xref: /netbsd/sys/arch/sparc/include/pte.h (revision 2574c677)
1 /*	$NetBSD: pte.h,v 1.33 2022/05/29 10:47:39 andvar Exp $ */
2 
3 /*
4  * Copyright (c) 1996
5  * 	The President and Fellows of Harvard College. All rights reserved.
6  * Copyright (c) 1992, 1993
7  *	The Regents of the University of California.  All rights reserved.
8  *
9  * This software was developed by the Computer Systems Engineering group
10  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
11  * contributed to Berkeley.
12  *
13  * All advertising materials mentioning features or use of this software
14  * must display the following acknowledgements:
15  * 	This product includes software developed by Harvard University.
16  *	This product includes software developed by the University of
17  *	California, Lawrence Berkeley Laboratory.
18  *
19  * Redistribution and use in source and binary forms, with or without
20  * modification, are permitted provided that the following conditions
21  * are met:
22  * 1. Redistributions of source code must retain the above copyright
23  *    notice, this list of conditions and the following disclaimer.
24  * 2. Redistributions in binary form must reproduce the above copyright
25  *    notice, this list of conditions and the following disclaimer in the
26  *    documentation and/or other materials provided with the distribution.
27  * 3. All advertising materials mentioning features or use of this software
28  *    must display the following acknowledgements:
29  *	This product includes software developed by Harvard University.
30  *	This product includes software developed by the University of
31  *	California, Berkeley and its contributors.
32  * 4. Neither the name of the University nor the names of its contributors
33  *    may be used to endorse or promote products derived from this software
34  *    without specific prior written permission.
35  *
36  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
37  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
39  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
40  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
41  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
42  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
44  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
45  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
46  * SUCH DAMAGE.
47  *
48  *	@(#)pte.h	8.1 (Berkeley) 6/11/93
49  */
50 
51 #ifndef	_SPARC_PTE_H_
52 #define _SPARC_PTE_H_
53 
54 #if defined(_KERNEL_OPT)
55 #include "opt_sparc_arch.h"
56 #endif
57 
58 /*
59  * Sun-4 (sort of), 4c (SparcStation), and 4m Page Table Entries
60  * (Sun calls them `Page Map Entries').
61  */
62 
63 #ifndef _LOCORE
64 /*
65  * Segment maps contain `pmeg' (Page Map Entry Group) numbers.
66  * A PMEG is simply an index that names a group of 32 (sun4) or
67  * 64 (sun4c) PTEs.
68  * Depending on the CPU model, we need 7 (sun4c) to 10 (sun4/400) bits
69  * to hold the hardware MMU resource number.
70  */
71 typedef u_short pmeg_t;		/* 10 bits needed per Sun-4 segmap entry */
72 /*
73  * Region maps contain `smeg' (Segment Entry Group) numbers.
74  * An SMEG is simply an index that names a group of 64 PMEGs.
75  */
76 typedef u_char smeg_t;		/* 8 bits needed per Sun-4 regmap entry */
77 #endif
78 
79 /*
80  * Address translation works as follows:
81  *
82  * (for sun4c and 2-level sun4)
83  *	1. test va<31:29> -- these must be 000 or 111 (or you get a fault)
84  *	2. concatenate context_reg<2:0> and va<29:18> to get a 15 bit number;
85  *	   use this to index the segment maps, yielding a 7 or 9 bit value.
86  * (for 3-level sun4)
87  *	1. concatenate context_reg<3:0> and va<31:24> to get a 8 bit number;
88  *	   use this to index the region maps, yielding a 10 bit value.
89  *	2. take the value from (1) above and concatenate va<17:12> to
90  *	   get a `segment map entry' index.  This gives a 9 bit value.
91  * (for sun4c)
92  *	3. take the value from (2) above and concatenate va<17:12> to
93  *	   get a `page map entry' index.  This gives a 32-bit PTE.
94  * (for sun4)
95  *	3. take the value from (2 or 3) above and concatenate va<17:13> to
96  *	   get a `page map entry' index.  This gives a 32-bit PTE.
97  **
98  * For sun4m:
99  *	1. Use context_reg<3:0> to index the context table (located at
100  *	   (context_reg << 2) | ((ctx_tbl_ptr_reg >> 2) << 6) ). This
101  *	   gives a 32-bit page-table-descriptor (PTP).
102  *	2. Use va<31:24> to index the region table located by the PTP from (1):
103  *	   PTP<31:6> << 10. This gives another PTP for the segment tables
104  *	3. Use va<23:18> to index the segment table located by the PTP from (2)
105  *	   as follows: PTP<31:4> << 8. This gives another PTP for the page tbl.
106  * 	4. Use va<17:12> to index the page table given by (3)'s PTP:
107  * 	   PTP<31:4> << 8. This gives a 32-bit PTE.
108  *
109  * In other words:
110  *
111  *	struct sun4_3_levelmmu_virtual_addr {
112  *		u_int	va_reg:8,	(virtual region)
113  *			va_seg:6,	(virtual segment)
114  *			va_pg:5,	(virtual page within segment)
115  *			va_off:13;	(offset within page)
116  *	};
117  *	struct sun4_virtual_addr {
118  *		u_int	:2,		(required to be the same as bit 29)
119  *			va_seg:12,	(virtual segment)
120  *			va_pg:5,	(virtual page within segment)
121  *			va_off:13;	(offset within page)
122  *	};
123  *	struct sun4c_virtual_addr {
124  *		u_int	:2,		(required to be the same as bit 29)
125  *			va_seg:12,	(virtual segment)
126  *			va_pg:6,	(virtual page within segment)
127  *			va_off:12;	(offset within page)
128  *	};
129  *
130  *	struct sun4m_virtual_addr {
131  *		u_int	va_reg:8,	(virtual region)
132  *			va_seg:6,	(virtual segment within region)
133  *			va_pg:6,	(virtual page within segment)
134  *			va_off:12;	(offset within page)
135  *	};
136  *
137  * Then, given any `va':
138  *
139  *	extern smeg_t regmap[16][1<<8];		(3-level MMU only)
140  *	extern pmeg_t segmap[8][1<<12];		([16][1<<12] for sun4)
141  *	extern int ptetable[128][1<<6];		([512][1<<5] for sun4)
142  *
143  *	extern u_int  s4m_ctxmap[16];		(sun4m SRMMU only)
144  *	extern u_int  s4m_regmap[16][1<<8];	(sun4m SRMMU only)
145  * 	extern u_int  s4m_segmap[1<<8][1<<6];	(sun4m SRMMU only)
146  * 	extern u_int  s4m_pagmap[1<<14][1<<6];	(sun4m SRMMU only)
147  *
148  * (the above being in the hardware, accessed as Alternate Address Spaces on
149  *  all machines but the Sun4m SRMMU, in which case the tables are in physical
150  *  kernel memory. In the 4m architecture, the tables are not laid out as
151  *  2-dim arrays, but are sparsely allocated as needed, and point to each
152  *  other.)
153  *
154  *	if (cputyp==CPU_SUN4M || cputyp==CPU_SUN4D) // SPARC Reference MMU
155  *		regptp = s4m_ctxmap[curr_ctx];
156  *		if (!(regptp & SRMMU_TEPTD)) TRAP();
157  *		segptp = *(u_int *)(((regptp & ~0x3) << 4) | va.va_reg);
158  *		if (!(segptp & SRMMU_TEPTD)) TRAP();
159  *		pagptp = *(u_int *)(((segptp & ~0x3) << 4) | va.va_seg);
160  *		if (!(pagptp & SRMMU_TEPTD)) TRAP();
161  *		pte = *(u_int *)(((pagptp & ~0x3) << 4) | va.va_pg);
162  *		if (!(pte & SRMMU_TEPTE)) TRAP();       // like PG_V
163  * 		if (usermode && PTE_PROT_LEVEL(pte) > 0x5) TRAP();
164  *		if (writing && !PTE_PROT_LEVEL_ALLOWS_WRITING(pte)) TRAP();
165  *		if (!(pte & SRMMU_PG_C)) DO_NOT_USE_CACHE_FOR_THIS_ACCESS();
166  *		pte |= SRMMU_PG_U;
167  * 		if (writing) pte |= PG_M;
168  * 		physaddr = ((pte & SRMMU_PG_PFNUM) << SRMMU_PGSHIFT)|va.va_off;
169  *		return;
170  *	if (mmu_3l)
171  *		physreg = regmap[curr_ctx][va.va_reg];
172  *		physseg = segmap[physreg][va.va_seg];
173  *	else
174  *		physseg = segmap[curr_ctx][va.va_seg];
175  *	pte = ptetable[physseg][va.va_pg];
176  *	if (!(pte & PG_V)) TRAP();
177  *	if (writing && !pte.pg_w) TRAP();
178  *	if (usermode && pte.pg_s) TRAP();
179  *	if (pte & PG_NC) DO_NOT_USE_CACHE_FOR_THIS_ACCESS();
180  *	pte |= PG_U;					(mark used/accessed)
181  *	if (writing) pte |= PG_M;			(mark modified)
182  *	ptetable[physseg][va.va_pg] = pte;
183  *	physadr = ((pte & PG_PFNUM) << PGSHIFT) | va.va_off;
184  */
185 
186 #if defined(SUN4_MMU3L) && !defined(SUN4)
187 #error "configuration error"
188 #endif
189 
190 #define NBPRG	(1 << 24)	/* bytes per region */
191 #define RGSHIFT	24		/* log2(NBPRG) */
192 #define RGOFSET	(NBPRG - 1)	/* mask for region offset */
193 #define NSEGRG	(NBPRG / NBPSG)	/* segments per region */
194 
195 #define NBPSG	(1 << 18)	/* bytes per segment */
196 #define SGSHIFT	18		/* log2(NBPSG) */
197 #define SGOFSET	(NBPSG - 1)	/* mask for segment offset */
198 
199 /* number of PTEs that map one segment (not number that fit in one segment!) */
200 #if defined(SUN4) && (defined(SUN4C) || defined(SUN4M) || defined(SUN4D))
201 extern int nptesg;
202 #define NPTESG	nptesg		/* (which someone will have to initialize) */
203 #else
204 #define NPTESG	(NBPSG / NBPG)
205 #endif
206 
207 /* virtual address to virtual region number */
208 #define VA_VREG(va)	(((unsigned int)(va) >> RGSHIFT) & 255)
209 
210 /* virtual address to virtual segment number */
211 #define VA_VSEG(va)	(((unsigned int)(va) >> SGSHIFT) & 63)
212 
213 /* virtual address to virtual page number, for Sun-4 and Sun-4c */
214 #define VA_SUN4_VPG(va)		(((int)(va) >> 13) & 31)
215 #define VA_SUN4C_VPG(va)	(((int)(va) >> 12) & 63)
216 #define VA_SUN4M_VPG(va)	(((int)(va) >> 12) & 63)
217 #define VA_VPG(va)	\
218 	(PGSHIFT==SUN4_PGSHIFT ? VA_SUN4_VPG(va) : VA_SUN4C_VPG(va))
219 
220 /* virtual address to offset within page */
221 #define VA_SUN4_OFF(va)       	(((int)(va)) & 0x1FFF)
222 #define VA_SUN4C_OFF(va)     	(((int)(va)) & 0xFFF)
223 #define VA_SUN4M_OFF(va)	(((int)(va)) & 0xFFF)
224 #define VA_OFF(va)	\
225 	(PGSHIFT==SUN4_PGSHIFT ? VA_SUN4_OFF(va) : VA_SUN4C_OFF(va))
226 
227 
228 /* truncate virtual address to region base */
229 #define VA_ROUNDDOWNTOREG(va)	((int)(va) & ~RGOFSET)
230 
231 /* truncate virtual address to segment base */
232 #define VA_ROUNDDOWNTOSEG(va)	((int)(va) & ~SGOFSET)
233 
234 /* virtual segment to virtual address (must sign extend on holy MMUs!) */
235 #define VRTOVA(vr)	((CPU_HAS_SRMMU || HASSUN4_MMU3L)	\
236 	? ((int)(vr) << RGSHIFT)				\
237 	: (((int)(vr) << (RGSHIFT+2)) >> 2))
238 #define VSTOVA(vr,vs)	((CPU_HAS_SRMMU || HASSUN4_MMU3L)	\
239 	? (((int)(vr) << RGSHIFT) + ((int)(vs) << SGSHIFT))	\
240 	: ((((int)(vr) << (RGSHIFT+2)) >> 2) + ((int)(vs) << SGSHIFT)))
241 
242 extern int mmu_has_hole;
243 #define VA_INHOLE(va)	(mmu_has_hole \
244 	? ( (unsigned int)(((int)(va) >> PG_VSHIFT) + 1) > 1) \
245 	: 0)
246 
247 /* Define the virtual address space hole */
248 #define MMU_HOLE_START	0x20000000
249 #define MMU_HOLE_END	0xe0000000
250 
251 /* there is no `struct pte'; we just use `int'; this is for non-4M only */
252 #define PG_V		0x80000000
253 #define PG_PROT		0x60000000	/* both protection bits */
254 #define PG_W		0x40000000	/* allowed to write */
255 #define PG_S		0x20000000	/* supervisor only */
256 #define PG_NC		0x10000000	/* non-cacheable */
257 #define PG_TYPE		0x0c000000	/* both type bits */
258 
259 #define PG_OBMEM	0x00000000	/* on board memory */
260 #define PG_OBIO		0x04000000	/* on board I/O (incl. Sbus on 4c) */
261 #define PG_VME16	0x08000000	/* 16-bit-data VME space */
262 #define PG_VME32	0x0c000000	/* 32-bit-data VME space */
263 #if defined(SUN4M) || defined(SUN4D)
264 #define PG_SUN4M_OBMEM	0x0	       	/* No type bits=>obmem on 4m */
265 #define PG_SUN4M_OBIO	0xf		/* obio maps to 0xf on 4M */
266 #define SRMMU_PGTYPE	0xf0000000	/* Top 4 bits of pte PPN give type */
267 #endif
268 
269 #define PG_U		0x02000000
270 #define PG_M		0x01000000
271 #define PG_MBZ		0x00780000	/* unused; must be zero (oh really?) */
272 #define PG_IOC		0x00800000	/* IO cache, not used yet */
273 #define PG_WIRED	0x00400000	/* S/W only; in MBZ area */
274 #define PG_PFNUM	0x0007ffff	/* n.b.: only 16 bits on sun4c */
275 
276 #define PG_TNC_SHIFT	26		/* shift to get PG_TYPE + PG_NC */
277 #define PG_M_SHIFT	24		/* shift to get PG_M, PG_U */
278 #define PG_M_SHIFT4M	5		/* shift to get SRMMU_PG_M,R on 4m */
279 /*efine	PG_NOACC	0		** XXX */
280 #define PG_KR		0x20000000
281 #define PG_KW		0x60000000
282 #define PG_URKR		0
283 #define PG_UW		0x40000000
284 
285 #ifdef KGDB
286 /* but we will define one for gdb anyway */
287 struct pte {
288 	u_int	pg_v:1,
289 		pg_w:1,
290 		pg_s:1,
291 		pg_nc:1;
292 	enum pgtype { pg_obmem, pg_obio, pg_vme16, pg_vme32 } pg_type:2;
293 	u_int	pg_u:1,
294 		pg_m:1,
295 		pg_mbz:5,
296 		pg_pfnum:19;
297 };
298 #if defined(SUN4M) || defined(SUN4D)
299 struct srmmu_pte {
300 	u_int	pg_pfnum:24,
301 		pg_c:1,
302 		pg_m:1,
303 		pg_u:1;
304 	enum pgprot { pprot_r_r, pprot_rw_rw, pprot_rx_rx, pprot_rwx_rwx,
305 		      pprot_x_x, pprot_r_rw, pprot_n_rx, pprot_n_rwx }
306 		pg_prot:3;	/* prot. bits: pprot_<user>_<supervisor> */
307 	u_int	pg_must_be_2:2;
308 };
309 #endif
310 #endif
311 
312 /*
313  * These are needed in the register window code
314  * to check the validity of (ostensible) user stack PTEs.
315  */
316 #define PG_VSHIFT	29		/* (va>>vshift)==0 or -1 => valid */
317 	/* XXX fix this name, it is a va shift not a pte bit shift! */
318 
319 #define PG_PROTSHIFT	29
320 #define PG_PROTUWRITE	6		/* PG_V,PG_W,!PG_S */
321 #define PG_PROTUREAD	4		/* PG_V,!PG_W,!PG_S */
322 
323 /* %%%: Fix above and below for 4m? */
324 
325 /* static __inline int PG_VALID(void *va) {
326 	register int t = va; t >>= PG_VSHIFT; return (t == 0 || t == -1);
327 } */
328 
329 
330 /*
331  * Here are the bit definitions for 4M/SRMMU pte's
332  */
333 		/* MMU TABLE ENTRIES */
334 #define SRMMU_TEINVALID	0x0		/* invalid (serves as !valid bit) */
335 #define SRMMU_TEPTD	0x1		/* Page Table Descriptor */
336 #define SRMMU_TEPTE	0x2		/* Page Table Entry */
337 #define SRMMU_TEPTERBO	0x3		/* Page Table Entry with Reverse Byte
338 					   Order (SS-II) */
339 #define SRMMU_TETYPE	0x3		/* mask for table entry type */
340 		/* PTE FIELDS */
341 #define SRMMU_PPNMASK	0xFFFFFF00
342 #define SRMMU_PPNSHIFT	0x8
343 #define SRMMU_PPNPASHIFT 0x4 		/* shift to put ppn into PAddr */
344 #define SRMMU_L1PPNSHFT	0x14
345 #define SRMMU_L1PPNMASK	0xFFF00000
346 #define SRMMU_L2PPNSHFT 0xE
347 #define SRMMU_L2PPNMASK	0xFC000
348 #define SRMMU_L3PPNSHFT	0x8
349 #define SRMMU_L3PPNMASK 0x3F00
350 		/* PTE BITS */
351 #define SRMMU_PG_C	0x80		/* cacheable */
352 #define SRMMU_PG_M	0x40		/* modified (dirty) */
353 #define SRMMU_PG_R	0x20		/* referenced */
354 #define SRMMU_PGBITSMSK	0xE0
355 		/* PTE PROTECTION */
356 #define SRMMU_PROT_MASK	0x1C		/* Mask protection bits out of pte */
357 #define SRMMU_PROT_SHFT	0x2
358 #define PPROT_R_R	0x0		/* These are in the form:	*/
359 #define PPROT_RW_RW	0x4		/* 	PPROT_<u>_<s>		*/
360 #define PPROT_RX_RX	0x8		/* where <u> is the user-mode	*/
361 #define PPROT_RWX_RWX	0xC		/* permission, and <s> is the 	*/
362 #define PPROT_X_X	0x10		/* supervisor mode permission.	*/
363 #define PPROT_R_RW	0x14		/* R=read, W=write, X=execute	*/
364 #define PPROT_N_RX	0x18		/* N=none.			*/
365 #define PPROT_N_RWX	0x1C
366 #define PPROT_WRITE	0x4		/* set iff write priv. allowed  */
367 #define PPROT_S		0x18		/* effective S bit */
368 #define PPROT_U2S_OMASK 0x18		/* OR with prot. to revoke user priv */
369 		/* TABLE SIZES */
370 #define SRMMU_L1SIZE	0x100
371 #define SRMMU_L2SIZE 	0x40
372 #define SRMMU_L3SIZE	0x40
373 
374 #define SRMMU_PTE_BITS	"\177\020"					\
375 	"f\0\2TYPE\0=\1PTD\0=\2PTE\0f\2\3PROT\0"			\
376 	"=\0R_R\0=\4RW_RW\0=\10RX_RX\0=\14RWX_RWX\0=\20X_X\0=\24R_RW\0"	\
377 	"=\30N_RX\0=\34N_RWX\0"						\
378 	"b\5R\0b\6M\0b\7C\0f\10\30PFN\0"
379 
380 /*
381  * IOMMU PTE bits.
382  */
383 #define IOPTE_PPN_MASK  0x07ffff00
384 #define IOPTE_PPN_SHIFT 8
385 #define IOPTE_RSVD      0x000000f1
386 #define IOPTE_WRITE     0x00000004
387 #define IOPTE_VALID     0x00000002
388 
389 #define IOMMU_PTE_BITS	"\177\020"					\
390 	"f\10\23PPN\0b\2W\0b\1V\0"
391 
392 
393 #if defined(_KERNEL) || defined(_STANDALONE)
394 /*
395  * Macros to get and set the processor context.
396  */
397 #define getcontext4()		lduba(AC_CONTEXT, ASI_CONTROL)
398 #define getcontext4m()		lda(SRMMU_CXR, ASI_SRMMU)
399 #define getcontext()		(CPU_HAS_SRMMU ? getcontext4m()		\
400 					       : getcontext4())
401 
402 #define setcontext4(c)		stba(AC_CONTEXT, ASI_CONTROL, c)
403 #define setcontext4m(c)		sta(SRMMU_CXR, ASI_SRMMU, c)
404 #define setcontext(c)		(CPU_HAS_SRMMU ? setcontext4m(c)	\
405 					       : setcontext4(c))
406 
407 /* sun4/sun4c access to MMU-resident PTEs */
408 #define getpte4(va)		lda(va, ASI_PTE)
409 #define setpte4(va, pte)	sta(va, ASI_PTE, pte)
410 
411 /* sun4m TLB probe */
412 #define getpte4m(va)		lda((va & 0xFFFFF000) | ASI_SRMMUFP_L3, \
413 				    ASI_SRMMUFP)
414 
415 #endif /* _KERNEL || _STANDALONE */
416 #endif /* _SPARC_PTE_H_ */
417