1 /******************************************************************************
2  * xen.h
3  *
4  * Guest OS interface to Xen.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  *
24  * Copyright (c) 2004, K A Fraser
25  */
26 
27 #ifndef __XEN_PUBLIC_XEN_H__
28 #define __XEN_PUBLIC_XEN_H__
29 
30 #include "xen-compat.h"
31 
32 #if defined(__i386__) || defined(__x86_64__)
33 #include "arch-x86/xen.h"
34 #elif defined(__arm__) || defined (__aarch64__)
35 #include "arch-arm.h"
36 #else
37 #error "Unsupported architecture"
38 #endif
39 
40 #ifndef __ASSEMBLY__
41 /* Guest handles for primitive C types. */
42 DEFINE_XEN_GUEST_HANDLE(char);
43 __DEFINE_XEN_GUEST_HANDLE(uchar, unsigned char);
44 DEFINE_XEN_GUEST_HANDLE(int);
45 __DEFINE_XEN_GUEST_HANDLE(uint,  unsigned int);
46 #if __XEN_INTERFACE_VERSION__ < 0x00040300
47 DEFINE_XEN_GUEST_HANDLE(long);
48 __DEFINE_XEN_GUEST_HANDLE(ulong, unsigned long);
49 #endif
50 DEFINE_XEN_GUEST_HANDLE(void);
51 
52 DEFINE_XEN_GUEST_HANDLE(uint64_t);
53 DEFINE_XEN_GUEST_HANDLE(xen_pfn_t);
54 DEFINE_XEN_GUEST_HANDLE(xen_ulong_t);
55 
56 /* Turn a plain number into a C unsigned (long (long)) constant. */
57 #define __xen_mk_uint(x)  x ## U
58 #define __xen_mk_ulong(x) x ## UL
59 #ifndef __xen_mk_ullong
60 # define __xen_mk_ullong(x) x ## ULL
61 #endif
62 #define xen_mk_uint(x)    __xen_mk_uint(x)
63 #define xen_mk_ulong(x)   __xen_mk_ulong(x)
64 #define xen_mk_ullong(x)  __xen_mk_ullong(x)
65 
66 #else
67 
68 /* In assembly code we cannot use C numeric constant suffixes. */
69 #define xen_mk_uint(x)   x
70 #define xen_mk_ulong(x)  x
71 #define xen_mk_ullong(x) x
72 
73 #endif
74 
75 /*
76  * HYPERCALLS
77  */
78 
79 /* `incontents 100 hcalls List of hypercalls
80  * ` enum hypercall_num { // __HYPERVISOR_* => HYPERVISOR_*()
81  */
82 
83 #define __HYPERVISOR_set_trap_table        0
84 #define __HYPERVISOR_mmu_update            1
85 #define __HYPERVISOR_set_gdt               2
86 #define __HYPERVISOR_stack_switch          3
87 #define __HYPERVISOR_set_callbacks         4
88 #define __HYPERVISOR_fpu_taskswitch        5
89 #define __HYPERVISOR_sched_op_compat       6 /* compat since 0x00030101 */
90 #define __HYPERVISOR_platform_op           7
91 #define __HYPERVISOR_set_debugreg          8
92 #define __HYPERVISOR_get_debugreg          9
93 #define __HYPERVISOR_update_descriptor    10
94 #define __HYPERVISOR_memory_op            12
95 #define __HYPERVISOR_multicall            13
96 #define __HYPERVISOR_update_va_mapping    14
97 #define __HYPERVISOR_set_timer_op         15
98 #define __HYPERVISOR_event_channel_op_compat 16 /* compat since 0x00030202 */
99 #define __HYPERVISOR_xen_version          17
100 #define __HYPERVISOR_console_io           18
101 #define __HYPERVISOR_physdev_op_compat    19 /* compat since 0x00030202 */
102 #define __HYPERVISOR_grant_table_op       20
103 #define __HYPERVISOR_vm_assist            21
104 #define __HYPERVISOR_update_va_mapping_otherdomain 22
105 #define __HYPERVISOR_iret                 23 /* x86 only */
106 #define __HYPERVISOR_vcpu_op              24
107 #define __HYPERVISOR_set_segment_base     25 /* x86/64 only */
108 #define __HYPERVISOR_mmuext_op            26
109 #define __HYPERVISOR_xsm_op               27
110 #define __HYPERVISOR_nmi_op               28
111 #define __HYPERVISOR_sched_op             29
112 #define __HYPERVISOR_callback_op          30
113 #define __HYPERVISOR_xenoprof_op          31
114 #define __HYPERVISOR_event_channel_op     32
115 #define __HYPERVISOR_physdev_op           33
116 #define __HYPERVISOR_hvm_op               34
117 #define __HYPERVISOR_sysctl               35
118 #define __HYPERVISOR_domctl               36
119 #define __HYPERVISOR_kexec_op             37
120 #define __HYPERVISOR_tmem_op              38
121 #define __HYPERVISOR_xc_reserved_op       39 /* reserved for XenClient */
122 #define __HYPERVISOR_xenpmu_op            40
123 #define __HYPERVISOR_dm_op                41
124 
125 /* Architecture-specific hypercall definitions. */
126 #define __HYPERVISOR_arch_0               48
127 #define __HYPERVISOR_arch_1               49
128 #define __HYPERVISOR_arch_2               50
129 #define __HYPERVISOR_arch_3               51
130 #define __HYPERVISOR_arch_4               52
131 #define __HYPERVISOR_arch_5               53
132 #define __HYPERVISOR_arch_6               54
133 #define __HYPERVISOR_arch_7               55
134 
135 /* ` } */
136 
137 /*
138  * HYPERCALL COMPATIBILITY.
139  */
140 
141 /* New sched_op hypercall introduced in 0x00030101. */
142 #if __XEN_INTERFACE_VERSION__ < 0x00030101
143 #undef __HYPERVISOR_sched_op
144 #define __HYPERVISOR_sched_op __HYPERVISOR_sched_op_compat
145 #endif
146 
147 /* New event-channel and physdev hypercalls introduced in 0x00030202. */
148 #if __XEN_INTERFACE_VERSION__ < 0x00030202
149 #undef __HYPERVISOR_event_channel_op
150 #define __HYPERVISOR_event_channel_op __HYPERVISOR_event_channel_op_compat
151 #undef __HYPERVISOR_physdev_op
152 #define __HYPERVISOR_physdev_op __HYPERVISOR_physdev_op_compat
153 #endif
154 
155 /* New platform_op hypercall introduced in 0x00030204. */
156 #if __XEN_INTERFACE_VERSION__ < 0x00030204
157 #define __HYPERVISOR_dom0_op __HYPERVISOR_platform_op
158 #endif
159 
160 /*
161  * VIRTUAL INTERRUPTS
162  *
163  * Virtual interrupts that a guest OS may receive from Xen.
164  *
165  * In the side comments, 'V.' denotes a per-VCPU VIRQ while 'G.' denotes a
166  * global VIRQ. The former can be bound once per VCPU and cannot be re-bound.
167  * The latter can be allocated only once per guest: they must initially be
168  * allocated to VCPU0 but can subsequently be re-bound.
169  */
170 /* ` enum virq { */
171 #define VIRQ_TIMER      0  /* V. Timebase update, and/or requested timeout.  */
172 #define VIRQ_DEBUG      1  /* V. Request guest to dump debug info.           */
173 #define VIRQ_CONSOLE    2  /* G. (DOM0) Bytes received on emergency console. */
174 #define VIRQ_DOM_EXC    3  /* G. (DOM0) Exceptional event for some domain.   */
175 #define VIRQ_TBUF       4  /* G. (DOM0) Trace buffer has records available.  */
176 #define VIRQ_DEBUGGER   6  /* G. (DOM0) A domain has paused for debugging.   */
177 #define VIRQ_XENOPROF   7  /* V. XenOprofile interrupt: new sample available */
178 #define VIRQ_CON_RING   8  /* G. (DOM0) Bytes received on console            */
179 #define VIRQ_PCPU_STATE 9  /* G. (DOM0) PCPU state changed                   */
180 #define VIRQ_MEM_EVENT  10 /* G. (DOM0) A memory event has occured           */
181 #define VIRQ_XC_RESERVED 11 /* G. Reserved for XenClient                     */
182 #define VIRQ_ENOMEM     12 /* G. (DOM0) Low on heap memory       */
183 #define VIRQ_XENPMU     13 /* V.  PMC interrupt                              */
184 
185 /* Architecture-specific VIRQ definitions. */
186 #define VIRQ_ARCH_0    16
187 #define VIRQ_ARCH_1    17
188 #define VIRQ_ARCH_2    18
189 #define VIRQ_ARCH_3    19
190 #define VIRQ_ARCH_4    20
191 #define VIRQ_ARCH_5    21
192 #define VIRQ_ARCH_6    22
193 #define VIRQ_ARCH_7    23
194 /* ` } */
195 
196 #define NR_VIRQS       24
197 
198 /*
199  * ` enum neg_errnoval
200  * ` HYPERVISOR_mmu_update(const struct mmu_update reqs[],
201  * `                       unsigned count, unsigned *done_out,
202  * `                       unsigned foreigndom)
203  * `
204  * @reqs is an array of mmu_update_t structures ((ptr, val) pairs).
205  * @count is the length of the above array.
206  * @pdone is an output parameter indicating number of completed operations
207  * @foreigndom[15:0]: FD, the expected owner of data pages referenced in this
208  *                    hypercall invocation. Can be DOMID_SELF.
209  * @foreigndom[31:16]: PFD, the expected owner of pagetable pages referenced
210  *                     in this hypercall invocation. The value of this field
211  *                     (x) encodes the PFD as follows:
212  *                     x == 0 => PFD == DOMID_SELF
213  *                     x != 0 => PFD == x - 1
214  *
215  * Sub-commands: ptr[1:0] specifies the appropriate MMU_* command.
216  * -------------
217  * ptr[1:0] == MMU_NORMAL_PT_UPDATE:
218  * Updates an entry in a page table belonging to PFD. If updating an L1 table,
219  * and the new table entry is valid/present, the mapped frame must belong to
220  * FD. If attempting to map an I/O page then the caller assumes the privilege
221  * of the FD.
222  * FD == DOMID_IO: Permit /only/ I/O mappings, at the priv level of the caller.
223  * FD == DOMID_XEN: Map restricted areas of Xen's heap space.
224  * ptr[:2]  -- Machine address of the page-table entry to modify.
225  * val      -- Value to write.
226  *
227  * There also certain implicit requirements when using this hypercall. The
228  * pages that make up a pagetable must be mapped read-only in the guest.
229  * This prevents uncontrolled guest updates to the pagetable. Xen strictly
230  * enforces this, and will disallow any pagetable update which will end up
231  * mapping pagetable page RW, and will disallow using any writable page as a
232  * pagetable. In practice it means that when constructing a page table for a
233  * process, thread, etc, we MUST be very dilligient in following these rules:
234  *  1). Start with top-level page (PGD or in Xen language: L4). Fill out
235  *      the entries.
236  *  2). Keep on going, filling out the upper (PUD or L3), and middle (PMD
237  *      or L2).
238  *  3). Start filling out the PTE table (L1) with the PTE entries. Once
239  *  	done, make sure to set each of those entries to RO (so writeable bit
240  *  	is unset). Once that has been completed, set the PMD (L2) for this
241  *  	PTE table as RO.
242  *  4). When completed with all of the PMD (L2) entries, and all of them have
243  *  	been set to RO, make sure to set RO the PUD (L3). Do the same
244  *  	operation on PGD (L4) pagetable entries that have a PUD (L3) entry.
245  *  5). Now before you can use those pages (so setting the cr3), you MUST also
246  *      pin them so that the hypervisor can verify the entries. This is done
247  *      via the HYPERVISOR_mmuext_op(MMUEXT_PIN_L4_TABLE, guest physical frame
248  *      number of the PGD (L4)). And this point the HYPERVISOR_mmuext_op(
249  *      MMUEXT_NEW_BASEPTR, guest physical frame number of the PGD (L4)) can be
250  *      issued.
251  * For 32-bit guests, the L4 is not used (as there is less pagetables), so
252  * instead use L3.
253  * At this point the pagetables can be modified using the MMU_NORMAL_PT_UPDATE
254  * hypercall. Also if so desired the OS can also try to write to the PTE
255  * and be trapped by the hypervisor (as the PTE entry is RO).
256  *
257  * To deallocate the pages, the operations are the reverse of the steps
258  * mentioned above. The argument is MMUEXT_UNPIN_TABLE for all levels and the
259  * pagetable MUST not be in use (meaning that the cr3 is not set to it).
260  *
261  * ptr[1:0] == MMU_MACHPHYS_UPDATE:
262  * Updates an entry in the machine->pseudo-physical mapping table.
263  * ptr[:2]  -- Machine address within the frame whose mapping to modify.
264  *             The frame must belong to the FD, if one is specified.
265  * val      -- Value to write into the mapping entry.
266  *
267  * ptr[1:0] == MMU_PT_UPDATE_PRESERVE_AD:
268  * As MMU_NORMAL_PT_UPDATE above, but A/D bits currently in the PTE are ORed
269  * with those in @val.
270  *
271  * ptr[1:0] == MMU_PT_UPDATE_NO_TRANSLATE:
272  * As MMU_NORMAL_PT_UPDATE above, but @val is not translated though FD
273  * page tables.
274  *
275  * @val is usually the machine frame number along with some attributes.
276  * The attributes by default follow the architecture defined bits. Meaning that
277  * if this is a X86_64 machine and four page table layout is used, the layout
278  * of val is:
279  *  - 63 if set means No execute (NX)
280  *  - 46-13 the machine frame number
281  *  - 12 available for guest
282  *  - 11 available for guest
283  *  - 10 available for guest
284  *  - 9 available for guest
285  *  - 8 global
286  *  - 7 PAT (PSE is disabled, must use hypercall to make 4MB or 2MB pages)
287  *  - 6 dirty
288  *  - 5 accessed
289  *  - 4 page cached disabled
290  *  - 3 page write through
291  *  - 2 userspace accessible
292  *  - 1 writeable
293  *  - 0 present
294  *
295  *  The one bits that does not fit with the default layout is the PAGE_PSE
296  *  also called PAGE_PAT). The MMUEXT_[UN]MARK_SUPER arguments to the
297  *  HYPERVISOR_mmuext_op serve as mechanism to set a pagetable to be 4MB
298  *  (or 2MB) instead of using the PAGE_PSE bit.
299  *
300  *  The reason that the PAGE_PSE (bit 7) is not being utilized is due to Xen
301  *  using it as the Page Attribute Table (PAT) bit - for details on it please
302  *  refer to Intel SDM 10.12. The PAT allows to set the caching attributes of
303  *  pages instead of using MTRRs.
304  *
305  *  The PAT MSR is as follows (it is a 64-bit value, each entry is 8 bits):
306  *                    PAT4                 PAT0
307  *  +-----+-----+----+----+----+-----+----+----+
308  *  | UC  | UC- | WC | WB | UC | UC- | WC | WB |  <= Linux
309  *  +-----+-----+----+----+----+-----+----+----+
310  *  | UC  | UC- | WT | WB | UC | UC- | WT | WB |  <= BIOS (default when machine boots)
311  *  +-----+-----+----+----+----+-----+----+----+
312  *  | rsv | rsv | WP | WC | UC | UC- | WT | WB |  <= Xen
313  *  +-----+-----+----+----+----+-----+----+----+
314  *
315  *  The lookup of this index table translates to looking up
316  *  Bit 7, Bit 4, and Bit 3 of val entry:
317  *
318  *  PAT/PSE (bit 7) ... PCD (bit 4) .. PWT (bit 3).
319  *
320  *  If all bits are off, then we are using PAT0. If bit 3 turned on,
321  *  then we are using PAT1, if bit 3 and bit 4, then PAT2..
322  *
323  *  As you can see, the Linux PAT1 translates to PAT4 under Xen. Which means
324  *  that if a guest that follows Linux's PAT setup and would like to set Write
325  *  Combined on pages it MUST use PAT4 entry. Meaning that Bit 7 (PAGE_PAT) is
326  *  set. For example, under Linux it only uses PAT0, PAT1, and PAT2 for the
327  *  caching as:
328  *
329  *   WB = none (so PAT0)
330  *   WC = PWT (bit 3 on)
331  *   UC = PWT | PCD (bit 3 and 4 are on).
332  *
333  * To make it work with Xen, it needs to translate the WC bit as so:
334  *
335  *  PWT (so bit 3 on) --> PAT (so bit 7 is on) and clear bit 3
336  *
337  * And to translate back it would:
338  *
339  * PAT (bit 7 on) --> PWT (bit 3 on) and clear bit 7.
340  */
341 #define MMU_NORMAL_PT_UPDATE       0 /* checked '*ptr = val'. ptr is MA.      */
342 #define MMU_MACHPHYS_UPDATE        1 /* ptr = MA of frame to modify entry for */
343 #define MMU_PT_UPDATE_PRESERVE_AD  2 /* atomically: *ptr = val | (*ptr&(A|D)) */
344 #define MMU_PT_UPDATE_NO_TRANSLATE 3 /* checked '*ptr = val'. ptr is MA.      */
345                                      /* val never translated.                 */
346 
347 /*
348  * MMU EXTENDED OPERATIONS
349  *
350  * ` enum neg_errnoval
351  * ` HYPERVISOR_mmuext_op(mmuext_op_t uops[],
352  * `                      unsigned int count,
353  * `                      unsigned int *pdone,
354  * `                      unsigned int foreigndom)
355  */
356 /* HYPERVISOR_mmuext_op() accepts a list of mmuext_op structures.
357  * A foreigndom (FD) can be specified (or DOMID_SELF for none).
358  * Where the FD has some effect, it is described below.
359  *
360  * cmd: MMUEXT_(UN)PIN_*_TABLE
361  * mfn: Machine frame number to be (un)pinned as a p.t. page.
362  *      The frame must belong to the FD, if one is specified.
363  *
364  * cmd: MMUEXT_NEW_BASEPTR
365  * mfn: Machine frame number of new page-table base to install in MMU.
366  *
367  * cmd: MMUEXT_NEW_USER_BASEPTR [x86/64 only]
368  * mfn: Machine frame number of new page-table base to install in MMU
369  *      when in user space.
370  *
371  * cmd: MMUEXT_TLB_FLUSH_LOCAL
372  * No additional arguments. Flushes local TLB.
373  *
374  * cmd: MMUEXT_INVLPG_LOCAL
375  * linear_addr: Linear address to be flushed from the local TLB.
376  *
377  * cmd: MMUEXT_TLB_FLUSH_MULTI
378  * vcpumask: Pointer to bitmap of VCPUs to be flushed.
379  *
380  * cmd: MMUEXT_INVLPG_MULTI
381  * linear_addr: Linear address to be flushed.
382  * vcpumask: Pointer to bitmap of VCPUs to be flushed.
383  *
384  * cmd: MMUEXT_TLB_FLUSH_ALL
385  * No additional arguments. Flushes all VCPUs' TLBs.
386  *
387  * cmd: MMUEXT_INVLPG_ALL
388  * linear_addr: Linear address to be flushed from all VCPUs' TLBs.
389  *
390  * cmd: MMUEXT_FLUSH_CACHE
391  * No additional arguments. Writes back and flushes cache contents.
392  *
393  * cmd: MMUEXT_FLUSH_CACHE_GLOBAL
394  * No additional arguments. Writes back and flushes cache contents
395  * on all CPUs in the system.
396  *
397  * cmd: MMUEXT_SET_LDT
398  * linear_addr: Linear address of LDT base (NB. must be page-aligned).
399  * nr_ents: Number of entries in LDT.
400  *
401  * cmd: MMUEXT_CLEAR_PAGE
402  * mfn: Machine frame number to be cleared.
403  *
404  * cmd: MMUEXT_COPY_PAGE
405  * mfn: Machine frame number of the destination page.
406  * src_mfn: Machine frame number of the source page.
407  *
408  * cmd: MMUEXT_[UN]MARK_SUPER
409  * mfn: Machine frame number of head of superpage to be [un]marked.
410  */
411 /* ` enum mmuext_cmd { */
412 #define MMUEXT_PIN_L1_TABLE      0
413 #define MMUEXT_PIN_L2_TABLE      1
414 #define MMUEXT_PIN_L3_TABLE      2
415 #define MMUEXT_PIN_L4_TABLE      3
416 #define MMUEXT_UNPIN_TABLE       4
417 #define MMUEXT_NEW_BASEPTR       5
418 #define MMUEXT_TLB_FLUSH_LOCAL   6
419 #define MMUEXT_INVLPG_LOCAL      7
420 #define MMUEXT_TLB_FLUSH_MULTI   8
421 #define MMUEXT_INVLPG_MULTI      9
422 #define MMUEXT_TLB_FLUSH_ALL    10
423 #define MMUEXT_INVLPG_ALL       11
424 #define MMUEXT_FLUSH_CACHE      12
425 #define MMUEXT_SET_LDT          13
426 #define MMUEXT_NEW_USER_BASEPTR 15
427 #define MMUEXT_CLEAR_PAGE       16
428 #define MMUEXT_COPY_PAGE        17
429 #define MMUEXT_FLUSH_CACHE_GLOBAL 18
430 #define MMUEXT_MARK_SUPER       19
431 #define MMUEXT_UNMARK_SUPER     20
432 /* ` } */
433 
434 #ifndef __ASSEMBLY__
435 struct mmuext_op {
436     unsigned int cmd; /* => enum mmuext_cmd */
437     union {
438         /* [UN]PIN_TABLE, NEW_BASEPTR, NEW_USER_BASEPTR
439          * CLEAR_PAGE, COPY_PAGE, [UN]MARK_SUPER */
440         xen_pfn_t     mfn;
441         /* INVLPG_LOCAL, INVLPG_ALL, SET_LDT */
442         unsigned long linear_addr;
443     } arg1;
444     union {
445         /* SET_LDT */
446         unsigned int nr_ents;
447         /* TLB_FLUSH_MULTI, INVLPG_MULTI */
448 #if __XEN_INTERFACE_VERSION__ >= 0x00030205
449         XEN_GUEST_HANDLE(const_void) vcpumask;
450 #else
451         const void *vcpumask;
452 #endif
453         /* COPY_PAGE */
454         xen_pfn_t src_mfn;
455     } arg2;
456 };
457 typedef struct mmuext_op mmuext_op_t;
458 DEFINE_XEN_GUEST_HANDLE(mmuext_op_t);
459 #endif
460 
461 /*
462  * ` enum neg_errnoval
463  * ` HYPERVISOR_update_va_mapping(unsigned long va, u64 val,
464  * `                              enum uvm_flags flags)
465  * `
466  * ` enum neg_errnoval
467  * ` HYPERVISOR_update_va_mapping_otherdomain(unsigned long va, u64 val,
468  * `                                          enum uvm_flags flags,
469  * `                                          domid_t domid)
470  * `
471  * ` @va: The virtual address whose mapping we want to change
472  * ` @val: The new page table entry, must contain a machine address
473  * ` @flags: Control TLB flushes
474  */
475 /* These are passed as 'flags' to update_va_mapping. They can be ORed. */
476 /* When specifying UVMF_MULTI, also OR in a pointer to a CPU bitmap.   */
477 /* UVMF_LOCAL is merely UVMF_MULTI with a NULL bitmap pointer.         */
478 /* ` enum uvm_flags { */
479 #define UVMF_NONE           (xen_mk_ulong(0)<<0) /* No flushing at all.   */
480 #define UVMF_TLB_FLUSH      (xen_mk_ulong(1)<<0) /* Flush entire TLB(s).  */
481 #define UVMF_INVLPG         (xen_mk_ulong(2)<<0) /* Flush only one entry. */
482 #define UVMF_FLUSHTYPE_MASK (xen_mk_ulong(3)<<0)
483 #define UVMF_MULTI          (xen_mk_ulong(0)<<2) /* Flush subset of TLBs. */
484 #define UVMF_LOCAL          (xen_mk_ulong(0)<<2) /* Flush local TLB.      */
485 #define UVMF_ALL            (xen_mk_ulong(1)<<2) /* Flush all TLBs.       */
486 /* ` } */
487 
488 /*
489  * Commands to HYPERVISOR_console_io().
490  */
491 #define CONSOLEIO_write         0
492 #define CONSOLEIO_read          1
493 
494 /*
495  * Commands to HYPERVISOR_vm_assist().
496  */
497 #define VMASST_CMD_enable                0
498 #define VMASST_CMD_disable               1
499 
500 /* x86/32 guests: simulate full 4GB segment limits. */
501 #define VMASST_TYPE_4gb_segments         0
502 
503 /* x86/32 guests: trap (vector 15) whenever above vmassist is used. */
504 #define VMASST_TYPE_4gb_segments_notify  1
505 
506 /*
507  * x86 guests: support writes to bottom-level PTEs.
508  * NB1. Page-directory entries cannot be written.
509  * NB2. Guest must continue to remove all writable mappings of PTEs.
510  */
511 #define VMASST_TYPE_writable_pagetables  2
512 
513 /* x86/PAE guests: support PDPTs above 4GB. */
514 #define VMASST_TYPE_pae_extended_cr3     3
515 
516 /*
517  * x86 guests: Sane behaviour for virtual iopl
518  *  - virtual iopl updated from do_iret() hypercalls.
519  *  - virtual iopl reported in bounce frames.
520  *  - guest kernels assumed to be level 0 for the purpose of iopl checks.
521  */
522 #define VMASST_TYPE_architectural_iopl   4
523 
524 /*
525  * All guests: activate update indicator in vcpu_runstate_info
526  * Enable setting the XEN_RUNSTATE_UPDATE flag in guest memory mapped
527  * vcpu_runstate_info during updates of the runstate information.
528  */
529 #define VMASST_TYPE_runstate_update_flag 5
530 
531 /*
532  * x86/64 guests: strictly hide M2P from user mode.
533  * This allows the guest to control respective hypervisor behavior:
534  * - when not set, L4 tables get created with the respective slot blank,
535  *   and whenever the L4 table gets used as a kernel one the missing
536  *   mapping gets inserted,
537  * - when set, L4 tables get created with the respective slot initialized
538  *   as before, and whenever the L4 table gets used as a user one the
539  *   mapping gets zapped.
540  */
541 #define VMASST_TYPE_m2p_strict           32
542 
543 #if __XEN_INTERFACE_VERSION__ < 0x00040600
544 #define MAX_VMASST_TYPE                  3
545 #endif
546 
547 /* Domain ids >= DOMID_FIRST_RESERVED cannot be used for ordinary domains. */
548 #define DOMID_FIRST_RESERVED xen_mk_uint(0x7FF0)
549 
550 /* DOMID_SELF is used in certain contexts to refer to oneself. */
551 #define DOMID_SELF           xen_mk_uint(0x7FF0)
552 
553 /*
554  * DOMID_IO is used to restrict page-table updates to mapping I/O memory.
555  * Although no Foreign Domain need be specified to map I/O pages, DOMID_IO
556  * is useful to ensure that no mappings to the OS's own heap are accidentally
557  * installed. (e.g., in Linux this could cause havoc as reference counts
558  * aren't adjusted on the I/O-mapping code path).
559  * This only makes sense as HYPERVISOR_mmu_update()'s and
560  * HYPERVISOR_update_va_mapping_otherdomain()'s "foreigndom" argument. For
561  * HYPERVISOR_mmu_update() context it can be specified by any calling domain,
562  * otherwise it's only permitted if the caller is privileged.
563  */
564 #define DOMID_IO             xen_mk_uint(0x7FF1)
565 
566 /*
567  * DOMID_XEN is used to allow privileged domains to map restricted parts of
568  * Xen's heap space (e.g., the machine_to_phys table).
569  * This only makes sense as
570  * - HYPERVISOR_mmu_update()'s, HYPERVISOR_mmuext_op()'s, or
571  *   HYPERVISOR_update_va_mapping_otherdomain()'s "foreigndom" argument,
572  * - with XENMAPSPACE_gmfn_foreign,
573  * and is only permitted if the caller is privileged.
574  */
575 #define DOMID_XEN            xen_mk_uint(0x7FF2)
576 
577 /*
578  * DOMID_COW is used as the owner of sharable pages */
579 #define DOMID_COW            xen_mk_uint(0x7FF3)
580 
581 /* DOMID_INVALID is used to identify pages with unknown owner. */
582 #define DOMID_INVALID        xen_mk_uint(0x7FF4)
583 
584 /* Idle domain. */
585 #define DOMID_IDLE           xen_mk_uint(0x7FFF)
586 
587 #ifndef __ASSEMBLY__
588 
589 typedef uint16_t domid_t;
590 
591 /*
592  * Send an array of these to HYPERVISOR_mmu_update().
593  * NB. The fields are natural pointer/address size for this architecture.
594  */
595 struct mmu_update {
596     uint64_t ptr;       /* Machine address of PTE. */
597     uint64_t val;       /* New contents of PTE.    */
598 };
599 typedef struct mmu_update mmu_update_t;
600 DEFINE_XEN_GUEST_HANDLE(mmu_update_t);
601 
602 /*
603  * ` enum neg_errnoval
604  * ` HYPERVISOR_multicall(multicall_entry_t call_list[],
605  * `                      uint32_t nr_calls);
606  *
607  * NB. The fields are logically the natural register size for this
608  * architecture. In cases where xen_ulong_t is larger than this then
609  * any unused bits in the upper portion must be zero.
610  */
611 struct multicall_entry {
612     xen_ulong_t op, result;
613     xen_ulong_t args[6];
614 };
615 typedef struct multicall_entry multicall_entry_t;
616 DEFINE_XEN_GUEST_HANDLE(multicall_entry_t);
617 
618 #if __XEN_INTERFACE_VERSION__ < 0x00040400
619 /*
620  * Event channel endpoints per domain (when using the 2-level ABI):
621  *  1024 if a long is 32 bits; 4096 if a long is 64 bits.
622  */
623 #define NR_EVENT_CHANNELS EVTCHN_2L_NR_CHANNELS
624 #endif
625 
626 struct vcpu_time_info {
627     /*
628      * Updates to the following values are preceded and followed by an
629      * increment of 'version'. The guest can therefore detect updates by
630      * looking for changes to 'version'. If the least-significant bit of
631      * the version number is set then an update is in progress and the guest
632      * must wait to read a consistent set of values.
633      * The correct way to interact with the version number is similar to
634      * Linux's seqlock: see the implementations of read_seqbegin/read_seqretry.
635      */
636     uint32_t version;
637     uint32_t pad0;
638     uint64_t tsc_timestamp;   /* TSC at last update of time vals.  */
639     uint64_t system_time;     /* Time, in nanosecs, since boot.    */
640     /*
641      * Current system time:
642      *   system_time +
643      *   ((((tsc - tsc_timestamp) << tsc_shift) * tsc_to_system_mul) >> 32)
644      * CPU frequency (Hz):
645      *   ((10^9 << 32) / tsc_to_system_mul) >> tsc_shift
646      */
647     uint32_t tsc_to_system_mul;
648     int8_t   tsc_shift;
649 #if __XEN_INTERFACE_VERSION__ > 0x040600
650     uint8_t  flags;
651     uint8_t  pad1[2];
652 #else
653     int8_t   pad1[3];
654 #endif
655 }; /* 32 bytes */
656 typedef struct vcpu_time_info vcpu_time_info_t;
657 
658 #define XEN_PVCLOCK_TSC_STABLE_BIT     (1 << 0)
659 #define XEN_PVCLOCK_GUEST_STOPPED      (1 << 1)
660 
661 struct vcpu_info {
662     /*
663      * 'evtchn_upcall_pending' is written non-zero by Xen to indicate
664      * a pending notification for a particular VCPU. It is then cleared
665      * by the guest OS /before/ checking for pending work, thus avoiding
666      * a set-and-check race. Note that the mask is only accessed by Xen
667      * on the CPU that is currently hosting the VCPU. This means that the
668      * pending and mask flags can be updated by the guest without special
669      * synchronisation (i.e., no need for the x86 LOCK prefix).
670      * This may seem suboptimal because if the pending flag is set by
671      * a different CPU then an IPI may be scheduled even when the mask
672      * is set. However, note:
673      *  1. The task of 'interrupt holdoff' is covered by the per-event-
674      *     channel mask bits. A 'noisy' event that is continually being
675      *     triggered can be masked at source at this very precise
676      *     granularity.
677      *  2. The main purpose of the per-VCPU mask is therefore to restrict
678      *     reentrant execution: whether for concurrency control, or to
679      *     prevent unbounded stack usage. Whatever the purpose, we expect
680      *     that the mask will be asserted only for short periods at a time,
681      *     and so the likelihood of a 'spurious' IPI is suitably small.
682      * The mask is read before making an event upcall to the guest: a
683      * non-zero mask therefore guarantees that the VCPU will not receive
684      * an upcall activation. The mask is cleared when the VCPU requests
685      * to block: this avoids wakeup-waiting races.
686      */
687     uint8_t evtchn_upcall_pending;
688 #ifdef XEN_HAVE_PV_UPCALL_MASK
689     uint8_t evtchn_upcall_mask;
690 #else /* XEN_HAVE_PV_UPCALL_MASK */
691     uint8_t pad0;
692 #endif /* XEN_HAVE_PV_UPCALL_MASK */
693     xen_ulong_t evtchn_pending_sel;
694     struct arch_vcpu_info arch;
695     struct vcpu_time_info time;
696 }; /* 64 bytes (x86) */
697 #ifndef __XEN__
698 typedef struct vcpu_info vcpu_info_t;
699 #endif
700 
701 /*
702  * `incontents 200 startofday_shared Start-of-day shared data structure
703  * Xen/kernel shared data -- pointer provided in start_info.
704  *
705  * This structure is defined to be both smaller than a page, and the
706  * only data on the shared page, but may vary in actual size even within
707  * compatible Xen versions; guests should not rely on the size
708  * of this structure remaining constant.
709  */
710 struct shared_info {
711     struct vcpu_info vcpu_info[XEN_LEGACY_MAX_VCPUS];
712 
713     /*
714      * A domain can create "event channels" on which it can send and receive
715      * asynchronous event notifications. There are three classes of event that
716      * are delivered by this mechanism:
717      *  1. Bi-directional inter- and intra-domain connections. Domains must
718      *     arrange out-of-band to set up a connection (usually by allocating
719      *     an unbound 'listener' port and avertising that via a storage service
720      *     such as xenstore).
721      *  2. Physical interrupts. A domain with suitable hardware-access
722      *     privileges can bind an event-channel port to a physical interrupt
723      *     source.
724      *  3. Virtual interrupts ('events'). A domain can bind an event-channel
725      *     port to a virtual interrupt source, such as the virtual-timer
726      *     device or the emergency console.
727      *
728      * Event channels are addressed by a "port index". Each channel is
729      * associated with two bits of information:
730      *  1. PENDING -- notifies the domain that there is a pending notification
731      *     to be processed. This bit is cleared by the guest.
732      *  2. MASK -- if this bit is clear then a 0->1 transition of PENDING
733      *     will cause an asynchronous upcall to be scheduled. This bit is only
734      *     updated by the guest. It is read-only within Xen. If a channel
735      *     becomes pending while the channel is masked then the 'edge' is lost
736      *     (i.e., when the channel is unmasked, the guest must manually handle
737      *     pending notifications as no upcall will be scheduled by Xen).
738      *
739      * To expedite scanning of pending notifications, any 0->1 pending
740      * transition on an unmasked channel causes a corresponding bit in a
741      * per-vcpu selector word to be set. Each bit in the selector covers a
742      * 'C long' in the PENDING bitfield array.
743      */
744     xen_ulong_t evtchn_pending[sizeof(xen_ulong_t) * 8];
745     xen_ulong_t evtchn_mask[sizeof(xen_ulong_t) * 8];
746 
747     /*
748      * Wallclock time: updated only by control software. Guests should base
749      * their gettimeofday() syscall on this wallclock-base value.
750      */
751     uint32_t wc_version;      /* Version counter: see vcpu_time_info_t. */
752     uint32_t wc_sec;          /* Secs  00:00:00 UTC, Jan 1, 1970.  */
753     uint32_t wc_nsec;         /* Nsecs 00:00:00 UTC, Jan 1, 1970.  */
754 #if !defined(__i386__)
755     uint32_t wc_sec_hi;
756 # define xen_wc_sec_hi wc_sec_hi
757 #elif !defined(__XEN__) && !defined(__XEN_TOOLS__)
758 # define xen_wc_sec_hi arch.wc_sec_hi
759 #endif
760 
761     struct arch_shared_info arch;
762 
763 };
764 #ifndef __XEN__
765 typedef struct shared_info shared_info_t;
766 #endif
767 
768 /*
769  * `incontents 200 startofday Start-of-day memory layout
770  *
771  *  1. The domain is started within contiguous virtual-memory region.
772  *  2. The contiguous region ends on an aligned 4MB boundary.
773  *  3. This the order of bootstrap elements in the initial virtual region:
774  *      a. relocated kernel image
775  *      b. initial ram disk              [mod_start, mod_len]
776  *         (may be omitted)
777  *      c. list of allocated page frames [mfn_list, nr_pages]
778  *         (unless relocated due to XEN_ELFNOTE_INIT_P2M)
779  *      d. start_info_t structure        [register rSI (x86)]
780  *         in case of dom0 this page contains the console info, too
781  *      e. unless dom0: xenstore ring page
782  *      f. unless dom0: console ring page
783  *      g. bootstrap page tables         [pt_base and CR3 (x86)]
784  *      h. bootstrap stack               [register ESP (x86)]
785  *  4. Bootstrap elements are packed together, but each is 4kB-aligned.
786  *  5. The list of page frames forms a contiguous 'pseudo-physical' memory
787  *     layout for the domain. In particular, the bootstrap virtual-memory
788  *     region is a 1:1 mapping to the first section of the pseudo-physical map.
789  *  6. All bootstrap elements are mapped read-writable for the guest OS. The
790  *     only exception is the bootstrap page table, which is mapped read-only.
791  *  7. There is guaranteed to be at least 512kB padding after the final
792  *     bootstrap element. If necessary, the bootstrap virtual region is
793  *     extended by an extra 4MB to ensure this.
794  *
795  * Note: Prior to 25833:bb85bbccb1c9. ("x86/32-on-64 adjust Dom0 initial page
796  * table layout") a bug caused the pt_base (3.g above) and cr3 to not point
797  * to the start of the guest page tables (it was offset by two pages).
798  * This only manifested itself on 32-on-64 dom0 kernels and not 32-on-64 domU
799  * or 64-bit kernels of any colour. The page tables for a 32-on-64 dom0 got
800  * allocated in the order: 'first L1','first L2', 'first L3', so the offset
801  * to the page table base is by two pages back. The initial domain if it is
802  * 32-bit and runs under a 64-bit hypervisor should _NOT_ use two of the
803  * pages preceding pt_base and mark them as reserved/unused.
804  */
805 #ifdef XEN_HAVE_PV_GUEST_ENTRY
806 struct start_info {
807     /* THE FOLLOWING ARE FILLED IN BOTH ON INITIAL BOOT AND ON RESUME.    */
808     char magic[32];             /* "xen-<version>-<platform>".            */
809     unsigned long nr_pages;     /* Total pages allocated to this domain.  */
810     unsigned long shared_info;  /* MACHINE address of shared info struct. */
811     uint32_t flags;             /* SIF_xxx flags.                         */
812     xen_pfn_t store_mfn;        /* MACHINE page number of shared page.    */
813     uint32_t store_evtchn;      /* Event channel for store communication. */
814     union {
815         struct {
816             xen_pfn_t mfn;      /* MACHINE page number of console page.   */
817             uint32_t  evtchn;   /* Event channel for console page.        */
818         } domU;
819         struct {
820             uint32_t info_off;  /* Offset of console_info struct.         */
821             uint32_t info_size; /* Size of console_info struct from start.*/
822         } dom0;
823     } console;
824     /* THE FOLLOWING ARE ONLY FILLED IN ON INITIAL BOOT (NOT RESUME).     */
825     unsigned long pt_base;      /* VIRTUAL address of page directory.     */
826     unsigned long nr_pt_frames; /* Number of bootstrap p.t. frames.       */
827     unsigned long mfn_list;     /* VIRTUAL address of page-frame list.    */
828     unsigned long mod_start;    /* VIRTUAL address of pre-loaded module   */
829                                 /* (PFN of pre-loaded module if           */
830                                 /*  SIF_MOD_START_PFN set in flags).      */
831     unsigned long mod_len;      /* Size (bytes) of pre-loaded module.     */
832 #define MAX_GUEST_CMDLINE 1024
833     int8_t cmd_line[MAX_GUEST_CMDLINE];
834     /* The pfn range here covers both page table and p->m table frames.   */
835     unsigned long first_p2m_pfn;/* 1st pfn forming initial P->M table.    */
836     unsigned long nr_p2m_frames;/* # of pfns forming initial P->M table.  */
837 };
838 typedef struct start_info start_info_t;
839 
840 /* New console union for dom0 introduced in 0x00030203. */
841 #if __XEN_INTERFACE_VERSION__ < 0x00030203
842 #define console_mfn    console.domU.mfn
843 #define console_evtchn console.domU.evtchn
844 #endif
845 #endif /* XEN_HAVE_PV_GUEST_ENTRY */
846 
847 /* These flags are passed in the 'flags' field of start_info_t. */
848 #define SIF_PRIVILEGED    (1<<0)  /* Is the domain privileged? */
849 #define SIF_INITDOMAIN    (1<<1)  /* Is this the initial control domain? */
850 #define SIF_MULTIBOOT_MOD (1<<2)  /* Is mod_start a multiboot module? */
851 #define SIF_MOD_START_PFN (1<<3)  /* Is mod_start a PFN? */
852 #define SIF_VIRT_P2M_4TOOLS (1<<4) /* Do Xen tools understand a virt. mapped */
853                                    /* P->M making the 3 level tree obsolete? */
854 #define SIF_PM_MASK       (0xFF<<8) /* reserve 1 byte for xen-pm options */
855 
856 /*
857  * A multiboot module is a package containing modules very similar to a
858  * multiboot module array. The only differences are:
859  * - the array of module descriptors is by convention simply at the beginning
860  *   of the multiboot module,
861  * - addresses in the module descriptors are based on the beginning of the
862  *   multiboot module,
863  * - the number of modules is determined by a termination descriptor that has
864  *   mod_start == 0.
865  *
866  * This permits to both build it statically and reference it in a configuration
867  * file, and let the PV guest easily rebase the addresses to virtual addresses
868  * and at the same time count the number of modules.
869  */
870 struct xen_multiboot_mod_list
871 {
872     /* Address of first byte of the module */
873     uint32_t mod_start;
874     /* Address of last byte of the module (inclusive) */
875     uint32_t mod_end;
876     /* Address of zero-terminated command line */
877     uint32_t cmdline;
878     /* Unused, must be zero */
879     uint32_t pad;
880 };
881 /*
882  * `incontents 200 startofday_dom0_console Dom0_console
883  *
884  * The console structure in start_info.console.dom0
885  *
886  * This structure includes a variety of information required to
887  * have a working VGA/VESA console.
888  */
889 typedef struct dom0_vga_console_info {
890     uint8_t video_type; /* DOM0_VGA_CONSOLE_??? */
891 #define XEN_VGATYPE_TEXT_MODE_3 0x03
892 #define XEN_VGATYPE_VESA_LFB    0x23
893 #define XEN_VGATYPE_EFI_LFB     0x70
894 
895     union {
896         struct {
897             /* Font height, in pixels. */
898             uint16_t font_height;
899             /* Cursor location (column, row). */
900             uint16_t cursor_x, cursor_y;
901             /* Number of rows and columns (dimensions in characters). */
902             uint16_t rows, columns;
903         } text_mode_3;
904 
905         struct {
906             /* Width and height, in pixels. */
907             uint16_t width, height;
908             /* Bytes per scan line. */
909             uint16_t bytes_per_line;
910             /* Bits per pixel. */
911             uint16_t bits_per_pixel;
912             /* LFB physical address, and size (in units of 64kB). */
913             uint32_t lfb_base;
914             uint32_t lfb_size;
915             /* RGB mask offsets and sizes, as defined by VBE 1.2+ */
916             uint8_t  red_pos, red_size;
917             uint8_t  green_pos, green_size;
918             uint8_t  blue_pos, blue_size;
919             uint8_t  rsvd_pos, rsvd_size;
920 #if __XEN_INTERFACE_VERSION__ >= 0x00030206
921             /* VESA capabilities (offset 0xa, VESA command 0x4f00). */
922             uint32_t gbl_caps;
923             /* Mode attributes (offset 0x0, VESA command 0x4f01). */
924             uint16_t mode_attrs;
925 #endif
926         } vesa_lfb;
927     } u;
928 } dom0_vga_console_info_t;
929 #define xen_vga_console_info dom0_vga_console_info
930 #define xen_vga_console_info_t dom0_vga_console_info_t
931 
932 typedef uint8_t xen_domain_handle_t[16];
933 
934 __DEFINE_XEN_GUEST_HANDLE(uint8,  uint8_t);
935 __DEFINE_XEN_GUEST_HANDLE(uint16, uint16_t);
936 __DEFINE_XEN_GUEST_HANDLE(uint32, uint32_t);
937 __DEFINE_XEN_GUEST_HANDLE(uint64, uint64_t);
938 
939 typedef struct {
940     uint8_t a[16];
941 } xen_uuid_t;
942 
943 /*
944  * XEN_DEFINE_UUID(0x00112233, 0x4455, 0x6677, 0x8899,
945  *                 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff)
946  * will construct UUID 00112233-4455-6677-8899-aabbccddeeff presented as
947  * {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88,
948  * 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff};
949  *
950  * NB: This is compatible with Linux kernel and with libuuid, but it is not
951  * compatible with Microsoft, as they use mixed-endian encoding (some
952  * components are little-endian, some are big-endian).
953  */
954 #define XEN_DEFINE_UUID_(a, b, c, d, e1, e2, e3, e4, e5, e6)            \
955     {{((a) >> 24) & 0xFF, ((a) >> 16) & 0xFF,                           \
956       ((a) >>  8) & 0xFF, ((a) >>  0) & 0xFF,                           \
957       ((b) >>  8) & 0xFF, ((b) >>  0) & 0xFF,                           \
958       ((c) >>  8) & 0xFF, ((c) >>  0) & 0xFF,                           \
959       ((d) >>  8) & 0xFF, ((d) >>  0) & 0xFF,                           \
960                 e1, e2, e3, e4, e5, e6}}
961 
962 #if defined(__STDC_VERSION__) ? __STDC_VERSION__ >= 199901L : defined(__GNUC__)
963 #define XEN_DEFINE_UUID(a, b, c, d, e1, e2, e3, e4, e5, e6)             \
964     ((xen_uuid_t)XEN_DEFINE_UUID_(a, b, c, d, e1, e2, e3, e4, e5, e6))
965 #else
966 #define XEN_DEFINE_UUID(a, b, c, d, e1, e2, e3, e4, e5, e6)             \
967     XEN_DEFINE_UUID_(a, b, c, d, e1, e2, e3, e4, e5, e6)
968 #endif /* __STDC_VERSION__ / __GNUC__ */
969 
970 #endif /* !__ASSEMBLY__ */
971 
972 /* Default definitions for macros used by domctl/sysctl. */
973 #if defined(__XEN__) || defined(__XEN_TOOLS__)
974 
975 #ifndef int64_aligned_t
976 #define int64_aligned_t int64_t
977 #endif
978 #ifndef uint64_aligned_t
979 #define uint64_aligned_t uint64_t
980 #endif
981 #ifndef XEN_GUEST_HANDLE_64
982 #define XEN_GUEST_HANDLE_64(name) XEN_GUEST_HANDLE(name)
983 #endif
984 
985 #ifndef __ASSEMBLY__
986 struct xenctl_bitmap {
987     XEN_GUEST_HANDLE_64(uint8) bitmap;
988     uint32_t nr_bits;
989 };
990 #endif
991 
992 #endif /* defined(__XEN__) || defined(__XEN_TOOLS__) */
993 
994 #endif /* __XEN_PUBLIC_XEN_H__ */
995 
996 /*
997  * Local variables:
998  * mode: C
999  * c-file-style: "BSD"
1000  * c-basic-offset: 4
1001  * tab-width: 4
1002  * indent-tabs-mode: nil
1003  * End:
1004  */
1005