1 //===------------ JITLink.h - JIT linker functionality ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Contains generic JIT-linker types.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #ifndef LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H
14 #define LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H
15
16 #include "JITLinkMemoryManager.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ExecutionEngine/JITSymbol.h"
23 #include "llvm/Support/Allocator.h"
24 #include "llvm/Support/Endian.h"
25 #include "llvm/Support/Error.h"
26 #include "llvm/Support/FormatVariadic.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/Memory.h"
29 #include "llvm/Support/MemoryBuffer.h"
30
31 #include <map>
32 #include <string>
33 #include <system_error>
34
35 namespace llvm {
36 namespace jitlink {
37
38 class Symbol;
39 class Section;
40
41 /// Base class for errors originating in JIT linker, e.g. missing relocation
42 /// support.
43 class JITLinkError : public ErrorInfo<JITLinkError> {
44 public:
45 static char ID;
46
JITLinkError(Twine ErrMsg)47 JITLinkError(Twine ErrMsg) : ErrMsg(ErrMsg.str()) {}
48
49 void log(raw_ostream &OS) const override;
getErrorMessage()50 const std::string &getErrorMessage() const { return ErrMsg; }
51 std::error_code convertToErrorCode() const override;
52
53 private:
54 std::string ErrMsg;
55 };
56
57 /// Represents fixups and constraints in the LinkGraph.
58 class Edge {
59 public:
60 using Kind = uint8_t;
61
62 enum GenericEdgeKind : Kind {
63 Invalid, // Invalid edge value.
64 FirstKeepAlive, // Keeps target alive. Offset/addend zero.
65 KeepAlive = FirstKeepAlive, // Tag first edge kind that preserves liveness.
66 FirstRelocation // First architecture specific relocation.
67 };
68
69 using OffsetT = uint32_t;
70 using AddendT = int64_t;
71
Edge(Kind K,OffsetT Offset,Symbol & Target,AddendT Addend)72 Edge(Kind K, OffsetT Offset, Symbol &Target, AddendT Addend)
73 : Target(&Target), Offset(Offset), Addend(Addend), K(K) {}
74
getOffset()75 OffsetT getOffset() const { return Offset; }
setOffset(OffsetT Offset)76 void setOffset(OffsetT Offset) { this->Offset = Offset; }
getKind()77 Kind getKind() const { return K; }
setKind(Kind K)78 void setKind(Kind K) { this->K = K; }
isRelocation()79 bool isRelocation() const { return K >= FirstRelocation; }
getRelocation()80 Kind getRelocation() const {
81 assert(isRelocation() && "Not a relocation edge");
82 return K - FirstRelocation;
83 }
isKeepAlive()84 bool isKeepAlive() const { return K >= FirstKeepAlive; }
getTarget()85 Symbol &getTarget() const { return *Target; }
setTarget(Symbol & Target)86 void setTarget(Symbol &Target) { this->Target = &Target; }
getAddend()87 AddendT getAddend() const { return Addend; }
setAddend(AddendT Addend)88 void setAddend(AddendT Addend) { this->Addend = Addend; }
89
90 private:
91 Symbol *Target = nullptr;
92 OffsetT Offset = 0;
93 AddendT Addend = 0;
94 Kind K = 0;
95 };
96
97 /// Returns the string name of the given generic edge kind, or "unknown"
98 /// otherwise. Useful for debugging.
99 const char *getGenericEdgeKindName(Edge::Kind K);
100
101 /// Base class for Addressable entities (externals, absolutes, blocks).
102 class Addressable {
103 friend class LinkGraph;
104
105 protected:
Addressable(JITTargetAddress Address,bool IsDefined)106 Addressable(JITTargetAddress Address, bool IsDefined)
107 : Address(Address), IsDefined(IsDefined), IsAbsolute(false) {}
108
Addressable(JITTargetAddress Address)109 Addressable(JITTargetAddress Address)
110 : Address(Address), IsDefined(false), IsAbsolute(true) {
111 assert(!(IsDefined && IsAbsolute) &&
112 "Block cannot be both defined and absolute");
113 }
114
115 public:
116 Addressable(const Addressable &) = delete;
117 Addressable &operator=(const Addressable &) = default;
118 Addressable(Addressable &&) = delete;
119 Addressable &operator=(Addressable &&) = default;
120
getAddress()121 JITTargetAddress getAddress() const { return Address; }
setAddress(JITTargetAddress Address)122 void setAddress(JITTargetAddress Address) { this->Address = Address; }
123
124 /// Returns true if this is a defined addressable, in which case you
125 /// can downcast this to a Block.
isDefined()126 bool isDefined() const { return static_cast<bool>(IsDefined); }
isAbsolute()127 bool isAbsolute() const { return static_cast<bool>(IsAbsolute); }
128
129 private:
setAbsolute(bool IsAbsolute)130 void setAbsolute(bool IsAbsolute) {
131 assert(!IsDefined && "Cannot change the Absolute flag on a defined block");
132 this->IsAbsolute = IsAbsolute;
133 }
134
135 JITTargetAddress Address = 0;
136 uint64_t IsDefined : 1;
137 uint64_t IsAbsolute : 1;
138
139 protected:
140 // bitfields for Block, allocated here to improve packing.
141 uint64_t P2Align : 5;
142 uint64_t AlignmentOffset : 57;
143 };
144
145 using SectionOrdinal = unsigned;
146
147 /// An Addressable with content and edges.
148 class Block : public Addressable {
149 friend class LinkGraph;
150
151 private:
152 /// Create a zero-fill defined addressable.
Block(Section & Parent,JITTargetAddress Size,JITTargetAddress Address,uint64_t Alignment,uint64_t AlignmentOffset)153 Block(Section &Parent, JITTargetAddress Size, JITTargetAddress Address,
154 uint64_t Alignment, uint64_t AlignmentOffset)
155 : Addressable(Address, true), Parent(Parent), Size(Size) {
156 assert(isPowerOf2_64(Alignment) && "Alignment must be power of 2");
157 assert(AlignmentOffset < Alignment &&
158 "Alignment offset cannot exceed alignment");
159 assert(AlignmentOffset <= MaxAlignmentOffset &&
160 "Alignment offset exceeds maximum");
161 P2Align = Alignment ? countTrailingZeros(Alignment) : 0;
162 this->AlignmentOffset = AlignmentOffset;
163 }
164
165 /// Create a defined addressable for the given content.
Block(Section & Parent,ArrayRef<char> Content,JITTargetAddress Address,uint64_t Alignment,uint64_t AlignmentOffset)166 Block(Section &Parent, ArrayRef<char> Content, JITTargetAddress Address,
167 uint64_t Alignment, uint64_t AlignmentOffset)
168 : Addressable(Address, true), Parent(Parent), Data(Content.data()),
169 Size(Content.size()) {
170 assert(isPowerOf2_64(Alignment) && "Alignment must be power of 2");
171 assert(AlignmentOffset < Alignment &&
172 "Alignment offset cannot exceed alignment");
173 assert(AlignmentOffset <= MaxAlignmentOffset &&
174 "Alignment offset exceeds maximum");
175 P2Align = Alignment ? countTrailingZeros(Alignment) : 0;
176 this->AlignmentOffset = AlignmentOffset;
177 }
178
179 public:
180 using EdgeVector = std::vector<Edge>;
181 using edge_iterator = EdgeVector::iterator;
182 using const_edge_iterator = EdgeVector::const_iterator;
183
184 Block(const Block &) = delete;
185 Block &operator=(const Block &) = delete;
186 Block(Block &&) = delete;
187 Block &operator=(Block &&) = delete;
188
189 /// Return the parent section for this block.
getSection()190 Section &getSection() const { return Parent; }
191
192 /// Returns true if this is a zero-fill block.
193 ///
194 /// If true, getSize is callable but getContent is not (the content is
195 /// defined to be a sequence of zero bytes of length Size).
isZeroFill()196 bool isZeroFill() const { return !Data; }
197
198 /// Returns the size of this defined addressable.
getSize()199 size_t getSize() const { return Size; }
200
201 /// Get the content for this block. Block must not be a zero-fill block.
getContent()202 ArrayRef<char> getContent() const {
203 assert(Data && "Section does not contain content");
204 return ArrayRef<char>(Data, Size);
205 }
206
207 /// Set the content for this block.
208 /// Caller is responsible for ensuring the underlying bytes are not
209 /// deallocated while pointed to by this block.
setContent(ArrayRef<char> Content)210 void setContent(ArrayRef<char> Content) {
211 Data = Content.data();
212 Size = Content.size();
213 }
214
215 /// Get the alignment for this content.
getAlignment()216 uint64_t getAlignment() const { return 1ull << P2Align; }
217
218 /// Set the alignment for this content.
setAlignment(uint64_t Alignment)219 void setAlignment(uint64_t Alignment) {
220 assert(isPowerOf2_64(Alignment) && "Alignment must be a power of two");
221 P2Align = Alignment ? countTrailingZeros(Alignment) : 0;
222 }
223
224 /// Get the alignment offset for this content.
getAlignmentOffset()225 uint64_t getAlignmentOffset() const { return AlignmentOffset; }
226
227 /// Set the alignment offset for this content.
setAlignmentOffset(uint64_t AlignmentOffset)228 void setAlignmentOffset(uint64_t AlignmentOffset) {
229 assert(AlignmentOffset < (1ull << P2Align) &&
230 "Alignment offset can't exceed alignment");
231 this->AlignmentOffset = AlignmentOffset;
232 }
233
234 /// Add an edge to this block.
addEdge(Edge::Kind K,Edge::OffsetT Offset,Symbol & Target,Edge::AddendT Addend)235 void addEdge(Edge::Kind K, Edge::OffsetT Offset, Symbol &Target,
236 Edge::AddendT Addend) {
237 Edges.push_back(Edge(K, Offset, Target, Addend));
238 }
239
240 /// Add an edge by copying an existing one. This is typically used when
241 /// moving edges between blocks.
addEdge(const Edge & E)242 void addEdge(const Edge &E) { Edges.push_back(E); }
243
244 /// Return the list of edges attached to this content.
edges()245 iterator_range<edge_iterator> edges() {
246 return make_range(Edges.begin(), Edges.end());
247 }
248
249 /// Returns the list of edges attached to this content.
edges()250 iterator_range<const_edge_iterator> edges() const {
251 return make_range(Edges.begin(), Edges.end());
252 }
253
254 /// Return the size of the edges list.
edges_size()255 size_t edges_size() const { return Edges.size(); }
256
257 /// Returns true if the list of edges is empty.
edges_empty()258 bool edges_empty() const { return Edges.empty(); }
259
260 /// Remove the edge pointed to by the given iterator.
261 /// Returns an iterator to the new next element.
removeEdge(edge_iterator I)262 edge_iterator removeEdge(edge_iterator I) { return Edges.erase(I); }
263
264 /// Returns the address of the fixup for the given edge, which is equal to
265 /// this block's address plus the edge's offset.
getFixupAddress(const Edge & E)266 JITTargetAddress getFixupAddress(const Edge &E) const {
267 return getAddress() + E.getOffset();
268 }
269
270 private:
271 static constexpr uint64_t MaxAlignmentOffset = (1ULL << 57) - 1;
272
273 Section &Parent;
274 const char *Data = nullptr;
275 size_t Size = 0;
276 std::vector<Edge> Edges;
277 };
278
279 /// Describes symbol linkage. This can be used to make resolve definition
280 /// clashes.
281 enum class Linkage : uint8_t {
282 Strong,
283 Weak,
284 };
285
286 /// For errors and debugging output.
287 const char *getLinkageName(Linkage L);
288
289 /// Defines the scope in which this symbol should be visible:
290 /// Default -- Visible in the public interface of the linkage unit.
291 /// Hidden -- Visible within the linkage unit, but not exported from it.
292 /// Local -- Visible only within the LinkGraph.
293 enum class Scope : uint8_t {
294 Default,
295 Hidden,
296 Local
297 };
298
299 /// For debugging output.
300 const char *getScopeName(Scope S);
301
302 raw_ostream &operator<<(raw_ostream &OS, const Block &B);
303
304 /// Symbol representation.
305 ///
306 /// Symbols represent locations within Addressable objects.
307 /// They can be either Named or Anonymous.
308 /// Anonymous symbols have neither linkage nor visibility, and must point at
309 /// ContentBlocks.
310 /// Named symbols may be in one of four states:
311 /// - Null: Default initialized. Assignable, but otherwise unusable.
312 /// - Defined: Has both linkage and visibility and points to a ContentBlock
313 /// - Common: Has both linkage and visibility, points to a null Addressable.
314 /// - External: Has neither linkage nor visibility, points to an external
315 /// Addressable.
316 ///
317 class Symbol {
318 friend class LinkGraph;
319
320 private:
Symbol(Addressable & Base,JITTargetAddress Offset,StringRef Name,JITTargetAddress Size,Linkage L,Scope S,bool IsLive,bool IsCallable)321 Symbol(Addressable &Base, JITTargetAddress Offset, StringRef Name,
322 JITTargetAddress Size, Linkage L, Scope S, bool IsLive,
323 bool IsCallable)
324 : Name(Name), Base(&Base), Offset(Offset), Size(Size) {
325 assert(Offset <= MaxOffset && "Offset out of range");
326 setLinkage(L);
327 setScope(S);
328 setLive(IsLive);
329 setCallable(IsCallable);
330 }
331
constructCommon(void * SymStorage,Block & Base,StringRef Name,JITTargetAddress Size,Scope S,bool IsLive)332 static Symbol &constructCommon(void *SymStorage, Block &Base, StringRef Name,
333 JITTargetAddress Size, Scope S, bool IsLive) {
334 assert(SymStorage && "Storage cannot be null");
335 assert(!Name.empty() && "Common symbol name cannot be empty");
336 assert(Base.isDefined() &&
337 "Cannot create common symbol from undefined block");
338 assert(static_cast<Block &>(Base).getSize() == Size &&
339 "Common symbol size should match underlying block size");
340 auto *Sym = reinterpret_cast<Symbol *>(SymStorage);
341 new (Sym) Symbol(Base, 0, Name, Size, Linkage::Weak, S, IsLive, false);
342 return *Sym;
343 }
344
constructExternal(void * SymStorage,Addressable & Base,StringRef Name,JITTargetAddress Size,Linkage L)345 static Symbol &constructExternal(void *SymStorage, Addressable &Base,
346 StringRef Name, JITTargetAddress Size,
347 Linkage L) {
348 assert(SymStorage && "Storage cannot be null");
349 assert(!Base.isDefined() &&
350 "Cannot create external symbol from defined block");
351 assert(!Name.empty() && "External symbol name cannot be empty");
352 auto *Sym = reinterpret_cast<Symbol *>(SymStorage);
353 new (Sym) Symbol(Base, 0, Name, Size, L, Scope::Default, false, false);
354 return *Sym;
355 }
356
constructAbsolute(void * SymStorage,Addressable & Base,StringRef Name,JITTargetAddress Size,Linkage L,Scope S,bool IsLive)357 static Symbol &constructAbsolute(void *SymStorage, Addressable &Base,
358 StringRef Name, JITTargetAddress Size,
359 Linkage L, Scope S, bool IsLive) {
360 assert(SymStorage && "Storage cannot be null");
361 assert(!Base.isDefined() &&
362 "Cannot create absolute symbol from a defined block");
363 auto *Sym = reinterpret_cast<Symbol *>(SymStorage);
364 new (Sym) Symbol(Base, 0, Name, Size, L, S, IsLive, false);
365 return *Sym;
366 }
367
constructAnonDef(void * SymStorage,Block & Base,JITTargetAddress Offset,JITTargetAddress Size,bool IsCallable,bool IsLive)368 static Symbol &constructAnonDef(void *SymStorage, Block &Base,
369 JITTargetAddress Offset,
370 JITTargetAddress Size, bool IsCallable,
371 bool IsLive) {
372 assert(SymStorage && "Storage cannot be null");
373 assert((Offset + Size) <= Base.getSize() &&
374 "Symbol extends past end of block");
375 auto *Sym = reinterpret_cast<Symbol *>(SymStorage);
376 new (Sym) Symbol(Base, Offset, StringRef(), Size, Linkage::Strong,
377 Scope::Local, IsLive, IsCallable);
378 return *Sym;
379 }
380
constructNamedDef(void * SymStorage,Block & Base,JITTargetAddress Offset,StringRef Name,JITTargetAddress Size,Linkage L,Scope S,bool IsLive,bool IsCallable)381 static Symbol &constructNamedDef(void *SymStorage, Block &Base,
382 JITTargetAddress Offset, StringRef Name,
383 JITTargetAddress Size, Linkage L, Scope S,
384 bool IsLive, bool IsCallable) {
385 assert(SymStorage && "Storage cannot be null");
386 assert((Offset + Size) <= Base.getSize() &&
387 "Symbol extends past end of block");
388 assert(!Name.empty() && "Name cannot be empty");
389 auto *Sym = reinterpret_cast<Symbol *>(SymStorage);
390 new (Sym) Symbol(Base, Offset, Name, Size, L, S, IsLive, IsCallable);
391 return *Sym;
392 }
393
394 public:
395 /// Create a null Symbol. This allows Symbols to be default initialized for
396 /// use in containers (e.g. as map values). Null symbols are only useful for
397 /// assigning to.
398 Symbol() = default;
399
400 // Symbols are not movable or copyable.
401 Symbol(const Symbol &) = delete;
402 Symbol &operator=(const Symbol &) = delete;
403 Symbol(Symbol &&) = delete;
404 Symbol &operator=(Symbol &&) = delete;
405
406 /// Returns true if this symbol has a name.
hasName()407 bool hasName() const { return !Name.empty(); }
408
409 /// Returns the name of this symbol (empty if the symbol is anonymous).
getName()410 StringRef getName() const {
411 assert((!Name.empty() || getScope() == Scope::Local) &&
412 "Anonymous symbol has non-local scope");
413 return Name;
414 }
415
416 /// Rename this symbol. The client is responsible for updating scope and
417 /// linkage if this name-change requires it.
setName(StringRef Name)418 void setName(StringRef Name) { this->Name = Name; }
419
420 /// Returns true if this Symbol has content (potentially) defined within this
421 /// object file (i.e. is anything but an external or absolute symbol).
isDefined()422 bool isDefined() const {
423 assert(Base && "Attempt to access null symbol");
424 return Base->isDefined();
425 }
426
427 /// Returns true if this symbol is live (i.e. should be treated as a root for
428 /// dead stripping).
isLive()429 bool isLive() const {
430 assert(Base && "Attempting to access null symbol");
431 return IsLive;
432 }
433
434 /// Set this symbol's live bit.
setLive(bool IsLive)435 void setLive(bool IsLive) { this->IsLive = IsLive; }
436
437 /// Returns true is this symbol is callable.
isCallable()438 bool isCallable() const { return IsCallable; }
439
440 /// Set this symbol's callable bit.
setCallable(bool IsCallable)441 void setCallable(bool IsCallable) { this->IsCallable = IsCallable; }
442
443 /// Returns true if the underlying addressable is an unresolved external.
isExternal()444 bool isExternal() const {
445 assert(Base && "Attempt to access null symbol");
446 return !Base->isDefined() && !Base->isAbsolute();
447 }
448
449 /// Returns true if the underlying addressable is an absolute symbol.
isAbsolute()450 bool isAbsolute() const {
451 assert(Base && "Attempt to access null symbol");
452 return Base->isAbsolute();
453 }
454
455 /// Return the addressable that this symbol points to.
getAddressable()456 Addressable &getAddressable() {
457 assert(Base && "Cannot get underlying addressable for null symbol");
458 return *Base;
459 }
460
461 /// Return the addressable that thsi symbol points to.
getAddressable()462 const Addressable &getAddressable() const {
463 assert(Base && "Cannot get underlying addressable for null symbol");
464 return *Base;
465 }
466
467 /// Return the Block for this Symbol (Symbol must be defined).
getBlock()468 Block &getBlock() {
469 assert(Base && "Cannot get block for null symbol");
470 assert(Base->isDefined() && "Not a defined symbol");
471 return static_cast<Block &>(*Base);
472 }
473
474 /// Return the Block for this Symbol (Symbol must be defined).
getBlock()475 const Block &getBlock() const {
476 assert(Base && "Cannot get block for null symbol");
477 assert(Base->isDefined() && "Not a defined symbol");
478 return static_cast<const Block &>(*Base);
479 }
480
481 /// Returns the offset for this symbol within the underlying addressable.
getOffset()482 JITTargetAddress getOffset() const { return Offset; }
483
484 /// Returns the address of this symbol.
getAddress()485 JITTargetAddress getAddress() const { return Base->getAddress() + Offset; }
486
487 /// Returns the size of this symbol.
getSize()488 JITTargetAddress getSize() const { return Size; }
489
490 /// Set the size of this symbol.
setSize(JITTargetAddress Size)491 void setSize(JITTargetAddress Size) {
492 assert(Base && "Cannot set size for null Symbol");
493 assert((Size == 0 || Base->isDefined()) &&
494 "Non-zero size can only be set for defined symbols");
495 assert((Offset + Size <= static_cast<const Block &>(*Base).getSize()) &&
496 "Symbol size cannot extend past the end of its containing block");
497 this->Size = Size;
498 }
499
500 /// Returns true if this symbol is backed by a zero-fill block.
501 /// This method may only be called on defined symbols.
isSymbolZeroFill()502 bool isSymbolZeroFill() const { return getBlock().isZeroFill(); }
503
504 /// Returns the content in the underlying block covered by this symbol.
505 /// This method may only be called on defined non-zero-fill symbols.
getSymbolContent()506 ArrayRef<char> getSymbolContent() const {
507 return getBlock().getContent().slice(Offset, Size);
508 }
509
510 /// Get the linkage for this Symbol.
getLinkage()511 Linkage getLinkage() const { return static_cast<Linkage>(L); }
512
513 /// Set the linkage for this Symbol.
setLinkage(Linkage L)514 void setLinkage(Linkage L) {
515 assert((L == Linkage::Strong || (!Base->isAbsolute() && !Name.empty())) &&
516 "Linkage can only be applied to defined named symbols");
517 this->L = static_cast<uint8_t>(L);
518 }
519
520 /// Get the visibility for this Symbol.
getScope()521 Scope getScope() const { return static_cast<Scope>(S); }
522
523 /// Set the visibility for this Symbol.
setScope(Scope S)524 void setScope(Scope S) {
525 assert((!Name.empty() || S == Scope::Local) &&
526 "Can not set anonymous symbol to non-local scope");
527 assert((S == Scope::Default || Base->isDefined() || Base->isAbsolute()) &&
528 "Invalid visibility for symbol type");
529 this->S = static_cast<uint8_t>(S);
530 }
531
532 private:
makeExternal(Addressable & A)533 void makeExternal(Addressable &A) {
534 assert(!A.isDefined() && !A.isAbsolute() &&
535 "Attempting to make external with defined or absolute block");
536 Base = &A;
537 Offset = 0;
538 setScope(Scope::Default);
539 IsLive = 0;
540 // note: Size, Linkage and IsCallable fields left unchanged.
541 }
542
makeAbsolute(Addressable & A)543 void makeAbsolute(Addressable &A) {
544 assert(!A.isDefined() && A.isAbsolute() &&
545 "Attempting to make absolute with defined or external block");
546 Base = &A;
547 Offset = 0;
548 }
549
setBlock(Block & B)550 void setBlock(Block &B) { Base = &B; }
551
setOffset(uint64_t NewOffset)552 void setOffset(uint64_t NewOffset) {
553 assert(NewOffset <= MaxOffset && "Offset out of range");
554 Offset = NewOffset;
555 }
556
557 static constexpr uint64_t MaxOffset = (1ULL << 59) - 1;
558
559 // FIXME: A char* or SymbolStringPtr may pack better.
560 StringRef Name;
561 Addressable *Base = nullptr;
562 uint64_t Offset : 59;
563 uint64_t L : 1;
564 uint64_t S : 2;
565 uint64_t IsLive : 1;
566 uint64_t IsCallable : 1;
567 JITTargetAddress Size = 0;
568 };
569
570 raw_ostream &operator<<(raw_ostream &OS, const Symbol &A);
571
572 void printEdge(raw_ostream &OS, const Block &B, const Edge &E,
573 StringRef EdgeKindName);
574
575 /// Represents an object file section.
576 class Section {
577 friend class LinkGraph;
578
579 private:
Section(StringRef Name,sys::Memory::ProtectionFlags Prot,SectionOrdinal SecOrdinal)580 Section(StringRef Name, sys::Memory::ProtectionFlags Prot,
581 SectionOrdinal SecOrdinal)
582 : Name(Name), Prot(Prot), SecOrdinal(SecOrdinal) {}
583
584 using SymbolSet = DenseSet<Symbol *>;
585 using BlockSet = DenseSet<Block *>;
586
587 public:
588 using symbol_iterator = SymbolSet::iterator;
589 using const_symbol_iterator = SymbolSet::const_iterator;
590
591 using block_iterator = BlockSet::iterator;
592 using const_block_iterator = BlockSet::const_iterator;
593
594 ~Section();
595
596 // Sections are not movable or copyable.
597 Section(const Section &) = delete;
598 Section &operator=(const Section &) = delete;
599 Section(Section &&) = delete;
600 Section &operator=(Section &&) = delete;
601
602 /// Returns the name of this section.
getName()603 StringRef getName() const { return Name; }
604
605 /// Returns the protection flags for this section.
getProtectionFlags()606 sys::Memory::ProtectionFlags getProtectionFlags() const { return Prot; }
607
608 /// Set the protection flags for this section.
setProtectionFlags(sys::Memory::ProtectionFlags Prot)609 void setProtectionFlags(sys::Memory::ProtectionFlags Prot) {
610 this->Prot = Prot;
611 }
612
613 /// Returns the ordinal for this section.
getOrdinal()614 SectionOrdinal getOrdinal() const { return SecOrdinal; }
615
616 /// Returns an iterator over the blocks defined in this section.
blocks()617 iterator_range<block_iterator> blocks() {
618 return make_range(Blocks.begin(), Blocks.end());
619 }
620
621 /// Returns an iterator over the blocks defined in this section.
blocks()622 iterator_range<const_block_iterator> blocks() const {
623 return make_range(Blocks.begin(), Blocks.end());
624 }
625
626 /// Returns an iterator over the symbols defined in this section.
symbols()627 iterator_range<symbol_iterator> symbols() {
628 return make_range(Symbols.begin(), Symbols.end());
629 }
630
631 /// Returns an iterator over the symbols defined in this section.
symbols()632 iterator_range<const_symbol_iterator> symbols() const {
633 return make_range(Symbols.begin(), Symbols.end());
634 }
635
636 /// Return the number of symbols in this section.
symbols_size()637 SymbolSet::size_type symbols_size() { return Symbols.size(); }
638
639 private:
addSymbol(Symbol & Sym)640 void addSymbol(Symbol &Sym) {
641 assert(!Symbols.count(&Sym) && "Symbol is already in this section");
642 Symbols.insert(&Sym);
643 }
644
removeSymbol(Symbol & Sym)645 void removeSymbol(Symbol &Sym) {
646 assert(Symbols.count(&Sym) && "symbol is not in this section");
647 Symbols.erase(&Sym);
648 }
649
addBlock(Block & B)650 void addBlock(Block &B) {
651 assert(!Blocks.count(&B) && "Block is already in this section");
652 Blocks.insert(&B);
653 }
654
removeBlock(Block & B)655 void removeBlock(Block &B) {
656 assert(Blocks.count(&B) && "Block is not in this section");
657 Blocks.erase(&B);
658 }
659
660 StringRef Name;
661 sys::Memory::ProtectionFlags Prot;
662 SectionOrdinal SecOrdinal = 0;
663 BlockSet Blocks;
664 SymbolSet Symbols;
665 };
666
667 /// Represents a section address range via a pair of Block pointers
668 /// to the first and last Blocks in the section.
669 class SectionRange {
670 public:
671 SectionRange() = default;
SectionRange(const Section & Sec)672 SectionRange(const Section &Sec) {
673 if (llvm::empty(Sec.blocks()))
674 return;
675 First = Last = *Sec.blocks().begin();
676 for (auto *B : Sec.blocks()) {
677 if (B->getAddress() < First->getAddress())
678 First = B;
679 if (B->getAddress() > Last->getAddress())
680 Last = B;
681 }
682 }
getFirstBlock()683 Block *getFirstBlock() const {
684 assert((!Last || First) && "First can not be null if end is non-null");
685 return First;
686 }
getLastBlock()687 Block *getLastBlock() const {
688 assert((First || !Last) && "Last can not be null if start is non-null");
689 return Last;
690 }
empty()691 bool empty() const {
692 assert((First || !Last) && "Last can not be null if start is non-null");
693 return !First;
694 }
getStart()695 JITTargetAddress getStart() const {
696 return First ? First->getAddress() : 0;
697 }
getEnd()698 JITTargetAddress getEnd() const {
699 return Last ? Last->getAddress() + Last->getSize() : 0;
700 }
getSize()701 uint64_t getSize() const { return getEnd() - getStart(); }
702
703 private:
704 Block *First = nullptr;
705 Block *Last = nullptr;
706 };
707
708 class LinkGraph {
709 private:
710 using SectionList = std::vector<std::unique_ptr<Section>>;
711 using ExternalSymbolSet = DenseSet<Symbol *>;
712 using BlockSet = DenseSet<Block *>;
713
714 template <typename... ArgTs>
createAddressable(ArgTs &&...Args)715 Addressable &createAddressable(ArgTs &&... Args) {
716 Addressable *A =
717 reinterpret_cast<Addressable *>(Allocator.Allocate<Addressable>());
718 new (A) Addressable(std::forward<ArgTs>(Args)...);
719 return *A;
720 }
721
destroyAddressable(Addressable & A)722 void destroyAddressable(Addressable &A) {
723 A.~Addressable();
724 Allocator.Deallocate(&A);
725 }
726
createBlock(ArgTs &&...Args)727 template <typename... ArgTs> Block &createBlock(ArgTs &&... Args) {
728 Block *B = reinterpret_cast<Block *>(Allocator.Allocate<Block>());
729 new (B) Block(std::forward<ArgTs>(Args)...);
730 B->getSection().addBlock(*B);
731 return *B;
732 }
733
destroyBlock(Block & B)734 void destroyBlock(Block &B) {
735 B.~Block();
736 Allocator.Deallocate(&B);
737 }
738
destroySymbol(Symbol & S)739 void destroySymbol(Symbol &S) {
740 S.~Symbol();
741 Allocator.Deallocate(&S);
742 }
743
getSectionBlocks(Section & S)744 static iterator_range<Section::block_iterator> getSectionBlocks(Section &S) {
745 return S.blocks();
746 }
747
748 static iterator_range<Section::const_block_iterator>
getSectionConstBlocks(Section & S)749 getSectionConstBlocks(Section &S) {
750 return S.blocks();
751 }
752
753 static iterator_range<Section::symbol_iterator>
getSectionSymbols(Section & S)754 getSectionSymbols(Section &S) {
755 return S.symbols();
756 }
757
758 static iterator_range<Section::const_symbol_iterator>
getSectionConstSymbols(Section & S)759 getSectionConstSymbols(Section &S) {
760 return S.symbols();
761 }
762
763 public:
764 using external_symbol_iterator = ExternalSymbolSet::iterator;
765
766 using section_iterator = pointee_iterator<SectionList::iterator>;
767 using const_section_iterator = pointee_iterator<SectionList::const_iterator>;
768
769 template <typename OuterItrT, typename InnerItrT, typename T,
770 iterator_range<InnerItrT> getInnerRange(
771 typename OuterItrT::reference)>
772 class nested_collection_iterator
773 : public iterator_facade_base<
774 nested_collection_iterator<OuterItrT, InnerItrT, T, getInnerRange>,
775 std::forward_iterator_tag, T> {
776 public:
777 nested_collection_iterator() = default;
778
nested_collection_iterator(OuterItrT OuterI,OuterItrT OuterE)779 nested_collection_iterator(OuterItrT OuterI, OuterItrT OuterE)
780 : OuterI(OuterI), OuterE(OuterE),
781 InnerI(getInnerBegin(OuterI, OuterE)) {
782 moveToNonEmptyInnerOrEnd();
783 }
784
785 bool operator==(const nested_collection_iterator &RHS) const {
786 return (OuterI == RHS.OuterI) && (InnerI == RHS.InnerI);
787 }
788
789 T operator*() const {
790 assert(InnerI != getInnerRange(*OuterI).end() && "Dereferencing end?");
791 return *InnerI;
792 }
793
794 nested_collection_iterator operator++() {
795 ++InnerI;
796 moveToNonEmptyInnerOrEnd();
797 return *this;
798 }
799
800 private:
getInnerBegin(OuterItrT OuterI,OuterItrT OuterE)801 static InnerItrT getInnerBegin(OuterItrT OuterI, OuterItrT OuterE) {
802 return OuterI != OuterE ? getInnerRange(*OuterI).begin() : InnerItrT();
803 }
804
moveToNonEmptyInnerOrEnd()805 void moveToNonEmptyInnerOrEnd() {
806 while (OuterI != OuterE && InnerI == getInnerRange(*OuterI).end()) {
807 ++OuterI;
808 InnerI = getInnerBegin(OuterI, OuterE);
809 }
810 }
811
812 OuterItrT OuterI, OuterE;
813 InnerItrT InnerI;
814 };
815
816 using defined_symbol_iterator =
817 nested_collection_iterator<const_section_iterator,
818 Section::symbol_iterator, Symbol *,
819 getSectionSymbols>;
820
821 using const_defined_symbol_iterator =
822 nested_collection_iterator<const_section_iterator,
823 Section::const_symbol_iterator, const Symbol *,
824 getSectionConstSymbols>;
825
826 using block_iterator = nested_collection_iterator<const_section_iterator,
827 Section::block_iterator,
828 Block *, getSectionBlocks>;
829
830 using const_block_iterator =
831 nested_collection_iterator<const_section_iterator,
832 Section::const_block_iterator, const Block *,
833 getSectionConstBlocks>;
834
835 using GetEdgeKindNameFunction = const char *(*)(Edge::Kind);
836
LinkGraph(std::string Name,const Triple & TT,unsigned PointerSize,support::endianness Endianness,GetEdgeKindNameFunction GetEdgeKindName)837 LinkGraph(std::string Name, const Triple &TT, unsigned PointerSize,
838 support::endianness Endianness,
839 GetEdgeKindNameFunction GetEdgeKindName)
840 : Name(std::move(Name)), TT(TT), PointerSize(PointerSize),
841 Endianness(Endianness), GetEdgeKindName(std::move(GetEdgeKindName)) {}
842
843 /// Returns the name of this graph (usually the name of the original
844 /// underlying MemoryBuffer).
getName()845 const std::string &getName() const { return Name; }
846
847 /// Returns the target triple for this Graph.
getTargetTriple()848 const Triple &getTargetTriple() const { return TT; }
849
850 /// Returns the pointer size for use in this graph.
getPointerSize()851 unsigned getPointerSize() const { return PointerSize; }
852
853 /// Returns the endianness of content in this graph.
getEndianness()854 support::endianness getEndianness() const { return Endianness; }
855
getEdgeKindName(Edge::Kind K)856 const char *getEdgeKindName(Edge::Kind K) const { return GetEdgeKindName(K); }
857
858 /// Allocate a copy of the given string using the LinkGraph's allocator.
859 /// This can be useful when renaming symbols or adding new content to the
860 /// graph.
allocateString(ArrayRef<char> Source)861 ArrayRef<char> allocateString(ArrayRef<char> Source) {
862 auto *AllocatedBuffer = Allocator.Allocate<char>(Source.size());
863 llvm::copy(Source, AllocatedBuffer);
864 return ArrayRef<char>(AllocatedBuffer, Source.size());
865 }
866
867 /// Allocate a copy of the given string using the LinkGraph's allocator.
868 /// This can be useful when renaming symbols or adding new content to the
869 /// graph.
870 ///
871 /// Note: This Twine-based overload requires an extra string copy and an
872 /// extra heap allocation for large strings. The ArrayRef<char> overload
873 /// should be preferred where possible.
allocateString(Twine Source)874 ArrayRef<char> allocateString(Twine Source) {
875 SmallString<256> TmpBuffer;
876 auto SourceStr = Source.toStringRef(TmpBuffer);
877 auto *AllocatedBuffer = Allocator.Allocate<char>(SourceStr.size());
878 llvm::copy(SourceStr, AllocatedBuffer);
879 return ArrayRef<char>(AllocatedBuffer, SourceStr.size());
880 }
881
882 /// Create a section with the given name, protection flags, and alignment.
createSection(StringRef Name,sys::Memory::ProtectionFlags Prot)883 Section &createSection(StringRef Name, sys::Memory::ProtectionFlags Prot) {
884 assert(llvm::find_if(Sections,
885 [&](std::unique_ptr<Section> &Sec) {
886 return Sec->getName() == Name;
887 }) == Sections.end() &&
888 "Duplicate section name");
889 std::unique_ptr<Section> Sec(new Section(Name, Prot, Sections.size()));
890 Sections.push_back(std::move(Sec));
891 return *Sections.back();
892 }
893
894 /// Create a content block.
createContentBlock(Section & Parent,ArrayRef<char> Content,uint64_t Address,uint64_t Alignment,uint64_t AlignmentOffset)895 Block &createContentBlock(Section &Parent, ArrayRef<char> Content,
896 uint64_t Address, uint64_t Alignment,
897 uint64_t AlignmentOffset) {
898 return createBlock(Parent, Content, Address, Alignment, AlignmentOffset);
899 }
900
901 /// Create a zero-fill block.
createZeroFillBlock(Section & Parent,uint64_t Size,uint64_t Address,uint64_t Alignment,uint64_t AlignmentOffset)902 Block &createZeroFillBlock(Section &Parent, uint64_t Size, uint64_t Address,
903 uint64_t Alignment, uint64_t AlignmentOffset) {
904 return createBlock(Parent, Size, Address, Alignment, AlignmentOffset);
905 }
906
907 /// Cache type for the splitBlock function.
908 using SplitBlockCache = Optional<SmallVector<Symbol *, 8>>;
909
910 /// Splits block B at the given index which must be greater than zero.
911 /// If SplitIndex == B.getSize() then this function is a no-op and returns B.
912 /// If SplitIndex < B.getSize() then this function returns a new block
913 /// covering the range [ 0, SplitIndex ), and B is modified to cover the range
914 /// [ SplitIndex, B.size() ).
915 ///
916 /// The optional Cache parameter can be used to speed up repeated calls to
917 /// splitBlock for a single block. If the value is None the cache will be
918 /// treated as uninitialized and splitBlock will populate it. Otherwise it
919 /// is assumed to contain the list of Symbols pointing at B, sorted in
920 /// descending order of offset.
921 ///
922 /// Notes:
923 ///
924 /// 1. The newly introduced block will have a new ordinal which will be
925 /// higher than any other ordinals in the section. Clients are responsible
926 /// for re-assigning block ordinals to restore a compatible order if
927 /// needed.
928 ///
929 /// 2. The cache is not automatically updated if new symbols are introduced
930 /// between calls to splitBlock. Any newly introduced symbols may be
931 /// added to the cache manually (descending offset order must be
932 /// preserved), or the cache can be set to None and rebuilt by
933 /// splitBlock on the next call.
934 Block &splitBlock(Block &B, size_t SplitIndex,
935 SplitBlockCache *Cache = nullptr);
936
937 /// Add an external symbol.
938 /// Some formats (e.g. ELF) allow Symbols to have sizes. For Symbols whose
939 /// size is not known, you should substitute '0'.
940 /// For external symbols Linkage determines whether the symbol must be
941 /// present during lookup: Externals with strong linkage must be found or
942 /// an error will be emitted. Externals with weak linkage are permitted to
943 /// be undefined, in which case they are assigned a value of 0.
addExternalSymbol(StringRef Name,uint64_t Size,Linkage L)944 Symbol &addExternalSymbol(StringRef Name, uint64_t Size, Linkage L) {
945 assert(llvm::count_if(ExternalSymbols,
946 [&](const Symbol *Sym) {
947 return Sym->getName() == Name;
948 }) == 0 &&
949 "Duplicate external symbol");
950 auto &Sym =
951 Symbol::constructExternal(Allocator.Allocate<Symbol>(),
952 createAddressable(0, false), Name, Size, L);
953 ExternalSymbols.insert(&Sym);
954 return Sym;
955 }
956
957 /// Add an absolute symbol.
addAbsoluteSymbol(StringRef Name,JITTargetAddress Address,uint64_t Size,Linkage L,Scope S,bool IsLive)958 Symbol &addAbsoluteSymbol(StringRef Name, JITTargetAddress Address,
959 uint64_t Size, Linkage L, Scope S, bool IsLive) {
960 assert(llvm::count_if(AbsoluteSymbols,
961 [&](const Symbol *Sym) {
962 return Sym->getName() == Name;
963 }) == 0 &&
964 "Duplicate absolute symbol");
965 auto &Sym = Symbol::constructAbsolute(Allocator.Allocate<Symbol>(),
966 createAddressable(Address), Name,
967 Size, L, S, IsLive);
968 AbsoluteSymbols.insert(&Sym);
969 return Sym;
970 }
971
972 /// Convenience method for adding a weak zero-fill symbol.
addCommonSymbol(StringRef Name,Scope S,Section & Section,JITTargetAddress Address,uint64_t Size,uint64_t Alignment,bool IsLive)973 Symbol &addCommonSymbol(StringRef Name, Scope S, Section &Section,
974 JITTargetAddress Address, uint64_t Size,
975 uint64_t Alignment, bool IsLive) {
976 assert(llvm::count_if(defined_symbols(),
977 [&](const Symbol *Sym) {
978 return Sym->getName() == Name;
979 }) == 0 &&
980 "Duplicate defined symbol");
981 auto &Sym = Symbol::constructCommon(
982 Allocator.Allocate<Symbol>(),
983 createBlock(Section, Size, Address, Alignment, 0), Name, Size, S,
984 IsLive);
985 Section.addSymbol(Sym);
986 return Sym;
987 }
988
989 /// Add an anonymous symbol.
addAnonymousSymbol(Block & Content,JITTargetAddress Offset,JITTargetAddress Size,bool IsCallable,bool IsLive)990 Symbol &addAnonymousSymbol(Block &Content, JITTargetAddress Offset,
991 JITTargetAddress Size, bool IsCallable,
992 bool IsLive) {
993 auto &Sym = Symbol::constructAnonDef(Allocator.Allocate<Symbol>(), Content,
994 Offset, Size, IsCallable, IsLive);
995 Content.getSection().addSymbol(Sym);
996 return Sym;
997 }
998
999 /// Add a named symbol.
addDefinedSymbol(Block & Content,JITTargetAddress Offset,StringRef Name,JITTargetAddress Size,Linkage L,Scope S,bool IsCallable,bool IsLive)1000 Symbol &addDefinedSymbol(Block &Content, JITTargetAddress Offset,
1001 StringRef Name, JITTargetAddress Size, Linkage L,
1002 Scope S, bool IsCallable, bool IsLive) {
1003 assert(llvm::count_if(defined_symbols(),
1004 [&](const Symbol *Sym) {
1005 return Sym->getName() == Name;
1006 }) == 0 &&
1007 "Duplicate defined symbol");
1008 auto &Sym =
1009 Symbol::constructNamedDef(Allocator.Allocate<Symbol>(), Content, Offset,
1010 Name, Size, L, S, IsLive, IsCallable);
1011 Content.getSection().addSymbol(Sym);
1012 return Sym;
1013 }
1014
sections()1015 iterator_range<section_iterator> sections() {
1016 return make_range(section_iterator(Sections.begin()),
1017 section_iterator(Sections.end()));
1018 }
1019
1020 /// Returns the section with the given name if it exists, otherwise returns
1021 /// null.
findSectionByName(StringRef Name)1022 Section *findSectionByName(StringRef Name) {
1023 for (auto &S : sections())
1024 if (S.getName() == Name)
1025 return &S;
1026 return nullptr;
1027 }
1028
blocks()1029 iterator_range<block_iterator> blocks() {
1030 return make_range(block_iterator(Sections.begin(), Sections.end()),
1031 block_iterator(Sections.end(), Sections.end()));
1032 }
1033
blocks()1034 iterator_range<const_block_iterator> blocks() const {
1035 return make_range(const_block_iterator(Sections.begin(), Sections.end()),
1036 const_block_iterator(Sections.end(), Sections.end()));
1037 }
1038
external_symbols()1039 iterator_range<external_symbol_iterator> external_symbols() {
1040 return make_range(ExternalSymbols.begin(), ExternalSymbols.end());
1041 }
1042
absolute_symbols()1043 iterator_range<external_symbol_iterator> absolute_symbols() {
1044 return make_range(AbsoluteSymbols.begin(), AbsoluteSymbols.end());
1045 }
1046
defined_symbols()1047 iterator_range<defined_symbol_iterator> defined_symbols() {
1048 return make_range(defined_symbol_iterator(Sections.begin(), Sections.end()),
1049 defined_symbol_iterator(Sections.end(), Sections.end()));
1050 }
1051
defined_symbols()1052 iterator_range<const_defined_symbol_iterator> defined_symbols() const {
1053 return make_range(
1054 const_defined_symbol_iterator(Sections.begin(), Sections.end()),
1055 const_defined_symbol_iterator(Sections.end(), Sections.end()));
1056 }
1057
1058 /// Make the given symbol external (must not already be external).
1059 ///
1060 /// Symbol size, linkage and callability will be left unchanged. Symbol scope
1061 /// will be set to Default, and offset will be reset to 0.
makeExternal(Symbol & Sym)1062 void makeExternal(Symbol &Sym) {
1063 assert(!Sym.isExternal() && "Symbol is already external");
1064 if (Sym.isAbsolute()) {
1065 assert(AbsoluteSymbols.count(&Sym) &&
1066 "Sym is not in the absolute symbols set");
1067 assert(Sym.getOffset() == 0 && "Absolute not at offset 0");
1068 AbsoluteSymbols.erase(&Sym);
1069 Sym.getAddressable().setAbsolute(false);
1070 } else {
1071 assert(Sym.isDefined() && "Sym is not a defined symbol");
1072 Section &Sec = Sym.getBlock().getSection();
1073 Sec.removeSymbol(Sym);
1074 Sym.makeExternal(createAddressable(0, false));
1075 }
1076 ExternalSymbols.insert(&Sym);
1077 }
1078
1079 /// Make the given symbol an absolute with the given address (must not already
1080 /// be absolute).
1081 ///
1082 /// Symbol size, linkage, scope, and callability, and liveness will be left
1083 /// unchanged. Symbol offset will be reset to 0.
makeAbsolute(Symbol & Sym,JITTargetAddress Address)1084 void makeAbsolute(Symbol &Sym, JITTargetAddress Address) {
1085 assert(!Sym.isAbsolute() && "Symbol is already absolute");
1086 if (Sym.isExternal()) {
1087 assert(ExternalSymbols.count(&Sym) &&
1088 "Sym is not in the absolute symbols set");
1089 assert(Sym.getOffset() == 0 && "External is not at offset 0");
1090 ExternalSymbols.erase(&Sym);
1091 Sym.getAddressable().setAbsolute(true);
1092 } else {
1093 assert(Sym.isDefined() && "Sym is not a defined symbol");
1094 Section &Sec = Sym.getBlock().getSection();
1095 Sec.removeSymbol(Sym);
1096 Sym.makeAbsolute(createAddressable(Address));
1097 }
1098 AbsoluteSymbols.insert(&Sym);
1099 }
1100
1101 /// Turn an absolute or external symbol into a defined one by attaching it to
1102 /// a block. Symbol must not already be defined.
makeDefined(Symbol & Sym,Block & Content,JITTargetAddress Offset,JITTargetAddress Size,Linkage L,Scope S,bool IsLive)1103 void makeDefined(Symbol &Sym, Block &Content, JITTargetAddress Offset,
1104 JITTargetAddress Size, Linkage L, Scope S, bool IsLive) {
1105 assert(!Sym.isDefined() && "Sym is already a defined symbol");
1106 if (Sym.isAbsolute()) {
1107 assert(AbsoluteSymbols.count(&Sym) &&
1108 "Symbol is not in the absolutes set");
1109 AbsoluteSymbols.erase(&Sym);
1110 } else {
1111 assert(ExternalSymbols.count(&Sym) &&
1112 "Symbol is not in the externals set");
1113 ExternalSymbols.erase(&Sym);
1114 }
1115 Addressable &OldBase = *Sym.Base;
1116 Sym.setBlock(Content);
1117 Sym.setOffset(Offset);
1118 Sym.setSize(Size);
1119 Sym.setLinkage(L);
1120 Sym.setScope(S);
1121 Sym.setLive(IsLive);
1122 Content.getSection().addSymbol(Sym);
1123 destroyAddressable(OldBase);
1124 }
1125
1126 /// Transfer a defined symbol from one block to another.
1127 ///
1128 /// The symbol's offset within DestBlock is set to NewOffset.
1129 ///
1130 /// If ExplicitNewSize is given as None then the size of the symbol will be
1131 /// checked and auto-truncated to at most the size of the remainder (from the
1132 /// given offset) of the size of the new block.
1133 ///
1134 /// All other symbol attributes are unchanged.
transferDefinedSymbol(Symbol & Sym,Block & DestBlock,JITTargetAddress NewOffset,Optional<JITTargetAddress> ExplicitNewSize)1135 void transferDefinedSymbol(Symbol &Sym, Block &DestBlock,
1136 JITTargetAddress NewOffset,
1137 Optional<JITTargetAddress> ExplicitNewSize) {
1138 Sym.setBlock(DestBlock);
1139 Sym.setOffset(NewOffset);
1140 if (ExplicitNewSize)
1141 Sym.setSize(*ExplicitNewSize);
1142 else {
1143 JITTargetAddress RemainingBlockSize = DestBlock.getSize() - NewOffset;
1144 if (Sym.getSize() > RemainingBlockSize)
1145 Sym.setSize(RemainingBlockSize);
1146 }
1147 }
1148
1149 /// Removes an external symbol. Also removes the underlying Addressable.
removeExternalSymbol(Symbol & Sym)1150 void removeExternalSymbol(Symbol &Sym) {
1151 assert(!Sym.isDefined() && !Sym.isAbsolute() &&
1152 "Sym is not an external symbol");
1153 assert(ExternalSymbols.count(&Sym) && "Symbol is not in the externals set");
1154 ExternalSymbols.erase(&Sym);
1155 Addressable &Base = *Sym.Base;
1156 assert(llvm::find_if(ExternalSymbols,
1157 [&](Symbol *AS) { return AS->Base == &Base; }) ==
1158 ExternalSymbols.end() &&
1159 "Base addressable still in use");
1160 destroySymbol(Sym);
1161 destroyAddressable(Base);
1162 }
1163
1164 /// Remove an absolute symbol. Also removes the underlying Addressable.
removeAbsoluteSymbol(Symbol & Sym)1165 void removeAbsoluteSymbol(Symbol &Sym) {
1166 assert(!Sym.isDefined() && Sym.isAbsolute() &&
1167 "Sym is not an absolute symbol");
1168 assert(AbsoluteSymbols.count(&Sym) &&
1169 "Symbol is not in the absolute symbols set");
1170 AbsoluteSymbols.erase(&Sym);
1171 Addressable &Base = *Sym.Base;
1172 assert(llvm::find_if(ExternalSymbols,
1173 [&](Symbol *AS) { return AS->Base == &Base; }) ==
1174 ExternalSymbols.end() &&
1175 "Base addressable still in use");
1176 destroySymbol(Sym);
1177 destroyAddressable(Base);
1178 }
1179
1180 /// Removes defined symbols. Does not remove the underlying block.
removeDefinedSymbol(Symbol & Sym)1181 void removeDefinedSymbol(Symbol &Sym) {
1182 assert(Sym.isDefined() && "Sym is not a defined symbol");
1183 Sym.getBlock().getSection().removeSymbol(Sym);
1184 destroySymbol(Sym);
1185 }
1186
1187 /// Remove a block.
removeBlock(Block & B)1188 void removeBlock(Block &B) {
1189 assert(llvm::none_of(B.getSection().symbols(),
1190 [&](const Symbol *Sym) {
1191 return &Sym->getBlock() == &B;
1192 }) &&
1193 "Block still has symbols attached");
1194 B.getSection().removeBlock(B);
1195 destroyBlock(B);
1196 }
1197
1198 /// Dump the graph.
1199 void dump(raw_ostream &OS);
1200
1201 private:
1202 // Put the BumpPtrAllocator first so that we don't free any of the underlying
1203 // memory until the Symbol/Addressable destructors have been run.
1204 BumpPtrAllocator Allocator;
1205
1206 std::string Name;
1207 Triple TT;
1208 unsigned PointerSize;
1209 support::endianness Endianness;
1210 GetEdgeKindNameFunction GetEdgeKindName = nullptr;
1211 SectionList Sections;
1212 ExternalSymbolSet ExternalSymbols;
1213 ExternalSymbolSet AbsoluteSymbols;
1214 };
1215
1216 /// Enables easy lookup of blocks by addresses.
1217 class BlockAddressMap {
1218 public:
1219 using AddrToBlockMap = std::map<JITTargetAddress, Block *>;
1220 using const_iterator = AddrToBlockMap::const_iterator;
1221
1222 /// A block predicate that always adds all blocks.
includeAllBlocks(const Block & B)1223 static bool includeAllBlocks(const Block &B) { return true; }
1224
1225 /// A block predicate that always includes blocks with non-null addresses.
includeNonNull(const Block & B)1226 static bool includeNonNull(const Block &B) { return B.getAddress(); }
1227
1228 BlockAddressMap() = default;
1229
1230 /// Add a block to the map. Returns an error if the block overlaps with any
1231 /// existing block.
1232 template <typename PredFn = decltype(includeAllBlocks)>
1233 Error addBlock(Block &B, PredFn Pred = includeAllBlocks) {
1234 if (!Pred(B))
1235 return Error::success();
1236
1237 auto I = AddrToBlock.upper_bound(B.getAddress());
1238
1239 // If we're not at the end of the map, check for overlap with the next
1240 // element.
1241 if (I != AddrToBlock.end()) {
1242 if (B.getAddress() + B.getSize() > I->second->getAddress())
1243 return overlapError(B, *I->second);
1244 }
1245
1246 // If we're not at the start of the map, check for overlap with the previous
1247 // element.
1248 if (I != AddrToBlock.begin()) {
1249 auto &PrevBlock = *std::prev(I)->second;
1250 if (PrevBlock.getAddress() + PrevBlock.getSize() > B.getAddress())
1251 return overlapError(B, PrevBlock);
1252 }
1253
1254 AddrToBlock.insert(I, std::make_pair(B.getAddress(), &B));
1255 return Error::success();
1256 }
1257
1258 /// Add a block to the map without checking for overlap with existing blocks.
1259 /// The client is responsible for ensuring that the block added does not
1260 /// overlap with any existing block.
addBlockWithoutChecking(Block & B)1261 void addBlockWithoutChecking(Block &B) { AddrToBlock[B.getAddress()] = &B; }
1262
1263 /// Add a range of blocks to the map. Returns an error if any block in the
1264 /// range overlaps with any other block in the range, or with any existing
1265 /// block in the map.
1266 template <typename BlockPtrRange,
1267 typename PredFn = decltype(includeAllBlocks)>
1268 Error addBlocks(BlockPtrRange &&Blocks, PredFn Pred = includeAllBlocks) {
1269 for (auto *B : Blocks)
1270 if (auto Err = addBlock(*B, Pred))
1271 return Err;
1272 return Error::success();
1273 }
1274
1275 /// Add a range of blocks to the map without checking for overlap with
1276 /// existing blocks. The client is responsible for ensuring that the block
1277 /// added does not overlap with any existing block.
1278 template <typename BlockPtrRange>
addBlocksWithoutChecking(BlockPtrRange && Blocks)1279 void addBlocksWithoutChecking(BlockPtrRange &&Blocks) {
1280 for (auto *B : Blocks)
1281 addBlockWithoutChecking(*B);
1282 }
1283
1284 /// Iterates over (Address, Block*) pairs in ascending order of address.
begin()1285 const_iterator begin() const { return AddrToBlock.begin(); }
end()1286 const_iterator end() const { return AddrToBlock.end(); }
1287
1288 /// Returns the block starting at the given address, or nullptr if no such
1289 /// block exists.
getBlockAt(JITTargetAddress Addr)1290 Block *getBlockAt(JITTargetAddress Addr) const {
1291 auto I = AddrToBlock.find(Addr);
1292 if (I == AddrToBlock.end())
1293 return nullptr;
1294 return I->second;
1295 }
1296
1297 /// Returns the block covering the given address, or nullptr if no such block
1298 /// exists.
getBlockCovering(JITTargetAddress Addr)1299 Block *getBlockCovering(JITTargetAddress Addr) const {
1300 auto I = AddrToBlock.upper_bound(Addr);
1301 if (I == AddrToBlock.begin())
1302 return nullptr;
1303 auto *B = std::prev(I)->second;
1304 if (Addr < B->getAddress() + B->getSize())
1305 return B;
1306 return nullptr;
1307 }
1308
1309 private:
overlapError(Block & NewBlock,Block & ExistingBlock)1310 Error overlapError(Block &NewBlock, Block &ExistingBlock) {
1311 auto NewBlockEnd = NewBlock.getAddress() + NewBlock.getSize();
1312 auto ExistingBlockEnd =
1313 ExistingBlock.getAddress() + ExistingBlock.getSize();
1314 return make_error<JITLinkError>(
1315 "Block at " +
1316 formatv("{0:x16} -- {1:x16}", NewBlock.getAddress(), NewBlockEnd) +
1317 " overlaps " +
1318 formatv("{0:x16} -- {1:x16}", ExistingBlock.getAddress(),
1319 ExistingBlockEnd));
1320 }
1321
1322 AddrToBlockMap AddrToBlock;
1323 };
1324
1325 /// A map of addresses to Symbols.
1326 class SymbolAddressMap {
1327 public:
1328 using SymbolVector = SmallVector<Symbol *, 1>;
1329
1330 /// Add a symbol to the SymbolAddressMap.
addSymbol(Symbol & Sym)1331 void addSymbol(Symbol &Sym) {
1332 AddrToSymbols[Sym.getAddress()].push_back(&Sym);
1333 }
1334
1335 /// Add all symbols in a given range to the SymbolAddressMap.
1336 template <typename SymbolPtrCollection>
addSymbols(SymbolPtrCollection && Symbols)1337 void addSymbols(SymbolPtrCollection &&Symbols) {
1338 for (auto *Sym : Symbols)
1339 addSymbol(*Sym);
1340 }
1341
1342 /// Returns the list of symbols that start at the given address, or nullptr if
1343 /// no such symbols exist.
getSymbolsAt(JITTargetAddress Addr)1344 const SymbolVector *getSymbolsAt(JITTargetAddress Addr) const {
1345 auto I = AddrToSymbols.find(Addr);
1346 if (I == AddrToSymbols.end())
1347 return nullptr;
1348 return &I->second;
1349 }
1350
1351 private:
1352 std::map<JITTargetAddress, SymbolVector> AddrToSymbols;
1353 };
1354
1355 /// A function for mutating LinkGraphs.
1356 using LinkGraphPassFunction = std::function<Error(LinkGraph &)>;
1357
1358 /// A list of LinkGraph passes.
1359 using LinkGraphPassList = std::vector<LinkGraphPassFunction>;
1360
1361 /// An LinkGraph pass configuration, consisting of a list of pre-prune,
1362 /// post-prune, and post-fixup passes.
1363 struct PassConfiguration {
1364
1365 /// Pre-prune passes.
1366 ///
1367 /// These passes are called on the graph after it is built, and before any
1368 /// symbols have been pruned. Graph nodes still have their original vmaddrs.
1369 ///
1370 /// Notable use cases: Marking symbols live or should-discard.
1371 LinkGraphPassList PrePrunePasses;
1372
1373 /// Post-prune passes.
1374 ///
1375 /// These passes are called on the graph after dead stripping, but before
1376 /// memory is allocated or nodes assigned their final addresses.
1377 ///
1378 /// Notable use cases: Building GOT, stub, and TLV symbols.
1379 LinkGraphPassList PostPrunePasses;
1380
1381 /// Post-allocation passes.
1382 ///
1383 /// These passes are called on the graph after memory has been allocated and
1384 /// defined nodes have been assigned their final addresses, but before the
1385 /// context has been notified of these addresses. At this point externals
1386 /// have not been resolved, and symbol content has not yet been copied into
1387 /// working memory.
1388 ///
1389 /// Notable use cases: Setting up data structures associated with addresses
1390 /// of defined symbols (e.g. a mapping of __dso_handle to JITDylib* for the
1391 /// JIT runtime) -- using a PostAllocationPass for this ensures that the
1392 /// data structures are in-place before any query for resolved symbols
1393 /// can complete.
1394 LinkGraphPassList PostAllocationPasses;
1395
1396 /// Pre-fixup passes.
1397 ///
1398 /// These passes are called on the graph after memory has been allocated,
1399 /// content copied into working memory, and all nodes (including externals)
1400 /// have been assigned their final addresses, but before any fixups have been
1401 /// applied.
1402 ///
1403 /// Notable use cases: Late link-time optimizations like GOT and stub
1404 /// elimination.
1405 LinkGraphPassList PreFixupPasses;
1406
1407 /// Post-fixup passes.
1408 ///
1409 /// These passes are called on the graph after block contents has been copied
1410 /// to working memory, and fixups applied. Blocks have been updated to point
1411 /// to their fixed up content.
1412 ///
1413 /// Notable use cases: Testing and validation.
1414 LinkGraphPassList PostFixupPasses;
1415 };
1416
1417 /// Flags for symbol lookup.
1418 ///
1419 /// FIXME: These basically duplicate orc::SymbolLookupFlags -- We should merge
1420 /// the two types once we have an OrcSupport library.
1421 enum class SymbolLookupFlags { RequiredSymbol, WeaklyReferencedSymbol };
1422
1423 raw_ostream &operator<<(raw_ostream &OS, const SymbolLookupFlags &LF);
1424
1425 /// A map of symbol names to resolved addresses.
1426 using AsyncLookupResult = DenseMap<StringRef, JITEvaluatedSymbol>;
1427
1428 /// A function object to call with a resolved symbol map (See AsyncLookupResult)
1429 /// or an error if resolution failed.
1430 class JITLinkAsyncLookupContinuation {
1431 public:
~JITLinkAsyncLookupContinuation()1432 virtual ~JITLinkAsyncLookupContinuation() {}
1433 virtual void run(Expected<AsyncLookupResult> LR) = 0;
1434
1435 private:
1436 virtual void anchor();
1437 };
1438
1439 /// Create a lookup continuation from a function object.
1440 template <typename Continuation>
1441 std::unique_ptr<JITLinkAsyncLookupContinuation>
createLookupContinuation(Continuation Cont)1442 createLookupContinuation(Continuation Cont) {
1443
1444 class Impl final : public JITLinkAsyncLookupContinuation {
1445 public:
1446 Impl(Continuation C) : C(std::move(C)) {}
1447 void run(Expected<AsyncLookupResult> LR) override { C(std::move(LR)); }
1448
1449 private:
1450 Continuation C;
1451 };
1452
1453 return std::make_unique<Impl>(std::move(Cont));
1454 }
1455
1456 /// Holds context for a single jitLink invocation.
1457 class JITLinkContext {
1458 public:
1459 using LookupMap = DenseMap<StringRef, SymbolLookupFlags>;
1460
1461 /// Create a JITLinkContext.
JITLinkContext(const JITLinkDylib * JD)1462 JITLinkContext(const JITLinkDylib *JD) : JD(JD) {}
1463
1464 /// Destroy a JITLinkContext.
1465 virtual ~JITLinkContext();
1466
1467 /// Return the JITLinkDylib that this link is targeting, if any.
getJITLinkDylib()1468 const JITLinkDylib *getJITLinkDylib() const { return JD; }
1469
1470 /// Return the MemoryManager to be used for this link.
1471 virtual JITLinkMemoryManager &getMemoryManager() = 0;
1472
1473 /// Notify this context that linking failed.
1474 /// Called by JITLink if linking cannot be completed.
1475 virtual void notifyFailed(Error Err) = 0;
1476
1477 /// Called by JITLink to resolve external symbols. This method is passed a
1478 /// lookup continutation which it must call with a result to continue the
1479 /// linking process.
1480 virtual void lookup(const LookupMap &Symbols,
1481 std::unique_ptr<JITLinkAsyncLookupContinuation> LC) = 0;
1482
1483 /// Called by JITLink once all defined symbols in the graph have been assigned
1484 /// their final memory locations in the target process. At this point the
1485 /// LinkGraph can be inspected to build a symbol table, however the block
1486 /// content will not generally have been copied to the target location yet.
1487 ///
1488 /// If the client detects an error in the LinkGraph state (e.g. unexpected or
1489 /// missing symbols) they may return an error here. The error will be
1490 /// propagated to notifyFailed and the linker will bail out.
1491 virtual Error notifyResolved(LinkGraph &G) = 0;
1492
1493 /// Called by JITLink to notify the context that the object has been
1494 /// finalized (i.e. emitted to memory and memory permissions set). If all of
1495 /// this objects dependencies have also been finalized then the code is ready
1496 /// to run.
1497 virtual void
1498 notifyFinalized(std::unique_ptr<JITLinkMemoryManager::Allocation> A) = 0;
1499
1500 /// Called by JITLink prior to linking to determine whether default passes for
1501 /// the target should be added. The default implementation returns true.
1502 /// If subclasses override this method to return false for any target then
1503 /// they are required to fully configure the pass pipeline for that target.
1504 virtual bool shouldAddDefaultTargetPasses(const Triple &TT) const;
1505
1506 /// Returns the mark-live pass to be used for this link. If no pass is
1507 /// returned (the default) then the target-specific linker implementation will
1508 /// choose a conservative default (usually marking all symbols live).
1509 /// This function is only called if shouldAddDefaultTargetPasses returns true,
1510 /// otherwise the JITContext is responsible for adding a mark-live pass in
1511 /// modifyPassConfig.
1512 virtual LinkGraphPassFunction getMarkLivePass(const Triple &TT) const;
1513
1514 /// Called by JITLink to modify the pass pipeline prior to linking.
1515 /// The default version performs no modification.
1516 virtual Error modifyPassConfig(LinkGraph &G, PassConfiguration &Config);
1517
1518 private:
1519 const JITLinkDylib *JD = nullptr;
1520 };
1521
1522 /// Marks all symbols in a graph live. This can be used as a default,
1523 /// conservative mark-live implementation.
1524 Error markAllSymbolsLive(LinkGraph &G);
1525
1526 /// Create an out of range error for the given edge in the given block.
1527 Error makeTargetOutOfRangeError(const LinkGraph &G, const Block &B,
1528 const Edge &E);
1529
1530 /// Create a LinkGraph from the given object buffer.
1531 ///
1532 /// Note: The graph does not take ownership of the underlying buffer, nor copy
1533 /// its contents. The caller is responsible for ensuring that the object buffer
1534 /// outlives the graph.
1535 Expected<std::unique_ptr<LinkGraph>>
1536 createLinkGraphFromObject(MemoryBufferRef ObjectBuffer);
1537
1538 /// Link the given graph.
1539 void link(std::unique_ptr<LinkGraph> G, std::unique_ptr<JITLinkContext> Ctx);
1540
1541 } // end namespace jitlink
1542 } // end namespace llvm
1543
1544 #endif // LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H
1545