1856   AtomicOrdering addAcquireOrdering(AtomicOrdering a) {
1857     switch (a) {
1858       case AtomicOrdering::NotAtomic:
1859         return AtomicOrdering::NotAtomic;
1860       case AtomicOrdering::Unordered:
1861       case AtomicOrdering::Monotonic:
1862       case AtomicOrdering::Acquire:
1863         return AtomicOrdering::Acquire;
1864       case AtomicOrdering::Release:
1865       case AtomicOrdering::AcquireRelease:
1866         return AtomicOrdering::AcquireRelease;
1867       case AtomicOrdering::SequentiallyConsistent:
1868         return AtomicOrdering::SequentiallyConsistent;
1869     }
1870     llvm_unreachable("Unknown ordering");
1871   }
1872 
makeAddAcquireOrderingTable__anonb9e144640811::MemorySanitizerVisitor1873   Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB) {
1874     constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1;
1875     uint32_t OrderingTable[NumOrderings] = {};
1876 
1877     OrderingTable[(int)AtomicOrderingCABI::relaxed] =
1878         OrderingTable[(int)AtomicOrderingCABI::acquire] =
1879             OrderingTable[(int)AtomicOrderingCABI::consume] =
1880                 (int)AtomicOrderingCABI::acquire;
1881     OrderingTable[(int)AtomicOrderingCABI::release] =
1882         OrderingTable[(int)AtomicOrderingCABI::acq_rel] =
1883             (int)AtomicOrderingCABI::acq_rel;
1884     OrderingTable[(int)AtomicOrderingCABI::seq_cst] =
1885         (int)AtomicOrderingCABI::seq_cst;
1886 
1887     return ConstantDataVector::get(IRB.getContext(),
1888                                    makeArrayRef(OrderingTable, NumOrderings));
1889   }
1890 
1891   // ------------------- Visitors.
1892   using InstVisitor<MemorySanitizerVisitor>::visit;
visit__anonb9e144640811::MemorySanitizerVisitor1893   void visit(Instruction &I) {
1894     if (I.getMetadata("nosanitize"))
1895       return;
1896     // Don't want to visit if we're in the prologue
1897     if (isInPrologue(I))
1898       return;
1899     InstVisitor<MemorySanitizerVisitor>::visit(I);
1900   }
1901 
1902   /// Instrument LoadInst
1903   ///
1904   /// Loads the corresponding shadow and (optionally) origin.
1905   /// Optionally, checks that the load address is fully defined.
visitLoadInst__anonb9e144640811::MemorySanitizerVisitor1906   void visitLoadInst(LoadInst &I) {
1907     assert(I.getType()->isSized() && "Load type must have size");
1908     assert(!I.getMetadata("nosanitize"));
1909     IRBuilder<> IRB(I.getNextNode());
1910     Type *ShadowTy = getShadowTy(&I);
1911     Value *Addr = I.getPointerOperand();
1912     Value *ShadowPtr = nullptr, *OriginPtr = nullptr;
1913     const Align Alignment = assumeAligned(I.getAlignment());
1914     if (PropagateShadow) {
1915       std::tie(ShadowPtr, OriginPtr) =
1916           getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false);
1917       setShadow(&I,
1918                 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld"));
1919     } else {
1920       setShadow(&I, getCleanShadow(&I));
1921     }
1922 
1923     if (ClCheckAccessAddress)
1924       insertShadowCheck(I.getPointerOperand(), &I);
1925 
1926     if (I.isAtomic())
1927       I.setOrdering(addAcquireOrdering(I.getOrdering()));
1928 
1929     if (MS.TrackOrigins) {
1930       if (PropagateShadow) {
1931         const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1932         setOrigin(
1933             &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment));
1934       } else {
1935         setOrigin(&I, getCleanOrigin());
1936       }
1937     }
1938   }
1939 
1940   /// Instrument StoreInst
1941   ///
1942   /// Stores the corresponding shadow and (optionally) origin.
1943   /// Optionally, checks that the store address is fully defined.
visitStoreInst__anonb9e144640811::MemorySanitizerVisitor1944   void visitStoreInst(StoreInst &I) {
1945     StoreList.push_back(&I);
1946     if (ClCheckAccessAddress)
1947       insertShadowCheck(I.getPointerOperand(), &I);
1948   }
1949 
handleCASOrRMW__anonb9e144640811::MemorySanitizerVisitor1950   void handleCASOrRMW(Instruction &I) {
1951     assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
1952 
1953     IRBuilder<> IRB(&I);
1954     Value *Addr = I.getOperand(0);
1955     Value *Val = I.getOperand(1);
1956     Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, Val->getType(), Align(1),
1957                                           /*isStore*/ true)
1958                            .first;
1959 
1960     if (ClCheckAccessAddress)
1961       insertShadowCheck(Addr, &I);
1962 
1963     // Only test the conditional argument of cmpxchg instruction.
1964     // The other argument can potentially be uninitialized, but we can not
1965     // detect this situation reliably without possible false positives.
1966     if (isa<AtomicCmpXchgInst>(I))
1967       insertShadowCheck(Val, &I);
1968 
1969     IRB.CreateStore(getCleanShadow(Val), ShadowPtr);
1970 
1971     setShadow(&I, getCleanShadow(&I));
1972     setOrigin(&I, getCleanOrigin());
1973   }
1974 
visitAtomicRMWInst__anonb9e144640811::MemorySanitizerVisitor1975   void visitAtomicRMWInst(AtomicRMWInst &I) {
1976     handleCASOrRMW(I);
1977     I.setOrdering(addReleaseOrdering(I.getOrdering()));
1978   }
1979 
visitAtomicCmpXchgInst__anonb9e144640811::MemorySanitizerVisitor1980   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
1981     handleCASOrRMW(I);
1982     I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
1983   }
1984 
1985   // Vector manipulation.
visitExtractElementInst__anonb9e144640811::MemorySanitizerVisitor1986   void visitExtractElementInst(ExtractElementInst &I) {
1987     insertShadowCheck(I.getOperand(1), &I);
1988     IRBuilder<> IRB(&I);
1989     setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
1990               "_msprop"));
1991     setOrigin(&I, getOrigin(&I, 0));
1992   }
1993 
visitInsertElementInst__anonb9e144640811::MemorySanitizerVisitor1994   void visitInsertElementInst(InsertElementInst &I) {
1995     insertShadowCheck(I.getOperand(2), &I);
1996     IRBuilder<> IRB(&I);
1997     setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
1998               I.getOperand(2), "_msprop"));
1999     setOriginForNaryOp(I);
2000   }
2001 
visitShuffleVectorInst__anonb9e144640811::MemorySanitizerVisitor2002   void visitShuffleVectorInst(ShuffleVectorInst &I) {
2003     IRBuilder<> IRB(&I);
2004     setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
2005                                           I.getShuffleMask(), "_msprop"));
2006     setOriginForNaryOp(I);
2007   }
2008 
2009   // Casts.
visitSExtInst__anonb9e144640811::MemorySanitizerVisitor2010   void visitSExtInst(SExtInst &I) {
2011     IRBuilder<> IRB(&I);
2012     setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
2013     setOrigin(&I, getOrigin(&I, 0));
2014   }
2015 
visitZExtInst__anonb9e144640811::MemorySanitizerVisitor2016   void visitZExtInst(ZExtInst &I) {
2017     IRBuilder<> IRB(&I);
2018     setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
2019     setOrigin(&I, getOrigin(&I, 0));
2020   }
2021 
visitTruncInst__anonb9e144640811::MemorySanitizerVisitor2022   void visitTruncInst(TruncInst &I) {
2023     IRBuilder<> IRB(&I);
2024     setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
2025     setOrigin(&I, getOrigin(&I, 0));
2026   }
2027 
visitBitCastInst__anonb9e144640811::MemorySanitizerVisitor2028   void visitBitCastInst(BitCastInst &I) {
2029     // Special case: if this is the bitcast (there is exactly 1 allowed) between
2030     // a musttail call and a ret, don't instrument. New instructions are not
2031     // allowed after a musttail call.
2032     if (auto *CI = dyn_cast<CallInst>(I.getOperand(0)))
2033       if (CI->isMustTailCall())
2034         return;
2035     IRBuilder<> IRB(&I);
2036     setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
2037     setOrigin(&I, getOrigin(&I, 0));
2038   }
2039 
visitPtrToIntInst__anonb9e144640811::MemorySanitizerVisitor2040   void visitPtrToIntInst(PtrToIntInst &I) {
2041     IRBuilder<> IRB(&I);
2042     setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
2043              "_msprop_ptrtoint"));
2044     setOrigin(&I, getOrigin(&I, 0));
2045   }
2046 
visitIntToPtrInst__anonb9e144640811::MemorySanitizerVisitor2047   void visitIntToPtrInst(IntToPtrInst &I) {
2048     IRBuilder<> IRB(&I);
2049     setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
2050              "_msprop_inttoptr"));
2051     setOrigin(&I, getOrigin(&I, 0));
2052   }
2053 
visitFPToSIInst__anonb9e144640811::MemorySanitizerVisitor2054   void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
visitFPToUIInst__anonb9e144640811::MemorySanitizerVisitor2055   void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
visitSIToFPInst__anonb9e144640811::MemorySanitizerVisitor2056   void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
visitUIToFPInst__anonb9e144640811::MemorySanitizerVisitor2057   void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
visitFPExtInst__anonb9e144640811::MemorySanitizerVisitor2058   void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
visitFPTruncInst__anonb9e144640811::MemorySanitizerVisitor2059   void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
2060 
2061   /// Propagate shadow for bitwise AND.
2062   ///
2063   /// This code is exact, i.e. if, for example, a bit in the left argument
2064   /// is defined and 0, then neither the value not definedness of the
2065   /// corresponding bit in B don't affect the resulting shadow.
visitAnd__anonb9e144640811::MemorySanitizerVisitor2066   void visitAnd(BinaryOperator &I) {
2067     IRBuilder<> IRB(&I);
2068     //  "And" of 0 and a poisoned value results in unpoisoned value.
2069     //  1&1 => 1;     0&1 => 0;     p&1 => p;
2070     //  1&0 => 0;     0&0 => 0;     p&0 => 0;
2071     //  1&p => p;     0&p => 0;     p&p => p;
2072     //  S = (S1 & S2) | (V1 & S2) | (S1 & V2)
2073     Value *S1 = getShadow(&I, 0);
2074     Value *S2 = getShadow(&I, 1);
2075     Value *V1 = I.getOperand(0);
2076     Value *V2 = I.getOperand(1);
2077     if (V1->getType() != S1->getType()) {
2078       V1 = IRB.CreateIntCast(V1, S1->getType(), false);
2079       V2 = IRB.CreateIntCast(V2, S2->getType(), false);
2080     }
2081     Value *S1S2 = IRB.CreateAnd(S1, S2);
2082     Value *V1S2 = IRB.CreateAnd(V1, S2);
2083     Value *S1V2 = IRB.CreateAnd(S1, V2);
2084     setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2}));
2085     setOriginForNaryOp(I);
2086   }
2087 
visitOr__anonb9e144640811::MemorySanitizerVisitor2088   void visitOr(BinaryOperator &I) {
2089     IRBuilder<> IRB(&I);
2090     //  "Or" of 1 and a poisoned value results in unpoisoned value.
2091     //  1|1 => 1;     0|1 => 1;     p|1 => 1;
2092     //  1|0 => 1;     0|0 => 0;     p|0 => p;
2093     //  1|p => 1;     0|p => p;     p|p => p;
2094     //  S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
2095     Value *S1 = getShadow(&I, 0);
2096     Value *S2 = getShadow(&I, 1);
2097     Value *V1 = IRB.CreateNot(I.getOperand(0));
2098     Value *V2 = IRB.CreateNot(I.getOperand(1));
2099     if (V1->getType() != S1->getType()) {
2100       V1 = IRB.CreateIntCast(V1, S1->getType(), false);
2101       V2 = IRB.CreateIntCast(V2, S2->getType(), false);
2102     }
2103     Value *S1S2 = IRB.CreateAnd(S1, S2);
2104     Value *V1S2 = IRB.CreateAnd(V1, S2);
2105     Value *S1V2 = IRB.CreateAnd(S1, V2);
2106     setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2}));
2107     setOriginForNaryOp(I);
2108   }
2109 
2110   /// Default propagation of shadow and/or origin.
2111   ///
2112   /// This class implements the general case of shadow propagation, used in all
2113   /// cases where we don't know and/or don't care about what the operation
2114   /// actually does. It converts all input shadow values to a common type
2115   /// (extending or truncating as necessary), and bitwise OR's them.
2116   ///
2117   /// This is much cheaper than inserting checks (i.e. requiring inputs to be
2118   /// fully initialized), and less prone to false positives.
2119   ///
2120   /// This class also implements the general case of origin propagation. For a
2121   /// Nary operation, result origin is set to the origin of an argument that is
2122   /// not entirely initialized. If there is more than one such arguments, the
2123   /// rightmost of them is picked. It does not matter which one is picked if all
2124   /// arguments are initialized.
2125   template <bool CombineShadow>
2126   class Combiner {
2127     Value *Shadow = nullptr;
2128     Value *Origin = nullptr;
2129     IRBuilder<> &IRB;
2130     MemorySanitizerVisitor *MSV;
2131 
2132   public:
Combiner(MemorySanitizerVisitor * MSV,IRBuilder<> & IRB)2133     Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB)
2134         : IRB(IRB), MSV(MSV) {}
2135 
2136     /// Add a pair of shadow and origin values to the mix.
Add(Value * OpShadow,Value * OpOrigin)2137     Combiner &Add(Value *OpShadow, Value *OpOrigin) {
2138       if (CombineShadow) {
2139         assert(OpShadow);
2140         if (!Shadow)
2141           Shadow = OpShadow;
2142         else {
2143           OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
2144           Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
2145         }
2146       }
2147 
2148       if (MSV->MS.TrackOrigins) {
2149         assert(OpOrigin);
2150         if (!Origin) {
2151           Origin = OpOrigin;
2152         } else {
2153           Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin);
2154           // No point in adding something that might result in 0 origin value.
2155           if (!ConstOrigin || !ConstOrigin->isNullValue()) {
2156             Value *FlatShadow = MSV->convertShadowToScalar(OpShadow, IRB);
2157             Value *Cond =
2158                 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow));
2159             Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
2160           }
2161         }
2162       }
2163       return *this;
2164     }
2165 
2166     /// Add an application value to the mix.
Add(Value * V)2167     Combiner &Add(Value *V) {
2168       Value *OpShadow = MSV->getShadow(V);
2169       Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr;
2170       return Add(OpShadow, OpOrigin);
2171     }
2172 
2173     /// Set the current combined values as the given instruction's shadow
2174     /// and origin.
Done(Instruction * I)2175     void Done(Instruction *I) {
2176       if (CombineShadow) {
2177         assert(Shadow);
2178         Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
2179         MSV->setShadow(I, Shadow);
2180       }
2181       if (MSV->MS.TrackOrigins) {
2182         assert(Origin);
2183         MSV->setOrigin(I, Origin);
2184       }
2185     }
2186   };
2187 
2188   using ShadowAndOriginCombiner = Combiner<true>;
2189   using OriginCombiner = Combiner<false>;
2190 
2191   /// Propagate origin for arbitrary operation.
setOriginForNaryOp__anonb9e144640811::MemorySanitizerVisitor2192   void setOriginForNaryOp(Instruction &I) {
2193     if (!MS.TrackOrigins) return;
2194     IRBuilder<> IRB(&I);
2195     OriginCombiner OC(this, IRB);
2196     for (Use &Op : I.operands())
2197       OC.Add(Op.get());
2198     OC.Done(&I);
2199   }
2200 
VectorOrPrimitiveTypeSizeInBits__anonb9e144640811::MemorySanitizerVisitor2201   size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
2202     assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
2203            "Vector of pointers is not a valid shadow type");
2204     return Ty->isVectorTy() ? cast<FixedVectorType>(Ty)->getNumElements() *
2205                                   Ty->getScalarSizeInBits()
2206                             : Ty->getPrimitiveSizeInBits();
2207   }
2208 
2209   /// Cast between two shadow types, extending or truncating as
2210   /// necessary.
CreateShadowCast__anonb9e144640811::MemorySanitizerVisitor2211   Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy,
2212                           bool Signed = false) {
2213     Type *srcTy = V->getType();
2214     size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
2215     size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
2216     if (srcSizeInBits > 1 && dstSizeInBits == 1)
2217       return IRB.CreateICmpNE(V, getCleanShadow(V));
2218 
2219     if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
2220       return IRB.CreateIntCast(V, dstTy, Signed);
2221     if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
2222         cast<FixedVectorType>(dstTy)->getNumElements() ==
2223             cast<FixedVectorType>(srcTy)->getNumElements())
2224       return IRB.CreateIntCast(V, dstTy, Signed);
2225     Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
2226     Value *V2 =
2227       IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed);
2228     return IRB.CreateBitCast(V2, dstTy);
2229     // TODO: handle struct types.
2230   }
2231 
2232   /// Cast an application value to the type of its own shadow.
CreateAppToShadowCast__anonb9e144640811::MemorySanitizerVisitor2233   Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) {
2234     Type *ShadowTy = getShadowTy(V);
2235     if (V->getType() == ShadowTy)
2236       return V;
2237     if (V->getType()->isPtrOrPtrVectorTy())
2238       return IRB.CreatePtrToInt(V, ShadowTy);
2239     else
2240       return IRB.CreateBitCast(V, ShadowTy);
2241   }
2242 
2243   /// Propagate shadow for arbitrary operation.
handleShadowOr__anonb9e144640811::MemorySanitizerVisitor2244   void handleShadowOr(Instruction &I) {
2245     IRBuilder<> IRB(&I);
2246     ShadowAndOriginCombiner SC(this, IRB);
2247     for (Use &Op : I.operands())
2248       SC.Add(Op.get());
2249     SC.Done(&I);
2250   }
2251 
visitFNeg__anonb9e144640811::MemorySanitizerVisitor2252   void visitFNeg(UnaryOperator &I) { handleShadowOr(I); }
2253 
2254   // Handle multiplication by constant.
2255   //
2256   // Handle a special case of multiplication by constant that may have one or
2257   // more zeros in the lower bits. This makes corresponding number of lower bits
2258   // of the result zero as well. We model it by shifting the other operand
2259   // shadow left by the required number of bits. Effectively, we transform
2260   // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B).
2261   // We use multiplication by 2**N instead of shift to cover the case of
2262   // multiplication by 0, which may occur in some elements of a vector operand.
handleMulByConstant__anonb9e144640811::MemorySanitizerVisitor2263   void handleMulByConstant(BinaryOperator &I, Constant *ConstArg,
2264                            Value *OtherArg) {
2265     Constant *ShadowMul;
2266     Type *Ty = ConstArg->getType();
2267     if (auto *VTy = dyn_cast<VectorType>(Ty)) {
2268       unsigned NumElements = cast<FixedVectorType>(VTy)->getNumElements();
2269       Type *EltTy = VTy->getElementType();
2270       SmallVector<Constant *, 16> Elements;
2271       for (unsigned Idx = 0; Idx < NumElements; ++Idx) {
2272         if (ConstantInt *Elt =
2273                 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) {
2274           const APInt &V = Elt->getValue();
2275           APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
2276           Elements.push_back(ConstantInt::get(EltTy, V2));
2277         } else {
2278           Elements.push_back(ConstantInt::get(EltTy, 1));
2279         }
2280       }
2281       ShadowMul = ConstantVector::get(Elements);
2282     } else {
2283       if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) {
2284         const APInt &V = Elt->getValue();
2285         APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
2286         ShadowMul = ConstantInt::get(Ty, V2);
2287       } else {
2288         ShadowMul = ConstantInt::get(Ty, 1);
2289       }
2290     }
2291 
2292     IRBuilder<> IRB(&I);
2293     setShadow(&I,
2294               IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst"));
2295     setOrigin(&I, getOrigin(OtherArg));
2296   }
2297 
visitMul__anonb9e144640811::MemorySanitizerVisitor2298   void visitMul(BinaryOperator &I) {
2299     Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
2300     Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
2301     if (constOp0 && !constOp1)
2302       handleMulByConstant(I, constOp0, I.getOperand(1));
2303     else if (constOp1 && !constOp0)
2304       handleMulByConstant(I, constOp1, I.getOperand(0));
2305     else
2306       handleShadowOr(I);
2307   }
2308 
visitFAdd__anonb9e144640811::MemorySanitizerVisitor2309   void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
visitFSub__anonb9e144640811::MemorySanitizerVisitor2310   void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
visitFMul__anonb9e144640811::MemorySanitizerVisitor2311   void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
visitAdd__anonb9e144640811::MemorySanitizerVisitor2312   void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
visitSub__anonb9e144640811::MemorySanitizerVisitor2313   void visitSub(BinaryOperator &I) { handleShadowOr(I); }
visitXor__anonb9e144640811::MemorySanitizerVisitor2314   void visitXor(BinaryOperator &I) { handleShadowOr(I); }
2315 
handleIntegerDiv__anonb9e144640811::MemorySanitizerVisitor2316   void handleIntegerDiv(Instruction &I) {
2317     IRBuilder<> IRB(&I);
2318     // Strict on the second argument.
2319     insertShadowCheck(I.getOperand(1), &I);
2320     setShadow(&I, getShadow(&I, 0));
2321     setOrigin(&I, getOrigin(&I, 0));
2322   }
2323 
visitUDiv__anonb9e144640811::MemorySanitizerVisitor2324   void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); }
visitSDiv__anonb9e144640811::MemorySanitizerVisitor2325   void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); }
visitURem__anonb9e144640811::MemorySanitizerVisitor2326   void visitURem(BinaryOperator &I) { handleIntegerDiv(I); }
visitSRem__anonb9e144640811::MemorySanitizerVisitor2327   void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); }
2328 
2329   // Floating point division is side-effect free. We can not require that the
2330   // divisor is fully initialized and must propagate shadow. See PR37523.
visitFDiv__anonb9e144640811::MemorySanitizerVisitor2331   void visitFDiv(BinaryOperator &I) { handleShadowOr(I); }
visitFRem__anonb9e144640811::MemorySanitizerVisitor2332   void visitFRem(BinaryOperator &I) { handleShadowOr(I); }
2333 
2334   /// Instrument == and != comparisons.
2335   ///
2336   /// Sometimes the comparison result is known even if some of the bits of the
2337   /// arguments are not.
handleEqualityComparison__anonb9e144640811::MemorySanitizerVisitor2338   void handleEqualityComparison(ICmpInst &I) {
2339     IRBuilder<> IRB(&I);
2340     Value *A = I.getOperand(0);
2341     Value *B = I.getOperand(1);
2342     Value *Sa = getShadow(A);
2343     Value *Sb = getShadow(B);
2344 
2345     // Get rid of pointers and vectors of pointers.
2346     // For ints (and vectors of ints), types of A and Sa match,
2347     // and this is a no-op.
2348     A = IRB.CreatePointerCast(A, Sa->getType());
2349     B = IRB.CreatePointerCast(B, Sb->getType());
2350 
2351     // A == B  <==>  (C = A^B) == 0
2352     // A != B  <==>  (C = A^B) != 0
2353     // Sc = Sa | Sb
2354     Value *C = IRB.CreateXor(A, B);
2355     Value *Sc = IRB.CreateOr(Sa, Sb);
2356     // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
2357     // Result is defined if one of the following is true
2358     // * there is a defined 1 bit in C
2359     // * C is fully defined
2360     // Si = !(C & ~Sc) && Sc
2361     Value *Zero = Constant::getNullValue(Sc->getType());
2362     Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
2363     Value *Si =
2364       IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
2365                     IRB.CreateICmpEQ(
2366                       IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
2367     Si->setName("_msprop_icmp");
2368     setShadow(&I, Si);
2369     setOriginForNaryOp(I);
2370   }
2371 
2372   /// Build the lowest possible value of V, taking into account V's
2373   ///        uninitialized bits.
getLowestPossibleValue__anonb9e144640811::MemorySanitizerVisitor2374   Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
2375                                 bool isSigned) {
2376     if (isSigned) {
2377       // Split shadow into sign bit and other bits.
2378       Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
2379       Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
2380       // Maximise the undefined shadow bit, minimize other undefined bits.
2381       return
2382         IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
2383     } else {
2384       // Minimize undefined bits.
2385       return IRB.CreateAnd(A, IRB.CreateNot(Sa));
2386     }
2387   }
2388 
2389   /// Build the highest possible value of V, taking into account V's
2390   ///        uninitialized bits.
getHighestPossibleValue__anonb9e144640811::MemorySanitizerVisitor2391   Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
2392                                 bool isSigned) {
2393     if (isSigned) {
2394       // Split shadow into sign bit and other bits.
2395       Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
2396       Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
2397       // Minimise the undefined shadow bit, maximise other undefined bits.
2398       return
2399         IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
2400     } else {
2401       // Maximize undefined bits.
2402       return IRB.CreateOr(A, Sa);
2403     }
2404   }
2405 
2406   /// Instrument relational comparisons.
2407   ///
2408   /// This function does exact shadow propagation for all relational
2409   /// comparisons of integers, pointers and vectors of those.
2410   /// FIXME: output seems suboptimal when one of the operands is a constant
handleRelationalComparisonExact__anonb9e144640811::MemorySanitizerVisitor2411   void handleRelationalComparisonExact(ICmpInst &I) {
2412     IRBuilder<> IRB(&I);
2413     Value *A = I.getOperand(0);
2414     Value *B = I.getOperand(1);
2415     Value *Sa = getShadow(A);
2416     Value *Sb = getShadow(B);
2417 
2418     // Get rid of pointers and vectors of pointers.
2419     // For ints (and vectors of ints), types of A and Sa match,
2420     // and this is a no-op.
2421     A = IRB.CreatePointerCast(A, Sa->getType());
2422     B = IRB.CreatePointerCast(B, Sb->getType());
2423 
2424     // Let [a0, a1] be the interval of possible values of A, taking into account
2425     // its undefined bits. Let [b0, b1] be the interval of possible values of B.
2426     // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
2427     bool IsSigned = I.isSigned();
2428     Value *S1 = IRB.CreateICmp(I.getPredicate(),
2429                                getLowestPossibleValue(IRB, A, Sa, IsSigned),
2430                                getHighestPossibleValue(IRB, B, Sb, IsSigned));
2431     Value *S2 = IRB.CreateICmp(I.getPredicate(),
2432                                getHighestPossibleValue(IRB, A, Sa, IsSigned),
2433                                getLowestPossibleValue(IRB, B, Sb, IsSigned));
2434     Value *Si = IRB.CreateXor(S1, S2);
2435     setShadow(&I, Si);
2436     setOriginForNaryOp(I);
2437   }
2438 
2439   /// Instrument signed relational comparisons.
2440   ///
2441   /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest
2442   /// bit of the shadow. Everything else is delegated to handleShadowOr().
handleSignedRelationalComparison__anonb9e144640811::MemorySanitizerVisitor2443   void handleSignedRelationalComparison(ICmpInst &I) {
2444     Constant *constOp;
2445     Value *op = nullptr;
2446     CmpInst::Predicate pre;
2447     if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) {
2448       op = I.getOperand(0);
2449       pre = I.getPredicate();
2450     } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) {
2451       op = I.getOperand(1);
2452       pre = I.getSwappedPredicate();
2453     } else {
2454       handleShadowOr(I);
2455       return;
2456     }
2457 
2458     if ((constOp->isNullValue() &&
2459          (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) ||
2460         (constOp->isAllOnesValue() &&
2461          (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) {
2462       IRBuilder<> IRB(&I);
2463       Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op),
2464                                         "_msprop_icmp_s");
2465       setShadow(&I, Shadow);
2466       setOrigin(&I, getOrigin(op));
2467     } else {
2468       handleShadowOr(I);
2469     }
2470   }
2471 
visitICmpInst__anonb9e144640811::MemorySanitizerVisitor2472   void visitICmpInst(ICmpInst &I) {
2473     if (!ClHandleICmp) {
2474       handleShadowOr(I);
2475       return;
2476     }
2477     if (I.isEquality()) {
2478       handleEqualityComparison(I);
2479       return;
2480     }
2481 
2482     assert(I.isRelational());
2483     if (ClHandleICmpExact) {
2484       handleRelationalComparisonExact(I);
2485       return;
2486     }
2487     if (I.isSigned()) {
2488       handleSignedRelationalComparison(I);
2489       return;
2490     }
2491 
2492     assert(I.isUnsigned());
2493     if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
2494       handleRelationalComparisonExact(I);
2495       return;
2496     }
2497 
2498     handleShadowOr(I);
2499   }
2500 
visitFCmpInst__anonb9e144640811::MemorySanitizerVisitor2501   void visitFCmpInst(FCmpInst &I) {
2502     handleShadowOr(I);
2503   }
2504 
handleShift__anonb9e144640811::MemorySanitizerVisitor2505   void handleShift(BinaryOperator &I) {
2506     IRBuilder<> IRB(&I);
2507     // If any of the S2 bits are poisoned, the whole thing is poisoned.
2508     // Otherwise perform the same shift on S1.
2509     Value *S1 = getShadow(&I, 0);
2510     Value *S2 = getShadow(&I, 1);
2511     Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
2512                                    S2->getType());
2513     Value *V2 = I.getOperand(1);
2514     Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
2515     setShadow(&I, IRB.CreateOr(Shift, S2Conv));
2516     setOriginForNaryOp(I);
2517   }
2518 
visitShl__anonb9e144640811::MemorySanitizerVisitor2519   void visitShl(BinaryOperator &I) { handleShift(I); }
visitAShr__anonb9e144640811::MemorySanitizerVisitor2520   void visitAShr(BinaryOperator &I) { handleShift(I); }
visitLShr__anonb9e144640811::MemorySanitizerVisitor2521   void visitLShr(BinaryOperator &I) { handleShift(I); }
2522 
2523   /// Instrument llvm.memmove
2524   ///
2525   /// At this point we don't know if llvm.memmove will be inlined or not.
2526   /// If we don't instrument it and it gets inlined,
2527   /// our interceptor will not kick in and we will lose the memmove.
2528   /// If we instrument the call here, but it does not get inlined,
2529   /// we will memove the shadow twice: which is bad in case
2530   /// of overlapping regions. So, we simply lower the intrinsic to a call.
2531   ///
2532   /// Similar situation exists for memcpy and memset.
visitMemMoveInst__anonb9e144640811::MemorySanitizerVisitor2533   void visitMemMoveInst(MemMoveInst &I) {
2534     IRBuilder<> IRB(&I);
2535     IRB.CreateCall(
2536         MS.MemmoveFn,
2537         {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
2538          IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
2539          IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
2540     I.eraseFromParent();
2541   }
2542 
2543   // Similar to memmove: avoid copying shadow twice.
2544   // This is somewhat unfortunate as it may slowdown small constant memcpys.
2545   // FIXME: consider doing manual inline for small constant sizes and proper
2546   // alignment.
visitMemCpyInst__anonb9e144640811::MemorySanitizerVisitor2547   void visitMemCpyInst(MemCpyInst &I) {
2548     IRBuilder<> IRB(&I);
2549     IRB.CreateCall(
2550         MS.MemcpyFn,
2551         {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
2552          IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
2553          IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
2554     I.eraseFromParent();
2555   }
2556 
2557   // Same as memcpy.
visitMemSetInst__anonb9e144640811::MemorySanitizerVisitor2558   void visitMemSetInst(MemSetInst &I) {
2559     IRBuilder<> IRB(&I);
2560     IRB.CreateCall(
2561         MS.MemsetFn,
2562         {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
2563          IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
2564          IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
2565     I.eraseFromParent();
2566   }
2567 
visitVAStartInst__anonb9e144640811::MemorySanitizerVisitor2568   void visitVAStartInst(VAStartInst &I) {
2569     VAHelper->visitVAStartInst(I);
2570   }
2571 
visitVACopyInst__anonb9e144640811::MemorySanitizerVisitor2572   void visitVACopyInst(VACopyInst &I) {
2573     VAHelper->visitVACopyInst(I);
2574   }
2575 
2576   /// Handle vector store-like intrinsics.
2577   ///
2578   /// Instrument intrinsics that look like a simple SIMD store: writes memory,
2579   /// has 1 pointer argument and 1 vector argument, returns void.
handleVectorStoreIntrinsic__anonb9e144640811::MemorySanitizerVisitor2580   bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
2581     IRBuilder<> IRB(&I);
2582     Value* Addr = I.getArgOperand(0);
2583     Value *Shadow = getShadow(&I, 1);
2584     Value *ShadowPtr, *OriginPtr;
2585 
2586     // We don't know the pointer alignment (could be unaligned SSE store!).
2587     // Have to assume to worst case.
2588     std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr(
2589         Addr, IRB, Shadow->getType(), Align(1), /*isStore*/ true);
2590     IRB.CreateAlignedStore(Shadow, ShadowPtr, Align(1));
2591 
2592     if (ClCheckAccessAddress)
2593       insertShadowCheck(Addr, &I);
2594 
2595     // FIXME: factor out common code from materializeStores
2596     if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr);
2597     return true;
2598   }
2599 
2600   /// Handle vector load-like intrinsics.
2601   ///
2602   /// Instrument intrinsics that look like a simple SIMD load: reads memory,
2603   /// has 1 pointer argument, returns a vector.
handleVectorLoadIntrinsic__anonb9e144640811::MemorySanitizerVisitor2604   bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
2605     IRBuilder<> IRB(&I);
2606     Value *Addr = I.getArgOperand(0);
2607 
2608     Type *ShadowTy = getShadowTy(&I);
2609     Value *ShadowPtr = nullptr, *OriginPtr = nullptr;
2610     if (PropagateShadow) {
2611       // We don't know the pointer alignment (could be unaligned SSE load!).
2612       // Have to assume to worst case.
2613       const Align Alignment = Align(1);
2614       std::tie(ShadowPtr, OriginPtr) =
2615           getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false);
2616       setShadow(&I,
2617                 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld"));
2618     } else {
2619       setShadow(&I, getCleanShadow(&I));
2620     }
2621 
2622     if (ClCheckAccessAddress)
2623       insertShadowCheck(Addr, &I);
2624 
2625     if (MS.TrackOrigins) {
2626       if (PropagateShadow)
2627         setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr));
2628       else
2629         setOrigin(&I, getCleanOrigin());
2630     }
2631     return true;
2632   }
2633 
2634   /// Handle (SIMD arithmetic)-like intrinsics.
2635   ///
2636   /// Instrument intrinsics with any number of arguments of the same type,
2637   /// equal to the return type. The type should be simple (no aggregates or
2638   /// pointers; vectors are fine).
2639   /// Caller guarantees that this intrinsic does not access memory.
maybeHandleSimpleNomemIntrinsic__anonb9e144640811::MemorySanitizerVisitor2640   bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
2641     Type *RetTy = I.getType();
2642     if (!(RetTy->isIntOrIntVectorTy() ||
2643           RetTy->isFPOrFPVectorTy() ||
2644           RetTy->isX86_MMXTy()))
2645       return false;
2646 
2647     unsigned NumArgOperands = I.getNumArgOperands();
2648     for (unsigned i = 0; i < NumArgOperands; ++i) {
2649       Type *Ty = I.getArgOperand(i)->getType();
2650       if (Ty != RetTy)
2651         return false;
2652     }
2653 
2654     IRBuilder<> IRB(&I);
2655     ShadowAndOriginCombiner SC(this, IRB);
2656     for (unsigned i = 0; i < NumArgOperands; ++i)
2657       SC.Add(I.getArgOperand(i));
2658     SC.Done(&I);
2659 
2660     return true;
2661   }
2662 
2663   /// Heuristically instrument unknown intrinsics.
2664   ///
2665   /// The main purpose of this code is to do something reasonable with all
2666   /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
2667   /// We recognize several classes of intrinsics by their argument types and
2668   /// ModRefBehaviour and apply special instrumentation when we are reasonably
2669   /// sure that we know what the intrinsic does.
2670   ///
2671   /// We special-case intrinsics where this approach fails. See llvm.bswap
2672   /// handling as an example of that.
handleUnknownIntrinsic__anonb9e144640811::MemorySanitizerVisitor2673   bool handleUnknownIntrinsic(IntrinsicInst &I) {
2674     unsigned NumArgOperands = I.getNumArgOperands();
2675     if (NumArgOperands == 0)
2676       return false;
2677 
2678     if (NumArgOperands == 2 &&
2679         I.getArgOperand(0)->getType()->isPointerTy() &&
2680         I.getArgOperand(1)->getType()->isVectorTy() &&
2681         I.getType()->isVoidTy() &&
2682         !I.onlyReadsMemory()) {
2683       // This looks like a vector store.
2684       return handleVectorStoreIntrinsic(I);
2685     }
2686 
2687     if (NumArgOperands == 1 &&
2688         I.getArgOperand(0)->getType()->isPointerTy() &&
2689         I.getType()->isVectorTy() &&
2690         I.onlyReadsMemory()) {
2691       // This looks like a vector load.
2692       return handleVectorLoadIntrinsic(I);
2693     }
2694 
2695     if (I.doesNotAccessMemory())
2696       if (maybeHandleSimpleNomemIntrinsic(I))
2697         return true;
2698 
2699     // FIXME: detect and handle SSE maskstore/maskload
2700     return false;
2701   }
2702 
handleInvariantGroup__anonb9e144640811::MemorySanitizerVisitor2703   void handleInvariantGroup(IntrinsicInst &I) {
2704     setShadow(&I, getShadow(&I, 0));
2705     setOrigin(&I, getOrigin(&I, 0));
2706   }
2707 
handleLifetimeStart__anonb9e144640811::MemorySanitizerVisitor2708   void handleLifetimeStart(IntrinsicInst &I) {
2709     if (!PoisonStack)
2710       return;
2711     AllocaInst *AI = llvm::findAllocaForValue(I.getArgOperand(1));
2712     if (!AI)
2713       InstrumentLifetimeStart = false;
2714     LifetimeStartList.push_back(std::make_pair(&I, AI));
2715   }
2716 
handleBswap__anonb9e144640811::MemorySanitizerVisitor2717   void handleBswap(IntrinsicInst &I) {
2718     IRBuilder<> IRB(&I);
2719     Value *Op = I.getArgOperand(0);
2720     Type *OpType = Op->getType();
2721     Function *BswapFunc = Intrinsic::getDeclaration(
2722       F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1));
2723     setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
2724     setOrigin(&I, getOrigin(Op));
2725   }
2726 
2727   // Instrument vector convert intrinsic.
2728   //
2729   // This function instruments intrinsics like cvtsi2ss:
2730   // %Out = int_xxx_cvtyyy(%ConvertOp)
2731   // or
2732   // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp)
2733   // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same
2734   // number \p Out elements, and (if has 2 arguments) copies the rest of the
2735   // elements from \p CopyOp.
2736   // In most cases conversion involves floating-point value which may trigger a
2737   // hardware exception when not fully initialized. For this reason we require
2738   // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise.
2739   // We copy the shadow of \p CopyOp[NumUsedElements:] to \p
2740   // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always
2741   // return a fully initialized value.
handleVectorConvertIntrinsic__anonb9e144640811::MemorySanitizerVisitor2742   void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements,
2743                                     bool HasRoundingMode = false) {
2744     IRBuilder<> IRB(&I);
2745     Value *CopyOp, *ConvertOp;
2746 
2747     assert((!HasRoundingMode ||
2748             isa<ConstantInt>(I.getArgOperand(I.getNumArgOperands() - 1))) &&
2749            "Invalid rounding mode");
2750 
2751     switch (I.getNumArgOperands() - HasRoundingMode) {
2752     case 2:
2753       CopyOp = I.getArgOperand(0);
2754       ConvertOp = I.getArgOperand(1);
2755       break;
2756     case 1:
2757       ConvertOp = I.getArgOperand(0);
2758       CopyOp = nullptr;
2759       break;
2760     default:
2761       llvm_unreachable("Cvt intrinsic with unsupported number of arguments.");
2762     }
2763 
2764     // The first *NumUsedElements* elements of ConvertOp are converted to the
2765     // same number of output elements. The rest of the output is copied from
2766     // CopyOp, or (if not available) filled with zeroes.
2767     // Combine shadow for elements of ConvertOp that are used in this operation,
2768     // and insert a check.
2769     // FIXME: consider propagating shadow of ConvertOp, at least in the case of
2770     // int->any conversion.
2771     Value *ConvertShadow = getShadow(ConvertOp);
2772     Value *AggShadow = nullptr;
2773     if (ConvertOp->getType()->isVectorTy()) {
2774       AggShadow = IRB.CreateExtractElement(
2775           ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
2776       for (int i = 1; i < NumUsedElements; ++i) {
2777         Value *MoreShadow = IRB.CreateExtractElement(
2778             ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i));
2779         AggShadow = IRB.CreateOr(AggShadow, MoreShadow);
2780       }
2781     } else {
2782       AggShadow = ConvertShadow;
2783     }
2784     assert(AggShadow->getType()->isIntegerTy());
2785     insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I);
2786 
2787     // Build result shadow by zero-filling parts of CopyOp shadow that come from
2788     // ConvertOp.
2789     if (CopyOp) {
2790       assert(CopyOp->getType() == I.getType());
2791       assert(CopyOp->getType()->isVectorTy());
2792       Value *ResultShadow = getShadow(CopyOp);
2793       Type *EltTy = cast<VectorType>(ResultShadow->getType())->getElementType();
2794       for (int i = 0; i < NumUsedElements; ++i) {
2795         ResultShadow = IRB.CreateInsertElement(
2796             ResultShadow, ConstantInt::getNullValue(EltTy),
2797             ConstantInt::get(IRB.getInt32Ty(), i));
2798       }
2799       setShadow(&I, ResultShadow);
2800       setOrigin(&I, getOrigin(CopyOp));
2801     } else {
2802       setShadow(&I, getCleanShadow(&I));
2803       setOrigin(&I, getCleanOrigin());
2804     }
2805   }
2806 
2807   // Given a scalar or vector, extract lower 64 bits (or less), and return all
2808   // zeroes if it is zero, and all ones otherwise.
Lower64ShadowExtend__anonb9e144640811::MemorySanitizerVisitor2809   Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
2810     if (S->getType()->isVectorTy())
2811       S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true);
2812     assert(S->getType()->getPrimitiveSizeInBits() <= 64);
2813     Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
2814     return CreateShadowCast(IRB, S2, T, /* Signed */ true);
2815   }
2816 
2817   // Given a vector, extract its first element, and return all
2818   // zeroes if it is zero, and all ones otherwise.
LowerElementShadowExtend__anonb9e144640811::MemorySanitizerVisitor2819   Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
2820     Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0);
2821     Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1));
2822     return CreateShadowCast(IRB, S2, T, /* Signed */ true);
2823   }
2824 
VariableShadowExtend__anonb9e144640811::MemorySanitizerVisitor2825   Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) {
2826     Type *T = S->getType();
2827     assert(T->isVectorTy());
2828     Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
2829     return IRB.CreateSExt(S2, T);
2830   }
2831 
2832   // Instrument vector shift intrinsic.
2833   //
2834   // This function instruments intrinsics like int_x86_avx2_psll_w.
2835   // Intrinsic shifts %In by %ShiftSize bits.
2836   // %ShiftSize may be a vector. In that case the lower 64 bits determine shift
2837   // size, and the rest is ignored. Behavior is defined even if shift size is
2838   // greater than register (or field) width.
handleVectorShiftIntrinsic__anonb9e144640811::MemorySanitizerVisitor2839   void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) {
2840     assert(I.getNumArgOperands() == 2);
2841     IRBuilder<> IRB(&I);
2842     // If any of the S2 bits are poisoned, the whole thing is poisoned.
2843     // Otherwise perform the same shift on S1.
2844     Value *S1 = getShadow(&I, 0);
2845     Value *S2 = getShadow(&I, 1);
2846     Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2)
2847                              : Lower64ShadowExtend(IRB, S2, getShadowTy(&I));
2848     Value *V1 = I.getOperand(0);
2849     Value *V2 = I.getOperand(1);
2850     Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(),
2851                                   {IRB.CreateBitCast(S1, V1->getType()), V2});
2852     Shift = IRB.CreateBitCast(Shift, getShadowTy(&I));
2853     setShadow(&I, IRB.CreateOr(Shift, S2Conv));
2854     setOriginForNaryOp(I);
2855   }
2856 
2857   // Get an X86_MMX-sized vector type.
getMMXVectorTy__anonb9e144640811::MemorySanitizerVisitor2858   Type *getMMXVectorTy(unsigned EltSizeInBits) {
2859     const unsigned X86_MMXSizeInBits = 64;
2860     assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 &&
2861            "Illegal MMX vector element size");
2862     return FixedVectorType::get(IntegerType::get(*MS.C, EltSizeInBits),
2863                                 X86_MMXSizeInBits / EltSizeInBits);
2864   }
2865 
2866   // Returns a signed counterpart for an (un)signed-saturate-and-pack
2867   // intrinsic.
getSignedPackIntrinsic__anonb9e144640811::MemorySanitizerVisitor2868   Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) {
2869     switch (id) {
2870       case Intrinsic::x86_sse2_packsswb_128:
2871       case Intrinsic::x86_sse2_packuswb_128:
2872         return Intrinsic::x86_sse2_packsswb_128;
2873 
2874       case Intrinsic::x86_sse2_packssdw_128:
2875       case Intrinsic::x86_sse41_packusdw:
2876         return Intrinsic::x86_sse2_packssdw_128;
2877 
2878       case Intrinsic::x86_avx2_packsswb:
2879       case Intrinsic::x86_avx2_packuswb:
2880         return Intrinsic::x86_avx2_packsswb;
2881 
2882       case Intrinsic::x86_avx2_packssdw:
2883       case Intrinsic::x86_avx2_packusdw:
2884         return Intrinsic::x86_avx2_packssdw;
2885 
2886       case Intrinsic::x86_mmx_packsswb:
2887       case Intrinsic::x86_mmx_packuswb:
2888         return Intrinsic::x86_mmx_packsswb;
2889 
2890       case Intrinsic::x86_mmx_packssdw:
2891         return Intrinsic::x86_mmx_packssdw;
2892       default:
2893         llvm_unreachable("unexpected intrinsic id");
2894     }
2895   }
2896 
2897   // Instrument vector pack intrinsic.
2898   //
2899   // This function instruments intrinsics like x86_mmx_packsswb, that
2900   // packs elements of 2 input vectors into half as many bits with saturation.
2901   // Shadow is propagated with the signed variant of the same intrinsic applied
2902   // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer).
2903   // EltSizeInBits is used only for x86mmx arguments.
handleVectorPackIntrinsic__anonb9e144640811::MemorySanitizerVisitor2904   void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) {
2905     assert(I.getNumArgOperands() == 2);
2906     bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2907     IRBuilder<> IRB(&I);
2908     Value *S1 = getShadow(&I, 0);
2909     Value *S2 = getShadow(&I, 1);
2910     assert(isX86_MMX || S1->getType()->isVectorTy());
2911 
2912     // SExt and ICmpNE below must apply to individual elements of input vectors.
2913     // In case of x86mmx arguments, cast them to appropriate vector types and
2914     // back.
2915     Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType();
2916     if (isX86_MMX) {
2917       S1 = IRB.CreateBitCast(S1, T);
2918       S2 = IRB.CreateBitCast(S2, T);
2919     }
2920     Value *S1_ext = IRB.CreateSExt(
2921         IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T);
2922     Value *S2_ext = IRB.CreateSExt(
2923         IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T);
2924     if (isX86_MMX) {
2925       Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C);
2926       S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy);
2927       S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy);
2928     }
2929 
2930     Function *ShadowFn = Intrinsic::getDeclaration(
2931         F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID()));
2932 
2933     Value *S =
2934         IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack");
2935     if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I));
2936     setShadow(&I, S);
2937     setOriginForNaryOp(I);
2938   }
2939 
2940   // Instrument sum-of-absolute-differences intrinsic.
handleVectorSadIntrinsic__anonb9e144640811::MemorySanitizerVisitor2941   void handleVectorSadIntrinsic(IntrinsicInst &I) {
2942     const unsigned SignificantBitsPerResultElement = 16;
2943     bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2944     Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType();
2945     unsigned ZeroBitsPerResultElement =
2946         ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement;
2947 
2948     IRBuilder<> IRB(&I);
2949     Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2950     S = IRB.CreateBitCast(S, ResTy);
2951     S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
2952                        ResTy);
2953     S = IRB.CreateLShr(S, ZeroBitsPerResultElement);
2954     S = IRB.CreateBitCast(S, getShadowTy(&I));
2955     setShadow(&I, S);
2956     setOriginForNaryOp(I);
2957   }
2958 
2959   // Instrument multiply-add intrinsic.
handleVectorPmaddIntrinsic__anonb9e144640811::MemorySanitizerVisitor2960   void handleVectorPmaddIntrinsic(IntrinsicInst &I,
2961                                   unsigned EltSizeInBits = 0) {
2962     bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2963     Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType();
2964     IRBuilder<> IRB(&I);
2965     Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2966     S = IRB.CreateBitCast(S, ResTy);
2967     S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
2968                        ResTy);
2969     S = IRB.CreateBitCast(S, getShadowTy(&I));
2970     setShadow(&I, S);
2971     setOriginForNaryOp(I);
2972   }
2973 
2974   // Instrument compare-packed intrinsic.
2975   // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or
2976   // all-ones shadow.
handleVectorComparePackedIntrinsic__anonb9e144640811::MemorySanitizerVisitor2977   void handleVectorComparePackedIntrinsic(IntrinsicInst &I) {
2978     IRBuilder<> IRB(&I);
2979     Type *ResTy = getShadowTy(&I);
2980     Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2981     Value *S = IRB.CreateSExt(
2982         IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy);
2983     setShadow(&I, S);
2984     setOriginForNaryOp(I);
2985   }
2986 
2987   // Instrument compare-scalar intrinsic.
2988   // This handles both cmp* intrinsics which return the result in the first
2989   // element of a vector, and comi* which return the result as i32.
handleVectorCompareScalarIntrinsic__anonb9e144640811::MemorySanitizerVisitor2990   void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) {
2991     IRBuilder<> IRB(&I);
2992     Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2993     Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I));
2994     setShadow(&I, S);
2995     setOriginForNaryOp(I);
2996   }
2997 
2998   // Instrument generic vector reduction intrinsics
2999   // by ORing together all their fields.
handleVectorReduceIntrinsic__anonb9e144640811::MemorySanitizerVisitor3000   void handleVectorReduceIntrinsic(IntrinsicInst &I) {
3001     IRBuilder<> IRB(&I);
3002     Value *S = IRB.CreateOrReduce(getShadow(&I, 0));
3003     setShadow(&I, S);
3004     setOrigin(&I, getOrigin(&I, 0));
3005   }
3006 
3007   // Instrument vector.reduce.or intrinsic.
3008   // Valid (non-poisoned) set bits in the operand pull low the
3009   // corresponding shadow bits.
handleVectorReduceOrIntrinsic__anonb9e144640811::MemorySanitizerVisitor3010   void handleVectorReduceOrIntrinsic(IntrinsicInst &I) {
3011     IRBuilder<> IRB(&I);
3012     Value *OperandShadow = getShadow(&I, 0);
3013     Value *OperandUnsetBits = IRB.CreateNot(I.getOperand(0));
3014     Value *OperandUnsetOrPoison = IRB.CreateOr(OperandUnsetBits, OperandShadow);
3015     // Bit N is clean if any field's bit N is 1 and unpoison
3016     Value *OutShadowMask = IRB.CreateAndReduce(OperandUnsetOrPoison);
3017     // Otherwise, it is clean if every field's bit N is unpoison
3018     Value *OrShadow = IRB.CreateOrReduce(OperandShadow);
3019     Value *S = IRB.CreateAnd(OutShadowMask, OrShadow);
3020 
3021     setShadow(&I, S);
3022     setOrigin(&I, getOrigin(&I, 0));
3023   }
3024 
3025   // Instrument vector.reduce.and intrinsic.
3026   // Valid (non-poisoned) unset bits in the operand pull down the
3027   // corresponding shadow bits.
handleVectorReduceAndIntrinsic__anonb9e144640811::MemorySanitizerVisitor3028   void handleVectorReduceAndIntrinsic(IntrinsicInst &I) {
3029     IRBuilder<> IRB(&I);
3030     Value *OperandShadow = getShadow(&I, 0);
3031     Value *OperandSetOrPoison = IRB.CreateOr(I.getOperand(0), OperandShadow);
3032     // Bit N is clean if any field's bit N is 0 and unpoison
3033     Value *OutShadowMask = IRB.CreateAndReduce(OperandSetOrPoison);
3034     // Otherwise, it is clean if every field's bit N is unpoison
3035     Value *OrShadow = IRB.CreateOrReduce(OperandShadow);
3036     Value *S = IRB.CreateAnd(OutShadowMask, OrShadow);
3037 
3038     setShadow(&I, S);
3039     setOrigin(&I, getOrigin(&I, 0));
3040   }
3041 
handleStmxcsr__anonb9e144640811::MemorySanitizerVisitor3042   void handleStmxcsr(IntrinsicInst &I) {
3043     IRBuilder<> IRB(&I);
3044     Value* Addr = I.getArgOperand(0);
3045     Type *Ty = IRB.getInt32Ty();
3046     Value *ShadowPtr =
3047         getShadowOriginPtr(Addr, IRB, Ty, Align(1), /*isStore*/ true).first;
3048 
3049     IRB.CreateStore(getCleanShadow(Ty),
3050                     IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo()));
3051 
3052     if (ClCheckAccessAddress)
3053       insertShadowCheck(Addr, &I);
3054   }
3055 
handleLdmxcsr__anonb9e144640811::MemorySanitizerVisitor3056   void handleLdmxcsr(IntrinsicInst &I) {
3057     if (!InsertChecks) return;
3058 
3059     IRBuilder<> IRB(&I);
3060     Value *Addr = I.getArgOperand(0);
3061     Type *Ty = IRB.getInt32Ty();
3062     const Align Alignment = Align(1);
3063     Value *ShadowPtr, *OriginPtr;
3064     std::tie(ShadowPtr, OriginPtr) =
3065         getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false);
3066 
3067     if (ClCheckAccessAddress)
3068       insertShadowCheck(Addr, &I);
3069 
3070     Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr");
3071     Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr)
3072                                     : getCleanOrigin();
3073     insertShadowCheck(Shadow, Origin, &I);
3074   }
3075 
handleMaskedStore__anonb9e144640811::MemorySanitizerVisitor3076   void handleMaskedStore(IntrinsicInst &I) {
3077     IRBuilder<> IRB(&I);
3078     Value *V = I.getArgOperand(0);
3079     Value *Addr = I.getArgOperand(1);
3080     const Align Alignment(
3081         cast<ConstantInt>(I.getArgOperand(2))->getZExtValue());
3082     Value *Mask = I.getArgOperand(3);
3083     Value *Shadow = getShadow(V);
3084 
3085     Value *ShadowPtr;
3086     Value *OriginPtr;
3087     std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr(
3088         Addr, IRB, Shadow->getType(), Alignment, /*isStore*/ true);
3089 
3090     if (ClCheckAccessAddress) {
3091       insertShadowCheck(Addr, &I);
3092       // Uninitialized mask is kind of like uninitialized address, but not as
3093       // scary.
3094       insertShadowCheck(Mask, &I);
3095     }
3096 
3097     IRB.CreateMaskedStore(Shadow, ShadowPtr, Alignment, Mask);
3098 
3099     if (MS.TrackOrigins) {
3100       auto &DL = F.getParent()->getDataLayout();
3101       paintOrigin(IRB, getOrigin(V), OriginPtr,
3102                   DL.getTypeStoreSize(Shadow->getType()),
3103                   std::max(Alignment, kMinOriginAlignment));
3104     }
3105   }
3106 
handleMaskedLoad__anonb9e144640811::MemorySanitizerVisitor3107   bool handleMaskedLoad(IntrinsicInst &I) {
3108     IRBuilder<> IRB(&I);
3109     Value *Addr = I.getArgOperand(0);
3110     const Align Alignment(
3111         cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
3112     Value *Mask = I.getArgOperand(2);
3113     Value *PassThru = I.getArgOperand(3);
3114 
3115     Type *ShadowTy = getShadowTy(&I);
3116     Value *ShadowPtr, *OriginPtr;
3117     if (PropagateShadow) {
3118       std::tie(ShadowPtr, OriginPtr) =
3119           getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false);
3120       setShadow(&I, IRB.CreateMaskedLoad(ShadowPtr, Alignment, Mask,
3121                                          getShadow(PassThru), "_msmaskedld"));
3122     } else {
3123       setShadow(&I, getCleanShadow(&I));
3124     }
3125 
3126     if (ClCheckAccessAddress) {
3127       insertShadowCheck(Addr, &I);
3128       insertShadowCheck(Mask, &I);
3129     }
3130 
3131     if (MS.TrackOrigins) {
3132       if (PropagateShadow) {
3133         // Choose between PassThru's and the loaded value's origins.
3134         Value *MaskedPassThruShadow = IRB.CreateAnd(
3135             getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy));
3136 
3137         Value *Acc = IRB.CreateExtractElement(
3138             MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
3139         for (int i = 1, N = cast<FixedVectorType>(PassThru->getType())
3140                                 ->getNumElements();
3141              i < N; ++i) {
3142           Value *More = IRB.CreateExtractElement(
3143               MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i));
3144           Acc = IRB.CreateOr(Acc, More);
3145         }
3146 
3147         Value *Origin = IRB.CreateSelect(
3148             IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())),
3149             getOrigin(PassThru), IRB.CreateLoad(MS.OriginTy, OriginPtr));
3150 
3151         setOrigin(&I, Origin);
3152       } else {
3153         setOrigin(&I, getCleanOrigin());
3154       }
3155     }
3156     return true;
3157   }
3158 
3159   // Instrument BMI / BMI2 intrinsics.
3160   // All of these intrinsics are Z = I(X, Y)
3161   // where the types of all operands and the result match, and are either i32 or i64.
3162   // The following instrumentation happens to work for all of them:
3163   //   Sz = I(Sx, Y) | (sext (Sy != 0))
handleBmiIntrinsic__anonb9e144640811::MemorySanitizerVisitor3164   void handleBmiIntrinsic(IntrinsicInst &I) {
3165     IRBuilder<> IRB(&I);
3166     Type *ShadowTy = getShadowTy(&I);
3167 
3168     // If any bit of the mask operand is poisoned, then the whole thing is.
3169     Value *SMask = getShadow(&I, 1);
3170     SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)),
3171                            ShadowTy);
3172     // Apply the same intrinsic to the shadow of the first operand.
3173     Value *S = IRB.CreateCall(I.getCalledFunction(),
3174                               {getShadow(&I, 0), I.getOperand(1)});
3175     S = IRB.CreateOr(SMask, S);
3176     setShadow(&I, S);
3177     setOriginForNaryOp(I);
3178   }
3179 
getPclmulMask__anonb9e144640811::MemorySanitizerVisitor3180   SmallVector<int, 8> getPclmulMask(unsigned Width, bool OddElements) {
3181     SmallVector<int, 8> Mask;
3182     for (unsigned X = OddElements ? 1 : 0; X < Width; X += 2) {
3183       Mask.append(2, X);
3184     }
3185     return Mask;
3186   }
3187 
3188   // Instrument pclmul intrinsics.
3189   // These intrinsics operate either on odd or on even elements of the input
3190   // vectors, depending on the constant in the 3rd argument, ignoring the rest.
3191   // Replace the unused elements with copies of the used ones, ex:
3192   //   (0, 1, 2, 3) -> (0, 0, 2, 2) (even case)
3193   // or
3194   //   (0, 1, 2, 3) -> (1, 1, 3, 3) (odd case)
3195   // and then apply the usual shadow combining logic.
handlePclmulIntrinsic__anonb9e144640811::MemorySanitizerVisitor3196   void handlePclmulIntrinsic(IntrinsicInst &I) {
3197     IRBuilder<> IRB(&I);
3198     unsigned Width =
3199         cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements();
3200     assert(isa<ConstantInt>(I.getArgOperand(2)) &&
3201            "pclmul 3rd operand must be a constant");
3202     unsigned Imm = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3203     Value *Shuf0 = IRB.CreateShuffleVector(getShadow(&I, 0),
3204                                            getPclmulMask(Width, Imm & 0x01));
3205     Value *Shuf1 = IRB.CreateShuffleVector(getShadow(&I, 1),
3206                                            getPclmulMask(Width, Imm & 0x10));
3207     ShadowAndOriginCombiner SOC(this, IRB);
3208     SOC.Add(Shuf0, getOrigin(&I, 0));
3209     SOC.Add(Shuf1, getOrigin(&I, 1));
3210     SOC.Done(&I);
3211   }
3212 
3213   // Instrument _mm_*_sd intrinsics
handleUnarySdIntrinsic__anonb9e144640811::MemorySanitizerVisitor3214   void handleUnarySdIntrinsic(IntrinsicInst &I) {
3215     IRBuilder<> IRB(&I);
3216     Value *First = getShadow(&I, 0);
3217     Value *Second = getShadow(&I, 1);
3218     // High word of first operand, low word of second
3219     Value *Shadow =
3220         IRB.CreateShuffleVector(First, Second, llvm::makeArrayRef<int>({2, 1}));
3221 
3222     setShadow(&I, Shadow);
3223     setOriginForNaryOp(I);
3224   }
3225 
handleBinarySdIntrinsic__anonb9e144640811::MemorySanitizerVisitor3226   void handleBinarySdIntrinsic(IntrinsicInst &I) {
3227     IRBuilder<> IRB(&I);
3228     Value *First = getShadow(&I, 0);
3229     Value *Second = getShadow(&I, 1);
3230     Value *OrShadow = IRB.CreateOr(First, Second);
3231     // High word of first operand, low word of both OR'd together
3232     Value *Shadow = IRB.CreateShuffleVector(First, OrShadow,
3233                                             llvm::makeArrayRef<int>({2, 1}));
3234 
3235     setShadow(&I, Shadow);
3236     setOriginForNaryOp(I);
3237   }
3238 
3239   // Instrument abs intrinsic.
3240   // handleUnknownIntrinsic can't handle it because of the last
3241   // is_int_min_poison argument which does not match the result type.
handleAbsIntrinsic__anonb9e144640811::MemorySanitizerVisitor3242   void handleAbsIntrinsic(IntrinsicInst &I) {
3243     assert(I.getType()->isIntOrIntVectorTy());
3244     assert(I.getArgOperand(0)->getType() == I.getType());
3245 
3246     // FIXME: Handle is_int_min_poison.
3247     IRBuilder<> IRB(&I);
3248     setShadow(&I, getShadow(&I, 0));
3249     setOrigin(&I, getOrigin(&I, 0));
3250   }
3251 
visitIntrinsicInst__anonb9e144640811::MemorySanitizerVisitor3252   void visitIntrinsicInst(IntrinsicInst &I) {
3253     switch (I.getIntrinsicID()) {
3254     case Intrinsic::abs:
3255       handleAbsIntrinsic(I);
3256       break;
3257     case Intrinsic::lifetime_start:
3258       handleLifetimeStart(I);
3259       break;
3260     case Intrinsic::launder_invariant_group:
3261     case Intrinsic::strip_invariant_group:
3262       handleInvariantGroup(I);
3263       break;
3264     case Intrinsic::bswap:
3265       handleBswap(I);
3266       break;
3267     case Intrinsic::masked_store:
3268       handleMaskedStore(I);
3269       break;
3270     case Intrinsic::masked_load:
3271       handleMaskedLoad(I);
3272       break;
3273     case Intrinsic::vector_reduce_and:
3274       handleVectorReduceAndIntrinsic(I);
3275       break;
3276     case Intrinsic::vector_reduce_or:
3277       handleVectorReduceOrIntrinsic(I);
3278       break;
3279     case Intrinsic::vector_reduce_add:
3280     case Intrinsic::vector_reduce_xor:
3281     case Intrinsic::vector_reduce_mul:
3282       handleVectorReduceIntrinsic(I);
3283       break;
3284     case Intrinsic::x86_sse_stmxcsr:
3285       handleStmxcsr(I);
3286       break;
3287     case Intrinsic::x86_sse_ldmxcsr:
3288       handleLdmxcsr(I);
3289       break;
3290     case Intrinsic::x86_avx512_vcvtsd2usi64:
3291     case Intrinsic::x86_avx512_vcvtsd2usi32:
3292     case Intrinsic::x86_avx512_vcvtss2usi64:
3293     case Intrinsic::x86_avx512_vcvtss2usi32:
3294     case Intrinsic::x86_avx512_cvttss2usi64:
3295     case Intrinsic::x86_avx512_cvttss2usi:
3296     case Intrinsic::x86_avx512_cvttsd2usi64:
3297     case Intrinsic::x86_avx512_cvttsd2usi:
3298     case Intrinsic::x86_avx512_cvtusi2ss:
3299     case Intrinsic::x86_avx512_cvtusi642sd:
3300     case Intrinsic::x86_avx512_cvtusi642ss:
3301       handleVectorConvertIntrinsic(I, 1, true);
3302       break;
3303     case Intrinsic::x86_sse2_cvtsd2si64:
3304     case Intrinsic::x86_sse2_cvtsd2si:
3305     case Intrinsic::x86_sse2_cvtsd2ss:
3306     case Intrinsic::x86_sse2_cvttsd2si64:
3307     case Intrinsic::x86_sse2_cvttsd2si:
3308     case Intrinsic::x86_sse_cvtss2si64:
3309     case Intrinsic::x86_sse_cvtss2si:
3310     case Intrinsic::x86_sse_cvttss2si64:
3311     case Intrinsic::x86_sse_cvttss2si:
3312       handleVectorConvertIntrinsic(I, 1);
3313       break;
3314     case Intrinsic::x86_sse_cvtps2pi:
3315     case Intrinsic::x86_sse_cvttps2pi:
3316       handleVectorConvertIntrinsic(I, 2);
3317       break;
3318 
3319     case Intrinsic::x86_avx512_psll_w_512:
3320     case Intrinsic::x86_avx512_psll_d_512:
3321     case Intrinsic::x86_avx512_psll_q_512:
3322     case Intrinsic::x86_avx512_pslli_w_512:
3323     case Intrinsic::x86_avx512_pslli_d_512:
3324     case Intrinsic::x86_avx512_pslli_q_512:
3325     case Intrinsic::x86_avx512_psrl_w_512:
3326     case Intrinsic::x86_avx512_psrl_d_512:
3327     case Intrinsic::x86_avx512_psrl_q_512:
3328     case Intrinsic::x86_avx512_psra_w_512:
3329     case Intrinsic::x86_avx512_psra_d_512:
3330     case Intrinsic::x86_avx512_psra_q_512:
3331     case Intrinsic::x86_avx512_psrli_w_512:
3332     case Intrinsic::x86_avx512_psrli_d_512:
3333     case Intrinsic::x86_avx512_psrli_q_512:
3334     case Intrinsic::x86_avx512_psrai_w_512:
3335     case Intrinsic::x86_avx512_psrai_d_512:
3336     case Intrinsic::x86_avx512_psrai_q_512:
3337     case Intrinsic::x86_avx512_psra_q_256:
3338     case Intrinsic::x86_avx512_psra_q_128:
3339     case Intrinsic::x86_avx512_psrai_q_256:
3340     case Intrinsic::x86_avx512_psrai_q_128:
3341     case Intrinsic::x86_avx2_psll_w:
3342     case Intrinsic::x86_avx2_psll_d:
3343     case Intrinsic::x86_avx2_psll_q:
3344     case Intrinsic::x86_avx2_pslli_w:
3345     case Intrinsic::x86_avx2_pslli_d:
3346     case Intrinsic::x86_avx2_pslli_q:
3347     case Intrinsic::x86_avx2_psrl_w:
3348     case Intrinsic::x86_avx2_psrl_d:
3349     case Intrinsic::x86_avx2_psrl_q:
3350     case Intrinsic::x86_avx2_psra_w:
3351     case Intrinsic::x86_avx2_psra_d:
3352     case Intrinsic::x86_avx2_psrli_w:
3353     case Intrinsic::x86_avx2_psrli_d:
3354     case Intrinsic::x86_avx2_psrli_q:
3355     case Intrinsic::x86_avx2_psrai_w:
3356     case Intrinsic::x86_avx2_psrai_d:
3357     case Intrinsic::x86_sse2_psll_w:
3358     case Intrinsic::x86_sse2_psll_d:
3359     case Intrinsic::x86_sse2_psll_q:
3360     case Intrinsic::x86_sse2_pslli_w:
3361     case Intrinsic::x86_sse2_pslli_d:
3362     case Intrinsic::x86_sse2_pslli_q:
3363     case Intrinsic::x86_sse2_psrl_w:
3364     case Intrinsic::x86_sse2_psrl_d:
3365     case Intrinsic::x86_sse2_psrl_q:
3366     case Intrinsic::x86_sse2_psra_w:
3367     case Intrinsic::x86_sse2_psra_d:
3368     case Intrinsic::x86_sse2_psrli_w:
3369     case Intrinsic::x86_sse2_psrli_d:
3370     case Intrinsic::x86_sse2_psrli_q:
3371     case Intrinsic::x86_sse2_psrai_w:
3372     case Intrinsic::x86_sse2_psrai_d:
3373     case Intrinsic::x86_mmx_psll_w:
3374     case Intrinsic::x86_mmx_psll_d:
3375     case Intrinsic::x86_mmx_psll_q:
3376     case Intrinsic::x86_mmx_pslli_w:
3377     case Intrinsic::x86_mmx_pslli_d:
3378     case Intrinsic::x86_mmx_pslli_q:
3379     case Intrinsic::x86_mmx_psrl_w:
3380     case Intrinsic::x86_mmx_psrl_d:
3381     case Intrinsic::x86_mmx_psrl_q:
3382     case Intrinsic::x86_mmx_psra_w:
3383     case Intrinsic::x86_mmx_psra_d:
3384     case Intrinsic::x86_mmx_psrli_w:
3385     case Intrinsic::x86_mmx_psrli_d:
3386     case Intrinsic::x86_mmx_psrli_q:
3387     case Intrinsic::x86_mmx_psrai_w:
3388     case Intrinsic::x86_mmx_psrai_d:
3389       handleVectorShiftIntrinsic(I, /* Variable */ false);
3390       break;
3391     case Intrinsic::x86_avx2_psllv_d:
3392     case Intrinsic::x86_avx2_psllv_d_256:
3393     case Intrinsic::x86_avx512_psllv_d_512:
3394     case Intrinsic::x86_avx2_psllv_q:
3395     case Intrinsic::x86_avx2_psllv_q_256:
3396     case Intrinsic::x86_avx512_psllv_q_512:
3397     case Intrinsic::x86_avx2_psrlv_d:
3398     case Intrinsic::x86_avx2_psrlv_d_256:
3399     case Intrinsic::x86_avx512_psrlv_d_512:
3400     case Intrinsic::x86_avx2_psrlv_q:
3401     case Intrinsic::x86_avx2_psrlv_q_256:
3402     case Intrinsic::x86_avx512_psrlv_q_512:
3403     case Intrinsic::x86_avx2_psrav_d:
3404     case Intrinsic::x86_avx2_psrav_d_256:
3405     case Intrinsic::x86_avx512_psrav_d_512:
3406     case Intrinsic::x86_avx512_psrav_q_128:
3407     case Intrinsic::x86_avx512_psrav_q_256:
3408     case Intrinsic::x86_avx512_psrav_q_512:
3409       handleVectorShiftIntrinsic(I, /* Variable */ true);
3410       break;
3411 
3412     case Intrinsic::x86_sse2_packsswb_128:
3413     case Intrinsic::x86_sse2_packssdw_128:
3414     case Intrinsic::x86_sse2_packuswb_128:
3415     case Intrinsic::x86_sse41_packusdw:
3416     case Intrinsic::x86_avx2_packsswb:
3417     case Intrinsic::x86_avx2_packssdw:
3418     case Intrinsic::x86_avx2_packuswb:
3419     case Intrinsic::x86_avx2_packusdw:
3420       handleVectorPackIntrinsic(I);
3421       break;
3422 
3423     case Intrinsic::x86_mmx_packsswb:
3424     case Intrinsic::x86_mmx_packuswb:
3425       handleVectorPackIntrinsic(I, 16);
3426       break;
3427 
3428     case Intrinsic::x86_mmx_packssdw:
3429       handleVectorPackIntrinsic(I, 32);
3430       break;
3431 
3432     case Intrinsic::x86_mmx_psad_bw:
3433     case Intrinsic::x86_sse2_psad_bw:
3434     case Intrinsic::x86_avx2_psad_bw:
3435       handleVectorSadIntrinsic(I);
3436       break;
3437 
3438     case Intrinsic::x86_sse2_pmadd_wd:
3439     case Intrinsic::x86_avx2_pmadd_wd:
3440     case Intrinsic::x86_ssse3_pmadd_ub_sw_128:
3441     case Intrinsic::x86_avx2_pmadd_ub_sw:
3442       handleVectorPmaddIntrinsic(I);
3443       break;
3444 
3445     case Intrinsic::x86_ssse3_pmadd_ub_sw:
3446       handleVectorPmaddIntrinsic(I, 8);
3447       break;
3448 
3449     case Intrinsic::x86_mmx_pmadd_wd:
3450       handleVectorPmaddIntrinsic(I, 16);
3451       break;
3452 
3453     case Intrinsic::x86_sse_cmp_ss:
3454     case Intrinsic::x86_sse2_cmp_sd:
3455     case Intrinsic::x86_sse_comieq_ss:
3456     case Intrinsic::x86_sse_comilt_ss:
3457     case Intrinsic::x86_sse_comile_ss:
3458     case Intrinsic::x86_sse_comigt_ss:
3459     case Intrinsic::x86_sse_comige_ss:
3460     case Intrinsic::x86_sse_comineq_ss:
3461     case Intrinsic::x86_sse_ucomieq_ss:
3462     case Intrinsic::x86_sse_ucomilt_ss:
3463     case Intrinsic::x86_sse_ucomile_ss:
3464     case Intrinsic::x86_sse_ucomigt_ss:
3465     case Intrinsic::x86_sse_ucomige_ss:
3466     case Intrinsic::x86_sse_ucomineq_ss:
3467     case Intrinsic::x86_sse2_comieq_sd:
3468     case Intrinsic::x86_sse2_comilt_sd:
3469     case Intrinsic::x86_sse2_comile_sd:
3470     case Intrinsic::x86_sse2_comigt_sd:
3471     case Intrinsic::x86_sse2_comige_sd:
3472     case Intrinsic::x86_sse2_comineq_sd:
3473     case Intrinsic::x86_sse2_ucomieq_sd:
3474     case Intrinsic::x86_sse2_ucomilt_sd:
3475     case Intrinsic::x86_sse2_ucomile_sd:
3476     case Intrinsic::x86_sse2_ucomigt_sd:
3477     case Intrinsic::x86_sse2_ucomige_sd:
3478     case Intrinsic::x86_sse2_ucomineq_sd:
3479       handleVectorCompareScalarIntrinsic(I);
3480       break;
3481 
3482     case Intrinsic::x86_sse_cmp_ps:
3483     case Intrinsic::x86_sse2_cmp_pd:
3484       // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function
3485       // generates reasonably looking IR that fails in the backend with "Do not
3486       // know how to split the result of this operator!".
3487       handleVectorComparePackedIntrinsic(I);
3488       break;
3489 
3490     case Intrinsic::x86_bmi_bextr_32:
3491     case Intrinsic::x86_bmi_bextr_64:
3492     case Intrinsic::x86_bmi_bzhi_32:
3493     case Intrinsic::x86_bmi_bzhi_64:
3494     case Intrinsic::x86_bmi_pdep_32:
3495     case Intrinsic::x86_bmi_pdep_64:
3496     case Intrinsic::x86_bmi_pext_32:
3497     case Intrinsic::x86_bmi_pext_64:
3498       handleBmiIntrinsic(I);
3499       break;
3500 
3501     case Intrinsic::x86_pclmulqdq:
3502     case Intrinsic::x86_pclmulqdq_256:
3503     case Intrinsic::x86_pclmulqdq_512:
3504       handlePclmulIntrinsic(I);
3505       break;
3506 
3507     case Intrinsic::x86_sse41_round_sd:
3508       handleUnarySdIntrinsic(I);
3509       break;
3510     case Intrinsic::x86_sse2_max_sd:
3511     case Intrinsic::x86_sse2_min_sd:
3512       handleBinarySdIntrinsic(I);
3513       break;
3514 
3515     case Intrinsic::is_constant:
3516       // The result of llvm.is.constant() is always defined.
3517       setShadow(&I, getCleanShadow(&I));
3518       setOrigin(&I, getCleanOrigin());
3519       break;
3520 
3521     default:
3522       if (!handleUnknownIntrinsic(I))
3523         visitInstruction(I);
3524       break;
3525     }
3526   }
3527 
visitLibAtomicLoad__anonb9e144640811::MemorySanitizerVisitor3528   void visitLibAtomicLoad(CallBase &CB) {
3529     // Since we use getNextNode here, we can't have CB terminate the BB.
3530     assert(isa<CallInst>(CB));
3531 
3532     IRBuilder<> IRB(&CB);
3533     Value *Size = CB.getArgOperand(0);
3534     Value *SrcPtr = CB.getArgOperand(1);
3535     Value *DstPtr = CB.getArgOperand(2);
3536     Value *Ordering = CB.getArgOperand(3);
3537     // Convert the call to have at least Acquire ordering to make sure
3538     // the shadow operations aren't reordered before it.
3539     Value *NewOrdering =
3540         IRB.CreateExtractElement(makeAddAcquireOrderingTable(IRB), Ordering);
3541     CB.setArgOperand(3, NewOrdering);
3542 
3543     IRBuilder<> NextIRB(CB.getNextNode());
3544     NextIRB.SetCurrentDebugLocation(CB.getDebugLoc());
3545 
3546     Value *SrcShadowPtr, *SrcOriginPtr;
3547     std::tie(SrcShadowPtr, SrcOriginPtr) =
3548         getShadowOriginPtr(SrcPtr, NextIRB, NextIRB.getInt8Ty(), Align(1),
3549                            /*isStore*/ false);
3550     Value *DstShadowPtr =
3551         getShadowOriginPtr(DstPtr, NextIRB, NextIRB.getInt8Ty(), Align(1),
3552                            /*isStore*/ true)
3553             .first;
3554 
3555     NextIRB.CreateMemCpy(DstShadowPtr, Align(1), SrcShadowPtr, Align(1), Size);
3556     if (MS.TrackOrigins) {
3557       Value *SrcOrigin = NextIRB.CreateAlignedLoad(MS.OriginTy, SrcOriginPtr,
3558                                                    kMinOriginAlignment);
3559       Value *NewOrigin = updateOrigin(SrcOrigin, NextIRB);
3560       NextIRB.CreateCall(MS.MsanSetOriginFn, {DstPtr, Size, NewOrigin});
3561     }
3562   }
3563 
visitLibAtomicStore__anonb9e144640811::MemorySanitizerVisitor3564   void visitLibAtomicStore(CallBase &CB) {
3565     IRBuilder<> IRB(&CB);
3566     Value *Size = CB.getArgOperand(0);
3567     Value *DstPtr = CB.getArgOperand(2);
3568     Value *Ordering = CB.getArgOperand(3);
3569     // Convert the call to have at least Release ordering to make sure
3570     // the shadow operations aren't reordered after it.
3571     Value *NewOrdering =
3572         IRB.CreateExtractElement(makeAddReleaseOrderingTable(IRB), Ordering);
3573     CB.setArgOperand(3, NewOrdering);
3574 
3575     Value *DstShadowPtr =
3576         getShadowOriginPtr(DstPtr, IRB, IRB.getInt8Ty(), Align(1),
3577                            /*isStore*/ true)
3578             .first;
3579 
3580     // Atomic store always paints clean shadow/origin. See file header.
3581     IRB.CreateMemSet(DstShadowPtr, getCleanShadow(IRB.getInt8Ty()), Size,
3582                      Align(1));
3583   }
3584 
visitCallBase__anonb9e144640811::MemorySanitizerVisitor3585   void visitCallBase(CallBase &CB) {
3586     assert(!CB.getMetadata("nosanitize"));
3587     if (CB.isInlineAsm()) {
3588       // For inline asm (either a call to asm function, or callbr instruction),
3589       // do the usual thing: check argument shadow and mark all outputs as
3590       // clean. Note that any side effects of the inline asm that are not
3591       // immediately visible in its constraints are not handled.
3592       if (ClHandleAsmConservative && MS.CompileKernel)
3593         visitAsmInstruction(CB);
3594       else
3595         visitInstruction(CB);
3596       return;
3597     }
3598     LibFunc LF;
3599     if (TLI->getLibFunc(CB, LF)) {
3600       // libatomic.a functions need to have special handling because there isn't
3601       // a good way to intercept them or compile the library with
3602       // instrumentation.
3603       switch (LF) {
3604       case LibFunc_atomic_load:
3605         if (!isa<CallInst>(CB)) {
3606           llvm::errs() << "MSAN -- cannot instrument invoke of libatomic load."
3607                           "Ignoring!\n";
3608           break;
3609         }
3610         visitLibAtomicLoad(CB);
3611         return;
3612       case LibFunc_atomic_store:
3613         visitLibAtomicStore(CB);
3614         return;
3615       default:
3616         break;
3617       }
3618     }
3619 
3620     if (auto *Call = dyn_cast<CallInst>(&CB)) {
3621       assert(!isa<IntrinsicInst>(Call) && "intrinsics are handled elsewhere");
3622 
3623       // We are going to insert code that relies on the fact that the callee
3624       // will become a non-readonly function after it is instrumented by us. To
3625       // prevent this code from being optimized out, mark that function
3626       // non-readonly in advance.
3627       AttrBuilder B;
3628       B.addAttribute(Attribute::ReadOnly)
3629           .addAttribute(Attribute::ReadNone)
3630           .addAttribute(Attribute::WriteOnly)
3631           .addAttribute(Attribute::ArgMemOnly)
3632           .addAttribute(Attribute::Speculatable);
3633 
3634       Call->removeAttributes(AttributeList::FunctionIndex, B);
3635       if (Function *Func = Call->getCalledFunction()) {
3636         Func->removeAttributes(AttributeList::FunctionIndex, B);
3637       }
3638 
3639       maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI);
3640     }
3641     IRBuilder<> IRB(&CB);
3642     bool MayCheckCall = ClEagerChecks;
3643     if (Function *Func = CB.getCalledFunction()) {
3644       // __sanitizer_unaligned_{load,store} functions may be called by users
3645       // and always expects shadows in the TLS. So don't check them.
3646       MayCheckCall &= !Func->getName().startswith("__sanitizer_unaligned_");
3647     }
3648 
3649     unsigned ArgOffset = 0;
3650     LLVM_DEBUG(dbgs() << "  CallSite: " << CB << "\n");
3651     for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End;
3652          ++ArgIt) {
3653       Value *A = *ArgIt;
3654       unsigned i = ArgIt - CB.arg_begin();
3655       if (!A->getType()->isSized()) {
3656         LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << CB << "\n");
3657         continue;
3658       }
3659       unsigned Size = 0;
3660       Value *Store = nullptr;
3661       // Compute the Shadow for arg even if it is ByVal, because
3662       // in that case getShadow() will copy the actual arg shadow to
3663       // __msan_param_tls.
3664       Value *ArgShadow = getShadow(A);
3665       Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
3666       LLVM_DEBUG(dbgs() << "  Arg#" << i << ": " << *A
3667                         << " Shadow: " << *ArgShadow << "\n");
3668       bool ArgIsInitialized = false;
3669       const DataLayout &DL = F.getParent()->getDataLayout();
3670 
3671       bool ByVal = CB.paramHasAttr(i, Attribute::ByVal);
3672       bool NoUndef = CB.paramHasAttr(i, Attribute::NoUndef);
3673       bool EagerCheck = MayCheckCall && !ByVal && NoUndef;
3674 
3675       if (EagerCheck) {
3676         insertShadowCheck(A, &CB);
3677         continue;
3678       }
3679       if (ByVal) {
3680         // ByVal requires some special handling as it's too big for a single
3681         // load
3682         assert(A->getType()->isPointerTy() &&
3683                "ByVal argument is not a pointer!");
3684         Size = DL.getTypeAllocSize(CB.getParamByValType(i));
3685         if (ArgOffset + Size > kParamTLSSize) break;
3686         const MaybeAlign ParamAlignment(CB.getParamAlign(i));
3687         MaybeAlign Alignment = llvm::None;
3688         if (ParamAlignment)
3689           Alignment = std::min(*ParamAlignment, kShadowTLSAlignment);
3690         Value *AShadowPtr =
3691             getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment,
3692                                /*isStore*/ false)
3693                 .first;
3694 
3695         Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr,
3696                                  Alignment, Size);
3697         // TODO(glider): need to copy origins.
3698       } else {
3699         // Any other parameters mean we need bit-grained tracking of uninit data
3700         Size = DL.getTypeAllocSize(A->getType());
3701         if (ArgOffset + Size > kParamTLSSize) break;
3702         Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
3703                                        kShadowTLSAlignment);
3704         Constant *Cst = dyn_cast<Constant>(ArgShadow);
3705         if (Cst && Cst->isNullValue()) ArgIsInitialized = true;
3706       }
3707       if (MS.TrackOrigins && !ArgIsInitialized)
3708         IRB.CreateStore(getOrigin(A),
3709                         getOriginPtrForArgument(A, IRB, ArgOffset));
3710       (void)Store;
3711       assert(Size != 0 && Store != nullptr);
3712       LLVM_DEBUG(dbgs() << "  Param:" << *Store << "\n");
3713       ArgOffset += alignTo(Size, kShadowTLSAlignment);
3714     }
3715     LLVM_DEBUG(dbgs() << "  done with call args\n");
3716 
3717     FunctionType *FT = CB.getFunctionType();
3718     if (FT->isVarArg()) {
3719       VAHelper->visitCallBase(CB, IRB);
3720     }
3721 
3722     // Now, get the shadow for the RetVal.
3723     if (!CB.getType()->isSized())
3724       return;
3725     // Don't emit the epilogue for musttail call returns.
3726     if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall())
3727       return;
3728 
3729     if (MayCheckCall && CB.hasRetAttr(Attribute::NoUndef)) {
3730       setShadow(&CB, getCleanShadow(&CB));
3731       setOrigin(&CB, getCleanOrigin());
3732       return;
3733     }
3734 
3735     IRBuilder<> IRBBefore(&CB);
3736     // Until we have full dynamic coverage, make sure the retval shadow is 0.
3737     Value *Base = getShadowPtrForRetval(&CB, IRBBefore);
3738     IRBBefore.CreateAlignedStore(getCleanShadow(&CB), Base,
3739                                  kShadowTLSAlignment);
3740     BasicBlock::iterator NextInsn;
3741     if (isa<CallInst>(CB)) {
3742       NextInsn = ++CB.getIterator();
3743       assert(NextInsn != CB.getParent()->end());
3744     } else {
3745       BasicBlock *NormalDest = cast<InvokeInst>(CB).getNormalDest();
3746       if (!NormalDest->getSinglePredecessor()) {
3747         // FIXME: this case is tricky, so we are just conservative here.
3748         // Perhaps we need to split the edge between this BB and NormalDest,
3749         // but a naive attempt to use SplitEdge leads to a crash.
3750         setShadow(&CB, getCleanShadow(&CB));
3751         setOrigin(&CB, getCleanOrigin());
3752         return;
3753       }
3754       // FIXME: NextInsn is likely in a basic block that has not been visited yet.
3755       // Anything inserted there will be instrumented by MSan later!
3756       NextInsn = NormalDest->getFirstInsertionPt();
3757       assert(NextInsn != NormalDest->end() &&
3758              "Could not find insertion point for retval shadow load");
3759     }
3760     IRBuilder<> IRBAfter(&*NextInsn);
3761     Value *RetvalShadow = IRBAfter.CreateAlignedLoad(
3762         getShadowTy(&CB), getShadowPtrForRetval(&CB, IRBAfter),
3763         kShadowTLSAlignment, "_msret");
3764     setShadow(&CB, RetvalShadow);
3765     if (MS.TrackOrigins)
3766       setOrigin(&CB, IRBAfter.CreateLoad(MS.OriginTy,
3767                                          getOriginPtrForRetval(IRBAfter)));
3768   }
3769 
isAMustTailRetVal__anonb9e144640811::MemorySanitizerVisitor3770   bool isAMustTailRetVal(Value *RetVal) {
3771     if (auto *I = dyn_cast<BitCastInst>(RetVal)) {
3772       RetVal = I->getOperand(0);
3773     }
3774     if (auto *I = dyn_cast<CallInst>(RetVal)) {
3775       return I->isMustTailCall();
3776     }
3777     return false;
3778   }
3779 
visitReturnInst__anonb9e144640811::MemorySanitizerVisitor3780   void visitReturnInst(ReturnInst &I) {
3781     IRBuilder<> IRB(&I);
3782     Value *RetVal = I.getReturnValue();
3783     if (!RetVal) return;
3784     // Don't emit the epilogue for musttail call returns.
3785     if (isAMustTailRetVal(RetVal)) return;
3786     Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
3787     bool HasNoUndef =
3788         F.hasAttribute(AttributeList::ReturnIndex, Attribute::NoUndef);
3789     bool StoreShadow = !(ClEagerChecks && HasNoUndef);
3790     // FIXME: Consider using SpecialCaseList to specify a list of functions that
3791     // must always return fully initialized values. For now, we hardcode "main".
3792     bool EagerCheck = (ClEagerChecks && HasNoUndef) || (F.getName() == "main");
3793 
3794     Value *Shadow = getShadow(RetVal);
3795     bool StoreOrigin = true;
3796     if (EagerCheck) {
3797       insertShadowCheck(RetVal, &I);
3798       Shadow = getCleanShadow(RetVal);
3799       StoreOrigin = false;
3800     }
3801 
3802     // The caller may still expect information passed over TLS if we pass our
3803     // check
3804     if (StoreShadow) {
3805       IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
3806       if (MS.TrackOrigins && StoreOrigin)
3807         IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
3808     }
3809   }
3810 
visitPHINode__anonb9e144640811::MemorySanitizerVisitor3811   void visitPHINode(PHINode &I) {
3812     IRBuilder<> IRB(&I);
3813     if (!PropagateShadow) {
3814       setShadow(&I, getCleanShadow(&I));
3815       setOrigin(&I, getCleanOrigin());
3816       return;
3817     }
3818 
3819     ShadowPHINodes.push_back(&I);
3820     setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
3821                                 "_msphi_s"));
3822     if (MS.TrackOrigins)
3823       setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
3824                                   "_msphi_o"));
3825   }
3826 
getLocalVarDescription__anonb9e144640811::MemorySanitizerVisitor3827   Value *getLocalVarDescription(AllocaInst &I) {
3828     SmallString<2048> StackDescriptionStorage;
3829     raw_svector_ostream StackDescription(StackDescriptionStorage);
3830     // We create a string with a description of the stack allocation and
3831     // pass it into __msan_set_alloca_origin.
3832     // It will be printed by the run-time if stack-originated UMR is found.
3833     // The first 4 bytes of the string are set to '----' and will be replaced
3834     // by __msan_va_arg_overflow_size_tls at the first call.
3835     StackDescription << "----" << I.getName() << "@" << F.getName();
3836     return createPrivateNonConstGlobalForString(*F.getParent(),
3837                                                 StackDescription.str());
3838   }
3839 
poisonAllocaUserspace__anonb9e144640811::MemorySanitizerVisitor3840   void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) {
3841     if (PoisonStack && ClPoisonStackWithCall) {
3842       IRB.CreateCall(MS.MsanPoisonStackFn,
3843                      {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len});
3844     } else {
3845       Value *ShadowBase, *OriginBase;
3846       std::tie(ShadowBase, OriginBase) = getShadowOriginPtr(
3847           &I, IRB, IRB.getInt8Ty(), Align(1), /*isStore*/ true);
3848 
3849       Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0);
3850       IRB.CreateMemSet(ShadowBase, PoisonValue, Len,
3851                        MaybeAlign(I.getAlignment()));
3852     }
3853 
3854     if (PoisonStack && MS.TrackOrigins) {
3855       Value *Descr = getLocalVarDescription(I);
3856       IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn,
3857                      {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len,
3858                       IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()),
3859                       IRB.CreatePointerCast(&F, MS.IntptrTy)});
3860     }
3861   }
3862 
poisonAllocaKmsan__anonb9e144640811::MemorySanitizerVisitor3863   void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) {
3864     Value *Descr = getLocalVarDescription(I);
3865     if (PoisonStack) {
3866       IRB.CreateCall(MS.MsanPoisonAllocaFn,
3867                      {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len,
3868                       IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())});
3869     } else {
3870       IRB.CreateCall(MS.MsanUnpoisonAllocaFn,
3871                      {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len});
3872     }
3873   }
3874 
instrumentAlloca__anonb9e144640811::MemorySanitizerVisitor3875   void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) {
3876     if (!InsPoint)
3877       InsPoint = &I;
3878     IRBuilder<> IRB(InsPoint->getNextNode());
3879     const DataLayout &DL = F.getParent()->getDataLayout();
3880     uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType());
3881     Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize);
3882     if (I.isArrayAllocation())
3883       Len = IRB.CreateMul(Len, I.getArraySize());
3884 
3885     if (MS.CompileKernel)
3886       poisonAllocaKmsan(I, IRB, Len);
3887     else
3888       poisonAllocaUserspace(I, IRB, Len);
3889   }
3890 
visitAllocaInst__anonb9e144640811::MemorySanitizerVisitor3891   void visitAllocaInst(AllocaInst &I) {
3892     setShadow(&I, getCleanShadow(&I));
3893     setOrigin(&I, getCleanOrigin());
3894     // We'll get to this alloca later unless it's poisoned at the corresponding
3895     // llvm.lifetime.start.
3896     AllocaSet.insert(&I);
3897   }
3898 
visitSelectInst__anonb9e144640811::MemorySanitizerVisitor3899   void visitSelectInst(SelectInst& I) {
3900     IRBuilder<> IRB(&I);
3901     // a = select b, c, d
3902     Value *B = I.getCondition();
3903     Value *C = I.getTrueValue();
3904     Value *D = I.getFalseValue();
3905     Value *Sb = getShadow(B);
3906     Value *Sc = getShadow(C);
3907     Value *Sd = getShadow(D);
3908 
3909     // Result shadow if condition shadow is 0.
3910     Value *Sa0 = IRB.CreateSelect(B, Sc, Sd);
3911     Value *Sa1;
3912     if (I.getType()->isAggregateType()) {
3913       // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do
3914       // an extra "select". This results in much more compact IR.
3915       // Sa = select Sb, poisoned, (select b, Sc, Sd)
3916       Sa1 = getPoisonedShadow(getShadowTy(I.getType()));
3917     } else {
3918       // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ]
3919       // If Sb (condition is poisoned), look for bits in c and d that are equal
3920       // and both unpoisoned.
3921       // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd.
3922 
3923       // Cast arguments to shadow-compatible type.
3924       C = CreateAppToShadowCast(IRB, C);
3925       D = CreateAppToShadowCast(IRB, D);
3926 
3927       // Result shadow if condition shadow is 1.
3928       Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd});
3929     }
3930     Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select");
3931     setShadow(&I, Sa);
3932     if (MS.TrackOrigins) {
3933       // Origins are always i32, so any vector conditions must be flattened.
3934       // FIXME: consider tracking vector origins for app vectors?
3935       if (B->getType()->isVectorTy()) {
3936         Type *FlatTy = getShadowTyNoVec(B->getType());
3937         B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy),
3938                                 ConstantInt::getNullValue(FlatTy));
3939         Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy),
3940                                       ConstantInt::getNullValue(FlatTy));
3941       }
3942       // a = select b, c, d
3943       // Oa = Sb ? Ob : (b ? Oc : Od)
3944       setOrigin(
3945           &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()),
3946                                IRB.CreateSelect(B, getOrigin(I.getTrueValue()),
3947                                                 getOrigin(I.getFalseValue()))));
3948     }
3949   }
3950 
visitLandingPadInst__anonb9e144640811::MemorySanitizerVisitor3951   void visitLandingPadInst(LandingPadInst &I) {
3952     // Do nothing.
3953     // See https://github.com/google/sanitizers/issues/504
3954     setShadow(&I, getCleanShadow(&I));
3955     setOrigin(&I, getCleanOrigin());
3956   }
3957 
visitCatchSwitchInst__anonb9e144640811::MemorySanitizerVisitor3958   void visitCatchSwitchInst(CatchSwitchInst &I) {
3959     setShadow(&I, getCleanShadow(&I));
3960     setOrigin(&I, getCleanOrigin());
3961   }
3962 
visitFuncletPadInst__anonb9e144640811::MemorySanitizerVisitor3963   void visitFuncletPadInst(FuncletPadInst &I) {
3964     setShadow(&I, getCleanShadow(&I));
3965     setOrigin(&I, getCleanOrigin());
3966   }
3967 
visitGetElementPtrInst__anonb9e144640811::MemorySanitizerVisitor3968   void visitGetElementPtrInst(GetElementPtrInst &I) {
3969     handleShadowOr(I);
3970   }
3971 
visitExtractValueInst__anonb9e144640811::MemorySanitizerVisitor3972   void visitExtractValueInst(ExtractValueInst &I) {
3973     IRBuilder<> IRB(&I);
3974     Value *Agg = I.getAggregateOperand();
3975     LLVM_DEBUG(dbgs() << "ExtractValue:  " << I << "\n");
3976     Value *AggShadow = getShadow(Agg);
3977     LLVM_DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
3978     Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
3979     LLVM_DEBUG(dbgs() << "   ResShadow:  " << *ResShadow << "\n");
3980     setShadow(&I, ResShadow);
3981     setOriginForNaryOp(I);
3982   }
3983 
visitInsertValueInst__anonb9e144640811::MemorySanitizerVisitor3984   void visitInsertValueInst(InsertValueInst &I) {
3985     IRBuilder<> IRB(&I);
3986     LLVM_DEBUG(dbgs() << "InsertValue:  " << I << "\n");
3987     Value *AggShadow = getShadow(I.getAggregateOperand());
3988     Value *InsShadow = getShadow(I.getInsertedValueOperand());
3989     LLVM_DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
3990     LLVM_DEBUG(dbgs() << "   InsShadow:  " << *InsShadow << "\n");
3991     Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
3992     LLVM_DEBUG(dbgs() << "   Res:        " << *Res << "\n");
3993     setShadow(&I, Res);
3994     setOriginForNaryOp(I);
3995   }
3996 
dumpInst__anonb9e144640811::MemorySanitizerVisitor3997   void dumpInst(Instruction &I) {
3998     if (CallInst *CI = dyn_cast<CallInst>(&I)) {
3999       errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
4000     } else {
4001       errs() << "ZZZ " << I.getOpcodeName() << "\n";
4002     }
4003     errs() << "QQQ " << I << "\n";
4004   }
4005 
visitResumeInst__anonb9e144640811::MemorySanitizerVisitor4006   void visitResumeInst(ResumeInst &I) {
4007     LLVM_DEBUG(dbgs() << "Resume: " << I << "\n");
4008     // Nothing to do here.
4009   }
4010 
visitCleanupReturnInst__anonb9e144640811::MemorySanitizerVisitor4011   void visitCleanupReturnInst(CleanupReturnInst &CRI) {
4012     LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n");
4013     // Nothing to do here.
4014   }
4015 
visitCatchReturnInst__anonb9e144640811::MemorySanitizerVisitor4016   void visitCatchReturnInst(CatchReturnInst &CRI) {
4017     LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n");
4018     // Nothing to do here.
4019   }
4020 
instrumentAsmArgument__anonb9e144640811::MemorySanitizerVisitor4021   void instrumentAsmArgument(Value *Operand, Instruction &I, IRBuilder<> &IRB,
4022                              const DataLayout &DL, bool isOutput) {
4023     // For each assembly argument, we check its value for being initialized.
4024     // If the argument is a pointer, we assume it points to a single element
4025     // of the corresponding type (or to a 8-byte word, if the type is unsized).
4026     // Each such pointer is instrumented with a call to the runtime library.
4027     Type *OpType = Operand->getType();
4028     // Check the operand value itself.
4029     insertShadowCheck(Operand, &I);
4030     if (!OpType->isPointerTy() || !isOutput) {
4031       assert(!isOutput);
4032       return;
4033     }
4034     Type *ElType = OpType->getPointerElementType();
4035     if (!ElType->isSized())
4036       return;
4037     int Size = DL.getTypeStoreSize(ElType);
4038     Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy());
4039     Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size);
4040     IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal});
4041   }
4042 
4043   /// Get the number of output arguments returned by pointers.
getNumOutputArgs__anonb9e144640811::MemorySanitizerVisitor4044   int getNumOutputArgs(InlineAsm *IA, CallBase *CB) {
4045     int NumRetOutputs = 0;
4046     int NumOutputs = 0;
4047     Type *RetTy = cast<Value>(CB)->getType();
4048     if (!RetTy->isVoidTy()) {
4049       // Register outputs are returned via the CallInst return value.
4050       auto *ST = dyn_cast<StructType>(RetTy);
4051       if (ST)
4052         NumRetOutputs = ST->getNumElements();
4053       else
4054         NumRetOutputs = 1;
4055     }
4056     InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
4057     for (const InlineAsm::ConstraintInfo &Info : Constraints) {
4058       switch (Info.Type) {
4059       case InlineAsm::isOutput:
4060         NumOutputs++;
4061         break;
4062       default:
4063         break;
4064       }
4065     }
4066     return NumOutputs - NumRetOutputs;
4067   }
4068 
visitAsmInstruction__anonb9e144640811::MemorySanitizerVisitor4069   void visitAsmInstruction(Instruction &I) {
4070     // Conservative inline assembly handling: check for poisoned shadow of
4071     // asm() arguments, then unpoison the result and all the memory locations
4072     // pointed to by those arguments.
4073     // An inline asm() statement in C++ contains lists of input and output
4074     // arguments used by the assembly code. These are mapped to operands of the
4075     // CallInst as follows:
4076     //  - nR register outputs ("=r) are returned by value in a single structure
4077     //  (SSA value of the CallInst);
4078     //  - nO other outputs ("=m" and others) are returned by pointer as first
4079     // nO operands of the CallInst;
4080     //  - nI inputs ("r", "m" and others) are passed to CallInst as the
4081     // remaining nI operands.
4082     // The total number of asm() arguments in the source is nR+nO+nI, and the
4083     // corresponding CallInst has nO+nI+1 operands (the last operand is the
4084     // function to be called).
4085     const DataLayout &DL = F.getParent()->getDataLayout();
4086     CallBase *CB = cast<CallBase>(&I);
4087     IRBuilder<> IRB(&I);
4088     InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4089     int OutputArgs = getNumOutputArgs(IA, CB);
4090     // The last operand of a CallInst is the function itself.
4091     int NumOperands = CB->getNumOperands() - 1;
4092 
4093     // Check input arguments. Doing so before unpoisoning output arguments, so
4094     // that we won't overwrite uninit values before checking them.
4095     for (int i = OutputArgs; i < NumOperands; i++) {
4096       Value *Operand = CB->getOperand(i);
4097       instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ false);
4098     }
4099     // Unpoison output arguments. This must happen before the actual InlineAsm
4100     // call, so that the shadow for memory published in the asm() statement
4101     // remains valid.
4102     for (int i = 0; i < OutputArgs; i++) {
4103       Value *Operand = CB->getOperand(i);
4104       instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ true);
4105     }
4106 
4107     setShadow(&I, getCleanShadow(&I));
4108     setOrigin(&I, getCleanOrigin());
4109   }
4110 
visitFreezeInst__anonb9e144640811::MemorySanitizerVisitor4111   void visitFreezeInst(FreezeInst &I) {
4112     // Freeze always returns a fully defined value.
4113     setShadow(&I, getCleanShadow(&I));
4114     setOrigin(&I, getCleanOrigin());
4115   }
4116 
visitInstruction__anonb9e144640811::MemorySanitizerVisitor4117   void visitInstruction(Instruction &I) {
4118     // Everything else: stop propagating and check for poisoned shadow.
4119     if (ClDumpStrictInstructions)
4120       dumpInst(I);
4121     LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n");
4122     for (size_t i = 0, n = I.getNumOperands(); i < n; i++) {
4123       Value *Operand = I.getOperand(i);
4124       if (Operand->getType()->isSized())
4125         insertShadowCheck(Operand, &I);
4126     }
4127     setShadow(&I, getCleanShadow(&I));
4128     setOrigin(&I, getCleanOrigin());
4129   }
4130 };
4131 
4132 /// AMD64-specific implementation of VarArgHelper.
4133 struct VarArgAMD64Helper : public VarArgHelper {
4134   // An unfortunate workaround for asymmetric lowering of va_arg stuff.
4135   // See a comment in visitCallBase for more details.
4136   static const unsigned AMD64GpEndOffset = 48;  // AMD64 ABI Draft 0.99.6 p3.5.7
4137   static const unsigned AMD64FpEndOffsetSSE = 176;
4138   // If SSE is disabled, fp_offset in va_list is zero.
4139   static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset;
4140 
4141   unsigned AMD64FpEndOffset;
4142   Function &F;
4143   MemorySanitizer &MS;
4144   MemorySanitizerVisitor &MSV;
4145   Value *VAArgTLSCopy = nullptr;
4146   Value *VAArgTLSOriginCopy = nullptr;
4147   Value *VAArgOverflowSize = nullptr;
4148 
4149   SmallVector<CallInst*, 16> VAStartInstrumentationList;
4150 
4151   enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
4152 
VarArgAMD64Helper__anonb9e144640811::VarArgAMD64Helper4153   VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
4154                     MemorySanitizerVisitor &MSV)
4155       : F(F), MS(MS), MSV(MSV) {
4156     AMD64FpEndOffset = AMD64FpEndOffsetSSE;
4157     for (const auto &Attr : F.getAttributes().getFnAttributes()) {
4158       if (Attr.isStringAttribute() &&
4159           (Attr.getKindAsString() == "target-features")) {
4160         if (Attr.getValueAsString().contains("-sse"))
4161           AMD64FpEndOffset = AMD64FpEndOffsetNoSSE;
4162         break;
4163       }
4164     }
4165   }
4166 
classifyArgument__anonb9e144640811::VarArgAMD64Helper4167   ArgKind classifyArgument(Value* arg) {
4168     // A very rough approximation of X86_64 argument classification rules.
4169     Type *T = arg->getType();
4170     if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
4171       return AK_FloatingPoint;
4172     if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
4173       return AK_GeneralPurpose;
4174     if (T->isPointerTy())
4175       return AK_GeneralPurpose;
4176     return AK_Memory;
4177   }
4178 
4179   // For VarArg functions, store the argument shadow in an ABI-specific format
4180   // that corresponds to va_list layout.
4181   // We do this because Clang lowers va_arg in the frontend, and this pass
4182   // only sees the low level code that deals with va_list internals.
4183   // A much easier alternative (provided that Clang emits va_arg instructions)
4184   // would have been to associate each live instance of va_list with a copy of
4185   // MSanParamTLS, and extract shadow on va_arg() call in the argument list
4186   // order.
visitCallBase__anonb9e144640811::VarArgAMD64Helper4187   void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
4188     unsigned GpOffset = 0;
4189     unsigned FpOffset = AMD64GpEndOffset;
4190     unsigned OverflowOffset = AMD64FpEndOffset;
4191     const DataLayout &DL = F.getParent()->getDataLayout();
4192     for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End;
4193          ++ArgIt) {
4194       Value *A = *ArgIt;
4195       unsigned ArgNo = CB.getArgOperandNo(ArgIt);
4196       bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams();
4197       bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal);
4198       if (IsByVal) {
4199         // ByVal arguments always go to the overflow area.
4200         // Fixed arguments passed through the overflow area will be stepped
4201         // over by va_start, so don't count them towards the offset.
4202         if (IsFixed)
4203           continue;
4204         assert(A->getType()->isPointerTy());
4205         Type *RealTy = CB.getParamByValType(ArgNo);
4206         uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
4207         Value *ShadowBase = getShadowPtrForVAArgument(
4208             RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8));
4209         Value *OriginBase = nullptr;
4210         if (MS.TrackOrigins)
4211           OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset);
4212         OverflowOffset += alignTo(ArgSize, 8);
4213         if (!ShadowBase)
4214           continue;
4215         Value *ShadowPtr, *OriginPtr;
4216         std::tie(ShadowPtr, OriginPtr) =
4217             MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment,
4218                                    /*isStore*/ false);
4219 
4220         IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr,
4221                          kShadowTLSAlignment, ArgSize);
4222         if (MS.TrackOrigins)
4223           IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr,
4224                            kShadowTLSAlignment, ArgSize);
4225       } else {
4226         ArgKind AK = classifyArgument(A);
4227         if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
4228           AK = AK_Memory;
4229         if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
4230           AK = AK_Memory;
4231         Value *ShadowBase, *OriginBase = nullptr;
4232         switch (AK) {
4233           case AK_GeneralPurpose:
4234             ShadowBase =
4235                 getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8);
4236             if (MS.TrackOrigins)
4237               OriginBase =
4238                   getOriginPtrForVAArgument(A->getType(), IRB, GpOffset);
4239             GpOffset += 8;
4240             break;
4241           case AK_FloatingPoint:
4242             ShadowBase =
4243                 getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16);
4244             if (MS.TrackOrigins)
4245               OriginBase =
4246                   getOriginPtrForVAArgument(A->getType(), IRB, FpOffset);
4247             FpOffset += 16;
4248             break;
4249           case AK_Memory:
4250             if (IsFixed)
4251               continue;
4252             uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
4253             ShadowBase =
4254                 getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8);
4255             if (MS.TrackOrigins)
4256               OriginBase =
4257                   getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset);
4258             OverflowOffset += alignTo(ArgSize, 8);
4259         }
4260         // Take fixed arguments into account for GpOffset and FpOffset,
4261         // but don't actually store shadows for them.
4262         // TODO(glider): don't call get*PtrForVAArgument() for them.
4263         if (IsFixed)
4264           continue;
4265         if (!ShadowBase)
4266           continue;
4267         Value *Shadow = MSV.getShadow(A);
4268         IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment);
4269         if (MS.TrackOrigins) {
4270           Value *Origin = MSV.getOrigin(A);
4271           unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType());
4272           MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize,
4273                           std::max(kShadowTLSAlignment, kMinOriginAlignment));
4274         }
4275       }
4276     }
4277     Constant *OverflowSize =
4278       ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
4279     IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
4280   }
4281 
4282   /// Compute the shadow address for a given va_arg.
getShadowPtrForVAArgument__anonb9e144640811::VarArgAMD64Helper4283   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
4284                                    unsigned ArgOffset, unsigned ArgSize) {
4285     // Make sure we don't overflow __msan_va_arg_tls.
4286     if (ArgOffset + ArgSize > kParamTLSSize)
4287       return nullptr;
4288     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
4289     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
4290     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
4291                               "_msarg_va_s");
4292   }
4293 
4294   /// Compute the origin address for a given va_arg.
getOriginPtrForVAArgument__anonb9e144640811::VarArgAMD64Helper4295   Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) {
4296     Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy);
4297     // getOriginPtrForVAArgument() is always called after
4298     // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never
4299     // overflow.
4300     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
4301     return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
4302                               "_msarg_va_o");
4303   }
4304 
unpoisonVAListTagForInst__anonb9e144640811::VarArgAMD64Helper4305   void unpoisonVAListTagForInst(IntrinsicInst &I) {
4306     IRBuilder<> IRB(&I);
4307     Value *VAListTag = I.getArgOperand(0);
4308     Value *ShadowPtr, *OriginPtr;
4309     const Align Alignment = Align(8);
4310     std::tie(ShadowPtr, OriginPtr) =
4311         MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment,
4312                                /*isStore*/ true);
4313 
4314     // Unpoison the whole __va_list_tag.
4315     // FIXME: magic ABI constants.
4316     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4317                      /* size */ 24, Alignment, false);
4318     // We shouldn't need to zero out the origins, as they're only checked for
4319     // nonzero shadow.
4320   }
4321 
visitVAStartInst__anonb9e144640811::VarArgAMD64Helper4322   void visitVAStartInst(VAStartInst &I) override {
4323     if (F.getCallingConv() == CallingConv::Win64)
4324       return;
4325     VAStartInstrumentationList.push_back(&I);
4326     unpoisonVAListTagForInst(I);
4327   }
4328 
visitVACopyInst__anonb9e144640811::VarArgAMD64Helper4329   void visitVACopyInst(VACopyInst &I) override {
4330     if (F.getCallingConv() == CallingConv::Win64) return;
4331     unpoisonVAListTagForInst(I);
4332   }
4333 
finalizeInstrumentation__anonb9e144640811::VarArgAMD64Helper4334   void finalizeInstrumentation() override {
4335     assert(!VAArgOverflowSize && !VAArgTLSCopy &&
4336            "finalizeInstrumentation called twice");
4337     if (!VAStartInstrumentationList.empty()) {
4338       // If there is a va_start in this function, make a backup copy of
4339       // va_arg_tls somewhere in the function entry block.
4340       IRBuilder<> IRB(MSV.FnPrologueEnd);
4341       VAArgOverflowSize =
4342           IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
4343       Value *CopySize =
4344         IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
4345                       VAArgOverflowSize);
4346       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
4347       IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize);
4348       if (MS.TrackOrigins) {
4349         VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
4350         IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS,
4351                          Align(8), CopySize);
4352       }
4353     }
4354 
4355     // Instrument va_start.
4356     // Copy va_list shadow from the backup copy of the TLS contents.
4357     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
4358       CallInst *OrigInst = VAStartInstrumentationList[i];
4359       IRBuilder<> IRB(OrigInst->getNextNode());
4360       Value *VAListTag = OrigInst->getArgOperand(0);
4361 
4362       Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
4363       Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr(
4364           IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4365                         ConstantInt::get(MS.IntptrTy, 16)),
4366           PointerType::get(RegSaveAreaPtrTy, 0));
4367       Value *RegSaveAreaPtr =
4368           IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
4369       Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
4370       const Align Alignment = Align(16);
4371       std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
4372           MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
4373                                  Alignment, /*isStore*/ true);
4374       IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
4375                        AMD64FpEndOffset);
4376       if (MS.TrackOrigins)
4377         IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy,
4378                          Alignment, AMD64FpEndOffset);
4379       Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C);
4380       Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr(
4381           IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4382                         ConstantInt::get(MS.IntptrTy, 8)),
4383           PointerType::get(OverflowArgAreaPtrTy, 0));
4384       Value *OverflowArgAreaPtr =
4385           IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr);
4386       Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr;
4387       std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) =
4388           MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(),
4389                                  Alignment, /*isStore*/ true);
4390       Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy,
4391                                              AMD64FpEndOffset);
4392       IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment,
4393                        VAArgOverflowSize);
4394       if (MS.TrackOrigins) {
4395         SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy,
4396                                         AMD64FpEndOffset);
4397         IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment,
4398                          VAArgOverflowSize);
4399       }
4400     }
4401   }
4402 };
4403 
4404 /// MIPS64-specific implementation of VarArgHelper.
4405 struct VarArgMIPS64Helper : public VarArgHelper {
4406   Function &F;
4407   MemorySanitizer &MS;
4408   MemorySanitizerVisitor &MSV;
4409   Value *VAArgTLSCopy = nullptr;
4410   Value *VAArgSize = nullptr;
4411 
4412   SmallVector<CallInst*, 16> VAStartInstrumentationList;
4413 
VarArgMIPS64Helper__anonb9e144640811::VarArgMIPS64Helper4414   VarArgMIPS64Helper(Function &F, MemorySanitizer &MS,
4415                     MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {}
4416 
visitCallBase__anonb9e144640811::VarArgMIPS64Helper4417   void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
4418     unsigned VAArgOffset = 0;
4419     const DataLayout &DL = F.getParent()->getDataLayout();
4420     for (auto ArgIt = CB.arg_begin() + CB.getFunctionType()->getNumParams(),
4421               End = CB.arg_end();
4422          ArgIt != End; ++ArgIt) {
4423       Triple TargetTriple(F.getParent()->getTargetTriple());
4424       Value *A = *ArgIt;
4425       Value *Base;
4426       uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
4427       if (TargetTriple.getArch() == Triple::mips64) {
4428         // Adjusting the shadow for argument with size < 8 to match the placement
4429         // of bits in big endian system
4430         if (ArgSize < 8)
4431           VAArgOffset += (8 - ArgSize);
4432       }
4433       Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize);
4434       VAArgOffset += ArgSize;
4435       VAArgOffset = alignTo(VAArgOffset, 8);
4436       if (!Base)
4437         continue;
4438       IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
4439     }
4440 
4441     Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset);
4442     // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
4443     // a new class member i.e. it is the total size of all VarArgs.
4444     IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
4445   }
4446 
4447   /// Compute the shadow address for a given va_arg.
getShadowPtrForVAArgument__anonb9e144640811::VarArgMIPS64Helper4448   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
4449                                    unsigned ArgOffset, unsigned ArgSize) {
4450     // Make sure we don't overflow __msan_va_arg_tls.
4451     if (ArgOffset + ArgSize > kParamTLSSize)
4452       return nullptr;
4453     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
4454     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
4455     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
4456                               "_msarg");
4457   }
4458 
visitVAStartInst__anonb9e144640811::VarArgMIPS64Helper4459   void visitVAStartInst(VAStartInst &I) override {
4460     IRBuilder<> IRB(&I);
4461     VAStartInstrumentationList.push_back(&I);
4462     Value *VAListTag = I.getArgOperand(0);
4463     Value *ShadowPtr, *OriginPtr;
4464     const Align Alignment = Align(8);
4465     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4466         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4467     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4468                      /* size */ 8, Alignment, false);
4469   }
4470 
visitVACopyInst__anonb9e144640811::VarArgMIPS64Helper4471   void visitVACopyInst(VACopyInst &I) override {
4472     IRBuilder<> IRB(&I);
4473     VAStartInstrumentationList.push_back(&I);
4474     Value *VAListTag = I.getArgOperand(0);
4475     Value *ShadowPtr, *OriginPtr;
4476     const Align Alignment = Align(8);
4477     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4478         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4479     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4480                      /* size */ 8, Alignment, false);
4481   }
4482 
finalizeInstrumentation__anonb9e144640811::VarArgMIPS64Helper4483   void finalizeInstrumentation() override {
4484     assert(!VAArgSize && !VAArgTLSCopy &&
4485            "finalizeInstrumentation called twice");
4486     IRBuilder<> IRB(MSV.FnPrologueEnd);
4487     VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
4488     Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0),
4489                                     VAArgSize);
4490 
4491     if (!VAStartInstrumentationList.empty()) {
4492       // If there is a va_start in this function, make a backup copy of
4493       // va_arg_tls somewhere in the function entry block.
4494       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
4495       IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize);
4496     }
4497 
4498     // Instrument va_start.
4499     // Copy va_list shadow from the backup copy of the TLS contents.
4500     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
4501       CallInst *OrigInst = VAStartInstrumentationList[i];
4502       IRBuilder<> IRB(OrigInst->getNextNode());
4503       Value *VAListTag = OrigInst->getArgOperand(0);
4504       Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
4505       Value *RegSaveAreaPtrPtr =
4506           IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4507                              PointerType::get(RegSaveAreaPtrTy, 0));
4508       Value *RegSaveAreaPtr =
4509           IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
4510       Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
4511       const Align Alignment = Align(8);
4512       std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
4513           MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
4514                                  Alignment, /*isStore*/ true);
4515       IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
4516                        CopySize);
4517     }
4518   }
4519 };
4520 
4521 /// AArch64-specific implementation of VarArgHelper.
4522 struct VarArgAArch64Helper : public VarArgHelper {
4523   static const unsigned kAArch64GrArgSize = 64;
4524   static const unsigned kAArch64VrArgSize = 128;
4525 
4526   static const unsigned AArch64GrBegOffset = 0;
4527   static const unsigned AArch64GrEndOffset = kAArch64GrArgSize;
4528   // Make VR space aligned to 16 bytes.
4529   static const unsigned AArch64VrBegOffset = AArch64GrEndOffset;
4530   static const unsigned AArch64VrEndOffset = AArch64VrBegOffset
4531                                              + kAArch64VrArgSize;
4532   static const unsigned AArch64VAEndOffset = AArch64VrEndOffset;
4533 
4534   Function &F;
4535   MemorySanitizer &MS;
4536   MemorySanitizerVisitor &MSV;
4537   Value *VAArgTLSCopy = nullptr;
4538   Value *VAArgOverflowSize = nullptr;
4539 
4540   SmallVector<CallInst*, 16> VAStartInstrumentationList;
4541 
4542   enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
4543 
VarArgAArch64Helper__anonb9e144640811::VarArgAArch64Helper4544   VarArgAArch64Helper(Function &F, MemorySanitizer &MS,
4545                     MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {}
4546 
classifyArgument__anonb9e144640811::VarArgAArch64Helper4547   ArgKind classifyArgument(Value* arg) {
4548     Type *T = arg->getType();
4549     if (T->isFPOrFPVectorTy())
4550       return AK_FloatingPoint;
4551     if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
4552         || (T->isPointerTy()))
4553       return AK_GeneralPurpose;
4554     return AK_Memory;
4555   }
4556 
4557   // The instrumentation stores the argument shadow in a non ABI-specific
4558   // format because it does not know which argument is named (since Clang,
4559   // like x86_64 case, lowers the va_args in the frontend and this pass only
4560   // sees the low level code that deals with va_list internals).
4561   // The first seven GR registers are saved in the first 56 bytes of the
4562   // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then
4563   // the remaining arguments.
4564   // Using constant offset within the va_arg TLS array allows fast copy
4565   // in the finalize instrumentation.
visitCallBase__anonb9e144640811::VarArgAArch64Helper4566   void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
4567     unsigned GrOffset = AArch64GrBegOffset;
4568     unsigned VrOffset = AArch64VrBegOffset;
4569     unsigned OverflowOffset = AArch64VAEndOffset;
4570 
4571     const DataLayout &DL = F.getParent()->getDataLayout();
4572     for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End;
4573          ++ArgIt) {
4574       Value *A = *ArgIt;
4575       unsigned ArgNo = CB.getArgOperandNo(ArgIt);
4576       bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams();
4577       ArgKind AK = classifyArgument(A);
4578       if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset)
4579         AK = AK_Memory;
4580       if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset)
4581         AK = AK_Memory;
4582       Value *Base;
4583       switch (AK) {
4584         case AK_GeneralPurpose:
4585           Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8);
4586           GrOffset += 8;
4587           break;
4588         case AK_FloatingPoint:
4589           Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8);
4590           VrOffset += 16;
4591           break;
4592         case AK_Memory:
4593           // Don't count fixed arguments in the overflow area - va_start will
4594           // skip right over them.
4595           if (IsFixed)
4596             continue;
4597           uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
4598           Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset,
4599                                            alignTo(ArgSize, 8));
4600           OverflowOffset += alignTo(ArgSize, 8);
4601           break;
4602       }
4603       // Count Gp/Vr fixed arguments to their respective offsets, but don't
4604       // bother to actually store a shadow.
4605       if (IsFixed)
4606         continue;
4607       if (!Base)
4608         continue;
4609       IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
4610     }
4611     Constant *OverflowSize =
4612       ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset);
4613     IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
4614   }
4615 
4616   /// Compute the shadow address for a given va_arg.
getShadowPtrForVAArgument__anonb9e144640811::VarArgAArch64Helper4617   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
4618                                    unsigned ArgOffset, unsigned ArgSize) {
4619     // Make sure we don't overflow __msan_va_arg_tls.
4620     if (ArgOffset + ArgSize > kParamTLSSize)
4621       return nullptr;
4622     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
4623     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
4624     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
4625                               "_msarg");
4626   }
4627 
visitVAStartInst__anonb9e144640811::VarArgAArch64Helper4628   void visitVAStartInst(VAStartInst &I) override {
4629     IRBuilder<> IRB(&I);
4630     VAStartInstrumentationList.push_back(&I);
4631     Value *VAListTag = I.getArgOperand(0);
4632     Value *ShadowPtr, *OriginPtr;
4633     const Align Alignment = Align(8);
4634     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4635         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4636     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4637                      /* size */ 32, Alignment, false);
4638   }
4639 
visitVACopyInst__anonb9e144640811::VarArgAArch64Helper4640   void visitVACopyInst(VACopyInst &I) override {
4641     IRBuilder<> IRB(&I);
4642     VAStartInstrumentationList.push_back(&I);
4643     Value *VAListTag = I.getArgOperand(0);
4644     Value *ShadowPtr, *OriginPtr;
4645     const Align Alignment = Align(8);
4646     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4647         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4648     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4649                      /* size */ 32, Alignment, false);
4650   }
4651 
4652   // Retrieve a va_list field of 'void*' size.
getVAField64__anonb9e144640811::VarArgAArch64Helper4653   Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) {
4654     Value *SaveAreaPtrPtr =
4655       IRB.CreateIntToPtr(
4656         IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4657                       ConstantInt::get(MS.IntptrTy, offset)),
4658         Type::getInt64PtrTy(*MS.C));
4659     return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr);
4660   }
4661 
4662   // Retrieve a va_list field of 'int' size.
getVAField32__anonb9e144640811::VarArgAArch64Helper4663   Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) {
4664     Value *SaveAreaPtr =
4665       IRB.CreateIntToPtr(
4666         IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4667                       ConstantInt::get(MS.IntptrTy, offset)),
4668         Type::getInt32PtrTy(*MS.C));
4669     Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr);
4670     return IRB.CreateSExt(SaveArea32, MS.IntptrTy);
4671   }
4672 
finalizeInstrumentation__anonb9e144640811::VarArgAArch64Helper4673   void finalizeInstrumentation() override {
4674     assert(!VAArgOverflowSize && !VAArgTLSCopy &&
4675            "finalizeInstrumentation called twice");
4676     if (!VAStartInstrumentationList.empty()) {
4677       // If there is a va_start in this function, make a backup copy of
4678       // va_arg_tls somewhere in the function entry block.
4679       IRBuilder<> IRB(MSV.FnPrologueEnd);
4680       VAArgOverflowSize =
4681           IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
4682       Value *CopySize =
4683         IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset),
4684                       VAArgOverflowSize);
4685       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
4686       IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize);
4687     }
4688 
4689     Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize);
4690     Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize);
4691 
4692     // Instrument va_start, copy va_list shadow from the backup copy of
4693     // the TLS contents.
4694     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
4695       CallInst *OrigInst = VAStartInstrumentationList[i];
4696       IRBuilder<> IRB(OrigInst->getNextNode());
4697 
4698       Value *VAListTag = OrigInst->getArgOperand(0);
4699 
4700       // The variadic ABI for AArch64 creates two areas to save the incoming
4701       // argument registers (one for 64-bit general register xn-x7 and another
4702       // for 128-bit FP/SIMD vn-v7).
4703       // We need then to propagate the shadow arguments on both regions
4704       // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'.
4705       // The remaining arguments are saved on shadow for 'va::stack'.
4706       // One caveat is it requires only to propagate the non-named arguments,
4707       // however on the call site instrumentation 'all' the arguments are
4708       // saved. So to copy the shadow values from the va_arg TLS array
4709       // we need to adjust the offset for both GR and VR fields based on
4710       // the __{gr,vr}_offs value (since they are stores based on incoming
4711       // named arguments).
4712 
4713       // Read the stack pointer from the va_list.
4714       Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0);
4715 
4716       // Read both the __gr_top and __gr_off and add them up.
4717       Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8);
4718       Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24);
4719 
4720       Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea);
4721 
4722       // Read both the __vr_top and __vr_off and add them up.
4723       Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16);
4724       Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28);
4725 
4726       Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea);
4727 
4728       // It does not know how many named arguments is being used and, on the
4729       // callsite all the arguments were saved.  Since __gr_off is defined as
4730       // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic
4731       // argument by ignoring the bytes of shadow from named arguments.
4732       Value *GrRegSaveAreaShadowPtrOff =
4733         IRB.CreateAdd(GrArgSize, GrOffSaveArea);
4734 
4735       Value *GrRegSaveAreaShadowPtr =
4736           MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(),
4737                                  Align(8), /*isStore*/ true)
4738               .first;
4739 
4740       Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
4741                                               GrRegSaveAreaShadowPtrOff);
4742       Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff);
4743 
4744       IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, Align(8), GrSrcPtr, Align(8),
4745                        GrCopySize);
4746 
4747       // Again, but for FP/SIMD values.
4748       Value *VrRegSaveAreaShadowPtrOff =
4749           IRB.CreateAdd(VrArgSize, VrOffSaveArea);
4750 
4751       Value *VrRegSaveAreaShadowPtr =
4752           MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(),
4753                                  Align(8), /*isStore*/ true)
4754               .first;
4755 
4756       Value *VrSrcPtr = IRB.CreateInBoundsGEP(
4757         IRB.getInt8Ty(),
4758         IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
4759                               IRB.getInt32(AArch64VrBegOffset)),
4760         VrRegSaveAreaShadowPtrOff);
4761       Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff);
4762 
4763       IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, Align(8), VrSrcPtr, Align(8),
4764                        VrCopySize);
4765 
4766       // And finally for remaining arguments.
4767       Value *StackSaveAreaShadowPtr =
4768           MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(),
4769                                  Align(16), /*isStore*/ true)
4770               .first;
4771 
4772       Value *StackSrcPtr =
4773         IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
4774                               IRB.getInt32(AArch64VAEndOffset));
4775 
4776       IRB.CreateMemCpy(StackSaveAreaShadowPtr, Align(16), StackSrcPtr,
4777                        Align(16), VAArgOverflowSize);
4778     }
4779   }
4780 };
4781 
4782 /// PowerPC64-specific implementation of VarArgHelper.
4783 struct VarArgPowerPC64Helper : public VarArgHelper {
4784   Function &F;
4785   MemorySanitizer &MS;
4786   MemorySanitizerVisitor &MSV;
4787   Value *VAArgTLSCopy = nullptr;
4788   Value *VAArgSize = nullptr;
4789 
4790   SmallVector<CallInst*, 16> VAStartInstrumentationList;
4791 
VarArgPowerPC64Helper__anonb9e144640811::VarArgPowerPC64Helper4792   VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS,
4793                     MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {}
4794 
visitCallBase__anonb9e144640811::VarArgPowerPC64Helper4795   void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
4796     // For PowerPC, we need to deal with alignment of stack arguments -
4797     // they are mostly aligned to 8 bytes, but vectors and i128 arrays
4798     // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes,
4799     // For that reason, we compute current offset from stack pointer (which is
4800     // always properly aligned), and offset for the first vararg, then subtract
4801     // them.
4802     unsigned VAArgBase;
4803     Triple TargetTriple(F.getParent()->getTargetTriple());
4804     // Parameter save area starts at 48 bytes from frame pointer for ABIv1,
4805     // and 32 bytes for ABIv2.  This is usually determined by target
4806     // endianness, but in theory could be overridden by function attribute.
4807     if (TargetTriple.getArch() == Triple::ppc64)
4808       VAArgBase = 48;
4809     else
4810       VAArgBase = 32;
4811     unsigned VAArgOffset = VAArgBase;
4812     const DataLayout &DL = F.getParent()->getDataLayout();
4813     for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End;
4814          ++ArgIt) {
4815       Value *A = *ArgIt;
4816       unsigned ArgNo = CB.getArgOperandNo(ArgIt);
4817       bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams();
4818       bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal);
4819       if (IsByVal) {
4820         assert(A->getType()->isPointerTy());
4821         Type *RealTy = CB.getParamByValType(ArgNo);
4822         uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
4823         MaybeAlign ArgAlign = CB.getParamAlign(ArgNo);
4824         if (!ArgAlign || *ArgAlign < Align(8))
4825           ArgAlign = Align(8);
4826         VAArgOffset = alignTo(VAArgOffset, ArgAlign);
4827         if (!IsFixed) {
4828           Value *Base = getShadowPtrForVAArgument(
4829               RealTy, IRB, VAArgOffset - VAArgBase, ArgSize);
4830           if (Base) {
4831             Value *AShadowPtr, *AOriginPtr;
4832             std::tie(AShadowPtr, AOriginPtr) =
4833                 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(),
4834                                        kShadowTLSAlignment, /*isStore*/ false);
4835 
4836             IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr,
4837                              kShadowTLSAlignment, ArgSize);
4838           }
4839         }
4840         VAArgOffset += alignTo(ArgSize, 8);
4841       } else {
4842         Value *Base;
4843         uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
4844         uint64_t ArgAlign = 8;
4845         if (A->getType()->isArrayTy()) {
4846           // Arrays are aligned to element size, except for long double
4847           // arrays, which are aligned to 8 bytes.
4848           Type *ElementTy = A->getType()->getArrayElementType();
4849           if (!ElementTy->isPPC_FP128Ty())
4850             ArgAlign = DL.getTypeAllocSize(ElementTy);
4851         } else if (A->getType()->isVectorTy()) {
4852           // Vectors are naturally aligned.
4853           ArgAlign = DL.getTypeAllocSize(A->getType());
4854         }
4855         if (ArgAlign < 8)
4856           ArgAlign = 8;
4857         VAArgOffset = alignTo(VAArgOffset, ArgAlign);
4858         if (DL.isBigEndian()) {
4859           // Adjusting the shadow for argument with size < 8 to match the placement
4860           // of bits in big endian system
4861           if (ArgSize < 8)
4862             VAArgOffset += (8 - ArgSize);
4863         }
4864         if (!IsFixed) {
4865           Base = getShadowPtrForVAArgument(A->getType(), IRB,
4866                                            VAArgOffset - VAArgBase, ArgSize);
4867           if (Base)
4868             IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
4869         }
4870         VAArgOffset += ArgSize;
4871         VAArgOffset = alignTo(VAArgOffset, 8);
4872       }
4873       if (IsFixed)
4874         VAArgBase = VAArgOffset;
4875     }
4876 
4877     Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(),
4878                                                 VAArgOffset - VAArgBase);
4879     // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
4880     // a new class member i.e. it is the total size of all VarArgs.
4881     IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
4882   }
4883 
4884   /// Compute the shadow address for a given va_arg.
getShadowPtrForVAArgument__anonb9e144640811::VarArgPowerPC64Helper4885   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
4886                                    unsigned ArgOffset, unsigned ArgSize) {
4887     // Make sure we don't overflow __msan_va_arg_tls.
4888     if (ArgOffset + ArgSize > kParamTLSSize)
4889       return nullptr;
4890     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
4891     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
4892     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
4893                               "_msarg");
4894   }
4895 
visitVAStartInst__anonb9e144640811::VarArgPowerPC64Helper4896   void visitVAStartInst(VAStartInst &I) override {
4897     IRBuilder<> IRB(&I);
4898     VAStartInstrumentationList.push_back(&I);
4899     Value *VAListTag = I.getArgOperand(0);
4900     Value *ShadowPtr, *OriginPtr;
4901     const Align Alignment = Align(8);
4902     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4903         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4904     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4905                      /* size */ 8, Alignment, false);
4906   }
4907 
visitVACopyInst__anonb9e144640811::VarArgPowerPC64Helper4908   void visitVACopyInst(VACopyInst &I) override {
4909     IRBuilder<> IRB(&I);
4910     Value *VAListTag = I.getArgOperand(0);
4911     Value *ShadowPtr, *OriginPtr;
4912     const Align Alignment = Align(8);
4913     std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4914         VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4915     // Unpoison the whole __va_list_tag.
4916     // FIXME: magic ABI constants.
4917     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4918                      /* size */ 8, Alignment, false);
4919   }
4920 
finalizeInstrumentation__anonb9e144640811::VarArgPowerPC64Helper4921   void finalizeInstrumentation() override {
4922     assert(!VAArgSize && !VAArgTLSCopy &&
4923            "finalizeInstrumentation called twice");
4924     IRBuilder<> IRB(MSV.FnPrologueEnd);
4925     VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
4926     Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0),
4927                                     VAArgSize);
4928 
4929     if (!VAStartInstrumentationList.empty()) {
4930       // If there is a va_start in this function, make a backup copy of
4931       // va_arg_tls somewhere in the function entry block.
4932       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
4933       IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize);
4934     }
4935 
4936     // Instrument va_start.
4937     // Copy va_list shadow from the backup copy of the TLS contents.
4938     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
4939       CallInst *OrigInst = VAStartInstrumentationList[i];
4940       IRBuilder<> IRB(OrigInst->getNextNode());
4941       Value *VAListTag = OrigInst->getArgOperand(0);
4942       Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
4943       Value *RegSaveAreaPtrPtr =
4944           IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4945                              PointerType::get(RegSaveAreaPtrTy, 0));
4946       Value *RegSaveAreaPtr =
4947           IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
4948       Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
4949       const Align Alignment = Align(8);
4950       std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
4951           MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
4952                                  Alignment, /*isStore*/ true);
4953       IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
4954                        CopySize);
4955     }
4956   }
4957 };
4958 
4959 /// SystemZ-specific implementation of VarArgHelper.
4960 struct VarArgSystemZHelper : public VarArgHelper {
4961   static const unsigned SystemZGpOffset = 16;
4962   static const unsigned SystemZGpEndOffset = 56;
4963   static const unsigned SystemZFpOffset = 128;
4964   static const unsigned SystemZFpEndOffset = 160;
4965   static const unsigned SystemZMaxVrArgs = 8;
4966   static const unsigned SystemZRegSaveAreaSize = 160;
4967   static const unsigned SystemZOverflowOffset = 160;
4968   static const unsigned SystemZVAListTagSize = 32;
4969   static const unsigned SystemZOverflowArgAreaPtrOffset = 16;
4970   static const unsigned SystemZRegSaveAreaPtrOffset = 24;
4971 
4972   Function &F;
4973   MemorySanitizer &MS;
4974   MemorySanitizerVisitor &MSV;
4975   Value *VAArgTLSCopy = nullptr;
4976   Value *VAArgTLSOriginCopy = nullptr;
4977   Value *VAArgOverflowSize = nullptr;
4978 
4979   SmallVector<CallInst *, 16> VAStartInstrumentationList;
4980 
4981   enum class ArgKind {
4982     GeneralPurpose,
4983     FloatingPoint,
4984     Vector,
4985     Memory,
4986     Indirect,
4987   };
4988 
4989   enum class ShadowExtension { None, Zero, Sign };
4990 
VarArgSystemZHelper__anonb9e144640811::VarArgSystemZHelper4991   VarArgSystemZHelper(Function &F, MemorySanitizer &MS,
4992                       MemorySanitizerVisitor &MSV)
4993       : F(F), MS(MS), MSV(MSV) {}
4994 
classifyArgument__anonb9e144640811::VarArgSystemZHelper4995   ArgKind classifyArgument(Type *T, bool IsSoftFloatABI) {
4996     // T is a SystemZABIInfo::classifyArgumentType() output, and there are
4997     // only a few possibilities of what it can be. In particular, enums, single
4998     // element structs and large types have already been taken care of.
4999 
5000     // Some i128 and fp128 arguments are converted to pointers only in the
5001     // back end.
5002     if (T->isIntegerTy(128) || T->isFP128Ty())
5003       return ArgKind::Indirect;
5004     if (T->isFloatingPointTy())
5005       return IsSoftFloatABI ? ArgKind::GeneralPurpose : ArgKind::FloatingPoint;
5006     if (T->isIntegerTy() || T->isPointerTy())
5007       return ArgKind::GeneralPurpose;
5008     if (T->isVectorTy())
5009       return ArgKind::Vector;
5010     return ArgKind::Memory;
5011   }
5012 
getShadowExtension__anonb9e144640811::VarArgSystemZHelper5013   ShadowExtension getShadowExtension(const CallBase &CB, unsigned ArgNo) {
5014     // ABI says: "One of the simple integer types no more than 64 bits wide.
5015     // ... If such an argument is shorter than 64 bits, replace it by a full
5016     // 64-bit integer representing the same number, using sign or zero
5017     // extension". Shadow for an integer argument has the same type as the
5018     // argument itself, so it can be sign or zero extended as well.
5019     bool ZExt = CB.paramHasAttr(ArgNo, Attribute::ZExt);
5020     bool SExt = CB.paramHasAttr(ArgNo, Attribute::SExt);
5021     if (ZExt) {
5022       assert(!SExt);
5023       return ShadowExtension::Zero;
5024     }
5025     if (SExt) {
5026       assert(!ZExt);
5027       return ShadowExtension::Sign;
5028     }
5029     return ShadowExtension::None;
5030   }
5031 
visitCallBase__anonb9e144640811::VarArgSystemZHelper5032   void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {
5033     bool IsSoftFloatABI = CB.getCalledFunction()
5034                               ->getFnAttribute("use-soft-float")
5035                               .getValueAsBool();
5036     unsigned GpOffset = SystemZGpOffset;
5037     unsigned FpOffset = SystemZFpOffset;
5038     unsigned VrIndex = 0;
5039     unsigned OverflowOffset = SystemZOverflowOffset;
5040     const DataLayout &DL = F.getParent()->getDataLayout();
5041     for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End;
5042          ++ArgIt) {
5043       Value *A = *ArgIt;
5044       unsigned ArgNo = CB.getArgOperandNo(ArgIt);
5045       bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams();
5046       // SystemZABIInfo does not produce ByVal parameters.
5047       assert(!CB.paramHasAttr(ArgNo, Attribute::ByVal));
5048       Type *T = A->getType();
5049       ArgKind AK = classifyArgument(T, IsSoftFloatABI);
5050       if (AK == ArgKind::Indirect) {
5051         T = PointerType::get(T, 0);
5052         AK = ArgKind::GeneralPurpose;
5053       }
5054       if (AK == ArgKind::GeneralPurpose && GpOffset >= SystemZGpEndOffset)
5055         AK = ArgKind::Memory;
5056       if (AK == ArgKind::FloatingPoint && FpOffset >= SystemZFpEndOffset)
5057         AK = ArgKind::Memory;
5058       if (AK == ArgKind::Vector && (VrIndex >= SystemZMaxVrArgs || !IsFixed))
5059         AK = ArgKind::Memory;
5060       Value *ShadowBase = nullptr;
5061       Value *OriginBase = nullptr;
5062       ShadowExtension SE = ShadowExtension::None;
5063       switch (AK) {
5064       case ArgKind::GeneralPurpose: {
5065         // Always keep track of GpOffset, but store shadow only for varargs.
5066         uint64_t ArgSize = 8;
5067         if (GpOffset + ArgSize <= kParamTLSSize) {
5068           if (!IsFixed) {
5069             SE = getShadowExtension(CB, ArgNo);
5070             uint64_t GapSize = 0;
5071             if (SE == ShadowExtension::None) {
5072               uint64_t ArgAllocSize = DL.getTypeAllocSize(T);
5073               assert(ArgAllocSize <= ArgSize);
5074               GapSize = ArgSize - ArgAllocSize;
5075             }
5076             ShadowBase = getShadowAddrForVAArgument(IRB, GpOffset + GapSize);
5077             if (MS.TrackOrigins)
5078               OriginBase = getOriginPtrForVAArgument(IRB, GpOffset + GapSize);
5079           }
5080           GpOffset += ArgSize;
5081         } else {
5082           GpOffset = kParamTLSSize;
5083         }
5084         break;
5085       }
5086       case ArgKind::FloatingPoint: {
5087         // Always keep track of FpOffset, but store shadow only for varargs.
5088         uint64_t ArgSize = 8;
5089         if (FpOffset + ArgSize <= kParamTLSSize) {
5090           if (!IsFixed) {
5091             // PoP says: "A short floating-point datum requires only the
5092             // left-most 32 bit positions of a floating-point register".
5093             // Therefore, in contrast to AK_GeneralPurpose and AK_Memory,
5094             // don't extend shadow and don't mind the gap.
5095             ShadowBase = getShadowAddrForVAArgument(IRB, FpOffset);
5096             if (MS.TrackOrigins)
5097               OriginBase = getOriginPtrForVAArgument(IRB, FpOffset);
5098           }
5099           FpOffset += ArgSize;
5100         } else {
5101           FpOffset = kParamTLSSize;
5102         }
5103         break;
5104       }
5105       case ArgKind::Vector: {
5106         // Keep track of VrIndex. No need to store shadow, since vector varargs
5107         // go through AK_Memory.
5108         assert(IsFixed);
5109         VrIndex++;
5110         break;
5111       }
5112       case ArgKind::Memory: {
5113         // Keep track of OverflowOffset and store shadow only for varargs.
5114         // Ignore fixed args, since we need to copy only the vararg portion of
5115         // the overflow area shadow.
5116         if (!IsFixed) {
5117           uint64_t ArgAllocSize = DL.getTypeAllocSize(T);
5118           uint64_t ArgSize = alignTo(ArgAllocSize, 8);
5119           if (OverflowOffset + ArgSize <= kParamTLSSize) {
5120             SE = getShadowExtension(CB, ArgNo);
5121             uint64_t GapSize =
5122                 SE == ShadowExtension::None ? ArgSize - ArgAllocSize : 0;
5123             ShadowBase =
5124                 getShadowAddrForVAArgument(IRB, OverflowOffset + GapSize);
5125             if (MS.TrackOrigins)
5126               OriginBase =
5127                   getOriginPtrForVAArgument(IRB, OverflowOffset + GapSize);
5128             OverflowOffset += ArgSize;
5129           } else {
5130             OverflowOffset = kParamTLSSize;
5131           }
5132         }
5133         break;
5134       }
5135       case ArgKind::Indirect:
5136         llvm_unreachable("Indirect must be converted to GeneralPurpose");
5137       }
5138       if (ShadowBase == nullptr)
5139         continue;
5140       Value *Shadow = MSV.getShadow(A);
5141       if (SE != ShadowExtension::None)
5142         Shadow = MSV.CreateShadowCast(IRB, Shadow, IRB.getInt64Ty(),
5143                                       /*Signed*/ SE == ShadowExtension::Sign);
5144       ShadowBase = IRB.CreateIntToPtr(
5145           ShadowBase, PointerType::get(Shadow->getType(), 0), "_msarg_va_s");
5146       IRB.CreateStore(Shadow, ShadowBase);
5147       if (MS.TrackOrigins) {
5148         Value *Origin = MSV.getOrigin(A);
5149         unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType());
5150         MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize,
5151                         kMinOriginAlignment);
5152       }
5153     }
5154     Constant *OverflowSize = ConstantInt::get(
5155         IRB.getInt64Ty(), OverflowOffset - SystemZOverflowOffset);
5156     IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
5157   }
5158 
getShadowAddrForVAArgument__anonb9e144640811::VarArgSystemZHelper5159   Value *getShadowAddrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) {
5160     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
5161     return IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
5162   }
5163 
getOriginPtrForVAArgument__anonb9e144640811::VarArgSystemZHelper5164   Value *getOriginPtrForVAArgument(IRBuilder<> &IRB, int ArgOffset) {
5165     Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy);
5166     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
5167     return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
5168                               "_msarg_va_o");
5169   }
5170 
unpoisonVAListTagForInst__anonb9e144640811::VarArgSystemZHelper5171   void unpoisonVAListTagForInst(IntrinsicInst &I) {
5172     IRBuilder<> IRB(&I);
5173     Value *VAListTag = I.getArgOperand(0);
5174     Value *ShadowPtr, *OriginPtr;
5175     const Align Alignment = Align(8);
5176     std::tie(ShadowPtr, OriginPtr) =
5177         MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment,
5178                                /*isStore*/ true);
5179     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
5180                      SystemZVAListTagSize, Alignment, false);
5181   }
5182 
visitVAStartInst__anonb9e144640811::VarArgSystemZHelper5183   void visitVAStartInst(VAStartInst &I) override {
5184     VAStartInstrumentationList.push_back(&I);
5185     unpoisonVAListTagForInst(I);
5186   }
5187 
visitVACopyInst__anonb9e144640811::VarArgSystemZHelper5188   void visitVACopyInst(VACopyInst &I) override { unpoisonVAListTagForInst(I); }
5189 
copyRegSaveArea__anonb9e144640811::VarArgSystemZHelper5190   void copyRegSaveArea(IRBuilder<> &IRB, Value *VAListTag) {
5191     Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
5192     Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr(
5193         IRB.CreateAdd(
5194             IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
5195             ConstantInt::get(MS.IntptrTy, SystemZRegSaveAreaPtrOffset)),
5196         PointerType::get(RegSaveAreaPtrTy, 0));
5197     Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
5198     Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
5199     const Align Alignment = Align(8);
5200     std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
5201         MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), Alignment,
5202                                /*isStore*/ true);
5203     // TODO(iii): copy only fragments filled by visitCallBase()
5204     IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
5205                      SystemZRegSaveAreaSize);
5206     if (MS.TrackOrigins)
5207       IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy,
5208                        Alignment, SystemZRegSaveAreaSize);
5209   }
5210 
copyOverflowArea__anonb9e144640811::VarArgSystemZHelper5211   void copyOverflowArea(IRBuilder<> &IRB, Value *VAListTag) {
5212     Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C);
5213     Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr(
5214         IRB.CreateAdd(
5215             IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
5216             ConstantInt::get(MS.IntptrTy, SystemZOverflowArgAreaPtrOffset)),
5217         PointerType::get(OverflowArgAreaPtrTy, 0));
5218     Value *OverflowArgAreaPtr =
5219         IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr);
5220     Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr;
5221     const Align Alignment = Align(8);
5222     std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) =
5223         MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(),
5224                                Alignment, /*isStore*/ true);
5225     Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy,
5226                                            SystemZOverflowOffset);
5227     IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment,
5228                      VAArgOverflowSize);
5229     if (MS.TrackOrigins) {
5230       SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy,
5231                                       SystemZOverflowOffset);
5232       IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment,
5233                        VAArgOverflowSize);
5234     }
5235   }
5236 
finalizeInstrumentation__anonb9e144640811::VarArgSystemZHelper5237   void finalizeInstrumentation() override {
5238     assert(!VAArgOverflowSize && !VAArgTLSCopy &&
5239            "finalizeInstrumentation called twice");
5240     if (!VAStartInstrumentationList.empty()) {
5241       // If there is a va_start in this function, make a backup copy of
5242       // va_arg_tls somewhere in the function entry block.
5243       IRBuilder<> IRB(MSV.FnPrologueEnd);
5244       VAArgOverflowSize =
5245           IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
5246       Value *CopySize =
5247           IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, SystemZOverflowOffset),
5248                         VAArgOverflowSize);
5249       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
5250       IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize);
5251       if (MS.TrackOrigins) {
5252         VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
5253         IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS,
5254                          Align(8), CopySize);
5255       }
5256     }
5257 
5258     // Instrument va_start.
5259     // Copy va_list shadow from the backup copy of the TLS contents.
5260     for (size_t VaStartNo = 0, VaStartNum = VAStartInstrumentationList.size();
5261          VaStartNo < VaStartNum; VaStartNo++) {
5262       CallInst *OrigInst = VAStartInstrumentationList[VaStartNo];
5263       IRBuilder<> IRB(OrigInst->getNextNode());
5264       Value *VAListTag = OrigInst->getArgOperand(0);
5265       copyRegSaveArea(IRB, VAListTag);
5266       copyOverflowArea(IRB, VAListTag);
5267     }
5268   }
5269 };
5270 
5271 /// A no-op implementation of VarArgHelper.
5272 struct VarArgNoOpHelper : public VarArgHelper {
VarArgNoOpHelper__anonb9e144640811::VarArgNoOpHelper5273   VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
5274                    MemorySanitizerVisitor &MSV) {}
5275 
visitCallBase__anonb9e144640811::VarArgNoOpHelper5276   void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {}
5277 
visitVAStartInst__anonb9e144640811::VarArgNoOpHelper5278   void visitVAStartInst(VAStartInst &I) override {}
5279 
visitVACopyInst__anonb9e144640811::VarArgNoOpHelper5280   void visitVACopyInst(VACopyInst &I) override {}
5281 
finalizeInstrumentation__anonb9e144640811::VarArgNoOpHelper5282   void finalizeInstrumentation() override {}
5283 };
5284 
5285 } // end anonymous namespace
5286 
CreateVarArgHelper(Function & Func,MemorySanitizer & Msan,MemorySanitizerVisitor & Visitor)5287 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
5288                                         MemorySanitizerVisitor &Visitor) {
5289   // VarArg handling is only implemented on AMD64. False positives are possible
5290   // on other platforms.
5291   Triple TargetTriple(Func.getParent()->getTargetTriple());
5292   if (TargetTriple.getArch() == Triple::x86_64)
5293     return new VarArgAMD64Helper(Func, Msan, Visitor);
5294   else if (TargetTriple.isMIPS64())
5295     return new VarArgMIPS64Helper(Func, Msan, Visitor);
5296   else if (TargetTriple.getArch() == Triple::aarch64)
5297     return new VarArgAArch64Helper(Func, Msan, Visitor);
5298   else if (TargetTriple.getArch() == Triple::ppc64 ||
5299            TargetTriple.getArch() == Triple::ppc64le)
5300     return new VarArgPowerPC64Helper(Func, Msan, Visitor);
5301   else if (TargetTriple.getArch() == Triple::systemz)
5302     return new VarArgSystemZHelper(Func, Msan, Visitor);
5303   else
5304     return new VarArgNoOpHelper(Func, Msan, Visitor);
5305 }
5306 
sanitizeFunction(Function & F,TargetLibraryInfo & TLI)5307 bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) {
5308   if (!CompileKernel && F.getName() == kMsanModuleCtorName)
5309     return false;
5310 
5311   MemorySanitizerVisitor Visitor(F, *this, TLI);
5312 
5313   // Clear out readonly/readnone attributes.
5314   AttrBuilder B;
5315   B.addAttribute(Attribute::ReadOnly)
5316       .addAttribute(Attribute::ReadNone)
5317       .addAttribute(Attribute::WriteOnly)
5318       .addAttribute(Attribute::ArgMemOnly)
5319       .addAttribute(Attribute::Speculatable);
5320   F.removeAttributes(AttributeList::FunctionIndex, B);
5321 
5322   return Visitor.runOnFunction();
5323 }
5324