1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 29 * Copyright (c) 2013 by Delphix. All rights reserved. 30 */ 31 32 #ifndef _SYS_DTRACE_H 33 #define _SYS_DTRACE_H 34 35 #ifdef __cplusplus 36 extern "C" { 37 #endif 38 39 /* 40 * DTrace Dynamic Tracing Software: Kernel Interfaces 41 * 42 * Note: The contents of this file are private to the implementation of the 43 * Solaris system and DTrace subsystem and are subject to change at any time 44 * without notice. Applications and drivers using these interfaces will fail 45 * to run on future releases. These interfaces should not be used for any 46 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB). 47 * Please refer to the "Solaris Dynamic Tracing Guide" for more information. 48 */ 49 50 #ifndef _ASM 51 52 #include <sys/types.h> 53 #include <sys/modctl.h> 54 #include <sys/processor.h> 55 #ifdef illumos 56 #include <sys/systm.h> 57 #else 58 #include <sys/cpuvar.h> 59 #include <sys/param.h> 60 #include <sys/linker.h> 61 #include <sys/ioccom.h> 62 #include <sys/proc.h> 63 #include <sys/ucred.h> 64 typedef int model_t; 65 #endif 66 #include <sys/ctf_api.h> 67 #ifdef illumos 68 #include <sys/cyclic.h> 69 #include <sys/int_limits.h> 70 #else 71 #include <sys/stdint.h> 72 #endif 73 74 /* 75 * DTrace Universal Constants and Typedefs 76 */ 77 #define DTRACE_CPUALL -1 /* all CPUs */ 78 #define DTRACE_IDNONE 0 /* invalid probe identifier */ 79 #define DTRACE_EPIDNONE 0 /* invalid enabled probe identifier */ 80 #define DTRACE_AGGIDNONE 0 /* invalid aggregation identifier */ 81 #define DTRACE_AGGVARIDNONE 0 /* invalid aggregation variable ID */ 82 #define DTRACE_CACHEIDNONE 0 /* invalid predicate cache */ 83 #define DTRACE_PROVNONE 0 /* invalid provider identifier */ 84 #define DTRACE_METAPROVNONE 0 /* invalid meta-provider identifier */ 85 #define DTRACE_ARGNONE -1 /* invalid argument index */ 86 87 #define DTRACE_PROVNAMELEN 64 88 #define DTRACE_MODNAMELEN 64 89 #define DTRACE_FUNCNAMELEN 192 90 #define DTRACE_NAMELEN 64 91 #define DTRACE_FULLNAMELEN (DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \ 92 DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4) 93 #define DTRACE_ARGTYPELEN 128 94 95 typedef uint32_t dtrace_id_t; /* probe identifier */ 96 typedef uint32_t dtrace_epid_t; /* enabled probe identifier */ 97 typedef uint32_t dtrace_aggid_t; /* aggregation identifier */ 98 typedef int64_t dtrace_aggvarid_t; /* aggregation variable identifier */ 99 typedef uint16_t dtrace_actkind_t; /* action kind */ 100 typedef int64_t dtrace_optval_t; /* option value */ 101 typedef uint32_t dtrace_cacheid_t; /* predicate cache identifier */ 102 103 typedef enum dtrace_probespec { 104 DTRACE_PROBESPEC_NONE = -1, 105 DTRACE_PROBESPEC_PROVIDER = 0, 106 DTRACE_PROBESPEC_MOD, 107 DTRACE_PROBESPEC_FUNC, 108 DTRACE_PROBESPEC_NAME 109 } dtrace_probespec_t; 110 111 /* 112 * DTrace Intermediate Format (DIF) 113 * 114 * The following definitions describe the DTrace Intermediate Format (DIF), a 115 * a RISC-like instruction set and program encoding used to represent 116 * predicates and actions that can be bound to DTrace probes. The constants 117 * below defining the number of available registers are suggested minimums; the 118 * compiler should use DTRACEIOC_CONF to dynamically obtain the number of 119 * registers provided by the current DTrace implementation. 120 */ 121 #define DIF_VERSION_1 1 /* DIF version 1: Solaris 10 Beta */ 122 #define DIF_VERSION_2 2 /* DIF version 2: Solaris 10 FCS */ 123 #define DIF_VERSION DIF_VERSION_2 /* latest DIF instruction set version */ 124 #define DIF_DIR_NREGS 8 /* number of DIF integer registers */ 125 #define DIF_DTR_NREGS 8 /* number of DIF tuple registers */ 126 127 #define DIF_OP_OR 1 /* or r1, r2, rd */ 128 #define DIF_OP_XOR 2 /* xor r1, r2, rd */ 129 #define DIF_OP_AND 3 /* and r1, r2, rd */ 130 #define DIF_OP_SLL 4 /* sll r1, r2, rd */ 131 #define DIF_OP_SRL 5 /* srl r1, r2, rd */ 132 #define DIF_OP_SUB 6 /* sub r1, r2, rd */ 133 #define DIF_OP_ADD 7 /* add r1, r2, rd */ 134 #define DIF_OP_MUL 8 /* mul r1, r2, rd */ 135 #define DIF_OP_SDIV 9 /* sdiv r1, r2, rd */ 136 #define DIF_OP_UDIV 10 /* udiv r1, r2, rd */ 137 #define DIF_OP_SREM 11 /* srem r1, r2, rd */ 138 #define DIF_OP_UREM 12 /* urem r1, r2, rd */ 139 #define DIF_OP_NOT 13 /* not r1, rd */ 140 #define DIF_OP_MOV 14 /* mov r1, rd */ 141 #define DIF_OP_CMP 15 /* cmp r1, r2 */ 142 #define DIF_OP_TST 16 /* tst r1 */ 143 #define DIF_OP_BA 17 /* ba label */ 144 #define DIF_OP_BE 18 /* be label */ 145 #define DIF_OP_BNE 19 /* bne label */ 146 #define DIF_OP_BG 20 /* bg label */ 147 #define DIF_OP_BGU 21 /* bgu label */ 148 #define DIF_OP_BGE 22 /* bge label */ 149 #define DIF_OP_BGEU 23 /* bgeu label */ 150 #define DIF_OP_BL 24 /* bl label */ 151 #define DIF_OP_BLU 25 /* blu label */ 152 #define DIF_OP_BLE 26 /* ble label */ 153 #define DIF_OP_BLEU 27 /* bleu label */ 154 #define DIF_OP_LDSB 28 /* ldsb [r1], rd */ 155 #define DIF_OP_LDSH 29 /* ldsh [r1], rd */ 156 #define DIF_OP_LDSW 30 /* ldsw [r1], rd */ 157 #define DIF_OP_LDUB 31 /* ldub [r1], rd */ 158 #define DIF_OP_LDUH 32 /* lduh [r1], rd */ 159 #define DIF_OP_LDUW 33 /* lduw [r1], rd */ 160 #define DIF_OP_LDX 34 /* ldx [r1], rd */ 161 #define DIF_OP_RET 35 /* ret rd */ 162 #define DIF_OP_NOP 36 /* nop */ 163 #define DIF_OP_SETX 37 /* setx intindex, rd */ 164 #define DIF_OP_SETS 38 /* sets strindex, rd */ 165 #define DIF_OP_SCMP 39 /* scmp r1, r2 */ 166 #define DIF_OP_LDGA 40 /* ldga var, ri, rd */ 167 #define DIF_OP_LDGS 41 /* ldgs var, rd */ 168 #define DIF_OP_STGS 42 /* stgs var, rs */ 169 #define DIF_OP_LDTA 43 /* ldta var, ri, rd */ 170 #define DIF_OP_LDTS 44 /* ldts var, rd */ 171 #define DIF_OP_STTS 45 /* stts var, rs */ 172 #define DIF_OP_SRA 46 /* sra r1, r2, rd */ 173 #define DIF_OP_CALL 47 /* call subr, rd */ 174 #define DIF_OP_PUSHTR 48 /* pushtr type, rs, rr */ 175 #define DIF_OP_PUSHTV 49 /* pushtv type, rs, rv */ 176 #define DIF_OP_POPTS 50 /* popts */ 177 #define DIF_OP_FLUSHTS 51 /* flushts */ 178 #define DIF_OP_LDGAA 52 /* ldgaa var, rd */ 179 #define DIF_OP_LDTAA 53 /* ldtaa var, rd */ 180 #define DIF_OP_STGAA 54 /* stgaa var, rs */ 181 #define DIF_OP_STTAA 55 /* sttaa var, rs */ 182 #define DIF_OP_LDLS 56 /* ldls var, rd */ 183 #define DIF_OP_STLS 57 /* stls var, rs */ 184 #define DIF_OP_ALLOCS 58 /* allocs r1, rd */ 185 #define DIF_OP_COPYS 59 /* copys r1, r2, rd */ 186 #define DIF_OP_STB 60 /* stb r1, [rd] */ 187 #define DIF_OP_STH 61 /* sth r1, [rd] */ 188 #define DIF_OP_STW 62 /* stw r1, [rd] */ 189 #define DIF_OP_STX 63 /* stx r1, [rd] */ 190 #define DIF_OP_ULDSB 64 /* uldsb [r1], rd */ 191 #define DIF_OP_ULDSH 65 /* uldsh [r1], rd */ 192 #define DIF_OP_ULDSW 66 /* uldsw [r1], rd */ 193 #define DIF_OP_ULDUB 67 /* uldub [r1], rd */ 194 #define DIF_OP_ULDUH 68 /* ulduh [r1], rd */ 195 #define DIF_OP_ULDUW 69 /* ulduw [r1], rd */ 196 #define DIF_OP_ULDX 70 /* uldx [r1], rd */ 197 #define DIF_OP_RLDSB 71 /* rldsb [r1], rd */ 198 #define DIF_OP_RLDSH 72 /* rldsh [r1], rd */ 199 #define DIF_OP_RLDSW 73 /* rldsw [r1], rd */ 200 #define DIF_OP_RLDUB 74 /* rldub [r1], rd */ 201 #define DIF_OP_RLDUH 75 /* rlduh [r1], rd */ 202 #define DIF_OP_RLDUW 76 /* rlduw [r1], rd */ 203 #define DIF_OP_RLDX 77 /* rldx [r1], rd */ 204 #define DIF_OP_XLATE 78 /* xlate xlrindex, rd */ 205 #define DIF_OP_XLARG 79 /* xlarg xlrindex, rd */ 206 207 #define DIF_INTOFF_MAX 0xffff /* highest integer table offset */ 208 #define DIF_STROFF_MAX 0xffff /* highest string table offset */ 209 #define DIF_REGISTER_MAX 0xff /* highest register number */ 210 #define DIF_VARIABLE_MAX 0xffff /* highest variable identifier */ 211 #define DIF_SUBROUTINE_MAX 0xffff /* highest subroutine code */ 212 213 #define DIF_VAR_ARRAY_MIN 0x0000 /* lowest numbered array variable */ 214 #define DIF_VAR_ARRAY_UBASE 0x0080 /* lowest user-defined array */ 215 #define DIF_VAR_ARRAY_MAX 0x00ff /* highest numbered array variable */ 216 217 #define DIF_VAR_OTHER_MIN 0x0100 /* lowest numbered scalar or assc */ 218 #define DIF_VAR_OTHER_UBASE 0x0500 /* lowest user-defined scalar or assc */ 219 #define DIF_VAR_OTHER_MAX 0xffff /* highest numbered scalar or assc */ 220 221 #define DIF_VAR_ARGS 0x0000 /* arguments array */ 222 #define DIF_VAR_REGS 0x0001 /* registers array */ 223 #define DIF_VAR_UREGS 0x0002 /* user registers array */ 224 #define DIF_VAR_CURTHREAD 0x0100 /* thread pointer */ 225 #define DIF_VAR_TIMESTAMP 0x0101 /* timestamp */ 226 #define DIF_VAR_VTIMESTAMP 0x0102 /* virtual timestamp */ 227 #define DIF_VAR_IPL 0x0103 /* interrupt priority level */ 228 #define DIF_VAR_EPID 0x0104 /* enabled probe ID */ 229 #define DIF_VAR_ID 0x0105 /* probe ID */ 230 #define DIF_VAR_ARG0 0x0106 /* first argument */ 231 #define DIF_VAR_ARG1 0x0107 /* second argument */ 232 #define DIF_VAR_ARG2 0x0108 /* third argument */ 233 #define DIF_VAR_ARG3 0x0109 /* fourth argument */ 234 #define DIF_VAR_ARG4 0x010a /* fifth argument */ 235 #define DIF_VAR_ARG5 0x010b /* sixth argument */ 236 #define DIF_VAR_ARG6 0x010c /* seventh argument */ 237 #define DIF_VAR_ARG7 0x010d /* eighth argument */ 238 #define DIF_VAR_ARG8 0x010e /* ninth argument */ 239 #define DIF_VAR_ARG9 0x010f /* tenth argument */ 240 #define DIF_VAR_STACKDEPTH 0x0110 /* stack depth */ 241 #define DIF_VAR_CALLER 0x0111 /* caller */ 242 #define DIF_VAR_PROBEPROV 0x0112 /* probe provider */ 243 #define DIF_VAR_PROBEMOD 0x0113 /* probe module */ 244 #define DIF_VAR_PROBEFUNC 0x0114 /* probe function */ 245 #define DIF_VAR_PROBENAME 0x0115 /* probe name */ 246 #define DIF_VAR_PID 0x0116 /* process ID */ 247 #define DIF_VAR_TID 0x0117 /* (per-process) thread ID */ 248 #define DIF_VAR_EXECNAME 0x0118 /* name of executable */ 249 #define DIF_VAR_ZONENAME 0x0119 /* zone name associated with process */ 250 #define DIF_VAR_WALLTIMESTAMP 0x011a /* wall-clock timestamp */ 251 #define DIF_VAR_USTACKDEPTH 0x011b /* user-land stack depth */ 252 #define DIF_VAR_UCALLER 0x011c /* user-level caller */ 253 #define DIF_VAR_PPID 0x011d /* parent process ID */ 254 #define DIF_VAR_UID 0x011e /* process user ID */ 255 #define DIF_VAR_GID 0x011f /* process group ID */ 256 #define DIF_VAR_ERRNO 0x0120 /* thread errno */ 257 #define DIF_VAR_EXECARGS 0x0121 /* process arguments */ 258 259 #ifndef illumos 260 #define DIF_VAR_CPU 0x0200 261 #endif 262 263 #define DIF_SUBR_RAND 0 264 #define DIF_SUBR_MUTEX_OWNED 1 265 #define DIF_SUBR_MUTEX_OWNER 2 266 #define DIF_SUBR_MUTEX_TYPE_ADAPTIVE 3 267 #define DIF_SUBR_MUTEX_TYPE_SPIN 4 268 #define DIF_SUBR_RW_READ_HELD 5 269 #define DIF_SUBR_RW_WRITE_HELD 6 270 #define DIF_SUBR_RW_ISWRITER 7 271 #define DIF_SUBR_COPYIN 8 272 #define DIF_SUBR_COPYINSTR 9 273 #define DIF_SUBR_SPECULATION 10 274 #define DIF_SUBR_PROGENYOF 11 275 #define DIF_SUBR_STRLEN 12 276 #define DIF_SUBR_COPYOUT 13 277 #define DIF_SUBR_COPYOUTSTR 14 278 #define DIF_SUBR_ALLOCA 15 279 #define DIF_SUBR_BCOPY 16 280 #define DIF_SUBR_COPYINTO 17 281 #define DIF_SUBR_MSGDSIZE 18 282 #define DIF_SUBR_MSGSIZE 19 283 #define DIF_SUBR_GETMAJOR 20 284 #define DIF_SUBR_GETMINOR 21 285 #define DIF_SUBR_DDI_PATHNAME 22 286 #define DIF_SUBR_STRJOIN 23 287 #define DIF_SUBR_LLTOSTR 24 288 #define DIF_SUBR_BASENAME 25 289 #define DIF_SUBR_DIRNAME 26 290 #define DIF_SUBR_CLEANPATH 27 291 #define DIF_SUBR_STRCHR 28 292 #define DIF_SUBR_STRRCHR 29 293 #define DIF_SUBR_STRSTR 30 294 #define DIF_SUBR_STRTOK 31 295 #define DIF_SUBR_SUBSTR 32 296 #define DIF_SUBR_INDEX 33 297 #define DIF_SUBR_RINDEX 34 298 #define DIF_SUBR_HTONS 35 299 #define DIF_SUBR_HTONL 36 300 #define DIF_SUBR_HTONLL 37 301 #define DIF_SUBR_NTOHS 38 302 #define DIF_SUBR_NTOHL 39 303 #define DIF_SUBR_NTOHLL 40 304 #define DIF_SUBR_INET_NTOP 41 305 #define DIF_SUBR_INET_NTOA 42 306 #define DIF_SUBR_INET_NTOA6 43 307 #define DIF_SUBR_TOUPPER 44 308 #define DIF_SUBR_TOLOWER 45 309 #define DIF_SUBR_MEMREF 46 310 #define DIF_SUBR_SX_SHARED_HELD 47 311 #define DIF_SUBR_SX_EXCLUSIVE_HELD 48 312 #define DIF_SUBR_SX_ISEXCLUSIVE 49 313 #define DIF_SUBR_MEMSTR 50 314 #define DIF_SUBR_GETF 51 315 #define DIF_SUBR_JSON 52 316 #define DIF_SUBR_STRTOLL 53 317 #define DIF_SUBR_MAX 53 /* max subroutine value */ 318 319 typedef uint32_t dif_instr_t; 320 321 #define DIF_INSTR_OP(i) (((i) >> 24) & 0xff) 322 #define DIF_INSTR_R1(i) (((i) >> 16) & 0xff) 323 #define DIF_INSTR_R2(i) (((i) >> 8) & 0xff) 324 #define DIF_INSTR_RD(i) ((i) & 0xff) 325 #define DIF_INSTR_RS(i) ((i) & 0xff) 326 #define DIF_INSTR_LABEL(i) ((i) & 0xffffff) 327 #define DIF_INSTR_VAR(i) (((i) >> 8) & 0xffff) 328 #define DIF_INSTR_INTEGER(i) (((i) >> 8) & 0xffff) 329 #define DIF_INSTR_STRING(i) (((i) >> 8) & 0xffff) 330 #define DIF_INSTR_SUBR(i) (((i) >> 8) & 0xffff) 331 #define DIF_INSTR_TYPE(i) (((i) >> 16) & 0xff) 332 #define DIF_INSTR_XLREF(i) (((i) >> 8) & 0xffff) 333 334 #define DIF_INSTR_FMT(op, r1, r2, d) \ 335 (((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d)) 336 337 #define DIF_INSTR_NOT(r1, d) (DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d)) 338 #define DIF_INSTR_MOV(r1, d) (DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d)) 339 #define DIF_INSTR_CMP(op, r1, r2) (DIF_INSTR_FMT(op, r1, r2, 0)) 340 #define DIF_INSTR_TST(r1) (DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0)) 341 #define DIF_INSTR_BRANCH(op, label) (((op) << 24) | (label)) 342 #define DIF_INSTR_LOAD(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d)) 343 #define DIF_INSTR_STORE(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d)) 344 #define DIF_INSTR_SETX(i, d) ((DIF_OP_SETX << 24) | ((i) << 8) | (d)) 345 #define DIF_INSTR_SETS(s, d) ((DIF_OP_SETS << 24) | ((s) << 8) | (d)) 346 #define DIF_INSTR_RET(d) (DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d)) 347 #define DIF_INSTR_NOP (DIF_OP_NOP << 24) 348 #define DIF_INSTR_LDA(op, v, r, d) (DIF_INSTR_FMT(op, v, r, d)) 349 #define DIF_INSTR_LDV(op, v, d) (((op) << 24) | ((v) << 8) | (d)) 350 #define DIF_INSTR_STV(op, v, rs) (((op) << 24) | ((v) << 8) | (rs)) 351 #define DIF_INSTR_CALL(s, d) ((DIF_OP_CALL << 24) | ((s) << 8) | (d)) 352 #define DIF_INSTR_PUSHTS(op, t, r2, rs) (DIF_INSTR_FMT(op, t, r2, rs)) 353 #define DIF_INSTR_POPTS (DIF_OP_POPTS << 24) 354 #define DIF_INSTR_FLUSHTS (DIF_OP_FLUSHTS << 24) 355 #define DIF_INSTR_ALLOCS(r1, d) (DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d)) 356 #define DIF_INSTR_COPYS(r1, r2, d) (DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d)) 357 #define DIF_INSTR_XLATE(op, r, d) (((op) << 24) | ((r) << 8) | (d)) 358 359 #define DIF_REG_R0 0 /* %r0 is always set to zero */ 360 361 /* 362 * A DTrace Intermediate Format Type (DIF Type) is used to represent the types 363 * of variables, function and associative array arguments, and the return type 364 * for each DIF object (shown below). It contains a description of the type, 365 * its size in bytes, and a module identifier. 366 */ 367 typedef struct dtrace_diftype { 368 uint8_t dtdt_kind; /* type kind (see below) */ 369 uint8_t dtdt_ckind; /* type kind in CTF */ 370 uint8_t dtdt_flags; /* type flags (see below) */ 371 uint8_t dtdt_pad; /* reserved for future use */ 372 uint32_t dtdt_size; /* type size in bytes (unless string) */ 373 } dtrace_diftype_t; 374 375 #define DIF_TYPE_CTF 0 /* type is a CTF type */ 376 #define DIF_TYPE_STRING 1 /* type is a D string */ 377 378 #define DIF_TF_BYREF 0x1 /* type is passed by reference */ 379 #define DIF_TF_BYUREF 0x2 /* user type is passed by reference */ 380 381 /* 382 * A DTrace Intermediate Format variable record is used to describe each of the 383 * variables referenced by a given DIF object. It contains an integer variable 384 * identifier along with variable scope and properties, as shown below. The 385 * size of this structure must be sizeof (int) aligned. 386 */ 387 typedef struct dtrace_difv { 388 uint32_t dtdv_name; /* variable name index in dtdo_strtab */ 389 uint32_t dtdv_id; /* variable reference identifier */ 390 uint8_t dtdv_kind; /* variable kind (see below) */ 391 uint8_t dtdv_scope; /* variable scope (see below) */ 392 uint16_t dtdv_flags; /* variable flags (see below) */ 393 dtrace_diftype_t dtdv_type; /* variable type (see above) */ 394 } dtrace_difv_t; 395 396 #define DIFV_KIND_ARRAY 0 /* variable is an array of quantities */ 397 #define DIFV_KIND_SCALAR 1 /* variable is a scalar quantity */ 398 399 #define DIFV_SCOPE_GLOBAL 0 /* variable has global scope */ 400 #define DIFV_SCOPE_THREAD 1 /* variable has thread scope */ 401 #define DIFV_SCOPE_LOCAL 2 /* variable has local scope */ 402 403 #define DIFV_F_REF 0x1 /* variable is referenced by DIFO */ 404 #define DIFV_F_MOD 0x2 /* variable is written by DIFO */ 405 406 /* 407 * DTrace Actions 408 * 409 * The upper byte determines the class of the action; the low bytes determines 410 * the specific action within that class. The classes of actions are as 411 * follows: 412 * 413 * [ no class ] <= May record process- or kernel-related data 414 * DTRACEACT_PROC <= Only records process-related data 415 * DTRACEACT_PROC_DESTRUCTIVE <= Potentially destructive to processes 416 * DTRACEACT_KERNEL <= Only records kernel-related data 417 * DTRACEACT_KERNEL_DESTRUCTIVE <= Potentially destructive to the kernel 418 * DTRACEACT_SPECULATIVE <= Speculation-related action 419 * DTRACEACT_AGGREGATION <= Aggregating action 420 */ 421 #define DTRACEACT_NONE 0 /* no action */ 422 #define DTRACEACT_DIFEXPR 1 /* action is DIF expression */ 423 #define DTRACEACT_EXIT 2 /* exit() action */ 424 #define DTRACEACT_PRINTF 3 /* printf() action */ 425 #define DTRACEACT_PRINTA 4 /* printa() action */ 426 #define DTRACEACT_LIBACT 5 /* library-controlled action */ 427 #define DTRACEACT_TRACEMEM 6 /* tracemem() action */ 428 #define DTRACEACT_TRACEMEM_DYNSIZE 7 /* dynamic tracemem() size */ 429 #define DTRACEACT_PRINTM 8 /* printm() action (BSD) */ 430 431 #define DTRACEACT_PROC 0x0100 432 #define DTRACEACT_USTACK (DTRACEACT_PROC + 1) 433 #define DTRACEACT_JSTACK (DTRACEACT_PROC + 2) 434 #define DTRACEACT_USYM (DTRACEACT_PROC + 3) 435 #define DTRACEACT_UMOD (DTRACEACT_PROC + 4) 436 #define DTRACEACT_UADDR (DTRACEACT_PROC + 5) 437 438 #define DTRACEACT_PROC_DESTRUCTIVE 0x0200 439 #define DTRACEACT_STOP (DTRACEACT_PROC_DESTRUCTIVE + 1) 440 #define DTRACEACT_RAISE (DTRACEACT_PROC_DESTRUCTIVE + 2) 441 #define DTRACEACT_SYSTEM (DTRACEACT_PROC_DESTRUCTIVE + 3) 442 #define DTRACEACT_FREOPEN (DTRACEACT_PROC_DESTRUCTIVE + 4) 443 444 #define DTRACEACT_PROC_CONTROL 0x0300 445 446 #define DTRACEACT_KERNEL 0x0400 447 #define DTRACEACT_STACK (DTRACEACT_KERNEL + 1) 448 #define DTRACEACT_SYM (DTRACEACT_KERNEL + 2) 449 #define DTRACEACT_MOD (DTRACEACT_KERNEL + 3) 450 451 #define DTRACEACT_KERNEL_DESTRUCTIVE 0x0500 452 #define DTRACEACT_BREAKPOINT (DTRACEACT_KERNEL_DESTRUCTIVE + 1) 453 #define DTRACEACT_PANIC (DTRACEACT_KERNEL_DESTRUCTIVE + 2) 454 #define DTRACEACT_CHILL (DTRACEACT_KERNEL_DESTRUCTIVE + 3) 455 456 #define DTRACEACT_SPECULATIVE 0x0600 457 #define DTRACEACT_SPECULATE (DTRACEACT_SPECULATIVE + 1) 458 #define DTRACEACT_COMMIT (DTRACEACT_SPECULATIVE + 2) 459 #define DTRACEACT_DISCARD (DTRACEACT_SPECULATIVE + 3) 460 461 #define DTRACEACT_CLASS(x) ((x) & 0xff00) 462 463 #define DTRACEACT_ISDESTRUCTIVE(x) \ 464 (DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \ 465 DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE) 466 467 #define DTRACEACT_ISSPECULATIVE(x) \ 468 (DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE) 469 470 #define DTRACEACT_ISPRINTFLIKE(x) \ 471 ((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \ 472 (x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN) 473 474 /* 475 * DTrace Aggregating Actions 476 * 477 * These are functions f(x) for which the following is true: 478 * 479 * f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n) 480 * 481 * where x_n is a set of arbitrary data. Aggregating actions are in their own 482 * DTrace action class, DTTRACEACT_AGGREGATION. The macros provided here allow 483 * for easier processing of the aggregation argument and data payload for a few 484 * aggregating actions (notably: quantize(), lquantize(), and ustack()). 485 */ 486 #define DTRACEACT_AGGREGATION 0x0700 487 #define DTRACEAGG_COUNT (DTRACEACT_AGGREGATION + 1) 488 #define DTRACEAGG_MIN (DTRACEACT_AGGREGATION + 2) 489 #define DTRACEAGG_MAX (DTRACEACT_AGGREGATION + 3) 490 #define DTRACEAGG_AVG (DTRACEACT_AGGREGATION + 4) 491 #define DTRACEAGG_SUM (DTRACEACT_AGGREGATION + 5) 492 #define DTRACEAGG_STDDEV (DTRACEACT_AGGREGATION + 6) 493 #define DTRACEAGG_QUANTIZE (DTRACEACT_AGGREGATION + 7) 494 #define DTRACEAGG_LQUANTIZE (DTRACEACT_AGGREGATION + 8) 495 #define DTRACEAGG_LLQUANTIZE (DTRACEACT_AGGREGATION + 9) 496 497 #define DTRACEACT_ISAGG(x) \ 498 (DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION) 499 500 #define DTRACE_QUANTIZE_NBUCKETS \ 501 (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) 502 503 #define DTRACE_QUANTIZE_ZEROBUCKET ((sizeof (uint64_t) * NBBY) - 1) 504 505 #define DTRACE_QUANTIZE_BUCKETVAL(buck) \ 506 (int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ? \ 507 -(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) : \ 508 (buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 : \ 509 1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1)) 510 511 #define DTRACE_LQUANTIZE_STEPSHIFT 48 512 #define DTRACE_LQUANTIZE_STEPMASK ((uint64_t)UINT16_MAX << 48) 513 #define DTRACE_LQUANTIZE_LEVELSHIFT 32 514 #define DTRACE_LQUANTIZE_LEVELMASK ((uint64_t)UINT16_MAX << 32) 515 #define DTRACE_LQUANTIZE_BASESHIFT 0 516 #define DTRACE_LQUANTIZE_BASEMASK UINT32_MAX 517 518 #define DTRACE_LQUANTIZE_STEP(x) \ 519 (uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \ 520 DTRACE_LQUANTIZE_STEPSHIFT) 521 522 #define DTRACE_LQUANTIZE_LEVELS(x) \ 523 (uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \ 524 DTRACE_LQUANTIZE_LEVELSHIFT) 525 526 #define DTRACE_LQUANTIZE_BASE(x) \ 527 (int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \ 528 DTRACE_LQUANTIZE_BASESHIFT) 529 530 #define DTRACE_LLQUANTIZE_FACTORSHIFT 48 531 #define DTRACE_LLQUANTIZE_FACTORMASK ((uint64_t)UINT16_MAX << 48) 532 #define DTRACE_LLQUANTIZE_LOWSHIFT 32 533 #define DTRACE_LLQUANTIZE_LOWMASK ((uint64_t)UINT16_MAX << 32) 534 #define DTRACE_LLQUANTIZE_HIGHSHIFT 16 535 #define DTRACE_LLQUANTIZE_HIGHMASK ((uint64_t)UINT16_MAX << 16) 536 #define DTRACE_LLQUANTIZE_NSTEPSHIFT 0 537 #define DTRACE_LLQUANTIZE_NSTEPMASK UINT16_MAX 538 539 #define DTRACE_LLQUANTIZE_FACTOR(x) \ 540 (uint16_t)(((x) & DTRACE_LLQUANTIZE_FACTORMASK) >> \ 541 DTRACE_LLQUANTIZE_FACTORSHIFT) 542 543 #define DTRACE_LLQUANTIZE_LOW(x) \ 544 (uint16_t)(((x) & DTRACE_LLQUANTIZE_LOWMASK) >> \ 545 DTRACE_LLQUANTIZE_LOWSHIFT) 546 547 #define DTRACE_LLQUANTIZE_HIGH(x) \ 548 (uint16_t)(((x) & DTRACE_LLQUANTIZE_HIGHMASK) >> \ 549 DTRACE_LLQUANTIZE_HIGHSHIFT) 550 551 #define DTRACE_LLQUANTIZE_NSTEP(x) \ 552 (uint16_t)(((x) & DTRACE_LLQUANTIZE_NSTEPMASK) >> \ 553 DTRACE_LLQUANTIZE_NSTEPSHIFT) 554 555 #define DTRACE_USTACK_NFRAMES(x) (uint32_t)((x) & UINT32_MAX) 556 #define DTRACE_USTACK_STRSIZE(x) (uint32_t)((x) >> 32) 557 #define DTRACE_USTACK_ARG(x, y) \ 558 ((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX)) 559 560 #ifndef _LP64 561 #if BYTE_ORDER == _BIG_ENDIAN 562 #define DTRACE_PTR(type, name) uint32_t name##pad; type *name 563 #else 564 #define DTRACE_PTR(type, name) type *name; uint32_t name##pad 565 #endif 566 #else 567 #define DTRACE_PTR(type, name) type *name 568 #endif 569 570 /* 571 * DTrace Object Format (DOF) 572 * 573 * DTrace programs can be persistently encoded in the DOF format so that they 574 * may be embedded in other programs (for example, in an ELF file) or in the 575 * dtrace driver configuration file for use in anonymous tracing. The DOF 576 * format is versioned and extensible so that it can be revised and so that 577 * internal data structures can be modified or extended compatibly. All DOF 578 * structures use fixed-size types, so the 32-bit and 64-bit representations 579 * are identical and consumers can use either data model transparently. 580 * 581 * The file layout is structured as follows: 582 * 583 * +---------------+-------------------+----- ... ----+---- ... ------+ 584 * | dof_hdr_t | dof_sec_t[ ... ] | loadable | non-loadable | 585 * | (file header) | (section headers) | section data | section data | 586 * +---------------+-------------------+----- ... ----+---- ... ------+ 587 * |<------------ dof_hdr.dofh_loadsz --------------->| | 588 * |<------------ dof_hdr.dofh_filesz ------------------------------->| 589 * 590 * The file header stores meta-data including a magic number, data model for 591 * the instrumentation, data encoding, and properties of the DIF code within. 592 * The header describes its own size and the size of the section headers. By 593 * convention, an array of section headers follows the file header, and then 594 * the data for all loadable sections and unloadable sections. This permits 595 * consumer code to easily download the headers and all loadable data into the 596 * DTrace driver in one contiguous chunk, omitting other extraneous sections. 597 * 598 * The section headers describe the size, offset, alignment, and section type 599 * for each section. Sections are described using a set of #defines that tell 600 * the consumer what kind of data is expected. Sections can contain links to 601 * other sections by storing a dof_secidx_t, an index into the section header 602 * array, inside of the section data structures. The section header includes 603 * an entry size so that sections with data arrays can grow their structures. 604 * 605 * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which 606 * are represented themselves as a collection of related DOF sections. This 607 * permits us to change the set of sections associated with a DIFO over time, 608 * and also permits us to encode DIFOs that contain different sets of sections. 609 * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a 610 * section of type DOF_SECT_DIFOHDR. This section's data is then an array of 611 * dof_secidx_t's which in turn denote the sections associated with this DIFO. 612 * 613 * This loose coupling of the file structure (header and sections) to the 614 * structure of the DTrace program itself (ECB descriptions, action 615 * descriptions, and DIFOs) permits activities such as relocation processing 616 * to occur in a single pass without having to understand D program structure. 617 * 618 * Finally, strings are always stored in ELF-style string tables along with a 619 * string table section index and string table offset. Therefore strings in 620 * DOF are always arbitrary-length and not bound to the current implementation. 621 */ 622 623 #define DOF_ID_SIZE 16 /* total size of dofh_ident[] in bytes */ 624 625 typedef struct dof_hdr { 626 uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */ 627 uint32_t dofh_flags; /* file attribute flags (if any) */ 628 uint32_t dofh_hdrsize; /* size of file header in bytes */ 629 uint32_t dofh_secsize; /* size of section header in bytes */ 630 uint32_t dofh_secnum; /* number of section headers */ 631 uint64_t dofh_secoff; /* file offset of section headers */ 632 uint64_t dofh_loadsz; /* file size of loadable portion */ 633 uint64_t dofh_filesz; /* file size of entire DOF file */ 634 uint64_t dofh_pad; /* reserved for future use */ 635 } dof_hdr_t; 636 637 #define DOF_ID_MAG0 0 /* first byte of magic number */ 638 #define DOF_ID_MAG1 1 /* second byte of magic number */ 639 #define DOF_ID_MAG2 2 /* third byte of magic number */ 640 #define DOF_ID_MAG3 3 /* fourth byte of magic number */ 641 #define DOF_ID_MODEL 4 /* DOF data model (see below) */ 642 #define DOF_ID_ENCODING 5 /* DOF data encoding (see below) */ 643 #define DOF_ID_VERSION 6 /* DOF file format major version (see below) */ 644 #define DOF_ID_DIFVERS 7 /* DIF instruction set version */ 645 #define DOF_ID_DIFIREG 8 /* DIF integer registers used by compiler */ 646 #define DOF_ID_DIFTREG 9 /* DIF tuple registers used by compiler */ 647 #define DOF_ID_PAD 10 /* start of padding bytes (all zeroes) */ 648 649 #define DOF_MAG_MAG0 0x7F /* DOF_ID_MAG[0-3] */ 650 #define DOF_MAG_MAG1 'D' 651 #define DOF_MAG_MAG2 'O' 652 #define DOF_MAG_MAG3 'F' 653 654 #define DOF_MAG_STRING "\177DOF" 655 #define DOF_MAG_STRLEN 4 656 657 #define DOF_MODEL_NONE 0 /* DOF_ID_MODEL */ 658 #define DOF_MODEL_ILP32 1 659 #define DOF_MODEL_LP64 2 660 661 #ifdef _LP64 662 #define DOF_MODEL_NATIVE DOF_MODEL_LP64 663 #else 664 #define DOF_MODEL_NATIVE DOF_MODEL_ILP32 665 #endif 666 667 #define DOF_ENCODE_NONE 0 /* DOF_ID_ENCODING */ 668 #define DOF_ENCODE_LSB 1 669 #define DOF_ENCODE_MSB 2 670 671 #if BYTE_ORDER == _BIG_ENDIAN 672 #define DOF_ENCODE_NATIVE DOF_ENCODE_MSB 673 #else 674 #define DOF_ENCODE_NATIVE DOF_ENCODE_LSB 675 #endif 676 677 #define DOF_VERSION_1 1 /* DOF version 1: Solaris 10 FCS */ 678 #define DOF_VERSION_2 2 /* DOF version 2: Solaris Express 6/06 */ 679 #define DOF_VERSION DOF_VERSION_2 /* Latest DOF version */ 680 681 #define DOF_FL_VALID 0 /* mask of all valid dofh_flags bits */ 682 683 typedef uint32_t dof_secidx_t; /* section header table index type */ 684 typedef uint32_t dof_stridx_t; /* string table index type */ 685 686 #define DOF_SECIDX_NONE (-1U) /* null value for section indices */ 687 #define DOF_STRIDX_NONE (-1U) /* null value for string indices */ 688 689 typedef struct dof_sec { 690 uint32_t dofs_type; /* section type (see below) */ 691 uint32_t dofs_align; /* section data memory alignment */ 692 uint32_t dofs_flags; /* section flags (if any) */ 693 uint32_t dofs_entsize; /* size of section entry (if table) */ 694 uint64_t dofs_offset; /* offset of section data within file */ 695 uint64_t dofs_size; /* size of section data in bytes */ 696 } dof_sec_t; 697 698 #define DOF_SECT_NONE 0 /* null section */ 699 #define DOF_SECT_COMMENTS 1 /* compiler comments */ 700 #define DOF_SECT_SOURCE 2 /* D program source code */ 701 #define DOF_SECT_ECBDESC 3 /* dof_ecbdesc_t */ 702 #define DOF_SECT_PROBEDESC 4 /* dof_probedesc_t */ 703 #define DOF_SECT_ACTDESC 5 /* dof_actdesc_t array */ 704 #define DOF_SECT_DIFOHDR 6 /* dof_difohdr_t (variable length) */ 705 #define DOF_SECT_DIF 7 /* uint32_t array of byte code */ 706 #define DOF_SECT_STRTAB 8 /* string table */ 707 #define DOF_SECT_VARTAB 9 /* dtrace_difv_t array */ 708 #define DOF_SECT_RELTAB 10 /* dof_relodesc_t array */ 709 #define DOF_SECT_TYPTAB 11 /* dtrace_diftype_t array */ 710 #define DOF_SECT_URELHDR 12 /* dof_relohdr_t (user relocations) */ 711 #define DOF_SECT_KRELHDR 13 /* dof_relohdr_t (kernel relocations) */ 712 #define DOF_SECT_OPTDESC 14 /* dof_optdesc_t array */ 713 #define DOF_SECT_PROVIDER 15 /* dof_provider_t */ 714 #define DOF_SECT_PROBES 16 /* dof_probe_t array */ 715 #define DOF_SECT_PRARGS 17 /* uint8_t array (probe arg mappings) */ 716 #define DOF_SECT_PROFFS 18 /* uint32_t array (probe arg offsets) */ 717 #define DOF_SECT_INTTAB 19 /* uint64_t array */ 718 #define DOF_SECT_UTSNAME 20 /* struct utsname */ 719 #define DOF_SECT_XLTAB 21 /* dof_xlref_t array */ 720 #define DOF_SECT_XLMEMBERS 22 /* dof_xlmember_t array */ 721 #define DOF_SECT_XLIMPORT 23 /* dof_xlator_t */ 722 #define DOF_SECT_XLEXPORT 24 /* dof_xlator_t */ 723 #define DOF_SECT_PREXPORT 25 /* dof_secidx_t array (exported objs) */ 724 #define DOF_SECT_PRENOFFS 26 /* uint32_t array (enabled offsets) */ 725 726 #define DOF_SECF_LOAD 1 /* section should be loaded */ 727 728 #define DOF_SEC_ISLOADABLE(x) \ 729 (((x) == DOF_SECT_ECBDESC) || ((x) == DOF_SECT_PROBEDESC) || \ 730 ((x) == DOF_SECT_ACTDESC) || ((x) == DOF_SECT_DIFOHDR) || \ 731 ((x) == DOF_SECT_DIF) || ((x) == DOF_SECT_STRTAB) || \ 732 ((x) == DOF_SECT_VARTAB) || ((x) == DOF_SECT_RELTAB) || \ 733 ((x) == DOF_SECT_TYPTAB) || ((x) == DOF_SECT_URELHDR) || \ 734 ((x) == DOF_SECT_KRELHDR) || ((x) == DOF_SECT_OPTDESC) || \ 735 ((x) == DOF_SECT_PROVIDER) || ((x) == DOF_SECT_PROBES) || \ 736 ((x) == DOF_SECT_PRARGS) || ((x) == DOF_SECT_PROFFS) || \ 737 ((x) == DOF_SECT_INTTAB) || ((x) == DOF_SECT_XLTAB) || \ 738 ((x) == DOF_SECT_XLMEMBERS) || ((x) == DOF_SECT_XLIMPORT) || \ 739 ((x) == DOF_SECT_XLEXPORT) || ((x) == DOF_SECT_PREXPORT) || \ 740 ((x) == DOF_SECT_PRENOFFS)) 741 742 typedef struct dof_ecbdesc { 743 dof_secidx_t dofe_probes; /* link to DOF_SECT_PROBEDESC */ 744 dof_secidx_t dofe_pred; /* link to DOF_SECT_DIFOHDR */ 745 dof_secidx_t dofe_actions; /* link to DOF_SECT_ACTDESC */ 746 uint32_t dofe_pad; /* reserved for future use */ 747 uint64_t dofe_uarg; /* user-supplied library argument */ 748 } dof_ecbdesc_t; 749 750 typedef struct dof_probedesc { 751 dof_secidx_t dofp_strtab; /* link to DOF_SECT_STRTAB section */ 752 dof_stridx_t dofp_provider; /* provider string */ 753 dof_stridx_t dofp_mod; /* module string */ 754 dof_stridx_t dofp_func; /* function string */ 755 dof_stridx_t dofp_name; /* name string */ 756 uint32_t dofp_id; /* probe identifier (or zero) */ 757 } dof_probedesc_t; 758 759 typedef struct dof_actdesc { 760 dof_secidx_t dofa_difo; /* link to DOF_SECT_DIFOHDR */ 761 dof_secidx_t dofa_strtab; /* link to DOF_SECT_STRTAB section */ 762 uint32_t dofa_kind; /* action kind (DTRACEACT_* constant) */ 763 uint32_t dofa_ntuple; /* number of subsequent tuple actions */ 764 uint64_t dofa_arg; /* kind-specific argument */ 765 uint64_t dofa_uarg; /* user-supplied argument */ 766 } dof_actdesc_t; 767 768 typedef struct dof_difohdr { 769 dtrace_diftype_t dofd_rtype; /* return type for this fragment */ 770 dof_secidx_t dofd_links[1]; /* variable length array of indices */ 771 } dof_difohdr_t; 772 773 typedef struct dof_relohdr { 774 dof_secidx_t dofr_strtab; /* link to DOF_SECT_STRTAB for names */ 775 dof_secidx_t dofr_relsec; /* link to DOF_SECT_RELTAB for relos */ 776 dof_secidx_t dofr_tgtsec; /* link to section we are relocating */ 777 } dof_relohdr_t; 778 779 typedef struct dof_relodesc { 780 dof_stridx_t dofr_name; /* string name of relocation symbol */ 781 uint32_t dofr_type; /* relo type (DOF_RELO_* constant) */ 782 uint64_t dofr_offset; /* byte offset for relocation */ 783 uint64_t dofr_data; /* additional type-specific data */ 784 } dof_relodesc_t; 785 786 #define DOF_RELO_NONE 0 /* empty relocation entry */ 787 #define DOF_RELO_SETX 1 /* relocate setx value */ 788 #define DOF_RELO_DOFREL 2 /* relocate DOF-relative value */ 789 790 typedef struct dof_optdesc { 791 uint32_t dofo_option; /* option identifier */ 792 dof_secidx_t dofo_strtab; /* string table, if string option */ 793 uint64_t dofo_value; /* option value or string index */ 794 } dof_optdesc_t; 795 796 typedef uint32_t dof_attr_t; /* encoded stability attributes */ 797 798 #define DOF_ATTR(n, d, c) (((n) << 24) | ((d) << 16) | ((c) << 8)) 799 #define DOF_ATTR_NAME(a) (((a) >> 24) & 0xff) 800 #define DOF_ATTR_DATA(a) (((a) >> 16) & 0xff) 801 #define DOF_ATTR_CLASS(a) (((a) >> 8) & 0xff) 802 803 typedef struct dof_provider { 804 dof_secidx_t dofpv_strtab; /* link to DOF_SECT_STRTAB section */ 805 dof_secidx_t dofpv_probes; /* link to DOF_SECT_PROBES section */ 806 dof_secidx_t dofpv_prargs; /* link to DOF_SECT_PRARGS section */ 807 dof_secidx_t dofpv_proffs; /* link to DOF_SECT_PROFFS section */ 808 dof_stridx_t dofpv_name; /* provider name string */ 809 dof_attr_t dofpv_provattr; /* provider attributes */ 810 dof_attr_t dofpv_modattr; /* module attributes */ 811 dof_attr_t dofpv_funcattr; /* function attributes */ 812 dof_attr_t dofpv_nameattr; /* name attributes */ 813 dof_attr_t dofpv_argsattr; /* args attributes */ 814 dof_secidx_t dofpv_prenoffs; /* link to DOF_SECT_PRENOFFS section */ 815 } dof_provider_t; 816 817 typedef struct dof_probe { 818 uint64_t dofpr_addr; /* probe base address or offset */ 819 dof_stridx_t dofpr_func; /* probe function string */ 820 dof_stridx_t dofpr_name; /* probe name string */ 821 dof_stridx_t dofpr_nargv; /* native argument type strings */ 822 dof_stridx_t dofpr_xargv; /* translated argument type strings */ 823 uint32_t dofpr_argidx; /* index of first argument mapping */ 824 uint32_t dofpr_offidx; /* index of first offset entry */ 825 uint8_t dofpr_nargc; /* native argument count */ 826 uint8_t dofpr_xargc; /* translated argument count */ 827 uint16_t dofpr_noffs; /* number of offset entries for probe */ 828 uint32_t dofpr_enoffidx; /* index of first is-enabled offset */ 829 uint16_t dofpr_nenoffs; /* number of is-enabled offsets */ 830 uint16_t dofpr_pad1; /* reserved for future use */ 831 uint32_t dofpr_pad2; /* reserved for future use */ 832 } dof_probe_t; 833 834 typedef struct dof_xlator { 835 dof_secidx_t dofxl_members; /* link to DOF_SECT_XLMEMBERS section */ 836 dof_secidx_t dofxl_strtab; /* link to DOF_SECT_STRTAB section */ 837 dof_stridx_t dofxl_argv; /* input parameter type strings */ 838 uint32_t dofxl_argc; /* input parameter list length */ 839 dof_stridx_t dofxl_type; /* output type string name */ 840 dof_attr_t dofxl_attr; /* output stability attributes */ 841 } dof_xlator_t; 842 843 typedef struct dof_xlmember { 844 dof_secidx_t dofxm_difo; /* member link to DOF_SECT_DIFOHDR */ 845 dof_stridx_t dofxm_name; /* member name */ 846 dtrace_diftype_t dofxm_type; /* member type */ 847 } dof_xlmember_t; 848 849 typedef struct dof_xlref { 850 dof_secidx_t dofxr_xlator; /* link to DOF_SECT_XLATORS section */ 851 uint32_t dofxr_member; /* index of referenced dof_xlmember */ 852 uint32_t dofxr_argn; /* index of argument for DIF_OP_XLARG */ 853 } dof_xlref_t; 854 855 /* 856 * DTrace Intermediate Format Object (DIFO) 857 * 858 * A DIFO is used to store the compiled DIF for a D expression, its return 859 * type, and its string and variable tables. The string table is a single 860 * buffer of character data into which sets instructions and variable 861 * references can reference strings using a byte offset. The variable table 862 * is an array of dtrace_difv_t structures that describe the name and type of 863 * each variable and the id used in the DIF code. This structure is described 864 * above in the DIF section of this header file. The DIFO is used at both 865 * user-level (in the library) and in the kernel, but the structure is never 866 * passed between the two: the DOF structures form the only interface. As a 867 * result, the definition can change depending on the presence of _KERNEL. 868 */ 869 typedef struct dtrace_difo { 870 dif_instr_t *dtdo_buf; /* instruction buffer */ 871 uint64_t *dtdo_inttab; /* integer table (optional) */ 872 char *dtdo_strtab; /* string table (optional) */ 873 dtrace_difv_t *dtdo_vartab; /* variable table (optional) */ 874 uint_t dtdo_len; /* length of instruction buffer */ 875 uint_t dtdo_intlen; /* length of integer table */ 876 uint_t dtdo_strlen; /* length of string table */ 877 uint_t dtdo_varlen; /* length of variable table */ 878 dtrace_diftype_t dtdo_rtype; /* return type */ 879 uint_t dtdo_refcnt; /* owner reference count */ 880 uint_t dtdo_destructive; /* invokes destructive subroutines */ 881 #ifndef _KERNEL 882 dof_relodesc_t *dtdo_kreltab; /* kernel relocations */ 883 dof_relodesc_t *dtdo_ureltab; /* user relocations */ 884 struct dt_node **dtdo_xlmtab; /* translator references */ 885 uint_t dtdo_krelen; /* length of krelo table */ 886 uint_t dtdo_urelen; /* length of urelo table */ 887 uint_t dtdo_xlmlen; /* length of translator table */ 888 #endif 889 } dtrace_difo_t; 890 891 /* 892 * DTrace Enabling Description Structures 893 * 894 * When DTrace is tracking the description of a DTrace enabling entity (probe, 895 * predicate, action, ECB, record, etc.), it does so in a description 896 * structure. These structures all end in "desc", and are used at both 897 * user-level and in the kernel -- but (with the exception of 898 * dtrace_probedesc_t) they are never passed between them. Typically, 899 * user-level will use the description structures when assembling an enabling. 900 * It will then distill those description structures into a DOF object (see 901 * above), and send it into the kernel. The kernel will again use the 902 * description structures to create a description of the enabling as it reads 903 * the DOF. When the description is complete, the enabling will be actually 904 * created -- turning it into the structures that represent the enabling 905 * instead of merely describing it. Not surprisingly, the description 906 * structures bear a strong resemblance to the DOF structures that act as their 907 * conduit. 908 */ 909 struct dtrace_predicate; 910 911 typedef struct dtrace_probedesc { 912 dtrace_id_t dtpd_id; /* probe identifier */ 913 char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */ 914 char dtpd_mod[DTRACE_MODNAMELEN]; /* probe module name */ 915 char dtpd_func[DTRACE_FUNCNAMELEN]; /* probe function name */ 916 char dtpd_name[DTRACE_NAMELEN]; /* probe name */ 917 } dtrace_probedesc_t; 918 919 typedef struct dtrace_repldesc { 920 dtrace_probedesc_t dtrpd_match; /* probe descr. to match */ 921 dtrace_probedesc_t dtrpd_create; /* probe descr. to create */ 922 } dtrace_repldesc_t; 923 924 typedef struct dtrace_preddesc { 925 dtrace_difo_t *dtpdd_difo; /* pointer to DIF object */ 926 struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */ 927 } dtrace_preddesc_t; 928 929 typedef struct dtrace_actdesc { 930 dtrace_difo_t *dtad_difo; /* pointer to DIF object */ 931 struct dtrace_actdesc *dtad_next; /* next action */ 932 dtrace_actkind_t dtad_kind; /* kind of action */ 933 uint32_t dtad_ntuple; /* number in tuple */ 934 uint64_t dtad_arg; /* action argument */ 935 uint64_t dtad_uarg; /* user argument */ 936 int dtad_refcnt; /* reference count */ 937 } dtrace_actdesc_t; 938 939 typedef struct dtrace_ecbdesc { 940 dtrace_actdesc_t *dted_action; /* action description(s) */ 941 dtrace_preddesc_t dted_pred; /* predicate description */ 942 dtrace_probedesc_t dted_probe; /* probe description */ 943 uint64_t dted_uarg; /* library argument */ 944 int dted_refcnt; /* reference count */ 945 } dtrace_ecbdesc_t; 946 947 /* 948 * DTrace Metadata Description Structures 949 * 950 * DTrace separates the trace data stream from the metadata stream. The only 951 * metadata tokens placed in the data stream are the dtrace_rechdr_t (EPID + 952 * timestamp) or (in the case of aggregations) aggregation identifiers. To 953 * determine the structure of the data, DTrace consumers pass the token to the 954 * kernel, and receive in return a corresponding description of the enabled 955 * probe (via the dtrace_eprobedesc structure) or the aggregation (via the 956 * dtrace_aggdesc structure). Both of these structures are expressed in terms 957 * of record descriptions (via the dtrace_recdesc structure) that describe the 958 * exact structure of the data. Some record descriptions may also contain a 959 * format identifier; this additional bit of metadata can be retrieved from the 960 * kernel, for which a format description is returned via the dtrace_fmtdesc 961 * structure. Note that all four of these structures must be bitness-neutral 962 * to allow for a 32-bit DTrace consumer on a 64-bit kernel. 963 */ 964 typedef struct dtrace_recdesc { 965 dtrace_actkind_t dtrd_action; /* kind of action */ 966 uint32_t dtrd_size; /* size of record */ 967 uint32_t dtrd_offset; /* offset in ECB's data */ 968 uint16_t dtrd_alignment; /* required alignment */ 969 uint16_t dtrd_format; /* format, if any */ 970 uint64_t dtrd_arg; /* action argument */ 971 uint64_t dtrd_uarg; /* user argument */ 972 } dtrace_recdesc_t; 973 974 typedef struct dtrace_eprobedesc { 975 dtrace_epid_t dtepd_epid; /* enabled probe ID */ 976 dtrace_id_t dtepd_probeid; /* probe ID */ 977 uint64_t dtepd_uarg; /* library argument */ 978 uint32_t dtepd_size; /* total size */ 979 int dtepd_nrecs; /* number of records */ 980 dtrace_recdesc_t dtepd_rec[1]; /* records themselves */ 981 } dtrace_eprobedesc_t; 982 983 typedef struct dtrace_aggdesc { 984 DTRACE_PTR(char, dtagd_name); /* not filled in by kernel */ 985 dtrace_aggvarid_t dtagd_varid; /* not filled in by kernel */ 986 int dtagd_flags; /* not filled in by kernel */ 987 dtrace_aggid_t dtagd_id; /* aggregation ID */ 988 dtrace_epid_t dtagd_epid; /* enabled probe ID */ 989 uint32_t dtagd_size; /* size in bytes */ 990 int dtagd_nrecs; /* number of records */ 991 uint32_t dtagd_pad; /* explicit padding */ 992 dtrace_recdesc_t dtagd_rec[1]; /* record descriptions */ 993 } dtrace_aggdesc_t; 994 995 typedef struct dtrace_fmtdesc { 996 DTRACE_PTR(char, dtfd_string); /* format string */ 997 int dtfd_length; /* length of format string */ 998 uint16_t dtfd_format; /* format identifier */ 999 } dtrace_fmtdesc_t; 1000 1001 #define DTRACE_SIZEOF_EPROBEDESC(desc) \ 1002 (sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ? \ 1003 (((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0)) 1004 1005 #define DTRACE_SIZEOF_AGGDESC(desc) \ 1006 (sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ? \ 1007 (((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0)) 1008 1009 /* 1010 * DTrace Option Interface 1011 * 1012 * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections 1013 * in a DOF image. The dof_optdesc structure contains an option identifier and 1014 * an option value. The valid option identifiers are found below; the mapping 1015 * between option identifiers and option identifying strings is maintained at 1016 * user-level. Note that the value of DTRACEOPT_UNSET is such that all of the 1017 * following are potentially valid option values: all positive integers, zero 1018 * and negative one. Some options (notably "bufpolicy" and "bufresize") take 1019 * predefined tokens as their values; these are defined with 1020 * DTRACEOPT_{option}_{token}. 1021 */ 1022 #define DTRACEOPT_BUFSIZE 0 /* buffer size */ 1023 #define DTRACEOPT_BUFPOLICY 1 /* buffer policy */ 1024 #define DTRACEOPT_DYNVARSIZE 2 /* dynamic variable size */ 1025 #define DTRACEOPT_AGGSIZE 3 /* aggregation size */ 1026 #define DTRACEOPT_SPECSIZE 4 /* speculation size */ 1027 #define DTRACEOPT_NSPEC 5 /* number of speculations */ 1028 #define DTRACEOPT_STRSIZE 6 /* string size */ 1029 #define DTRACEOPT_CLEANRATE 7 /* dynvar cleaning rate */ 1030 #define DTRACEOPT_CPU 8 /* CPU to trace */ 1031 #define DTRACEOPT_BUFRESIZE 9 /* buffer resizing policy */ 1032 #define DTRACEOPT_GRABANON 10 /* grab anonymous state, if any */ 1033 #define DTRACEOPT_FLOWINDENT 11 /* indent function entry/return */ 1034 #define DTRACEOPT_QUIET 12 /* only output explicitly traced data */ 1035 #define DTRACEOPT_STACKFRAMES 13 /* number of stack frames */ 1036 #define DTRACEOPT_USTACKFRAMES 14 /* number of user stack frames */ 1037 #define DTRACEOPT_AGGRATE 15 /* aggregation snapshot rate */ 1038 #define DTRACEOPT_SWITCHRATE 16 /* buffer switching rate */ 1039 #define DTRACEOPT_STATUSRATE 17 /* status rate */ 1040 #define DTRACEOPT_DESTRUCTIVE 18 /* destructive actions allowed */ 1041 #define DTRACEOPT_STACKINDENT 19 /* output indent for stack traces */ 1042 #define DTRACEOPT_RAWBYTES 20 /* always print bytes in raw form */ 1043 #define DTRACEOPT_JSTACKFRAMES 21 /* number of jstack() frames */ 1044 #define DTRACEOPT_JSTACKSTRSIZE 22 /* size of jstack() string table */ 1045 #define DTRACEOPT_AGGSORTKEY 23 /* sort aggregations by key */ 1046 #define DTRACEOPT_AGGSORTREV 24 /* reverse-sort aggregations */ 1047 #define DTRACEOPT_AGGSORTPOS 25 /* agg. position to sort on */ 1048 #define DTRACEOPT_AGGSORTKEYPOS 26 /* agg. key position to sort on */ 1049 #define DTRACEOPT_TEMPORAL 27 /* temporally ordered output */ 1050 #define DTRACEOPT_AGGHIST 28 /* histogram aggregation output */ 1051 #define DTRACEOPT_AGGPACK 29 /* packed aggregation output */ 1052 #define DTRACEOPT_AGGZOOM 30 /* zoomed aggregation scaling */ 1053 #define DTRACEOPT_ZONE 31 /* zone in which to enable probes */ 1054 #define DTRACEOPT_MAX 32 /* number of options */ 1055 1056 #define DTRACEOPT_UNSET (dtrace_optval_t)-2 /* unset option */ 1057 1058 #define DTRACEOPT_BUFPOLICY_RING 0 /* ring buffer */ 1059 #define DTRACEOPT_BUFPOLICY_FILL 1 /* fill buffer, then stop */ 1060 #define DTRACEOPT_BUFPOLICY_SWITCH 2 /* switch buffers */ 1061 1062 #define DTRACEOPT_BUFRESIZE_AUTO 0 /* automatic resizing */ 1063 #define DTRACEOPT_BUFRESIZE_MANUAL 1 /* manual resizing */ 1064 1065 /* 1066 * DTrace Buffer Interface 1067 * 1068 * In order to get a snapshot of the principal or aggregation buffer, 1069 * user-level passes a buffer description to the kernel with the dtrace_bufdesc 1070 * structure. This describes which CPU user-level is interested in, and 1071 * where user-level wishes the kernel to snapshot the buffer to (the 1072 * dtbd_data field). The kernel uses the same structure to pass back some 1073 * information regarding the buffer: the size of data actually copied out, the 1074 * number of drops, the number of errors, the offset of the oldest record, 1075 * and the time of the snapshot. 1076 * 1077 * If the buffer policy is a "switch" policy, taking a snapshot of the 1078 * principal buffer has the additional effect of switching the active and 1079 * inactive buffers. Taking a snapshot of the aggregation buffer _always_ has 1080 * the additional effect of switching the active and inactive buffers. 1081 */ 1082 typedef struct dtrace_bufdesc { 1083 uint64_t dtbd_size; /* size of buffer */ 1084 uint32_t dtbd_cpu; /* CPU or DTRACE_CPUALL */ 1085 uint32_t dtbd_errors; /* number of errors */ 1086 uint64_t dtbd_drops; /* number of drops */ 1087 DTRACE_PTR(char, dtbd_data); /* data */ 1088 uint64_t dtbd_oldest; /* offset of oldest record */ 1089 uint64_t dtbd_timestamp; /* hrtime of snapshot */ 1090 } dtrace_bufdesc_t; 1091 1092 /* 1093 * Each record in the buffer (dtbd_data) begins with a header that includes 1094 * the epid and a timestamp. The timestamp is split into two 4-byte parts 1095 * so that we do not require 8-byte alignment. 1096 */ 1097 typedef struct dtrace_rechdr { 1098 dtrace_epid_t dtrh_epid; /* enabled probe id */ 1099 uint32_t dtrh_timestamp_hi; /* high bits of hrtime_t */ 1100 uint32_t dtrh_timestamp_lo; /* low bits of hrtime_t */ 1101 } dtrace_rechdr_t; 1102 1103 #define DTRACE_RECORD_LOAD_TIMESTAMP(dtrh) \ 1104 ((dtrh)->dtrh_timestamp_lo + \ 1105 ((uint64_t)(dtrh)->dtrh_timestamp_hi << 32)) 1106 1107 #define DTRACE_RECORD_STORE_TIMESTAMP(dtrh, hrtime) { \ 1108 (dtrh)->dtrh_timestamp_lo = (uint32_t)hrtime; \ 1109 (dtrh)->dtrh_timestamp_hi = hrtime >> 32; \ 1110 } 1111 1112 /* 1113 * DTrace Status 1114 * 1115 * The status of DTrace is relayed via the dtrace_status structure. This 1116 * structure contains members to count drops other than the capacity drops 1117 * available via the buffer interface (see above). This consists of dynamic 1118 * drops (including capacity dynamic drops, rinsing drops and dirty drops), and 1119 * speculative drops (including capacity speculative drops, drops due to busy 1120 * speculative buffers and drops due to unavailable speculative buffers). 1121 * Additionally, the status structure contains a field to indicate the number 1122 * of "fill"-policy buffers have been filled and a boolean field to indicate 1123 * that exit() has been called. If the dtst_exiting field is non-zero, no 1124 * further data will be generated until tracing is stopped (at which time any 1125 * enablings of the END action will be processed); if user-level sees that 1126 * this field is non-zero, tracing should be stopped as soon as possible. 1127 */ 1128 typedef struct dtrace_status { 1129 uint64_t dtst_dyndrops; /* dynamic drops */ 1130 uint64_t dtst_dyndrops_rinsing; /* dyn drops due to rinsing */ 1131 uint64_t dtst_dyndrops_dirty; /* dyn drops due to dirty */ 1132 uint64_t dtst_specdrops; /* speculative drops */ 1133 uint64_t dtst_specdrops_busy; /* spec drops due to busy */ 1134 uint64_t dtst_specdrops_unavail; /* spec drops due to unavail */ 1135 uint64_t dtst_errors; /* total errors */ 1136 uint64_t dtst_filled; /* number of filled bufs */ 1137 uint64_t dtst_stkstroverflows; /* stack string tab overflows */ 1138 uint64_t dtst_dblerrors; /* errors in ERROR probes */ 1139 char dtst_killed; /* non-zero if killed */ 1140 char dtst_exiting; /* non-zero if exit() called */ 1141 char dtst_pad[6]; /* pad out to 64-bit align */ 1142 } dtrace_status_t; 1143 1144 /* 1145 * DTrace Configuration 1146 * 1147 * User-level may need to understand some elements of the kernel DTrace 1148 * configuration in order to generate correct DIF. This information is 1149 * conveyed via the dtrace_conf structure. 1150 */ 1151 typedef struct dtrace_conf { 1152 uint_t dtc_difversion; /* supported DIF version */ 1153 uint_t dtc_difintregs; /* # of DIF integer registers */ 1154 uint_t dtc_diftupregs; /* # of DIF tuple registers */ 1155 uint_t dtc_ctfmodel; /* CTF data model */ 1156 uint_t dtc_pad[8]; /* reserved for future use */ 1157 } dtrace_conf_t; 1158 1159 /* 1160 * DTrace Faults 1161 * 1162 * The constants below DTRACEFLT_LIBRARY indicate probe processing faults; 1163 * constants at or above DTRACEFLT_LIBRARY indicate faults in probe 1164 * postprocessing at user-level. Probe processing faults induce an ERROR 1165 * probe and are replicated in unistd.d to allow users' ERROR probes to decode 1166 * the error condition using thse symbolic labels. 1167 */ 1168 #define DTRACEFLT_UNKNOWN 0 /* Unknown fault */ 1169 #define DTRACEFLT_BADADDR 1 /* Bad address */ 1170 #define DTRACEFLT_BADALIGN 2 /* Bad alignment */ 1171 #define DTRACEFLT_ILLOP 3 /* Illegal operation */ 1172 #define DTRACEFLT_DIVZERO 4 /* Divide-by-zero */ 1173 #define DTRACEFLT_NOSCRATCH 5 /* Out of scratch space */ 1174 #define DTRACEFLT_KPRIV 6 /* Illegal kernel access */ 1175 #define DTRACEFLT_UPRIV 7 /* Illegal user access */ 1176 #define DTRACEFLT_TUPOFLOW 8 /* Tuple stack overflow */ 1177 #define DTRACEFLT_BADSTACK 9 /* Bad stack */ 1178 1179 #define DTRACEFLT_LIBRARY 1000 /* Library-level fault */ 1180 1181 /* 1182 * DTrace Argument Types 1183 * 1184 * Because it would waste both space and time, argument types do not reside 1185 * with the probe. In order to determine argument types for args[X] 1186 * variables, the D compiler queries for argument types on a probe-by-probe 1187 * basis. (This optimizes for the common case that arguments are either not 1188 * used or used in an untyped fashion.) Typed arguments are specified with a 1189 * string of the type name in the dtragd_native member of the argument 1190 * description structure. Typed arguments may be further translated to types 1191 * of greater stability; the provider indicates such a translated argument by 1192 * filling in the dtargd_xlate member with the string of the translated type. 1193 * Finally, the provider may indicate which argument value a given argument 1194 * maps to by setting the dtargd_mapping member -- allowing a single argument 1195 * to map to multiple args[X] variables. 1196 */ 1197 typedef struct dtrace_argdesc { 1198 dtrace_id_t dtargd_id; /* probe identifier */ 1199 int dtargd_ndx; /* arg number (-1 iff none) */ 1200 int dtargd_mapping; /* value mapping */ 1201 char dtargd_native[DTRACE_ARGTYPELEN]; /* native type name */ 1202 char dtargd_xlate[DTRACE_ARGTYPELEN]; /* translated type name */ 1203 } dtrace_argdesc_t; 1204 1205 /* 1206 * DTrace Stability Attributes 1207 * 1208 * Each DTrace provider advertises the name and data stability of each of its 1209 * probe description components, as well as its architectural dependencies. 1210 * The D compiler can query the provider attributes (dtrace_pattr_t below) in 1211 * order to compute the properties of an input program and report them. 1212 */ 1213 typedef uint8_t dtrace_stability_t; /* stability code (see attributes(5)) */ 1214 typedef uint8_t dtrace_class_t; /* architectural dependency class */ 1215 1216 #define DTRACE_STABILITY_INTERNAL 0 /* private to DTrace itself */ 1217 #define DTRACE_STABILITY_PRIVATE 1 /* private to Sun (see docs) */ 1218 #define DTRACE_STABILITY_OBSOLETE 2 /* scheduled for removal */ 1219 #define DTRACE_STABILITY_EXTERNAL 3 /* not controlled by Sun */ 1220 #define DTRACE_STABILITY_UNSTABLE 4 /* new or rapidly changing */ 1221 #define DTRACE_STABILITY_EVOLVING 5 /* less rapidly changing */ 1222 #define DTRACE_STABILITY_STABLE 6 /* mature interface from Sun */ 1223 #define DTRACE_STABILITY_STANDARD 7 /* industry standard */ 1224 #define DTRACE_STABILITY_MAX 7 /* maximum valid stability */ 1225 1226 #define DTRACE_CLASS_UNKNOWN 0 /* unknown architectural dependency */ 1227 #define DTRACE_CLASS_CPU 1 /* CPU-module-specific */ 1228 #define DTRACE_CLASS_PLATFORM 2 /* platform-specific (uname -i) */ 1229 #define DTRACE_CLASS_GROUP 3 /* hardware-group-specific (uname -m) */ 1230 #define DTRACE_CLASS_ISA 4 /* ISA-specific (uname -p) */ 1231 #define DTRACE_CLASS_COMMON 5 /* common to all systems */ 1232 #define DTRACE_CLASS_MAX 5 /* maximum valid class */ 1233 1234 #define DTRACE_PRIV_NONE 0x0000 1235 #define DTRACE_PRIV_KERNEL 0x0001 1236 #define DTRACE_PRIV_USER 0x0002 1237 #define DTRACE_PRIV_PROC 0x0004 1238 #define DTRACE_PRIV_OWNER 0x0008 1239 #define DTRACE_PRIV_ZONEOWNER 0x0010 1240 1241 #define DTRACE_PRIV_ALL \ 1242 (DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \ 1243 DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER) 1244 1245 typedef struct dtrace_ppriv { 1246 uint32_t dtpp_flags; /* privilege flags */ 1247 uid_t dtpp_uid; /* user ID */ 1248 zoneid_t dtpp_zoneid; /* zone ID */ 1249 } dtrace_ppriv_t; 1250 1251 typedef struct dtrace_attribute { 1252 dtrace_stability_t dtat_name; /* entity name stability */ 1253 dtrace_stability_t dtat_data; /* entity data stability */ 1254 dtrace_class_t dtat_class; /* entity data dependency */ 1255 } dtrace_attribute_t; 1256 1257 typedef struct dtrace_pattr { 1258 dtrace_attribute_t dtpa_provider; /* provider attributes */ 1259 dtrace_attribute_t dtpa_mod; /* module attributes */ 1260 dtrace_attribute_t dtpa_func; /* function attributes */ 1261 dtrace_attribute_t dtpa_name; /* name attributes */ 1262 dtrace_attribute_t dtpa_args; /* args[] attributes */ 1263 } dtrace_pattr_t; 1264 1265 typedef struct dtrace_providerdesc { 1266 char dtvd_name[DTRACE_PROVNAMELEN]; /* provider name */ 1267 dtrace_pattr_t dtvd_attr; /* stability attributes */ 1268 dtrace_ppriv_t dtvd_priv; /* privileges required */ 1269 } dtrace_providerdesc_t; 1270 1271 /* 1272 * DTrace Pseudodevice Interface 1273 * 1274 * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace 1275 * pseudodevice driver. These ioctls comprise the user-kernel interface to 1276 * DTrace. 1277 */ 1278 #ifdef illumos 1279 #define DTRACEIOC (('d' << 24) | ('t' << 16) | ('r' << 8)) 1280 #define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */ 1281 #define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */ 1282 #define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */ 1283 #define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */ 1284 #define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */ 1285 #define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */ 1286 #define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */ 1287 #define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */ 1288 #define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */ 1289 #define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */ 1290 #define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */ 1291 #define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */ 1292 #define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */ 1293 #define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */ 1294 #define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */ 1295 #define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */ 1296 #else 1297 #define DTRACEIOC_PROVIDER _IOWR('x',1,dtrace_providerdesc_t) 1298 /* provider query */ 1299 #define DTRACEIOC_PROBES _IOWR('x',2,dtrace_probedesc_t) 1300 /* probe query */ 1301 #define DTRACEIOC_BUFSNAP _IOW('x',4,dtrace_bufdesc_t *) 1302 /* snapshot buffer */ 1303 #define DTRACEIOC_PROBEMATCH _IOWR('x',5,dtrace_probedesc_t) 1304 /* match probes */ 1305 typedef struct { 1306 void *dof; /* DOF userland address written to driver. */ 1307 int n_matched; /* # matches returned by driver. */ 1308 } dtrace_enable_io_t; 1309 #define DTRACEIOC_ENABLE _IOWR('x',6,dtrace_enable_io_t) 1310 /* enable probes */ 1311 #define DTRACEIOC_AGGSNAP _IOW('x',7,dtrace_bufdesc_t *) 1312 /* snapshot agg. */ 1313 #define DTRACEIOC_EPROBE _IOW('x',8,dtrace_eprobedesc_t) 1314 /* get eprobe desc. */ 1315 #define DTRACEIOC_PROBEARG _IOWR('x',9,dtrace_argdesc_t) 1316 /* get probe arg */ 1317 #define DTRACEIOC_CONF _IOR('x',10,dtrace_conf_t) 1318 /* get config. */ 1319 #define DTRACEIOC_STATUS _IOR('x',11,dtrace_status_t) 1320 /* get status */ 1321 #define DTRACEIOC_GO _IOR('x',12,processorid_t) 1322 /* start tracing */ 1323 #define DTRACEIOC_STOP _IOWR('x',13,processorid_t) 1324 /* stop tracing */ 1325 #define DTRACEIOC_AGGDESC _IOW('x',15,dtrace_aggdesc_t *) 1326 /* get agg. desc. */ 1327 #define DTRACEIOC_FORMAT _IOWR('x',16,dtrace_fmtdesc_t) 1328 /* get format str */ 1329 #define DTRACEIOC_DOFGET _IOW('x',17,dof_hdr_t *) 1330 /* get DOF */ 1331 #define DTRACEIOC_REPLICATE _IOW('x',18,dtrace_repldesc_t) 1332 /* replicate enab */ 1333 #endif 1334 1335 /* 1336 * DTrace Helpers 1337 * 1338 * In general, DTrace establishes probes in processes and takes actions on 1339 * processes without knowing their specific user-level structures. Instead of 1340 * existing in the framework, process-specific knowledge is contained by the 1341 * enabling D program -- which can apply process-specific knowledge by making 1342 * appropriate use of DTrace primitives like copyin() and copyinstr() to 1343 * operate on user-level data. However, there may exist some specific probes 1344 * of particular semantic relevance that the application developer may wish to 1345 * explicitly export. For example, an application may wish to export a probe 1346 * at the point that it begins and ends certain well-defined transactions. In 1347 * addition to providing probes, programs may wish to offer assistance for 1348 * certain actions. For example, in highly dynamic environments (e.g., Java), 1349 * it may be difficult to obtain a stack trace in terms of meaningful symbol 1350 * names (the translation from instruction addresses to corresponding symbol 1351 * names may only be possible in situ); these environments may wish to define 1352 * a series of actions to be applied in situ to obtain a meaningful stack 1353 * trace. 1354 * 1355 * These two mechanisms -- user-level statically defined tracing and assisting 1356 * DTrace actions -- are provided via DTrace _helpers_. Helpers are specified 1357 * via DOF, but unlike enabling DOF, helper DOF may contain definitions of 1358 * providers, probes and their arguments. If a helper wishes to provide 1359 * action assistance, probe descriptions and corresponding DIF actions may be 1360 * specified in the helper DOF. For such helper actions, however, the probe 1361 * description describes the specific helper: all DTrace helpers have the 1362 * provider name "dtrace" and the module name "helper", and the name of the 1363 * helper is contained in the function name (for example, the ustack() helper 1364 * is named "ustack"). Any helper-specific name may be contained in the name 1365 * (for example, if a helper were to have a constructor, it might be named 1366 * "dtrace:helper:<helper>:init"). Helper actions are only called when the 1367 * action that they are helping is taken. Helper actions may only return DIF 1368 * expressions, and may only call the following subroutines: 1369 * 1370 * alloca() <= Allocates memory out of the consumer's scratch space 1371 * bcopy() <= Copies memory to scratch space 1372 * copyin() <= Copies memory from user-level into consumer's scratch 1373 * copyinto() <= Copies memory into a specific location in scratch 1374 * copyinstr() <= Copies a string into a specific location in scratch 1375 * 1376 * Helper actions may only access the following built-in variables: 1377 * 1378 * curthread <= Current kthread_t pointer 1379 * tid <= Current thread identifier 1380 * pid <= Current process identifier 1381 * ppid <= Parent process identifier 1382 * uid <= Current user ID 1383 * gid <= Current group ID 1384 * execname <= Current executable name 1385 * zonename <= Current zone name 1386 * 1387 * Helper actions may not manipulate or allocate dynamic variables, but they 1388 * may have clause-local and statically-allocated global variables. The 1389 * helper action variable state is specific to the helper action -- variables 1390 * used by the helper action may not be accessed outside of the helper 1391 * action, and the helper action may not access variables that like outside 1392 * of it. Helper actions may not load from kernel memory at-large; they are 1393 * restricting to loading current user state (via copyin() and variants) and 1394 * scratch space. As with probe enablings, helper actions are executed in 1395 * program order. The result of the helper action is the result of the last 1396 * executing helper expression. 1397 * 1398 * Helpers -- composed of either providers/probes or probes/actions (or both) 1399 * -- are added by opening the "helper" minor node, and issuing an ioctl(2) 1400 * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This 1401 * encapsulates the name and base address of the user-level library or 1402 * executable publishing the helpers and probes as well as the DOF that 1403 * contains the definitions of those helpers and probes. 1404 * 1405 * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy 1406 * helpers and should no longer be used. No other ioctls are valid on the 1407 * helper minor node. 1408 */ 1409 #ifdef illumos 1410 #define DTRACEHIOC (('d' << 24) | ('t' << 16) | ('h' << 8)) 1411 #define DTRACEHIOC_ADD (DTRACEHIOC | 1) /* add helper */ 1412 #define DTRACEHIOC_REMOVE (DTRACEHIOC | 2) /* remove helper */ 1413 #define DTRACEHIOC_ADDDOF (DTRACEHIOC | 3) /* add helper DOF */ 1414 #else 1415 #define DTRACEHIOC_REMOVE _IOW('z', 2, int) /* remove helper */ 1416 #define DTRACEHIOC_ADDDOF _IOWR('z', 3, dof_helper_t)/* add helper DOF */ 1417 #endif 1418 1419 typedef struct dof_helper { 1420 char dofhp_mod[DTRACE_MODNAMELEN]; /* executable or library name */ 1421 uint64_t dofhp_addr; /* base address of object */ 1422 uint64_t dofhp_dof; /* address of helper DOF */ 1423 #if defined(__FreeBSD__) || defined(__NetBSD__) 1424 pid_t dofhp_pid; /* target process ID */ 1425 int dofhp_gen; 1426 #endif 1427 } dof_helper_t; 1428 1429 #define DTRACEMNR_DTRACE "dtrace" /* node for DTrace ops */ 1430 #define DTRACEMNR_HELPER "helper" /* node for helpers */ 1431 #define DTRACEMNRN_DTRACE 0 /* minor for DTrace ops */ 1432 #define DTRACEMNRN_HELPER 1 /* minor for helpers */ 1433 #define DTRACEMNRN_CLONE 2 /* first clone minor */ 1434 1435 #ifdef _KERNEL 1436 1437 /* 1438 * DTrace Provider API 1439 * 1440 * The following functions are implemented by the DTrace framework and are 1441 * used to implement separate in-kernel DTrace providers. Common functions 1442 * are provided in uts/common/os/dtrace.c. ISA-dependent subroutines are 1443 * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c. 1444 * 1445 * The provider API has two halves: the API that the providers consume from 1446 * DTrace, and the API that providers make available to DTrace. 1447 * 1448 * 1 Framework-to-Provider API 1449 * 1450 * 1.1 Overview 1451 * 1452 * The Framework-to-Provider API is represented by the dtrace_pops structure 1453 * that the provider passes to the framework when registering itself. This 1454 * structure consists of the following members: 1455 * 1456 * dtps_provide() <-- Provide all probes, all modules 1457 * dtps_provide_module() <-- Provide all probes in specified module 1458 * dtps_enable() <-- Enable specified probe 1459 * dtps_disable() <-- Disable specified probe 1460 * dtps_suspend() <-- Suspend specified probe 1461 * dtps_resume() <-- Resume specified probe 1462 * dtps_getargdesc() <-- Get the argument description for args[X] 1463 * dtps_getargval() <-- Get the value for an argX or args[X] variable 1464 * dtps_usermode() <-- Find out if the probe was fired in user mode 1465 * dtps_destroy() <-- Destroy all state associated with this probe 1466 * 1467 * 1.2 void dtps_provide(void *arg, const dtrace_probedesc_t *spec) 1468 * 1469 * 1.2.1 Overview 1470 * 1471 * Called to indicate that the provider should provide all probes. If the 1472 * specified description is non-NULL, dtps_provide() is being called because 1473 * no probe matched a specified probe -- if the provider has the ability to 1474 * create custom probes, it may wish to create a probe that matches the 1475 * specified description. 1476 * 1477 * 1.2.2 Arguments and notes 1478 * 1479 * The first argument is the cookie as passed to dtrace_register(). The 1480 * second argument is a pointer to a probe description that the provider may 1481 * wish to consider when creating custom probes. The provider is expected to 1482 * call back into the DTrace framework via dtrace_probe_create() to create 1483 * any necessary probes. dtps_provide() may be called even if the provider 1484 * has made available all probes; the provider should check the return value 1485 * of dtrace_probe_create() to handle this case. Note that the provider need 1486 * not implement both dtps_provide() and dtps_provide_module(); see 1487 * "Arguments and Notes" for dtrace_register(), below. 1488 * 1489 * 1.2.3 Return value 1490 * 1491 * None. 1492 * 1493 * 1.2.4 Caller's context 1494 * 1495 * dtps_provide() is typically called from open() or ioctl() context, but may 1496 * be called from other contexts as well. The DTrace framework is locked in 1497 * such a way that providers may not register or unregister. This means that 1498 * the provider may not call any DTrace API that affects its registration with 1499 * the framework, including dtrace_register(), dtrace_unregister(), 1500 * dtrace_invalidate(), and dtrace_condense(). However, the context is such 1501 * that the provider may (and indeed, is expected to) call probe-related 1502 * DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(), 1503 * and dtrace_probe_arg(). 1504 * 1505 * 1.3 void dtps_provide_module(void *arg, modctl_t *mp) 1506 * 1507 * 1.3.1 Overview 1508 * 1509 * Called to indicate that the provider should provide all probes in the 1510 * specified module. 1511 * 1512 * 1.3.2 Arguments and notes 1513 * 1514 * The first argument is the cookie as passed to dtrace_register(). The 1515 * second argument is a pointer to a modctl structure that indicates the 1516 * module for which probes should be created. 1517 * 1518 * 1.3.3 Return value 1519 * 1520 * None. 1521 * 1522 * 1.3.4 Caller's context 1523 * 1524 * dtps_provide_module() may be called from open() or ioctl() context, but 1525 * may also be called from a module loading context. mod_lock is held, and 1526 * the DTrace framework is locked in such a way that providers may not 1527 * register or unregister. This means that the provider may not call any 1528 * DTrace API that affects its registration with the framework, including 1529 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and 1530 * dtrace_condense(). However, the context is such that the provider may (and 1531 * indeed, is expected to) call probe-related DTrace routines, including 1532 * dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg(). Note 1533 * that the provider need not implement both dtps_provide() and 1534 * dtps_provide_module(); see "Arguments and Notes" for dtrace_register(), 1535 * below. 1536 * 1537 * 1.4 void dtps_enable(void *arg, dtrace_id_t id, void *parg) 1538 * 1539 * 1.4.1 Overview 1540 * 1541 * Called to enable the specified probe. 1542 * 1543 * 1.4.2 Arguments and notes 1544 * 1545 * The first argument is the cookie as passed to dtrace_register(). The 1546 * second argument is the identifier of the probe to be enabled. The third 1547 * argument is the probe argument as passed to dtrace_probe_create(). 1548 * dtps_enable() will be called when a probe transitions from not being 1549 * enabled at all to having one or more ECB. The number of ECBs associated 1550 * with the probe may change without subsequent calls into the provider. 1551 * When the number of ECBs drops to zero, the provider will be explicitly 1552 * told to disable the probe via dtps_disable(). dtrace_probe() should never 1553 * be called for a probe identifier that hasn't been explicitly enabled via 1554 * dtps_enable(). 1555 * 1556 * 1.4.3 Return value 1557 * 1558 * None. 1559 * 1560 * 1.4.4 Caller's context 1561 * 1562 * The DTrace framework is locked in such a way that it may not be called 1563 * back into at all. cpu_lock is held. mod_lock is not held and may not 1564 * be acquired. 1565 * 1566 * 1.5 void dtps_disable(void *arg, dtrace_id_t id, void *parg) 1567 * 1568 * 1.5.1 Overview 1569 * 1570 * Called to disable the specified probe. 1571 * 1572 * 1.5.2 Arguments and notes 1573 * 1574 * The first argument is the cookie as passed to dtrace_register(). The 1575 * second argument is the identifier of the probe to be disabled. The third 1576 * argument is the probe argument as passed to dtrace_probe_create(). 1577 * dtps_disable() will be called when a probe transitions from being enabled 1578 * to having zero ECBs. dtrace_probe() should never be called for a probe 1579 * identifier that has been explicitly enabled via dtps_disable(). 1580 * 1581 * 1.5.3 Return value 1582 * 1583 * None. 1584 * 1585 * 1.5.4 Caller's context 1586 * 1587 * The DTrace framework is locked in such a way that it may not be called 1588 * back into at all. cpu_lock is held. mod_lock is not held and may not 1589 * be acquired. 1590 * 1591 * 1.6 void dtps_suspend(void *arg, dtrace_id_t id, void *parg) 1592 * 1593 * 1.6.1 Overview 1594 * 1595 * Called to suspend the specified enabled probe. This entry point is for 1596 * providers that may need to suspend some or all of their probes when CPUs 1597 * are being powered on or when the boot monitor is being entered for a 1598 * prolonged period of time. 1599 * 1600 * 1.6.2 Arguments and notes 1601 * 1602 * The first argument is the cookie as passed to dtrace_register(). The 1603 * second argument is the identifier of the probe to be suspended. The 1604 * third argument is the probe argument as passed to dtrace_probe_create(). 1605 * dtps_suspend will only be called on an enabled probe. Providers that 1606 * provide a dtps_suspend entry point will want to take roughly the action 1607 * that it takes for dtps_disable. 1608 * 1609 * 1.6.3 Return value 1610 * 1611 * None. 1612 * 1613 * 1.6.4 Caller's context 1614 * 1615 * Interrupts are disabled. The DTrace framework is in a state such that the 1616 * specified probe cannot be disabled or destroyed for the duration of 1617 * dtps_suspend(). As interrupts are disabled, the provider is afforded 1618 * little latitude; the provider is expected to do no more than a store to 1619 * memory. 1620 * 1621 * 1.7 void dtps_resume(void *arg, dtrace_id_t id, void *parg) 1622 * 1623 * 1.7.1 Overview 1624 * 1625 * Called to resume the specified enabled probe. This entry point is for 1626 * providers that may need to resume some or all of their probes after the 1627 * completion of an event that induced a call to dtps_suspend(). 1628 * 1629 * 1.7.2 Arguments and notes 1630 * 1631 * The first argument is the cookie as passed to dtrace_register(). The 1632 * second argument is the identifier of the probe to be resumed. The 1633 * third argument is the probe argument as passed to dtrace_probe_create(). 1634 * dtps_resume will only be called on an enabled probe. Providers that 1635 * provide a dtps_resume entry point will want to take roughly the action 1636 * that it takes for dtps_enable. 1637 * 1638 * 1.7.3 Return value 1639 * 1640 * None. 1641 * 1642 * 1.7.4 Caller's context 1643 * 1644 * Interrupts are disabled. The DTrace framework is in a state such that the 1645 * specified probe cannot be disabled or destroyed for the duration of 1646 * dtps_resume(). As interrupts are disabled, the provider is afforded 1647 * little latitude; the provider is expected to do no more than a store to 1648 * memory. 1649 * 1650 * 1.8 void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg, 1651 * dtrace_argdesc_t *desc) 1652 * 1653 * 1.8.1 Overview 1654 * 1655 * Called to retrieve the argument description for an args[X] variable. 1656 * 1657 * 1.8.2 Arguments and notes 1658 * 1659 * The first argument is the cookie as passed to dtrace_register(). The 1660 * second argument is the identifier of the current probe. The third 1661 * argument is the probe argument as passed to dtrace_probe_create(). The 1662 * fourth argument is a pointer to the argument description. This 1663 * description is both an input and output parameter: it contains the 1664 * index of the desired argument in the dtargd_ndx field, and expects 1665 * the other fields to be filled in upon return. If there is no argument 1666 * corresponding to the specified index, the dtargd_ndx field should be set 1667 * to DTRACE_ARGNONE. 1668 * 1669 * 1.8.3 Return value 1670 * 1671 * None. The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping 1672 * members of the dtrace_argdesc_t structure are all output values. 1673 * 1674 * 1.8.4 Caller's context 1675 * 1676 * dtps_getargdesc() is called from ioctl() context. mod_lock is held, and 1677 * the DTrace framework is locked in such a way that providers may not 1678 * register or unregister. This means that the provider may not call any 1679 * DTrace API that affects its registration with the framework, including 1680 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and 1681 * dtrace_condense(). 1682 * 1683 * 1.9 uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg, 1684 * int argno, int aframes) 1685 * 1686 * 1.9.1 Overview 1687 * 1688 * Called to retrieve a value for an argX or args[X] variable. 1689 * 1690 * 1.9.2 Arguments and notes 1691 * 1692 * The first argument is the cookie as passed to dtrace_register(). The 1693 * second argument is the identifier of the current probe. The third 1694 * argument is the probe argument as passed to dtrace_probe_create(). The 1695 * fourth argument is the number of the argument (the X in the example in 1696 * 1.9.1). The fifth argument is the number of stack frames that were used 1697 * to get from the actual place in the code that fired the probe to 1698 * dtrace_probe() itself, the so-called artificial frames. This argument may 1699 * be used to descend an appropriate number of frames to find the correct 1700 * values. If this entry point is left NULL, the dtrace_getarg() built-in 1701 * function is used. 1702 * 1703 * 1.9.3 Return value 1704 * 1705 * The value of the argument. 1706 * 1707 * 1.9.4 Caller's context 1708 * 1709 * This is called from within dtrace_probe() meaning that interrupts 1710 * are disabled. No locks should be taken within this entry point. 1711 * 1712 * 1.10 int dtps_usermode(void *arg, dtrace_id_t id, void *parg) 1713 * 1714 * 1.10.1 Overview 1715 * 1716 * Called to determine if the probe was fired in a user context. 1717 * 1718 * 1.10.2 Arguments and notes 1719 * 1720 * The first argument is the cookie as passed to dtrace_register(). The 1721 * second argument is the identifier of the current probe. The third 1722 * argument is the probe argument as passed to dtrace_probe_create(). This 1723 * entry point must not be left NULL for providers whose probes allow for 1724 * mixed mode tracing, that is to say those probes that can fire during 1725 * kernel- _or_ user-mode execution 1726 * 1727 * 1.10.3 Return value 1728 * 1729 * A bitwise OR that encapsulates both the mode (either DTRACE_MODE_KERNEL 1730 * or DTRACE_MODE_USER) and the policy when the privilege of the enabling 1731 * is insufficient for that mode (a combination of DTRACE_MODE_NOPRIV_DROP, 1732 * DTRACE_MODE_NOPRIV_RESTRICT, and DTRACE_MODE_LIMITEDPRIV_RESTRICT). If 1733 * DTRACE_MODE_NOPRIV_DROP bit is set, insufficient privilege will result 1734 * in the probe firing being silently ignored for the enabling; if the 1735 * DTRACE_NODE_NOPRIV_RESTRICT bit is set, insufficient privilege will not 1736 * prevent probe processing for the enabling, but restrictions will be in 1737 * place that induce a UPRIV fault upon attempt to examine probe arguments 1738 * or current process state. If the DTRACE_MODE_LIMITEDPRIV_RESTRICT bit 1739 * is set, similar restrictions will be placed upon operation if the 1740 * privilege is sufficient to process the enabling, but does not otherwise 1741 * entitle the enabling to all zones. The DTRACE_MODE_NOPRIV_DROP and 1742 * DTRACE_MODE_NOPRIV_RESTRICT are mutually exclusive (and one of these 1743 * two policies must be specified), but either may be combined (or not) 1744 * with DTRACE_MODE_LIMITEDPRIV_RESTRICT. 1745 * 1746 * 1.10.4 Caller's context 1747 * 1748 * This is called from within dtrace_probe() meaning that interrupts 1749 * are disabled. No locks should be taken within this entry point. 1750 * 1751 * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg) 1752 * 1753 * 1.11.1 Overview 1754 * 1755 * Called to destroy the specified probe. 1756 * 1757 * 1.11.2 Arguments and notes 1758 * 1759 * The first argument is the cookie as passed to dtrace_register(). The 1760 * second argument is the identifier of the probe to be destroyed. The third 1761 * argument is the probe argument as passed to dtrace_probe_create(). The 1762 * provider should free all state associated with the probe. The framework 1763 * guarantees that dtps_destroy() is only called for probes that have either 1764 * been disabled via dtps_disable() or were never enabled via dtps_enable(). 1765 * Once dtps_disable() has been called for a probe, no further call will be 1766 * made specifying the probe. 1767 * 1768 * 1.11.3 Return value 1769 * 1770 * None. 1771 * 1772 * 1.11.4 Caller's context 1773 * 1774 * The DTrace framework is locked in such a way that it may not be called 1775 * back into at all. mod_lock is held. cpu_lock is not held, and may not be 1776 * acquired. 1777 * 1778 * 1779 * 2 Provider-to-Framework API 1780 * 1781 * 2.1 Overview 1782 * 1783 * The Provider-to-Framework API provides the mechanism for the provider to 1784 * register itself with the DTrace framework, to create probes, to lookup 1785 * probes and (most importantly) to fire probes. The Provider-to-Framework 1786 * consists of: 1787 * 1788 * dtrace_register() <-- Register a provider with the DTrace framework 1789 * dtrace_unregister() <-- Remove a provider's DTrace registration 1790 * dtrace_invalidate() <-- Invalidate the specified provider 1791 * dtrace_condense() <-- Remove a provider's unenabled probes 1792 * dtrace_attached() <-- Indicates whether or not DTrace has attached 1793 * dtrace_probe_create() <-- Create a DTrace probe 1794 * dtrace_probe_lookup() <-- Lookup a DTrace probe based on its name 1795 * dtrace_probe_arg() <-- Return the probe argument for a specific probe 1796 * dtrace_probe() <-- Fire the specified probe 1797 * 1798 * 2.2 int dtrace_register(const char *name, const dtrace_pattr_t *pap, 1799 * uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg, 1800 * dtrace_provider_id_t *idp) 1801 * 1802 * 2.2.1 Overview 1803 * 1804 * dtrace_register() registers the calling provider with the DTrace 1805 * framework. It should generally be called by DTrace providers in their 1806 * attach(9E) entry point. 1807 * 1808 * 2.2.2 Arguments and Notes 1809 * 1810 * The first argument is the name of the provider. The second argument is a 1811 * pointer to the stability attributes for the provider. The third argument 1812 * is the privilege flags for the provider, and must be some combination of: 1813 * 1814 * DTRACE_PRIV_NONE <= All users may enable probes from this provider 1815 * 1816 * DTRACE_PRIV_PROC <= Any user with privilege of PRIV_DTRACE_PROC may 1817 * enable probes from this provider 1818 * 1819 * DTRACE_PRIV_USER <= Any user with privilege of PRIV_DTRACE_USER may 1820 * enable probes from this provider 1821 * 1822 * DTRACE_PRIV_KERNEL <= Any user with privilege of PRIV_DTRACE_KERNEL 1823 * may enable probes from this provider 1824 * 1825 * DTRACE_PRIV_OWNER <= This flag places an additional constraint on 1826 * the privilege requirements above. These probes 1827 * require either (a) a user ID matching the user 1828 * ID of the cred passed in the fourth argument 1829 * or (b) the PRIV_PROC_OWNER privilege. 1830 * 1831 * DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on 1832 * the privilege requirements above. These probes 1833 * require either (a) a zone ID matching the zone 1834 * ID of the cred passed in the fourth argument 1835 * or (b) the PRIV_PROC_ZONE privilege. 1836 * 1837 * Note that these flags designate the _visibility_ of the probes, not 1838 * the conditions under which they may or may not fire. 1839 * 1840 * The fourth argument is the credential that is associated with the 1841 * provider. This argument should be NULL if the privilege flags don't 1842 * include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER. If non-NULL, the 1843 * framework stashes the uid and zoneid represented by this credential 1844 * for use at probe-time, in implicit predicates. These limit visibility 1845 * of the probes to users and/or zones which have sufficient privilege to 1846 * access them. 1847 * 1848 * The fifth argument is a DTrace provider operations vector, which provides 1849 * the implementation for the Framework-to-Provider API. (See Section 1, 1850 * above.) This must be non-NULL, and each member must be non-NULL. The 1851 * exceptions to this are (1) the dtps_provide() and dtps_provide_module() 1852 * members (if the provider so desires, _one_ of these members may be left 1853 * NULL -- denoting that the provider only implements the other) and (2) 1854 * the dtps_suspend() and dtps_resume() members, which must either both be 1855 * NULL or both be non-NULL. 1856 * 1857 * The sixth argument is a cookie to be specified as the first argument for 1858 * each function in the Framework-to-Provider API. This argument may have 1859 * any value. 1860 * 1861 * The final argument is a pointer to dtrace_provider_id_t. If 1862 * dtrace_register() successfully completes, the provider identifier will be 1863 * stored in the memory pointed to be this argument. This argument must be 1864 * non-NULL. 1865 * 1866 * 2.2.3 Return value 1867 * 1868 * On success, dtrace_register() returns 0 and stores the new provider's 1869 * identifier into the memory pointed to by the idp argument. On failure, 1870 * dtrace_register() returns an errno: 1871 * 1872 * EINVAL The arguments passed to dtrace_register() were somehow invalid. 1873 * This may because a parameter that must be non-NULL was NULL, 1874 * because the name was invalid (either empty or an illegal 1875 * provider name) or because the attributes were invalid. 1876 * 1877 * No other failure code is returned. 1878 * 1879 * 2.2.4 Caller's context 1880 * 1881 * dtrace_register() may induce calls to dtrace_provide(); the provider must 1882 * hold no locks across dtrace_register() that may also be acquired by 1883 * dtrace_provide(). cpu_lock and mod_lock must not be held. 1884 * 1885 * 2.3 int dtrace_unregister(dtrace_provider_t id) 1886 * 1887 * 2.3.1 Overview 1888 * 1889 * Unregisters the specified provider from the DTrace framework. It should 1890 * generally be called by DTrace providers in their detach(9E) entry point. 1891 * 1892 * 2.3.2 Arguments and Notes 1893 * 1894 * The only argument is the provider identifier, as returned from a 1895 * successful call to dtrace_register(). As a result of calling 1896 * dtrace_unregister(), the DTrace framework will call back into the provider 1897 * via the dtps_destroy() entry point. Once dtrace_unregister() successfully 1898 * completes, however, the DTrace framework will no longer make calls through 1899 * the Framework-to-Provider API. 1900 * 1901 * 2.3.3 Return value 1902 * 1903 * On success, dtrace_unregister returns 0. On failure, dtrace_unregister() 1904 * returns an errno: 1905 * 1906 * EBUSY There are currently processes that have the DTrace pseudodevice 1907 * open, or there exists an anonymous enabling that hasn't yet 1908 * been claimed. 1909 * 1910 * No other failure code is returned. 1911 * 1912 * 2.3.4 Caller's context 1913 * 1914 * Because a call to dtrace_unregister() may induce calls through the 1915 * Framework-to-Provider API, the caller may not hold any lock across 1916 * dtrace_register() that is also acquired in any of the Framework-to- 1917 * Provider API functions. Additionally, mod_lock may not be held. 1918 * 1919 * 2.4 void dtrace_invalidate(dtrace_provider_id_t id) 1920 * 1921 * 2.4.1 Overview 1922 * 1923 * Invalidates the specified provider. All subsequent probe lookups for the 1924 * specified provider will fail, but its probes will not be removed. 1925 * 1926 * 2.4.2 Arguments and note 1927 * 1928 * The only argument is the provider identifier, as returned from a 1929 * successful call to dtrace_register(). In general, a provider's probes 1930 * always remain valid; dtrace_invalidate() is a mechanism for invalidating 1931 * an entire provider, regardless of whether or not probes are enabled or 1932 * not. Note that dtrace_invalidate() will _not_ prevent already enabled 1933 * probes from firing -- it will merely prevent any new enablings of the 1934 * provider's probes. 1935 * 1936 * 2.5 int dtrace_condense(dtrace_provider_id_t id) 1937 * 1938 * 2.5.1 Overview 1939 * 1940 * Removes all the unenabled probes for the given provider. This function is 1941 * not unlike dtrace_unregister(), except that it doesn't remove the 1942 * provider just as many of its associated probes as it can. 1943 * 1944 * 2.5.2 Arguments and Notes 1945 * 1946 * As with dtrace_unregister(), the sole argument is the provider identifier 1947 * as returned from a successful call to dtrace_register(). As a result of 1948 * calling dtrace_condense(), the DTrace framework will call back into the 1949 * given provider's dtps_destroy() entry point for each of the provider's 1950 * unenabled probes. 1951 * 1952 * 2.5.3 Return value 1953 * 1954 * Currently, dtrace_condense() always returns 0. However, consumers of this 1955 * function should check the return value as appropriate; its behavior may 1956 * change in the future. 1957 * 1958 * 2.5.4 Caller's context 1959 * 1960 * As with dtrace_unregister(), the caller may not hold any lock across 1961 * dtrace_condense() that is also acquired in the provider's entry points. 1962 * Also, mod_lock may not be held. 1963 * 1964 * 2.6 int dtrace_attached() 1965 * 1966 * 2.6.1 Overview 1967 * 1968 * Indicates whether or not DTrace has attached. 1969 * 1970 * 2.6.2 Arguments and Notes 1971 * 1972 * For most providers, DTrace makes initial contact beyond registration. 1973 * That is, once a provider has registered with DTrace, it waits to hear 1974 * from DTrace to create probes. However, some providers may wish to 1975 * proactively create probes without first being told by DTrace to do so. 1976 * If providers wish to do this, they must first call dtrace_attached() to 1977 * determine if DTrace itself has attached. If dtrace_attached() returns 0, 1978 * the provider must not make any other Provider-to-Framework API call. 1979 * 1980 * 2.6.3 Return value 1981 * 1982 * dtrace_attached() returns 1 if DTrace has attached, 0 otherwise. 1983 * 1984 * 2.7 int dtrace_probe_create(dtrace_provider_t id, const char *mod, 1985 * const char *func, const char *name, int aframes, void *arg) 1986 * 1987 * 2.7.1 Overview 1988 * 1989 * Creates a probe with specified module name, function name, and name. 1990 * 1991 * 2.7.2 Arguments and Notes 1992 * 1993 * The first argument is the provider identifier, as returned from a 1994 * successful call to dtrace_register(). The second, third, and fourth 1995 * arguments are the module name, function name, and probe name, 1996 * respectively. Of these, module name and function name may both be NULL 1997 * (in which case the probe is considered to be unanchored), or they may both 1998 * be non-NULL. The name must be non-NULL, and must point to a non-empty 1999 * string. 2000 * 2001 * The fifth argument is the number of artificial stack frames that will be 2002 * found on the stack when dtrace_probe() is called for the new probe. These 2003 * artificial frames will be automatically be pruned should the stack() or 2004 * stackdepth() functions be called as part of one of the probe's ECBs. If 2005 * the parameter doesn't add an artificial frame, this parameter should be 2006 * zero. 2007 * 2008 * The final argument is a probe argument that will be passed back to the 2009 * provider when a probe-specific operation is called. (e.g., via 2010 * dtps_enable(), dtps_disable(), etc.) 2011 * 2012 * Note that it is up to the provider to be sure that the probe that it 2013 * creates does not already exist -- if the provider is unsure of the probe's 2014 * existence, it should assure its absence with dtrace_probe_lookup() before 2015 * calling dtrace_probe_create(). 2016 * 2017 * 2.7.3 Return value 2018 * 2019 * dtrace_probe_create() always succeeds, and always returns the identifier 2020 * of the newly-created probe. 2021 * 2022 * 2.7.4 Caller's context 2023 * 2024 * While dtrace_probe_create() is generally expected to be called from 2025 * dtps_provide() and/or dtps_provide_module(), it may be called from other 2026 * non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. 2027 * 2028 * 2.8 dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod, 2029 * const char *func, const char *name) 2030 * 2031 * 2.8.1 Overview 2032 * 2033 * Looks up a probe based on provdider and one or more of module name, 2034 * function name and probe name. 2035 * 2036 * 2.8.2 Arguments and Notes 2037 * 2038 * The first argument is the provider identifier, as returned from a 2039 * successful call to dtrace_register(). The second, third, and fourth 2040 * arguments are the module name, function name, and probe name, 2041 * respectively. Any of these may be NULL; dtrace_probe_lookup() will return 2042 * the identifier of the first probe that is provided by the specified 2043 * provider and matches all of the non-NULL matching criteria. 2044 * dtrace_probe_lookup() is generally used by a provider to be check the 2045 * existence of a probe before creating it with dtrace_probe_create(). 2046 * 2047 * 2.8.3 Return value 2048 * 2049 * If the probe exists, returns its identifier. If the probe does not exist, 2050 * return DTRACE_IDNONE. 2051 * 2052 * 2.8.4 Caller's context 2053 * 2054 * While dtrace_probe_lookup() is generally expected to be called from 2055 * dtps_provide() and/or dtps_provide_module(), it may also be called from 2056 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. 2057 * 2058 * 2.9 void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe) 2059 * 2060 * 2.9.1 Overview 2061 * 2062 * Returns the probe argument associated with the specified probe. 2063 * 2064 * 2.9.2 Arguments and Notes 2065 * 2066 * The first argument is the provider identifier, as returned from a 2067 * successful call to dtrace_register(). The second argument is a probe 2068 * identifier, as returned from dtrace_probe_lookup() or 2069 * dtrace_probe_create(). This is useful if a probe has multiple 2070 * provider-specific components to it: the provider can create the probe 2071 * once with provider-specific state, and then add to the state by looking 2072 * up the probe based on probe identifier. 2073 * 2074 * 2.9.3 Return value 2075 * 2076 * Returns the argument associated with the specified probe. If the 2077 * specified probe does not exist, or if the specified probe is not provided 2078 * by the specified provider, NULL is returned. 2079 * 2080 * 2.9.4 Caller's context 2081 * 2082 * While dtrace_probe_arg() is generally expected to be called from 2083 * dtps_provide() and/or dtps_provide_module(), it may also be called from 2084 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. 2085 * 2086 * 2.10 void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1, 2087 * uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 2088 * 2089 * 2.10.1 Overview 2090 * 2091 * The epicenter of DTrace: fires the specified probes with the specified 2092 * arguments. 2093 * 2094 * 2.10.2 Arguments and Notes 2095 * 2096 * The first argument is a probe identifier as returned by 2097 * dtrace_probe_create() or dtrace_probe_lookup(). The second through sixth 2098 * arguments are the values to which the D variables "arg0" through "arg4" 2099 * will be mapped. 2100 * 2101 * dtrace_probe() should be called whenever the specified probe has fired -- 2102 * however the provider defines it. 2103 * 2104 * 2.10.3 Return value 2105 * 2106 * None. 2107 * 2108 * 2.10.4 Caller's context 2109 * 2110 * dtrace_probe() may be called in virtually any context: kernel, user, 2111 * interrupt, high-level interrupt, with arbitrary adaptive locks held, with 2112 * dispatcher locks held, with interrupts disabled, etc. The only latitude 2113 * that must be afforded to DTrace is the ability to make calls within 2114 * itself (and to its in-kernel subroutines) and the ability to access 2115 * arbitrary (but mapped) memory. On some platforms, this constrains 2116 * context. For example, on UltraSPARC, dtrace_probe() cannot be called 2117 * from any context in which TL is greater than zero. dtrace_probe() may 2118 * also not be called from any routine which may be called by dtrace_probe() 2119 * -- which includes functions in the DTrace framework and some in-kernel 2120 * DTrace subroutines. All such functions "dtrace_"; providers that 2121 * instrument the kernel arbitrarily should be sure to not instrument these 2122 * routines. 2123 */ 2124 typedef struct dtrace_pops { 2125 void (*dtps_provide)(void *arg, dtrace_probedesc_t *spec); 2126 void (*dtps_provide_module)(void *arg, modctl_t *mp); 2127 int (*dtps_enable)(void *arg, dtrace_id_t id, void *parg); 2128 void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg); 2129 void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg); 2130 void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg); 2131 void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg, 2132 dtrace_argdesc_t *desc); 2133 uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg, 2134 int argno, int aframes); 2135 int (*dtps_usermode)(void *arg, dtrace_id_t id, void *parg); 2136 void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg); 2137 } dtrace_pops_t; 2138 2139 #define DTRACE_MODE_KERNEL 0x01 2140 #define DTRACE_MODE_USER 0x02 2141 #define DTRACE_MODE_NOPRIV_DROP 0x10 2142 #define DTRACE_MODE_NOPRIV_RESTRICT 0x20 2143 #define DTRACE_MODE_LIMITEDPRIV_RESTRICT 0x40 2144 2145 typedef uintptr_t dtrace_provider_id_t; 2146 2147 extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t, 2148 cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *); 2149 extern int dtrace_unregister(dtrace_provider_id_t); 2150 extern int dtrace_condense(dtrace_provider_id_t); 2151 extern void dtrace_invalidate(dtrace_provider_id_t); 2152 extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, char *, 2153 char *, char *); 2154 extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *, 2155 const char *, const char *, int, void *); 2156 extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t); 2157 extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1, 2158 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4); 2159 2160 /* 2161 * DTrace Meta Provider API 2162 * 2163 * The following functions are implemented by the DTrace framework and are 2164 * used to implement meta providers. Meta providers plug into the DTrace 2165 * framework and are used to instantiate new providers on the fly. At 2166 * present, there is only one type of meta provider and only one meta 2167 * provider may be registered with the DTrace framework at a time. The 2168 * sole meta provider type provides user-land static tracing facilities 2169 * by taking meta probe descriptions and adding a corresponding provider 2170 * into the DTrace framework. 2171 * 2172 * 1 Framework-to-Provider 2173 * 2174 * 1.1 Overview 2175 * 2176 * The Framework-to-Provider API is represented by the dtrace_mops structure 2177 * that the meta provider passes to the framework when registering itself as 2178 * a meta provider. This structure consists of the following members: 2179 * 2180 * dtms_create_probe() <-- Add a new probe to a created provider 2181 * dtms_provide_pid() <-- Create a new provider for a given process 2182 * dtms_remove_pid() <-- Remove a previously created provider 2183 * 2184 * 1.2 void dtms_create_probe(void *arg, void *parg, 2185 * dtrace_helper_probedesc_t *probedesc); 2186 * 2187 * 1.2.1 Overview 2188 * 2189 * Called by the DTrace framework to create a new probe in a provider 2190 * created by this meta provider. 2191 * 2192 * 1.2.2 Arguments and notes 2193 * 2194 * The first argument is the cookie as passed to dtrace_meta_register(). 2195 * The second argument is the provider cookie for the associated provider; 2196 * this is obtained from the return value of dtms_provide_pid(). The third 2197 * argument is the helper probe description. 2198 * 2199 * 1.2.3 Return value 2200 * 2201 * None 2202 * 2203 * 1.2.4 Caller's context 2204 * 2205 * dtms_create_probe() is called from either ioctl() or module load context 2206 * in the context of a newly-created provider (that is, a provider that 2207 * is a result of a call to dtms_provide_pid()). The DTrace framework is 2208 * locked in such a way that meta providers may not register or unregister, 2209 * such that no other thread can call into a meta provider operation and that 2210 * atomicity is assured with respect to meta provider operations across 2211 * dtms_provide_pid() and subsequent calls to dtms_create_probe(). 2212 * The context is thus effectively single-threaded with respect to the meta 2213 * provider, and that the meta provider cannot call dtrace_meta_register() 2214 * or dtrace_meta_unregister(). However, the context is such that the 2215 * provider may (and is expected to) call provider-related DTrace provider 2216 * APIs including dtrace_probe_create(). 2217 * 2218 * 1.3 void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov, 2219 * pid_t pid) 2220 * 2221 * 1.3.1 Overview 2222 * 2223 * Called by the DTrace framework to instantiate a new provider given the 2224 * description of the provider and probes in the mprov argument. The 2225 * meta provider should call dtrace_register() to insert the new provider 2226 * into the DTrace framework. 2227 * 2228 * 1.3.2 Arguments and notes 2229 * 2230 * The first argument is the cookie as passed to dtrace_meta_register(). 2231 * The second argument is a pointer to a structure describing the new 2232 * helper provider. The third argument is the process identifier for 2233 * process associated with this new provider. Note that the name of the 2234 * provider as passed to dtrace_register() should be the contatenation of 2235 * the dtmpb_provname member of the mprov argument and the processs 2236 * identifier as a string. 2237 * 2238 * 1.3.3 Return value 2239 * 2240 * The cookie for the provider that the meta provider creates. This is 2241 * the same value that it passed to dtrace_register(). 2242 * 2243 * 1.3.4 Caller's context 2244 * 2245 * dtms_provide_pid() is called from either ioctl() or module load context. 2246 * The DTrace framework is locked in such a way that meta providers may not 2247 * register or unregister. This means that the meta provider cannot call 2248 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context 2249 * is such that the provider may -- and is expected to -- call 2250 * provider-related DTrace provider APIs including dtrace_register(). 2251 * 2252 * 1.4 void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov, 2253 * pid_t pid) 2254 * 2255 * 1.4.1 Overview 2256 * 2257 * Called by the DTrace framework to remove a provider that had previously 2258 * been instantiated via the dtms_provide_pid() entry point. The meta 2259 * provider need not remove the provider immediately, but this entry 2260 * point indicates that the provider should be removed as soon as possible 2261 * using the dtrace_unregister() API. 2262 * 2263 * 1.4.2 Arguments and notes 2264 * 2265 * The first argument is the cookie as passed to dtrace_meta_register(). 2266 * The second argument is a pointer to a structure describing the helper 2267 * provider. The third argument is the process identifier for process 2268 * associated with this new provider. 2269 * 2270 * 1.4.3 Return value 2271 * 2272 * None 2273 * 2274 * 1.4.4 Caller's context 2275 * 2276 * dtms_remove_pid() is called from either ioctl() or exit() context. 2277 * The DTrace framework is locked in such a way that meta providers may not 2278 * register or unregister. This means that the meta provider cannot call 2279 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context 2280 * is such that the provider may -- and is expected to -- call 2281 * provider-related DTrace provider APIs including dtrace_unregister(). 2282 */ 2283 typedef struct dtrace_helper_probedesc { 2284 char *dthpb_mod; /* probe module */ 2285 char *dthpb_func; /* probe function */ 2286 char *dthpb_name; /* probe name */ 2287 uint64_t dthpb_base; /* base address */ 2288 uint32_t *dthpb_offs; /* offsets array */ 2289 uint32_t *dthpb_enoffs; /* is-enabled offsets array */ 2290 uint32_t dthpb_noffs; /* offsets count */ 2291 uint32_t dthpb_nenoffs; /* is-enabled offsets count */ 2292 uint8_t *dthpb_args; /* argument mapping array */ 2293 uint8_t dthpb_xargc; /* translated argument count */ 2294 uint8_t dthpb_nargc; /* native argument count */ 2295 char *dthpb_xtypes; /* translated types strings */ 2296 char *dthpb_ntypes; /* native types strings */ 2297 } dtrace_helper_probedesc_t; 2298 2299 typedef struct dtrace_helper_provdesc { 2300 char *dthpv_provname; /* provider name */ 2301 dtrace_pattr_t dthpv_pattr; /* stability attributes */ 2302 } dtrace_helper_provdesc_t; 2303 2304 typedef struct dtrace_mops { 2305 void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *); 2306 void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t); 2307 void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t); 2308 } dtrace_mops_t; 2309 2310 typedef uintptr_t dtrace_meta_provider_id_t; 2311 2312 extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *, 2313 dtrace_meta_provider_id_t *); 2314 extern int dtrace_meta_unregister(dtrace_meta_provider_id_t); 2315 2316 /* 2317 * DTrace Kernel Hooks 2318 * 2319 * The following functions are implemented by the base kernel and form a set of 2320 * hooks used by the DTrace framework. DTrace hooks are implemented in either 2321 * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a 2322 * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform. 2323 */ 2324 2325 typedef enum dtrace_vtime_state { 2326 DTRACE_VTIME_INACTIVE = 0, /* No DTrace, no TNF */ 2327 DTRACE_VTIME_ACTIVE, /* DTrace virtual time, no TNF */ 2328 DTRACE_VTIME_INACTIVE_TNF, /* No DTrace, TNF active */ 2329 DTRACE_VTIME_ACTIVE_TNF /* DTrace virtual time _and_ TNF */ 2330 } dtrace_vtime_state_t; 2331 2332 #ifdef illumos 2333 extern dtrace_vtime_state_t dtrace_vtime_active; 2334 #endif 2335 extern void dtrace_vtime_switch(kthread_t *next); 2336 extern void dtrace_vtime_enable_tnf(void); 2337 extern void dtrace_vtime_disable_tnf(void); 2338 extern void dtrace_vtime_enable(void); 2339 extern void dtrace_vtime_disable(void); 2340 2341 struct regs; 2342 struct reg; 2343 2344 #ifdef illumos 2345 extern int (*dtrace_pid_probe_ptr)(struct reg *); 2346 extern int (*dtrace_return_probe_ptr)(struct reg *); 2347 extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *); 2348 extern void (*dtrace_fasttrap_exec_ptr)(proc_t *); 2349 extern void (*dtrace_fasttrap_exit_ptr)(proc_t *); 2350 extern void dtrace_fasttrap_fork(proc_t *, proc_t *); 2351 #endif 2352 2353 typedef uintptr_t dtrace_icookie_t; 2354 typedef void (*dtrace_xcall_t)(void *); 2355 2356 extern dtrace_icookie_t dtrace_interrupt_disable(void); 2357 extern void dtrace_interrupt_enable(dtrace_icookie_t); 2358 2359 extern void dtrace_membar_producer(void); 2360 extern void dtrace_membar_consumer(void); 2361 2362 extern void (*dtrace_cpu_init)(processorid_t); 2363 #ifdef illumos 2364 extern void (*dtrace_modload)(modctl_t *); 2365 extern void (*dtrace_modunload)(modctl_t *); 2366 #endif 2367 extern void (*dtrace_helpers_cleanup)(void); 2368 extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child); 2369 extern void (*dtrace_cpustart_init)(void); 2370 extern void (*dtrace_cpustart_fini)(void); 2371 extern void (*dtrace_closef)(void); 2372 2373 extern void (*dtrace_debugger_init)(void); 2374 extern void (*dtrace_debugger_fini)(void); 2375 extern dtrace_cacheid_t dtrace_predcache_id; 2376 2377 #ifdef illumos 2378 extern hrtime_t dtrace_gethrtime(void); 2379 #else 2380 void dtrace_debug_printf(const char *, ...) __printflike(1, 2); 2381 #endif 2382 extern void dtrace_sync(void); 2383 extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t)); 2384 extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *); 2385 extern void dtrace_vpanic(const char *, __va_list); 2386 extern void dtrace_panic(const char *, ...); 2387 2388 extern int dtrace_safe_defer_signal(void); 2389 extern void dtrace_safe_synchronous_signal(void); 2390 2391 extern int dtrace_mach_aframes(void); 2392 2393 #if defined(__i386) || defined(__amd64) 2394 extern int dtrace_instr_size(uchar_t *instr); 2395 extern int dtrace_instr_size_isa(uchar_t *, model_t, int *); 2396 extern void dtrace_invop_callsite(void); 2397 #endif 2398 extern void dtrace_invop_add(int (*)(uintptr_t, struct trapframe *, uintptr_t)); 2399 extern void dtrace_invop_remove(int (*)(uintptr_t, struct trapframe *, 2400 uintptr_t)); 2401 2402 #ifdef __sparc 2403 extern int dtrace_blksuword32(uintptr_t, uint32_t *, int); 2404 extern void dtrace_getfsr(uint64_t *); 2405 #endif 2406 2407 #ifndef illumos 2408 extern void dtrace_helpers_duplicate(proc_t *, proc_t *); 2409 extern void dtrace_helpers_destroy(proc_t *); 2410 #endif 2411 2412 #define DTRACE_CPUFLAG_ISSET(flag) \ 2413 (cpu_core[cpu_number()].cpuc_dtrace_flags & (flag)) 2414 2415 #define DTRACE_CPUFLAG_SET(flag) \ 2416 (cpu_core[cpu_number()].cpuc_dtrace_flags |= (flag)) 2417 2418 #define DTRACE_CPUFLAG_CLEAR(flag) \ 2419 (cpu_core[cpu_number()].cpuc_dtrace_flags &= ~(flag)) 2420 2421 #endif /* _KERNEL */ 2422 2423 #endif /* _ASM */ 2424 2425 #if defined(__i386) || defined(__amd64) 2426 2427 #define DTRACE_INVOP_PUSHL_EBP 1 2428 #define DTRACE_INVOP_PUSHQ_RBP DTRACE_INVOP_PUSHL_EBP 2429 #define DTRACE_INVOP_POPL_EBP 2 2430 #define DTRACE_INVOP_POPQ_RBP DTRACE_INVOP_POPL_EBP 2431 #define DTRACE_INVOP_LEAVE 3 2432 #define DTRACE_INVOP_NOP 4 2433 #define DTRACE_INVOP_RET 5 2434 2435 #elif defined(__powerpc__) 2436 2437 #define DTRACE_INVOP_RET 1 2438 #define DTRACE_INVOP_BCTR 2 2439 #define DTRACE_INVOP_BLR 3 2440 #define DTRACE_INVOP_JUMP 4 2441 #define DTRACE_INVOP_MFLR_R0 5 2442 #define DTRACE_INVOP_NOP 6 2443 2444 #elif defined(__arm__) 2445 2446 #define DTRACE_INVOP_SHIFT 4 2447 #define DTRACE_INVOP_MASK ((1 << DTRACE_INVOP_SHIFT) - 1) 2448 #define DTRACE_INVOP_DATA(x) ((x) >> DTRACE_INVOP_SHIFT) 2449 2450 #define DTRACE_INVOP_PUSHM 1 2451 #define DTRACE_INVOP_POPM 2 2452 #define DTRACE_INVOP_B 3 2453 2454 #define DTRACE_INVOP_MOV_IP_SP 4 2455 #define DTRACE_INVOP_BX_LR 5 2456 #define DTRACE_INVOP_MOV_PC_LR 6 2457 #define DTRACE_INVOP_LDM 7 2458 #define DTRACE_INVOP_LDR_IMM 8 2459 #define DTRACE_INVOP_MOVW 9 2460 #define DTRACE_INVOP_MOV_IMM 10 2461 #define DTRACE_INVOP_CMP_IMM 11 2462 2463 #elif defined(__aarch64__) 2464 2465 #define INSN_SIZE 4 2466 2467 #define B_MASK 0xff000000 2468 #define B_DATA_MASK 0x00ffffff 2469 #define B_INSTR 0x14000000 2470 2471 #define RET_INSTR 0xd65f03c0 2472 2473 #define LDP_STP_MASK 0xffc00000 2474 #define STP_32 0x29800000 2475 #define STP_64 0xa9800000 2476 #define LDP_32 0x28c00000 2477 #define LDP_64 0xa8c00000 2478 #define LDP_STP_PREIND (1 << 24) 2479 #define LDP_STP_DIR (1 << 22) /* Load instruction */ 2480 #define ARG1_SHIFT 0 2481 #define ARG1_MASK 0x1f 2482 #define ARG2_SHIFT 10 2483 #define ARG2_MASK 0x1f 2484 #define OFFSET_SHIFT 15 2485 #define OFFSET_SIZE 7 2486 #if 0 2487 /* conflicts with lzjb.c */ 2488 #define OFFSET_MASK ((1 << OFFSET_SIZE) - 1) 2489 #endif 2490 2491 #define DTRACE_INVOP_PUSHM 1 2492 #define DTRACE_INVOP_RET 2 2493 #define DTRACE_INVOP_B 3 2494 2495 #elif defined(__mips__) 2496 2497 #define INSN_SIZE 4 2498 2499 /* Load/Store double RA to/from SP */ 2500 #define LDSD_RA_SP_MASK 0xffff0000 2501 #define LDSD_DATA_MASK 0x0000ffff 2502 #define SD_RA_SP 0xffbf0000 2503 #define LD_RA_SP 0xdfbf0000 2504 2505 #define DTRACE_INVOP_SD 1 2506 #define DTRACE_INVOP_LD 2 2507 2508 #elif defined(__riscv__) 2509 2510 #define SD_RA_SP_MASK 0x01fff07f 2511 #define SD_RA_SP 0x00113023 2512 2513 #define DTRACE_INVOP_SD 1 2514 #define DTRACE_INVOP_RET 2 2515 #define DTRACE_INVOP_NOP 3 2516 2517 #endif 2518 2519 #ifdef __cplusplus 2520 } 2521 #endif 2522 2523 #endif /* _SYS_DTRACE_H */ 2524