xref: /openbsd/gnu/usr.bin/gcc/gcc/config/i386/i386.h (revision e97b50d0)
1 /* Definitions of target machine for GNU compiler for IA-32.
2    Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3    2001, 2002 Free Software Foundation, Inc.
4 
5 This file is part of GNU CC.
6 
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11 
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING.  If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA.  */
21 
22 /* The purpose of this file is to define the characteristics of the i386,
23    independent of assembler syntax or operating system.
24 
25    Three other files build on this one to describe a specific assembler syntax:
26    bsd386.h, att386.h, and sun386.h.
27 
28    The actual tm.h file for a particular system should include
29    this file, and then the file for the appropriate assembler syntax.
30 
31    Many macros that specify assembler syntax are omitted entirely from
32    this file because they really belong in the files for particular
33    assemblers.  These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34    ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35    that start with ASM_ or end in ASM_OP.  */
36 
37 /* Define the specific costs for a given cpu */
38 
39 struct processor_costs {
40   const int add;		/* cost of an add instruction */
41   const int lea;		/* cost of a lea instruction */
42   const int shift_var;		/* variable shift costs */
43   const int shift_const;	/* constant shift costs */
44   const int mult_init;		/* cost of starting a multiply */
45   const int mult_bit;		/* cost of multiply per each bit set */
46   const int divide;		/* cost of a divide/mod */
47   int movsx;			/* The cost of movsx operation.  */
48   int movzx;			/* The cost of movzx operation.  */
49   const int large_insn;		/* insns larger than this cost more */
50   const int move_ratio;		/* The threshold of number of scalar
51 				   memory-to-memory move insns.  */
52   const int movzbl_load;	/* cost of loading using movzbl */
53   const int int_load[3];	/* cost of loading integer registers
54 				   in QImode, HImode and SImode relative
55 				   to reg-reg move (2).  */
56   const int int_store[3];	/* cost of storing integer register
57 				   in QImode, HImode and SImode */
58   const int fp_move;		/* cost of reg,reg fld/fst */
59   const int fp_load[3];		/* cost of loading FP register
60 				   in SFmode, DFmode and XFmode */
61   const int fp_store[3];	/* cost of storing FP register
62 				   in SFmode, DFmode and XFmode */
63   const int mmx_move;		/* cost of moving MMX register.  */
64   const int mmx_load[2];	/* cost of loading MMX register
65 				   in SImode and DImode */
66   const int mmx_store[2];	/* cost of storing MMX register
67 				   in SImode and DImode */
68   const int sse_move;		/* cost of moving SSE register.  */
69   const int sse_load[3];	/* cost of loading SSE register
70 				   in SImode, DImode and TImode*/
71   const int sse_store[3];	/* cost of storing SSE register
72 				   in SImode, DImode and TImode*/
73   const int mmxsse_to_integer;	/* cost of moving mmxsse register to
74 				   integer and vice versa.  */
75   const int prefetch_block;	/* bytes moved to cache for prefetch.  */
76   const int simultaneous_prefetches; /* number of parallel prefetch
77 				   operations.  */
78   const int fadd;		/* cost of FADD and FSUB instructions.  */
79   const int fmul;		/* cost of FMUL instruction.  */
80   const int fdiv;		/* cost of FDIV instruction.  */
81   const int fabs;		/* cost of FABS instruction.  */
82   const int fchs;		/* cost of FCHS instruction.  */
83   const int fsqrt;		/* cost of FSQRT instruction.  */
84 };
85 
86 extern const struct processor_costs *ix86_cost;
87 
88 /* Run-time compilation parameters selecting different hardware subsets.  */
89 
90 extern int target_flags;
91 
92 /* Macros used in the machine description to test the flags.  */
93 
94 /* configure can arrange to make this 2, to force a 486.  */
95 
96 #ifndef TARGET_CPU_DEFAULT
97 #define TARGET_CPU_DEFAULT 0
98 #endif
99 
100 /* Masks for the -m switches */
101 #define MASK_80387		0x00000001	/* Hardware floating point */
102 #define MASK_RTD		0x00000002	/* Use ret that pops args */
103 #define MASK_ALIGN_DOUBLE	0x00000004	/* align doubles to 2 word boundary */
104 #define MASK_SVR3_SHLIB		0x00000008	/* Uninit locals into bss */
105 #define MASK_IEEE_FP		0x00000010	/* IEEE fp comparisons */
106 #define MASK_FLOAT_RETURNS	0x00000020	/* Return float in st(0) */
107 #define MASK_NO_FANCY_MATH_387	0x00000040	/* Disable sin, cos, sqrt */
108 #define MASK_OMIT_LEAF_FRAME_POINTER 0x080      /* omit leaf frame pointers */
109 #define MASK_STACK_PROBE	0x00000100	/* Enable stack probing */
110 #define MASK_NO_ALIGN_STROPS	0x00000200	/* Enable aligning of string ops.  */
111 #define MASK_INLINE_ALL_STROPS	0x00000400	/* Inline stringops in all cases */
112 #define MASK_NO_PUSH_ARGS	0x00000800	/* Use push instructions */
113 #define MASK_ACCUMULATE_OUTGOING_ARGS 0x00001000/* Accumulate outgoing args */
114 #define MASK_MMX		0x00002000	/* Support MMX regs/builtins */
115 #define MASK_SSE		0x00004000	/* Support SSE regs/builtins */
116 #define MASK_SSE2		0x00008000	/* Support SSE2 regs/builtins */
117 #define MASK_SSE3		0x00010000	/* Support SSE3 builtins */
118 #define MASK_3DNOW		0x00020000	/* Support 3Dnow builtins */
119 #define MASK_3DNOW_A		0x00040000	/* Support Athlon 3Dnow builtins */
120 #define MASK_128BIT_LONG_DOUBLE 0x00080000	/* long double size is 128bit */
121 #define MASK_64BIT		0x00100000	/* Produce 64bit code */
122 
123 /* Unused:			0x03f0000	*/
124 
125 /* ... overlap with subtarget options starts by 0x04000000.  */
126 #define MASK_NO_RED_ZONE	0x04000000	/* Do not use red zone */
127 
128 /* Use the floating point instructions */
129 #define TARGET_80387 (target_flags & MASK_80387)
130 
131 /* Compile using ret insn that pops args.
132    This will not work unless you use prototypes at least
133    for all functions that can take varying numbers of args.  */
134 #define TARGET_RTD (target_flags & MASK_RTD)
135 
136 /* Align doubles to a two word boundary.  This breaks compatibility with
137    the published ABI's for structures containing doubles, but produces
138    faster code on the pentium.  */
139 #define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
140 
141 /* Use push instructions to save outgoing args.  */
142 #define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS))
143 
144 /* Accumulate stack adjustments to prologue/epilogue.  */
145 #define TARGET_ACCUMULATE_OUTGOING_ARGS \
146  (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
147 
148 /* Put uninitialized locals into bss, not data.
149    Meaningful only on svr3.  */
150 #define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
151 
152 /* Use IEEE floating point comparisons.  These handle correctly the cases
153    where the result of a comparison is unordered.  Normally SIGFPE is
154    generated in such cases, in which case this isn't needed.  */
155 #define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
156 
157 /* Functions that return a floating point value may return that value
158    in the 387 FPU or in 386 integer registers.  If set, this flag causes
159    the 387 to be used, which is compatible with most calling conventions.  */
160 #define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
161 
162 /* Long double is 128bit instead of 96bit, even when only 80bits are used.
163    This mode wastes cache, but avoid misaligned data accesses and simplifies
164    address calculations.  */
165 #define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE)
166 
167 /* Disable generation of FP sin, cos and sqrt operations for 387.
168    This is because FreeBSD lacks these in the math-emulator-code */
169 #define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
170 
171 /* Don't create frame pointers for leaf functions */
172 #define TARGET_OMIT_LEAF_FRAME_POINTER \
173   (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
174 
175 /* Debug GO_IF_LEGITIMATE_ADDRESS */
176 #define TARGET_DEBUG_ADDR (ix86_debug_addr_string != 0)
177 
178 /* Debug FUNCTION_ARG macros */
179 #define TARGET_DEBUG_ARG (ix86_debug_arg_string != 0)
180 
181 /* 64bit Sledgehammer mode.  For libgcc2 we make sure this is a
182    compile-time constant.  */
183 #ifdef IN_LIBGCC2
184 #ifdef __x86_64__
185 #define TARGET_64BIT 1
186 #else
187 #define TARGET_64BIT 0
188 #endif
189 #else
190 #ifdef TARGET_BI_ARCH
191 #define TARGET_64BIT (target_flags & MASK_64BIT)
192 #else
193 #if TARGET_64BIT_DEFAULT
194 #define TARGET_64BIT 1
195 #else
196 #define TARGET_64BIT 0
197 #endif
198 #endif
199 #endif
200 
201 #define TARGET_386 (ix86_cpu == PROCESSOR_I386)
202 #define TARGET_486 (ix86_cpu == PROCESSOR_I486)
203 #define TARGET_PENTIUM (ix86_cpu == PROCESSOR_PENTIUM)
204 #define TARGET_PENTIUMPRO (ix86_cpu == PROCESSOR_PENTIUMPRO)
205 #define TARGET_K6 (ix86_cpu == PROCESSOR_K6)
206 #define TARGET_ATHLON (ix86_cpu == PROCESSOR_ATHLON)
207 #define TARGET_PENTIUM4 (ix86_cpu == PROCESSOR_PENTIUM4)
208 
209 #define CPUMASK (1 << ix86_cpu)
210 extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
211 extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
212 extern const int x86_branch_hints, x86_unroll_strlen;
213 extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
214 extern const int x86_use_loop, x86_use_fiop, x86_use_mov0;
215 extern const int x86_use_cltd, x86_read_modify_write;
216 extern const int x86_read_modify, x86_split_long_moves;
217 extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
218 extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
219 extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
220 extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
221 extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
222 extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
223 extern const int x86_epilogue_using_move, x86_decompose_lea;
224 extern const int x86_arch_always_fancy_math_387, x86_shift1;
225 extern int x86_prefetch_sse;
226 
227 #define TARGET_USE_LEAVE (x86_use_leave & CPUMASK)
228 #define TARGET_PUSH_MEMORY (x86_push_memory & CPUMASK)
229 #define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & CPUMASK)
230 #define TARGET_USE_BIT_TEST (x86_use_bit_test & CPUMASK)
231 #define TARGET_UNROLL_STRLEN (x86_unroll_strlen & CPUMASK)
232 /* For sane SSE instruction set generation we need fcomi instruction.  It is
233    safe to enable all CMOVE instructions.  */
234 #define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
235 #define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & CPUMASK)
236 #define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & CPUMASK)
237 #define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & CPUMASK)
238 #define TARGET_USE_SAHF ((x86_use_sahf & CPUMASK) && !TARGET_64BIT)
239 #define TARGET_MOVX (x86_movx & CPUMASK)
240 #define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & CPUMASK)
241 #define TARGET_USE_LOOP (x86_use_loop & CPUMASK)
242 #define TARGET_USE_FIOP (x86_use_fiop & CPUMASK)
243 #define TARGET_USE_MOV0 (x86_use_mov0 & CPUMASK)
244 #define TARGET_USE_CLTD (x86_use_cltd & CPUMASK)
245 #define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & CPUMASK)
246 #define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & CPUMASK)
247 #define TARGET_READ_MODIFY (x86_read_modify & CPUMASK)
248 #define TARGET_PROMOTE_QImode (x86_promote_QImode & CPUMASK)
249 #define TARGET_FAST_PREFIX (x86_fast_prefix & CPUMASK)
250 #define TARGET_SINGLE_STRINGOP (x86_single_stringop & CPUMASK)
251 #define TARGET_QIMODE_MATH (x86_qimode_math & CPUMASK)
252 #define TARGET_HIMODE_MATH (x86_himode_math & CPUMASK)
253 #define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & CPUMASK)
254 #define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & CPUMASK)
255 #define TARGET_ADD_ESP_4 (x86_add_esp_4 & CPUMASK)
256 #define TARGET_ADD_ESP_8 (x86_add_esp_8 & CPUMASK)
257 #define TARGET_SUB_ESP_4 (x86_sub_esp_4 & CPUMASK)
258 #define TARGET_SUB_ESP_8 (x86_sub_esp_8 & CPUMASK)
259 #define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & CPUMASK)
260 #define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & CPUMASK)
261 #define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & CPUMASK)
262 #define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & CPUMASK)
263 #define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & CPUMASK)
264 #define TARGET_DECOMPOSE_LEA (x86_decompose_lea & CPUMASK)
265 #define TARGET_PREFETCH_SSE (x86_prefetch_sse)
266 #define TARGET_SHIFT1 (x86_shift1 & CPUMASK)
267 
268 #define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
269 
270 #define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS))
271 #define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS)
272 
273 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
274 
275 #define TARGET_SSE ((target_flags & MASK_SSE) != 0)
276 #define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0)
277 #define TARGET_SSE3 ((target_flags & MASK_SSE3) != 0)
278 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
279 #define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
280 			     && (ix86_fpmath & FPMATH_387))
281 #define TARGET_MMX ((target_flags & MASK_MMX) != 0)
282 #define TARGET_3DNOW ((target_flags & MASK_3DNOW) != 0)
283 #define TARGET_3DNOW_A ((target_flags & MASK_3DNOW_A) != 0)
284 
285 #define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE))
286 
287 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
288 #define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
289 
290 /* WARNING: Do not mark empty strings for translation, as calling
291             gettext on an empty string does NOT return an empty
292             string. */
293 
294 
295 #define TARGET_SWITCHES							      \
296 { { "80387",			 MASK_80387, N_("Use hardware fp") },	      \
297   { "no-80387",			-MASK_80387, N_("Do not use hardware fp") },  \
298   { "hard-float",		 MASK_80387, N_("Use hardware fp") },	      \
299   { "soft-float",		-MASK_80387, N_("Do not use hardware fp") },  \
300   { "no-soft-float",		 MASK_80387, N_("Use hardware fp") },	      \
301   { "386",			 0, "" /*Deprecated.*/},		      \
302   { "486",			 0, "" /*Deprecated.*/},		      \
303   { "pentium",			 0, "" /*Deprecated.*/},		      \
304   { "pentiumpro",		 0, "" /*Deprecated.*/},		      \
305   { "pni",			 0, "" /*Deprecated.*/},		      \
306   { "no-pni",			 0, "" /*Deprecated.*/},		      \
307   { "intel-syntax",		 0, "" /*Deprecated.*/},	 	      \
308   { "no-intel-syntax",		 0, "" /*Deprecated.*/},	 	      \
309   { "rtd",			 MASK_RTD,				      \
310     N_("Alternate calling convention") },				      \
311   { "no-rtd",			-MASK_RTD,				      \
312     N_("Use normal calling convention") },				      \
313   { "align-double",		 MASK_ALIGN_DOUBLE,			      \
314     N_("Align some doubles on dword boundary") },			      \
315   { "no-align-double",		-MASK_ALIGN_DOUBLE,			      \
316     N_("Align doubles on word boundary") },				      \
317   { "svr3-shlib",		 MASK_SVR3_SHLIB,			      \
318     N_("Uninitialized locals in .bss")  },				      \
319   { "no-svr3-shlib",		-MASK_SVR3_SHLIB,			      \
320     N_("Uninitialized locals in .data") },				      \
321   { "ieee-fp",			 MASK_IEEE_FP,				      \
322     N_("Use IEEE math for fp comparisons") },				      \
323   { "no-ieee-fp",		-MASK_IEEE_FP,				      \
324     N_("Do not use IEEE math for fp comparisons") },			      \
325   { "fp-ret-in-387",		 MASK_FLOAT_RETURNS,			      \
326     N_("Return values of functions in FPU registers") },		      \
327   { "no-fp-ret-in-387",		-MASK_FLOAT_RETURNS ,			      \
328     N_("Do not return values of functions in FPU registers")},		      \
329   { "no-fancy-math-387",	 MASK_NO_FANCY_MATH_387,		      \
330     N_("Do not generate sin, cos, sqrt for FPU") },			      \
331   { "fancy-math-387",		-MASK_NO_FANCY_MATH_387,		      \
332      N_("Generate sin, cos, sqrt for FPU")},				      \
333   { "omit-leaf-frame-pointer",	 MASK_OMIT_LEAF_FRAME_POINTER,		      \
334     N_("Omit the frame pointer in leaf functions") },			      \
335   { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" },	      \
336   { "stack-arg-probe",		 MASK_STACK_PROBE,			      \
337     N_("Enable stack probing") },					      \
338   { "no-stack-arg-probe",	-MASK_STACK_PROBE, "" },		      \
339   { "windows",			0, 0 /* undocumented */ },		      \
340   { "dll",			0,  0 /* undocumented */ },		      \
341   { "align-stringops",		-MASK_NO_ALIGN_STROPS,			      \
342     N_("Align destination of the string operations") },			      \
343   { "no-align-stringops",	 MASK_NO_ALIGN_STROPS,			      \
344     N_("Do not align destination of the string operations") },		      \
345   { "inline-all-stringops",	 MASK_INLINE_ALL_STROPS,		      \
346     N_("Inline all known string operations") },				      \
347   { "no-inline-all-stringops",	-MASK_INLINE_ALL_STROPS,		      \
348     N_("Do not inline all known string operations") },			      \
349   { "push-args",		-MASK_NO_PUSH_ARGS,			      \
350     N_("Use push instructions to save outgoing arguments") },		      \
351   { "no-push-args",		MASK_NO_PUSH_ARGS,			      \
352     N_("Do not use push instructions to save outgoing arguments") },	      \
353   { "accumulate-outgoing-args",	MASK_ACCUMULATE_OUTGOING_ARGS,		      \
354     N_("Use push instructions to save outgoing arguments") },		      \
355   { "no-accumulate-outgoing-args",-MASK_ACCUMULATE_OUTGOING_ARGS,	      \
356     N_("Do not use push instructions to save outgoing arguments") },	      \
357   { "mmx",			 MASK_MMX,				      \
358     N_("Support MMX built-in functions") },				      \
359   { "no-mmx",			 -MASK_MMX,				      \
360     N_("Do not support MMX built-in functions") },			      \
361   { "3dnow",                     MASK_3DNOW,				      \
362     N_("Support 3DNow! built-in functions") },				      \
363   { "no-3dnow",                  -MASK_3DNOW,				      \
364     N_("Do not support 3DNow! built-in functions") },			      \
365   { "sse",			 MASK_SSE,				      \
366     N_("Support MMX and SSE built-in functions and code generation") },	      \
367   { "no-sse",			 -MASK_SSE,				      \
368     N_("Do not support MMX and SSE built-in functions and code generation") },\
369   { "sse2",			 MASK_SSE2,				      \
370     N_("Support MMX, SSE and SSE2 built-in functions and code generation") }, \
371   { "no-sse2",			 -MASK_SSE2,				      \
372     N_("Do not support MMX, SSE and SSE2 built-in functions and code generation") },    \
373   { "sse3",			 MASK_SSE3,				      \
374     N_("Support MMX, SSE, SSE2 and SSE3 built-in functions and code generation") }, \
375   { "no-sse3",			 -MASK_SSE3,				      \
376     N_("Do not support MMX, SSE, SSE2 and SSE3 built-in functions and code generation") }, \
377   { "128bit-long-double",	 MASK_128BIT_LONG_DOUBLE,		      \
378     N_("sizeof(long double) is 16") },					      \
379   { "96bit-long-double",	-MASK_128BIT_LONG_DOUBLE,		      \
380     N_("sizeof(long double) is 12") },					      \
381   { "64",			MASK_64BIT,				      \
382     N_("Generate 64bit x86-64 code") },					      \
383   { "32",			-MASK_64BIT,				      \
384     N_("Generate 32bit i386 code") },					      \
385   { "red-zone",			-MASK_NO_RED_ZONE,			      \
386     N_("Use red-zone in the x86-64 code") },				      \
387   { "no-red-zone",		MASK_NO_RED_ZONE,			      \
388     N_("Do not use red-zone in the x86-64 code") },			      \
389   SUBTARGET_SWITCHES							      \
390   { "", TARGET_DEFAULT | TARGET_64BIT_DEFAULT | TARGET_SUBTARGET_DEFAULT, 0 }}
391 
392 #ifndef TARGET_64BIT_DEFAULT
393 #define TARGET_64BIT_DEFAULT 0
394 #endif
395 
396 /* Once GDB has been enhanced to deal with functions without frame
397    pointers, we can change this to allow for elimination of
398    the frame pointer in leaf functions.  */
399 #define TARGET_DEFAULT 0
400 
401 /* This is not really a target flag, but is done this way so that
402    it's analogous to similar code for Mach-O on PowerPC.  darwin.h
403    redefines this to 1.  */
404 #define TARGET_MACHO 0
405 
406 /* This macro is similar to `TARGET_SWITCHES' but defines names of
407    command options that have values.  Its definition is an
408    initializer with a subgrouping for each command option.
409 
410    Each subgrouping contains a string constant, that defines the
411    fixed part of the option name, and the address of a variable.  The
412    variable, type `char *', is set to the variable part of the given
413    option if the fixed part matches.  The actual option name is made
414    by appending `-m' to the specified name.  */
415 #define TARGET_OPTIONS						\
416 { { "cpu=",		&ix86_cpu_string,			\
417     N_("Schedule code for given CPU")},				\
418   { "fpmath=",		&ix86_fpmath_string,			\
419     N_("Generate floating point mathematics using given instruction set")},\
420   { "arch=",		&ix86_arch_string,			\
421     N_("Generate code for given CPU")},				\
422   { "regparm=",		&ix86_regparm_string,			\
423     N_("Number of registers used to pass integer arguments") },	\
424   { "align-loops=",	&ix86_align_loops_string,		\
425     N_("Loop code aligned to this power of 2") },		\
426   { "align-jumps=",	&ix86_align_jumps_string,		\
427     N_("Jump targets are aligned to this power of 2") },	\
428   { "align-functions=",	&ix86_align_funcs_string,		\
429     N_("Function starts are aligned to this power of 2") },	\
430   { "preferred-stack-boundary=",				\
431     &ix86_preferred_stack_boundary_string,			\
432     N_("Attempt to keep stack aligned to this power of 2") },	\
433   { "branch-cost=",	&ix86_branch_cost_string,		\
434     N_("Branches are this expensive (1-5, arbitrary units)") },	\
435   { "cmodel=", &ix86_cmodel_string,				\
436     N_("Use given x86-64 code model") },			\
437   { "debug-arg", &ix86_debug_arg_string,			\
438     "" /* Undocumented. */ },					\
439   { "debug-addr", &ix86_debug_addr_string,			\
440     "" /* Undocumented. */ },					\
441   { "asm=", &ix86_asm_string,					\
442     N_("Use given assembler dialect") },			\
443   { "tls-dialect=", &ix86_tls_dialect_string,			\
444     N_("Use given thread-local storage dialect") },		\
445   SUBTARGET_OPTIONS						\
446 }
447 
448 /* Sometimes certain combinations of command options do not make
449    sense on a particular target machine.  You can define a macro
450    `OVERRIDE_OPTIONS' to take account of this.  This macro, if
451    defined, is executed once just after all the command options have
452    been parsed.
453 
454    Don't use this macro to turn on various extra optimizations for
455    `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.  */
456 
457 #define OVERRIDE_OPTIONS override_options ()
458 
459 /* These are meant to be redefined in the host dependent files */
460 #define SUBTARGET_SWITCHES
461 #define SUBTARGET_OPTIONS
462 
463 /* Define this to change the optimizations performed by default.  */
464 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
465   optimization_options ((LEVEL), (SIZE))
466 
467 /* Specs for the compiler proper */
468 
469 #ifndef CC1_CPU_SPEC
470 #define CC1_CPU_SPEC "\
471 %{!mcpu*: \
472 %{m386:-mcpu=i386 \
473 %n`-m386' is deprecated. Use `-march=i386' or `-mcpu=i386' instead.\n} \
474 %{m486:-mcpu=i486 \
475 %n`-m486' is deprecated. Use `-march=i486' or `-mcpu=i486' instead.\n} \
476 %{mpentium:-mcpu=pentium \
477 %n`-mpentium' is deprecated. Use `-march=pentium' or `-mcpu=pentium' instead.\n} \
478 %{mpentiumpro:-mcpu=pentiumpro \
479 %n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mcpu=pentiumpro' instead.\n}} \
480 %{mpni:-msse3 \
481 %n`-mpni' is deprecated. Use `-msse3' instead.\n} \
482 %{mno-pni:-mno-sse3 \
483 %n`-mno-pni' is deprecated. Use `-mno-sse3' instead.\n} \
484 %{mintel-syntax:-masm=intel \
485 %n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
486 %{mno-intel-syntax:-masm=att \
487 %n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
488 #endif
489 
490 /* Target CPU builtins.  */
491 #define TARGET_CPU_CPP_BUILTINS()				\
492   do								\
493     {								\
494       size_t arch_len = strlen (ix86_arch_string);		\
495       size_t cpu_len = strlen (ix86_cpu_string);		\
496       int last_arch_char = ix86_arch_string[arch_len - 1];	\
497       int last_cpu_char = ix86_cpu_string[cpu_len - 1];		\
498 								\
499       if (TARGET_64BIT)						\
500 	{							\
501 	  builtin_assert ("cpu=x86_64");			\
502 	  builtin_define ("__x86_64");				\
503 	  builtin_define ("__x86_64__");			\
504 	  builtin_define ("__amd64");				\
505 	  builtin_define ("__amd64__");				\
506 	}							\
507       else							\
508 	{							\
509 	  builtin_assert ("cpu=i386");				\
510 	  builtin_assert ("machine=i386");			\
511 	  builtin_define_std ("i386");				\
512 	}							\
513 								\
514       /* Built-ins based on -mcpu= (or -march= if no		\
515 	 CPU given).  */					\
516       if (TARGET_386)						\
517 	builtin_define ("__tune_i386__");			\
518       else if (TARGET_486)					\
519 	builtin_define ("__tune_i486__");			\
520       else if (TARGET_PENTIUM)					\
521 	{							\
522 	  builtin_define ("__tune_i586__");			\
523 	  builtin_define ("__tune_pentium__");			\
524 	  if (last_cpu_char == 'x')				\
525 	    builtin_define ("__tune_pentium_mmx__");		\
526 	}							\
527       else if (TARGET_PENTIUMPRO)				\
528 	{							\
529 	  builtin_define ("__tune_i686__");			\
530 	  builtin_define ("__tune_pentiumpro__");		\
531 	  switch (last_cpu_char)				\
532 	    {							\
533 	    case '3':						\
534 	      builtin_define ("__tune_pentium3__");		\
535 	      /* FALLTHRU */					\
536 	    case '2':						\
537 	      builtin_define ("__tune_pentium2__");		\
538 	      break;						\
539 	    }							\
540 	}							\
541       else if (TARGET_K6)					\
542 	{							\
543 	  builtin_define ("__tune_k6__");			\
544 	  if (last_cpu_char == '2')				\
545 	    builtin_define ("__tune_k6_2__");			\
546 	  else if (last_cpu_char == '3')			\
547 	    builtin_define ("__tune_k6_3__");			\
548 	}							\
549       else if (TARGET_ATHLON)					\
550 	{							\
551 	  builtin_define ("__tune_athlon__");			\
552 	  /* Only plain "athlon" lacks SSE.  */			\
553 	  if (last_cpu_char != 'n')				\
554 	    builtin_define ("__tune_athlon_sse__");		\
555 	}							\
556       else if (TARGET_PENTIUM4)					\
557 	builtin_define ("__tune_pentium4__");			\
558 								\
559       if (TARGET_MMX)						\
560 	builtin_define ("__MMX__");				\
561       if (TARGET_3DNOW)						\
562 	builtin_define ("__3dNOW__");				\
563       if (TARGET_3DNOW_A)					\
564 	builtin_define ("__3dNOW_A__");				\
565       if (TARGET_SSE)						\
566 	builtin_define ("__SSE__");				\
567       if (TARGET_SSE2)						\
568 	builtin_define ("__SSE2__");				\
569       if (TARGET_SSE3)						\
570 	{							\
571 	  builtin_define ("__SSE3__");				\
572 	  builtin_define ("__PNI__");				\
573 	}							\
574       if (TARGET_SSE_MATH && TARGET_SSE)			\
575 	builtin_define ("__SSE_MATH__");			\
576       if (TARGET_SSE_MATH && TARGET_SSE2)			\
577 	builtin_define ("__SSE2_MATH__");			\
578 								\
579       /* Built-ins based on -march=.  */			\
580       if (ix86_arch == PROCESSOR_I486)				\
581 	{							\
582 	  builtin_define ("__i486");				\
583 	  builtin_define ("__i486__");				\
584 	}							\
585       else if (ix86_arch == PROCESSOR_PENTIUM)			\
586 	{							\
587 	  builtin_define ("__i586");				\
588 	  builtin_define ("__i586__");				\
589 	  builtin_define ("__pentium");				\
590 	  builtin_define ("__pentium__");			\
591 	  if (last_arch_char == 'x')				\
592 	    builtin_define ("__pentium_mmx__");			\
593 	}							\
594       else if (ix86_arch == PROCESSOR_PENTIUMPRO)		\
595 	{							\
596 	  builtin_define ("__i686");				\
597 	  builtin_define ("__i686__");				\
598 	  builtin_define ("__pentiumpro");			\
599 	  builtin_define ("__pentiumpro__");			\
600 	}							\
601       else if (ix86_arch == PROCESSOR_K6)			\
602 	{							\
603 								\
604 	  builtin_define ("__k6");				\
605 	  builtin_define ("__k6__");				\
606 	  if (last_arch_char == '2')				\
607 	    builtin_define ("__k6_2__");			\
608 	  else if (last_arch_char == '3')			\
609 	    builtin_define ("__k6_3__");			\
610 	}							\
611       else if (ix86_arch == PROCESSOR_ATHLON)			\
612 	{							\
613 	  builtin_define ("__athlon");				\
614 	  builtin_define ("__athlon__");			\
615 	  /* Only plain "athlon" lacks SSE.  */			\
616 	  if (last_arch_char != 'n')				\
617 	    builtin_define ("__athlon_sse__");			\
618 	}							\
619       else if (ix86_arch == PROCESSOR_PENTIUM4)			\
620 	{							\
621 	  builtin_define ("__pentium4");			\
622 	  builtin_define ("__pentium4__");			\
623 	}							\
624     }								\
625   while (0)
626 
627 #define TARGET_CPU_DEFAULT_i386 0
628 #define TARGET_CPU_DEFAULT_i486 1
629 #define TARGET_CPU_DEFAULT_pentium 2
630 #define TARGET_CPU_DEFAULT_pentium_mmx 3
631 #define TARGET_CPU_DEFAULT_pentiumpro 4
632 #define TARGET_CPU_DEFAULT_pentium2 5
633 #define TARGET_CPU_DEFAULT_pentium3 6
634 #define TARGET_CPU_DEFAULT_pentium4 7
635 #define TARGET_CPU_DEFAULT_k6 8
636 #define TARGET_CPU_DEFAULT_k6_2 9
637 #define TARGET_CPU_DEFAULT_k6_3 10
638 #define TARGET_CPU_DEFAULT_athlon 11
639 #define TARGET_CPU_DEFAULT_athlon_sse 12
640 
641 #define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
642 				  "pentiumpro", "pentium2", "pentium3", \
643 				  "pentium4", "k6", "k6-2", "k6-3",\
644 				  "athlon", "athlon-4"}
645 
646 #ifndef CC1_SPEC
647 #define CC1_SPEC "%(cc1_cpu) "
648 #endif
649 
650 /* This macro defines names of additional specifications to put in the
651    specs that can be used in various specifications like CC1_SPEC.  Its
652    definition is an initializer with a subgrouping for each command option.
653 
654    Each subgrouping contains a string constant, that defines the
655    specification name, and a string constant that used by the GNU CC driver
656    program.
657 
658    Do not define this macro if it does not need to do anything.  */
659 
660 #ifndef SUBTARGET_EXTRA_SPECS
661 #define SUBTARGET_EXTRA_SPECS
662 #endif
663 
664 #define EXTRA_SPECS							\
665   { "cc1_cpu",  CC1_CPU_SPEC },						\
666   SUBTARGET_EXTRA_SPECS
667 
668 /* target machine storage layout */
669 
670 /* Define for XFmode or TFmode extended real floating point support.
671    The XFmode is specified by i386 ABI, while TFmode may be faster
672    due to alignment and simplifications in the address calculations.  */
673 #define LONG_DOUBLE_TYPE_SIZE (TARGET_128BIT_LONG_DOUBLE ? 128 : 96)
674 #define MAX_LONG_DOUBLE_TYPE_SIZE 128
675 #ifdef __x86_64__
676 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
677 #else
678 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 96
679 #endif
680 
681 /* Set the value of FLT_EVAL_METHOD in float.h.  When using only the
682    FPU, assume that the fpcw is set to extended precision; when using
683    only SSE, rounding is correct; when using both SSE and the FPU,
684    the rounding precision is indeterminate, since either may be chosen
685    apparently at random.  */
686 #define TARGET_FLT_EVAL_METHOD \
687   (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 1 : 2)
688 
689 #define SHORT_TYPE_SIZE 16
690 #define INT_TYPE_SIZE 32
691 #define FLOAT_TYPE_SIZE 32
692 #define LONG_TYPE_SIZE BITS_PER_WORD
693 #define MAX_WCHAR_TYPE_SIZE 32
694 #define DOUBLE_TYPE_SIZE 64
695 #define LONG_LONG_TYPE_SIZE 64
696 
697 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
698 #define MAX_BITS_PER_WORD 64
699 #define MAX_LONG_TYPE_SIZE 64
700 #else
701 #define MAX_BITS_PER_WORD 32
702 #define MAX_LONG_TYPE_SIZE 32
703 #endif
704 
705 /* Define this if most significant byte of a word is the lowest numbered.  */
706 /* That is true on the 80386.  */
707 
708 #define BITS_BIG_ENDIAN 0
709 
710 /* Define this if most significant byte of a word is the lowest numbered.  */
711 /* That is not true on the 80386.  */
712 #define BYTES_BIG_ENDIAN 0
713 
714 /* Define this if most significant word of a multiword number is the lowest
715    numbered.  */
716 /* Not true for 80386 */
717 #define WORDS_BIG_ENDIAN 0
718 
719 /* Width of a word, in units (bytes).  */
720 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
721 #ifdef IN_LIBGCC2
722 #define MIN_UNITS_PER_WORD	(TARGET_64BIT ? 8 : 4)
723 #else
724 #define MIN_UNITS_PER_WORD	4
725 #endif
726 
727 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
728 #define PARM_BOUNDARY BITS_PER_WORD
729 
730 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
731 #define STACK_BOUNDARY BITS_PER_WORD
732 
733 /* Boundary (in *bits*) on which the stack pointer preferrs to be
734    aligned; the compiler cannot rely on having this alignment.  */
735 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
736 
737 /* As of July 2001, many runtimes to not align the stack properly when
738    entering main.  This causes expand_main_function to forcably align
739    the stack, which results in aligned frames for functions called from
740    main, though it does nothing for the alignment of main itself.  */
741 #define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
742   (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
743 
744 /* Minimum allocation boundary for the code of a function.  */
745 #define FUNCTION_BOUNDARY 8
746 
747 /* C++ stores the virtual bit in the lowest bit of function pointers.  */
748 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
749 
750 /* Alignment of field after `int : 0' in a structure.  */
751 
752 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
753 
754 /* Minimum size in bits of the largest boundary to which any
755    and all fundamental data types supported by the hardware
756    might need to be aligned. No data type wants to be aligned
757    rounder than this.
758 
759    Pentium+ preferrs DFmode values to be aligned to 64 bit boundary
760    and Pentium Pro XFmode values at 128 bit boundaries.  */
761 
762 #define BIGGEST_ALIGNMENT 128
763 
764 /* Decide whether a variable of mode MODE should be 128 bit aligned.  */
765 #define ALIGN_MODE_128(MODE) \
766  ((MODE) == XFmode || (MODE) == TFmode || SSE_REG_MODE_P (MODE))
767 
768 /* The published ABIs say that doubles should be aligned on word
769    boundaries, so lower the aligment for structure fields unless
770    -malign-double is set.  */
771 
772 /* ??? Blah -- this macro is used directly by libobjc.  Since it
773    supports no vector modes, cut out the complexity and fall back
774    on BIGGEST_FIELD_ALIGNMENT.  */
775 #ifdef IN_TARGET_LIBS
776 #ifdef __x86_64__
777 #define BIGGEST_FIELD_ALIGNMENT 128
778 #else
779 #define BIGGEST_FIELD_ALIGNMENT 32
780 #endif
781 #else
782 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
783    x86_field_alignment (FIELD, COMPUTED)
784 #endif
785 
786 /* If defined, a C expression to compute the alignment given to a
787    constant that is being placed in memory.  EXP is the constant
788    and ALIGN is the alignment that the object would ordinarily have.
789    The value of this macro is used instead of that alignment to align
790    the object.
791 
792    If this macro is not defined, then ALIGN is used.
793 
794    The typical use of this macro is to increase alignment for string
795    constants to be word aligned so that `strcpy' calls that copy
796    constants can be done inline.  */
797 
798 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
799 
800 /* If defined, a C expression to compute the alignment for a static
801    variable.  TYPE is the data type, and ALIGN is the alignment that
802    the object would ordinarily have.  The value of this macro is used
803    instead of that alignment to align the object.
804 
805    If this macro is not defined, then ALIGN is used.
806 
807    One use of this macro is to increase alignment of medium-size
808    data to make it all fit in fewer cache lines.  Another is to
809    cause character arrays to be word-aligned so that `strcpy' calls
810    that copy constants to character arrays can be done inline.  */
811 
812 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
813 
814 /* If defined, a C expression to compute the alignment for a local
815    variable.  TYPE is the data type, and ALIGN is the alignment that
816    the object would ordinarily have.  The value of this macro is used
817    instead of that alignment to align the object.
818 
819    If this macro is not defined, then ALIGN is used.
820 
821    One use of this macro is to increase alignment of medium-size
822    data to make it all fit in fewer cache lines.  */
823 
824 #define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
825 
826 /* If defined, a C expression that gives the alignment boundary, in
827    bits, of an argument with the specified mode and type.  If it is
828    not defined, `PARM_BOUNDARY' is used for all arguments.  */
829 
830 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
831   ix86_function_arg_boundary ((MODE), (TYPE))
832 
833 /* Set this nonzero if move instructions will actually fail to work
834    when given unaligned data.  */
835 #define STRICT_ALIGNMENT 0
836 
837 /* If bit field type is int, don't let it cross an int,
838    and give entire struct the alignment of an int.  */
839 /* Required on the 386 since it doesn't have bit-field insns.  */
840 #define PCC_BITFIELD_TYPE_MATTERS 1
841 
842 /* Standard register usage.  */
843 
844 /* This processor has special stack-like registers.  See reg-stack.c
845    for details.  */
846 
847 #define STACK_REGS
848 #define IS_STACK_MODE(MODE)					\
849   ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode	\
850    || (MODE) == TFmode)
851 
852 /* Number of actual hardware registers.
853    The hardware registers are assigned numbers for the compiler
854    from 0 to just below FIRST_PSEUDO_REGISTER.
855    All registers that the compiler knows about must be given numbers,
856    even those that are not normally considered general registers.
857 
858    In the 80386 we give the 8 general purpose registers the numbers 0-7.
859    We number the floating point registers 8-15.
860    Note that registers 0-7 can be accessed as a  short or int,
861    while only 0-3 may be used with byte `mov' instructions.
862 
863    Reg 16 does not correspond to any hardware register, but instead
864    appears in the RTL as an argument pointer prior to reload, and is
865    eliminated during reloading in favor of either the stack or frame
866    pointer.  */
867 
868 #define FIRST_PSEUDO_REGISTER 53
869 
870 /* Number of hardware registers that go into the DWARF-2 unwind info.
871    If not defined, equals FIRST_PSEUDO_REGISTER.  */
872 
873 #define DWARF_FRAME_REGISTERS 17
874 
875 /* 1 for registers that have pervasive standard uses
876    and are not available for the register allocator.
877    On the 80386, the stack pointer is such, as is the arg pointer.
878 
879    The value is an mask - bit 1 is set for fixed registers
880    for 32bit target, while 2 is set for fixed registers for 64bit.
881    Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
882  */
883 #define FIXED_REGISTERS						\
884 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
885 {  0, 0, 0, 0, 0, 0, 0, 3, 0,  0,  0,  0,  0,  0,  0,  0,	\
886 /*arg,flags,fpsr,dir,frame*/					\
887     3,    3,   3,  3,    3,					\
888 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
889      0,   0,   0,   0,   0,   0,   0,   0,			\
890 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/			\
891      0,   0,   0,   0,   0,   0,   0,   0,			\
892 /*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
893      1,   1,   1,   1,   1,   1,   1,   1,			\
894 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
895      1,   1,    1,    1,    1,    1,    1,    1}
896 
897 
898 /* 1 for registers not available across function calls.
899    These must include the FIXED_REGISTERS and also any
900    registers that can be used without being saved.
901    The latter must include the registers where values are returned
902    and the register where structure-value addresses are passed.
903    Aside from that, you can include as many other registers as you like.
904 
905    The value is an mask - bit 1 is set for call used
906    for 32bit target, while 2 is set for call used for 64bit.
907    Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
908 */
909 #define CALL_USED_REGISTERS					\
910 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
911 {  3, 3, 3, 0, 2, 2, 0, 3, 3,  3,  3,  3,  3,  3,  3,  3,	\
912 /*arg,flags,fpsr,dir,frame*/					\
913      3,   3,   3,  3,    3,					\
914 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
915      3,   3,   3,   3,   3,  3,    3,   3,			\
916 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/			\
917      3,   3,   3,   3,   3,   3,   3,   3,			\
918 /*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
919      3,   3,   3,   3,   1,   1,   1,   1,			\
920 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
921      3,   3,    3,    3,    3,    3,    3,    3}		\
922 
923 /* Order in which to allocate registers.  Each register must be
924    listed once, even those in FIXED_REGISTERS.  List frame pointer
925    late and fixed registers last.  Note that, in general, we prefer
926    registers listed in CALL_USED_REGISTERS, keeping the others
927    available for storage of persistent values.
928 
929    The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
930    so this is just empty initializer for array.  */
931 
932 #define REG_ALLOC_ORDER 					\
933 {  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
934    18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,	\
935    33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,  \
936    48, 49, 50, 51, 52 }
937 
938 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
939    to be rearranged based on a particular function.  When using sse math,
940    we want to allocase SSE before x87 registers and vice vera.  */
941 
942 #define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
943 
944 
945 /* Macro to conditionally modify fixed_regs/call_used_regs.  */
946 #define CONDITIONAL_REGISTER_USAGE					\
947 do {									\
948     int i;								\
949     for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)				\
950       {									\
951         fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0;	\
952         call_used_regs[i] = (call_used_regs[i]				\
953 			     & (TARGET_64BIT ? 2 : 1)) != 0;		\
954       }									\
955     if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)			\
956       {									\
957 	fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;			\
958 	call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;			\
959       }									\
960     if (! TARGET_MMX)							\
961       {									\
962 	int i;								\
963         for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
964           if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i))	\
965 	    fixed_regs[i] = call_used_regs[i] = 1;		 	\
966       }									\
967     if (! TARGET_SSE)							\
968       {									\
969 	int i;								\
970         for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
971           if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i))	\
972 	    fixed_regs[i] = call_used_regs[i] = 1;		 	\
973       }									\
974     if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387)		\
975       {									\
976 	int i;								\
977 	HARD_REG_SET x;							\
978         COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]);	\
979         for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
980           if (TEST_HARD_REG_BIT (x, i)) 				\
981 	    fixed_regs[i] = call_used_regs[i] = 1;			\
982       }									\
983   } while (0)
984 
985 /* Return number of consecutive hard regs needed starting at reg REGNO
986    to hold something of mode MODE.
987    This is ordinarily the length in words of a value of mode MODE
988    but can be less for certain modes in special long registers.
989 
990    Actually there are no two word move instructions for consecutive
991    registers.  And only registers 0-3 may have mov byte instructions
992    applied to them.
993    */
994 
995 #define HARD_REGNO_NREGS(REGNO, MODE)   \
996   (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO)	\
997    ? (COMPLEX_MODE_P (MODE) ? 2 : 1)					\
998    : ((MODE) == TFmode							\
999       ? (TARGET_64BIT ? 2 : 3)						\
1000       : (MODE) == TCmode						\
1001       ? (TARGET_64BIT ? 4 : 6)						\
1002       : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1003 
1004 #define VALID_SSE2_REG_MODE(MODE) \
1005     ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode    \
1006      || (MODE) == V2DImode)
1007 
1008 #define VALID_SSE_REG_MODE(MODE)					\
1009     ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode	\
1010      || (MODE) == SFmode						\
1011      /* Always accept SSE2 modes so that xmmintrin.h compiles.  */	\
1012      || VALID_SSE2_REG_MODE (MODE)					\
1013      || (TARGET_SSE2 && ((MODE) == DFmode || VALID_MMX_REG_MODE (MODE))))
1014 
1015 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1016     ((MODE) == V2SFmode || (MODE) == SFmode)
1017 
1018 #define VALID_MMX_REG_MODE(MODE)					\
1019     ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode	\
1020      || (MODE) == V2SImode || (MODE) == SImode)
1021 
1022 #define VECTOR_MODE_SUPPORTED_P(MODE)					\
1023     (VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1			\
1024      : VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1			\
1025      : VALID_MMX_REG_MODE_3DNOW (MODE) && TARGET_3DNOW ? 1 : 0)
1026 
1027 #define VALID_FP_MODE_P(MODE)						\
1028     ((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode		\
1029      || (!TARGET_64BIT && (MODE) == XFmode)				\
1030      || (MODE) == SCmode || (MODE) == DCmode || (MODE) == TCmode	\
1031      || (!TARGET_64BIT && (MODE) == XCmode))
1032 
1033 #define VALID_INT_MODE_P(MODE)						\
1034     ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode		\
1035      || (MODE) == DImode						\
1036      || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode	\
1037      || (MODE) == CDImode						\
1038      || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode)))
1039 
1040 /* Return true for modes passed in SSE registers.  */
1041 #define SSE_REG_MODE_P(MODE) \
1042  ((MODE) == TImode || (MODE) == V16QImode				\
1043    || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode	\
1044    || (MODE) == V4SFmode || (MODE) == V4SImode)
1045 
1046 /* Return true for modes passed in MMX registers.  */
1047 #define MMX_REG_MODE_P(MODE) \
1048  ((MODE) == V8QImode || (MODE) == V4HImode || (MODE) == V2SImode	\
1049    || (MODE) == V2SFmode)
1050 
1051 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.  */
1052 
1053 #define HARD_REGNO_MODE_OK(REGNO, MODE)	\
1054    ix86_hard_regno_mode_ok ((REGNO), (MODE))
1055 
1056 /* Value is 1 if it is a good idea to tie two pseudo registers
1057    when one has mode MODE1 and one has mode MODE2.
1058    If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1059    for any hard reg, then this must be 0 for correct output.  */
1060 
1061 #define MODES_TIEABLE_P(MODE1, MODE2)				\
1062   ((MODE1) == (MODE2)						\
1063    || (((MODE1) == HImode || (MODE1) == SImode			\
1064 	|| ((MODE1) == QImode					\
1065 	    && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL))	\
1066         || ((MODE1) == DImode && TARGET_64BIT))			\
1067        && ((MODE2) == HImode || (MODE2) == SImode		\
1068 	   || ((MODE2) == QImode				\
1069 	       && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL))	\
1070 	   || ((MODE2) == DImode && TARGET_64BIT))))
1071 
1072 
1073 /* Specify the modes required to caller save a given hard regno.
1074    We do this on i386 to prevent flags from being saved at all.
1075 
1076    Kill any attempts to combine saving of modes.  */
1077 
1078 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE)			\
1079   (CC_REGNO_P (REGNO) ? VOIDmode					\
1080    : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode			\
1081    : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS))	\
1082    : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode		\
1083    : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode 	\
1084    : (MODE))
1085 /* Specify the registers used for certain standard purposes.
1086    The values of these macros are register numbers.  */
1087 
1088 /* on the 386 the pc register is %eip, and is not usable as a general
1089    register.  The ordinary mov instructions won't work */
1090 /* #define PC_REGNUM  */
1091 
1092 /* Register to use for pushing function arguments.  */
1093 #define STACK_POINTER_REGNUM 7
1094 
1095 /* Base register for access to local variables of the function.  */
1096 #define HARD_FRAME_POINTER_REGNUM 6
1097 
1098 /* Base register for access to local variables of the function.  */
1099 #define FRAME_POINTER_REGNUM 20
1100 
1101 /* First floating point reg */
1102 #define FIRST_FLOAT_REG 8
1103 
1104 /* First & last stack-like regs */
1105 #define FIRST_STACK_REG FIRST_FLOAT_REG
1106 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1107 
1108 #define FLAGS_REG 17
1109 #define FPSR_REG 18
1110 #define DIRFLAG_REG 19
1111 
1112 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1113 #define LAST_SSE_REG  (FIRST_SSE_REG + 7)
1114 
1115 #define FIRST_MMX_REG  (LAST_SSE_REG + 1)
1116 #define LAST_MMX_REG   (FIRST_MMX_REG + 7)
1117 
1118 #define FIRST_REX_INT_REG  (LAST_MMX_REG + 1)
1119 #define LAST_REX_INT_REG   (FIRST_REX_INT_REG + 7)
1120 
1121 #define FIRST_REX_SSE_REG  (LAST_REX_INT_REG + 1)
1122 #define LAST_REX_SSE_REG   (FIRST_REX_SSE_REG + 7)
1123 
1124 /* Value should be nonzero if functions must have frame pointers.
1125    Zero means the frame pointer need not be set up (and parms
1126    may be accessed via the stack pointer) in functions that seem suitable.
1127    This is computed in `reload', in reload1.c.  */
1128 #define FRAME_POINTER_REQUIRED  ix86_frame_pointer_required ()
1129 
1130 /* Override this in other tm.h files to cope with various OS losage
1131    requiring a frame pointer.  */
1132 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1133 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1134 #endif
1135 
1136 /* Make sure we can access arbitrary call frames.  */
1137 #define SETUP_FRAME_ADDRESSES()  ix86_setup_frame_addresses ()
1138 
1139 /* Base register for access to arguments of the function.  */
1140 #define ARG_POINTER_REGNUM 16
1141 
1142 /* Register in which static-chain is passed to a function.
1143    We do use ECX as static chain register for 32 bit ABI.  On the
1144    64bit ABI, ECX is an argument register, so we use R10 instead.  */
1145 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
1146 
1147 /* Register to hold the addressing base for position independent
1148    code access to data items.  We don't use PIC pointer for 64bit
1149    mode.  Define the regnum to dummy value to prevent gcc from
1150    pessimizing code dealing with EBX.
1151 
1152    To avoid clobbering a call-saved register unnecessarily, we renumber
1153    the pic register when possible.  The change is visible after the
1154    prologue has been emitted.  */
1155 
1156 #define REAL_PIC_OFFSET_TABLE_REGNUM  3
1157 
1158 #define PIC_OFFSET_TABLE_REGNUM				\
1159   (TARGET_64BIT || !flag_pic ? INVALID_REGNUM		\
1160    : reload_completed ? REGNO (pic_offset_table_rtx)	\
1161    : REAL_PIC_OFFSET_TABLE_REGNUM)
1162 
1163 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1164 
1165 /* Register in which address to store a structure value
1166    arrives in the function.  On the 386, the prologue
1167    copies this from the stack to register %eax.  */
1168 #define STRUCT_VALUE_INCOMING 0
1169 
1170 /* Place in which caller passes the structure value address.
1171    0 means push the value on the stack like an argument.  */
1172 #define STRUCT_VALUE 0
1173 
1174 /* A C expression which can inhibit the returning of certain function
1175    values in registers, based on the type of value.  A nonzero value
1176    says to return the function value in memory, just as large
1177    structures are always returned.  Here TYPE will be a C expression
1178    of type `tree', representing the data type of the value.
1179 
1180    Note that values of mode `BLKmode' must be explicitly handled by
1181    this macro.  Also, the option `-fpcc-struct-return' takes effect
1182    regardless of this macro.  On most systems, it is possible to
1183    leave the macro undefined; this causes a default definition to be
1184    used, whose value is the constant 1 for `BLKmode' values, and 0
1185    otherwise.
1186 
1187    Do not use this macro to indicate that structures and unions
1188    should always be returned in memory.  You should instead use
1189    `DEFAULT_PCC_STRUCT_RETURN' to indicate this.  */
1190 
1191 #define RETURN_IN_MEMORY(TYPE) \
1192   ix86_return_in_memory (TYPE)
1193 
1194 
1195 /* Define the classes of registers for register constraints in the
1196    machine description.  Also define ranges of constants.
1197 
1198    One of the classes must always be named ALL_REGS and include all hard regs.
1199    If there is more than one class, another class must be named NO_REGS
1200    and contain no registers.
1201 
1202    The name GENERAL_REGS must be the name of a class (or an alias for
1203    another name such as ALL_REGS).  This is the class of registers
1204    that is allowed by "g" or "r" in a register constraint.
1205    Also, registers outside this class are allocated only when
1206    instructions express preferences for them.
1207 
1208    The classes must be numbered in nondecreasing order; that is,
1209    a larger-numbered class must never be contained completely
1210    in a smaller-numbered class.
1211 
1212    For any two classes, it is very desirable that there be another
1213    class that represents their union.
1214 
1215    It might seem that class BREG is unnecessary, since no useful 386
1216    opcode needs reg %ebx.  But some systems pass args to the OS in ebx,
1217    and the "b" register constraint is useful in asms for syscalls.
1218 
1219    The flags and fpsr registers are in no class.  */
1220 
1221 enum reg_class
1222 {
1223   NO_REGS,
1224   AREG, DREG, CREG, BREG, SIREG, DIREG,
1225   AD_REGS,			/* %eax/%edx for DImode */
1226   Q_REGS,			/* %eax %ebx %ecx %edx */
1227   NON_Q_REGS,			/* %esi %edi %ebp %esp */
1228   INDEX_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp */
1229   LEGACY_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1230   GENERAL_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1231   FP_TOP_REG, FP_SECOND_REG,	/* %st(0) %st(1) */
1232   FLOAT_REGS,
1233   SSE_REGS,
1234   MMX_REGS,
1235   FP_TOP_SSE_REGS,
1236   FP_SECOND_SSE_REGS,
1237   FLOAT_SSE_REGS,
1238   FLOAT_INT_REGS,
1239   INT_SSE_REGS,
1240   FLOAT_INT_SSE_REGS,
1241   ALL_REGS, LIM_REG_CLASSES
1242 };
1243 
1244 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1245 
1246 #define INTEGER_CLASS_P(CLASS) \
1247   reg_class_subset_p ((CLASS), GENERAL_REGS)
1248 #define FLOAT_CLASS_P(CLASS) \
1249   reg_class_subset_p ((CLASS), FLOAT_REGS)
1250 #define SSE_CLASS_P(CLASS) \
1251   reg_class_subset_p ((CLASS), SSE_REGS)
1252 #define MMX_CLASS_P(CLASS) \
1253   reg_class_subset_p ((CLASS), MMX_REGS)
1254 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1255   reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1256 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1257   reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1258 #define MAYBE_SSE_CLASS_P(CLASS) \
1259   reg_classes_intersect_p (SSE_REGS, (CLASS))
1260 #define MAYBE_MMX_CLASS_P(CLASS) \
1261   reg_classes_intersect_p (MMX_REGS, (CLASS))
1262 
1263 #define Q_CLASS_P(CLASS) \
1264   reg_class_subset_p ((CLASS), Q_REGS)
1265 
1266 /* Give names of register classes as strings for dump file.   */
1267 
1268 #define REG_CLASS_NAMES \
1269 {  "NO_REGS",				\
1270    "AREG", "DREG", "CREG", "BREG",	\
1271    "SIREG", "DIREG",			\
1272    "AD_REGS",				\
1273    "Q_REGS", "NON_Q_REGS",		\
1274    "INDEX_REGS",			\
1275    "LEGACY_REGS",			\
1276    "GENERAL_REGS",			\
1277    "FP_TOP_REG", "FP_SECOND_REG",	\
1278    "FLOAT_REGS",			\
1279    "SSE_REGS",				\
1280    "MMX_REGS",				\
1281    "FP_TOP_SSE_REGS",			\
1282    "FP_SECOND_SSE_REGS",		\
1283    "FLOAT_SSE_REGS",			\
1284    "FLOAT_INT_REGS",			\
1285    "INT_SSE_REGS",			\
1286    "FLOAT_INT_SSE_REGS",		\
1287    "ALL_REGS" }
1288 
1289 /* Define which registers fit in which classes.
1290    This is an initializer for a vector of HARD_REG_SET
1291    of length N_REG_CLASSES.  */
1292 
1293 #define REG_CLASS_CONTENTS						\
1294 {     { 0x00,     0x0 },						\
1295       { 0x01,     0x0 }, { 0x02, 0x0 },	/* AREG, DREG */		\
1296       { 0x04,     0x0 }, { 0x08, 0x0 },	/* CREG, BREG */		\
1297       { 0x10,     0x0 }, { 0x20, 0x0 },	/* SIREG, DIREG */		\
1298       { 0x03,     0x0 },		/* AD_REGS */			\
1299       { 0x0f,     0x0 },		/* Q_REGS */			\
1300   { 0x1100f0,  0x1fe0 },		/* NON_Q_REGS */		\
1301       { 0x7f,  0x1fe0 },		/* INDEX_REGS */		\
1302   { 0x1100ff,  0x0 },			/* LEGACY_REGS */		\
1303   { 0x1100ff,  0x1fe0 },		/* GENERAL_REGS */		\
1304      { 0x100,     0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1305     { 0xff00,     0x0 },		/* FLOAT_REGS */		\
1306 { 0x1fe00000,0x1fe000 },		/* SSE_REGS */			\
1307 { 0xe0000000,    0x1f },		/* MMX_REGS */			\
1308 { 0x1fe00100,0x1fe000 },		/* FP_TOP_SSE_REG */		\
1309 { 0x1fe00200,0x1fe000 },		/* FP_SECOND_SSE_REG */		\
1310 { 0x1fe0ff00,0x1fe000 },		/* FLOAT_SSE_REGS */		\
1311    { 0x1ffff,  0x1fe0 },		/* FLOAT_INT_REGS */		\
1312 { 0x1fe100ff,0x1fffe0 },		/* INT_SSE_REGS */		\
1313 { 0x1fe1ffff,0x1fffe0 },		/* FLOAT_INT_SSE_REGS */	\
1314 { 0xffffffff,0x1fffff }							\
1315 }
1316 
1317 /* The same information, inverted:
1318    Return the class number of the smallest class containing
1319    reg number REGNO.  This could be a conditional expression
1320    or could index an array.  */
1321 
1322 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1323 
1324 /* When defined, the compiler allows registers explicitly used in the
1325    rtl to be used as spill registers but prevents the compiler from
1326    extending the lifetime of these registers.  */
1327 
1328 #define SMALL_REGISTER_CLASSES 1
1329 
1330 #define QI_REG_P(X) \
1331   (REG_P (X) && REGNO (X) < 4)
1332 
1333 #define GENERAL_REGNO_P(N) \
1334   ((N) < 8 || REX_INT_REGNO_P (N))
1335 
1336 #define GENERAL_REG_P(X) \
1337   (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1338 
1339 #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1340 
1341 #define NON_QI_REG_P(X) \
1342   (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1343 
1344 #define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
1345 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1346 
1347 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1348 #define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
1349 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1350 #define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1351 
1352 #define SSE_REGNO_P(N) \
1353   (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1354    || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
1355 
1356 #define SSE_REGNO(N) \
1357   ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1358 #define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1359 
1360 #define SSE_FLOAT_MODE_P(MODE) \
1361   ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1362 
1363 #define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1364 #define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1365 
1366 #define STACK_REG_P(XOP)		\
1367   (REG_P (XOP) &&		       	\
1368    REGNO (XOP) >= FIRST_STACK_REG &&	\
1369    REGNO (XOP) <= LAST_STACK_REG)
1370 
1371 #define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
1372 
1373 #define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1374 
1375 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1376 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1377 
1378 /* Indicate whether hard register numbered REG_NO should be converted
1379    to SSA form.  */
1380 #define CONVERT_HARD_REGISTER_TO_SSA_P(REG_NO) \
1381   ((REG_NO) == FLAGS_REG || (REG_NO) == ARG_POINTER_REGNUM)
1382 
1383 /* The class value for index registers, and the one for base regs.  */
1384 
1385 #define INDEX_REG_CLASS INDEX_REGS
1386 #define BASE_REG_CLASS GENERAL_REGS
1387 
1388 /* Get reg_class from a letter such as appears in the machine description.  */
1389 
1390 #define REG_CLASS_FROM_LETTER(C)	\
1391   ((C) == 'r' ? GENERAL_REGS :					\
1392    (C) == 'R' ? LEGACY_REGS :					\
1393    (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS :		\
1394    (C) == 'Q' ? Q_REGS :					\
1395    (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387	\
1396 		 ? FLOAT_REGS					\
1397 		 : NO_REGS) :					\
1398    (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387	\
1399 		 ? FP_TOP_REG					\
1400 		 : NO_REGS) :					\
1401    (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387	\
1402 		 ? FP_SECOND_REG				\
1403 		 : NO_REGS) :					\
1404    (C) == 'a' ? AREG :						\
1405    (C) == 'b' ? BREG :						\
1406    (C) == 'c' ? CREG :						\
1407    (C) == 'd' ? DREG :						\
1408    (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS :		\
1409    (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS :		\
1410    (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS :		\
1411    (C) == 'A' ? AD_REGS :					\
1412    (C) == 'D' ? DIREG :						\
1413    (C) == 'S' ? SIREG : NO_REGS)
1414 
1415 /* The letters I, J, K, L and M in a register constraint string
1416    can be used to stand for particular ranges of immediate operands.
1417    This macro defines what the ranges are.
1418    C is the letter, and VALUE is a constant value.
1419    Return 1 if VALUE is in the range specified by C.
1420 
1421    I is for non-DImode shifts.
1422    J is for DImode shifts.
1423    K is for signed imm8 operands.
1424    L is for andsi as zero-extending move.
1425    M is for shifts that can be executed by the "lea" opcode.
1426    N is for immedaite operands for out/in instructions (0-255)
1427    */
1428 
1429 #define CONST_OK_FOR_LETTER_P(VALUE, C)				\
1430   ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31			\
1431    : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63			\
1432    : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127		\
1433    : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff		\
1434    : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3			\
1435    : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255		\
1436    : 0)
1437 
1438 /* Similar, but for floating constants, and defining letters G and H.
1439    Here VALUE is the CONST_DOUBLE rtx itself.  We allow constants even if
1440    TARGET_387 isn't set, because the stack register converter may need to
1441    load 0.0 into the function value register.  */
1442 
1443 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)  \
1444   ((C) == 'G' ? standard_80387_constant_p (VALUE) \
1445    : 0)
1446 
1447 /* A C expression that defines the optional machine-dependent
1448    constraint letters that can be used to segregate specific types of
1449    operands, usually memory references, for the target machine.  Any
1450    letter that is not elsewhere defined and not matched by
1451    `REG_CLASS_FROM_LETTER' may be used.  Normally this macro will not
1452    be defined.
1453 
1454    If it is required for a particular target machine, it should
1455    return 1 if VALUE corresponds to the operand type represented by
1456    the constraint letter C.  If C is not defined as an extra
1457    constraint, the value returned should be 0 regardless of VALUE.  */
1458 
1459 #define EXTRA_CONSTRAINT(VALUE, D)				\
1460   ((D) == 'e' ? x86_64_sign_extended_value (VALUE)		\
1461    : (D) == 'Z' ? x86_64_zero_extended_value (VALUE)		\
1462    : (D) == 'C' ? standard_sse_constant_p (VALUE)		\
1463    : 0)
1464 
1465 /* Place additional restrictions on the register class to use when it
1466    is necessary to be able to hold a value of mode MODE in a reload
1467    register for which class CLASS would ordinarily be used.  */
1468 
1469 #define LIMIT_RELOAD_CLASS(MODE, CLASS) 			\
1470   ((MODE) == QImode && !TARGET_64BIT				\
1471    && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS		\
1472        || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS)	\
1473    ? Q_REGS : (CLASS))
1474 
1475 /* Given an rtx X being reloaded into a reg required to be
1476    in class CLASS, return the class of reg to actually use.
1477    In general this is just CLASS; but on some machines
1478    in some cases it is preferable to use a more restrictive class.
1479    On the 80386 series, we prevent floating constants from being
1480    reloaded into floating registers (since no move-insn can do that)
1481    and we ensure that QImodes aren't reloaded into the esi or edi reg.  */
1482 
1483 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1484    QImode must go into class Q_REGS.
1485    Narrow ALL_REGS to GENERAL_REGS.  This supports allowing movsf and
1486    movdf to do mem-to-mem moves through integer regs.  */
1487 
1488 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1489    ix86_preferred_reload_class ((X), (CLASS))
1490 
1491 /* If we are copying between general and FP registers, we need a memory
1492    location. The same is true for SSE and MMX registers.  */
1493 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1494   ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1495 
1496 /* QImode spills from non-QI registers need a scratch.  This does not
1497    happen often -- the only example so far requires an uninitialized
1498    pseudo.  */
1499 
1500 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT)			\
1501   (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS			\
1502     || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode	\
1503    ? Q_REGS : NO_REGS)
1504 
1505 /* Return the maximum number of consecutive registers
1506    needed to represent mode MODE in a register of class CLASS.  */
1507 /* On the 80386, this is the size of MODE in words,
1508    except in the FP regs, where a single reg is always enough.
1509    The TFmodes are really just 80bit values, so we use only 3 registers
1510    to hold them, instead of 4, as the size would suggest.
1511  */
1512 #define CLASS_MAX_NREGS(CLASS, MODE)					\
1513  (!MAYBE_INTEGER_CLASS_P (CLASS)					\
1514   ? (COMPLEX_MODE_P (MODE) ? 2 : 1)					\
1515   : ((GET_MODE_SIZE ((MODE) == TFmode ? XFmode : (MODE))		\
1516      + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1517 
1518 /* A C expression whose value is nonzero if pseudos that have been
1519    assigned to registers of class CLASS would likely be spilled
1520    because registers of CLASS are needed for spill registers.
1521 
1522    The default value of this macro returns 1 if CLASS has exactly one
1523    register and zero otherwise.  On most machines, this default
1524    should be used.  Only define this macro to some other expression
1525    if pseudo allocated by `local-alloc.c' end up in memory because
1526    their hard registers were needed for spill registers.  If this
1527    macro returns nonzero for those classes, those pseudos will only
1528    be allocated by `global.c', which knows how to reallocate the
1529    pseudo to another register.  If there would not be another
1530    register available for reallocation, you should not change the
1531    definition of this macro since the only effect of such a
1532    definition would be to slow down register allocation.  */
1533 
1534 #define CLASS_LIKELY_SPILLED_P(CLASS)					\
1535   (((CLASS) == AREG)							\
1536    || ((CLASS) == DREG)							\
1537    || ((CLASS) == CREG)							\
1538    || ((CLASS) == BREG)							\
1539    || ((CLASS) == AD_REGS)						\
1540    || ((CLASS) == SIREG)						\
1541    || ((CLASS) == DIREG))
1542 
1543 /* Return a class of registers that cannot change FROM mode to TO mode.
1544 
1545    x87 registers can't do subreg as all values are reformated to extended
1546    precision.  XMM registers does not support with nonzero offsets equal
1547    to 4, 8 and 12 otherwise valid for integer registers. Since we can't
1548    determine these, prohibit all nonparadoxical subregs changing size.  */
1549 
1550 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)	\
1551   (GET_MODE_SIZE (TO) < GET_MODE_SIZE (FROM)		\
1552    ? reg_classes_intersect_p (FLOAT_SSE_REGS, (CLASS))	\
1553      || MAYBE_MMX_CLASS_P (CLASS) 			\
1554    : GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO)		\
1555    ? reg_classes_intersect_p (FLOAT_REGS, (CLASS)) : 0)
1556 
1557 /* A C statement that adds to CLOBBERS any hard regs the port wishes
1558    to automatically clobber for all asms.
1559 
1560    We do this in the new i386 backend to maintain source compatibility
1561    with the old cc0-based compiler.  */
1562 
1563 #define MD_ASM_CLOBBERS(CLOBBERS)					\
1564   do {									\
1565     (CLOBBERS) = tree_cons (NULL_TREE, build_string (5, "flags"),	\
1566 			    (CLOBBERS));				\
1567     (CLOBBERS) = tree_cons (NULL_TREE, build_string (4, "fpsr"),	\
1568 			    (CLOBBERS));				\
1569     (CLOBBERS) = tree_cons (NULL_TREE, build_string (7, "dirflag"),	\
1570 			    (CLOBBERS));				\
1571   } while (0)
1572 
1573 /* Stack layout; function entry, exit and calling.  */
1574 
1575 /* Define this if pushing a word on the stack
1576    makes the stack pointer a smaller address.  */
1577 #define STACK_GROWS_DOWNWARD
1578 
1579 /* Define this if the nominal address of the stack frame
1580    is at the high-address end of the local variables;
1581    that is, each additional local variable allocated
1582    goes at a more negative offset in the frame.  */
1583 #define FRAME_GROWS_DOWNWARD
1584 
1585 /* Offset within stack frame to start allocating local variables at.
1586    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1587    first local allocated.  Otherwise, it is the offset to the BEGINNING
1588    of the first local allocated.  */
1589 #define STARTING_FRAME_OFFSET 0
1590 
1591 /* If we generate an insn to push BYTES bytes,
1592    this says how many the stack pointer really advances by.
1593    On 386 pushw decrements by exactly 2 no matter what the position was.
1594    On the 386 there is no pushb; we use pushw instead, and this
1595    has the effect of rounding up to 2.
1596 
1597    For 64bit ABI we round up to 8 bytes.
1598  */
1599 
1600 #define PUSH_ROUNDING(BYTES) \
1601   (TARGET_64BIT		     \
1602    ? (((BYTES) + 7) & (-8))  \
1603    : (((BYTES) + 1) & (-2)))
1604 
1605 /* If defined, the maximum amount of space required for outgoing arguments will
1606    be computed and placed into the variable
1607    `current_function_outgoing_args_size'.  No space will be pushed onto the
1608    stack for each call; instead, the function prologue should increase the stack
1609    frame size by this amount.  */
1610 
1611 #define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1612 
1613 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1614    instructions to pass outgoing arguments.  */
1615 
1616 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1617 
1618 /* We want the stack and args grow in opposite directions, even if
1619    PUSH_ARGS is 0.  */
1620 #define PUSH_ARGS_REVERSED 1
1621 
1622 /* Offset of first parameter from the argument pointer register value.  */
1623 #define FIRST_PARM_OFFSET(FNDECL) 0
1624 
1625 /* Define this macro if functions should assume that stack space has been
1626    allocated for arguments even when their values are passed in registers.
1627 
1628    The value of this macro is the size, in bytes, of the area reserved for
1629    arguments passed in registers for the function represented by FNDECL.
1630 
1631    This space can be allocated by the caller, or be a part of the
1632    machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1633    which.  */
1634 #define REG_PARM_STACK_SPACE(FNDECL) 0
1635 
1636 /* Define as a C expression that evaluates to nonzero if we do not know how
1637    to pass TYPE solely in registers.  The file expr.h defines a
1638    definition that is usually appropriate, refer to expr.h for additional
1639    documentation. If `REG_PARM_STACK_SPACE' is defined, the argument will be
1640    computed in the stack and then loaded into a register.  */
1641 #define MUST_PASS_IN_STACK(MODE, TYPE) ix86_must_pass_in_stack ((MODE), (TYPE))
1642 
1643 /* Value is the number of bytes of arguments automatically
1644    popped when returning from a subroutine call.
1645    FUNDECL is the declaration node of the function (as a tree),
1646    FUNTYPE is the data type of the function (as a tree),
1647    or for a library call it is an identifier node for the subroutine name.
1648    SIZE is the number of bytes of arguments passed on the stack.
1649 
1650    On the 80386, the RTD insn may be used to pop them if the number
1651      of args is fixed, but if the number is variable then the caller
1652      must pop them all.  RTD can't be used for library calls now
1653      because the library is compiled with the Unix compiler.
1654    Use of RTD is a selectable option, since it is incompatible with
1655    standard Unix calling sequences.  If the option is not selected,
1656    the caller must always pop the args.
1657 
1658    The attribute stdcall is equivalent to RTD on a per module basis.  */
1659 
1660 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1661   ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1662 
1663 /* Define how to find the value returned by a function.
1664    VALTYPE is the data type of the value (as a tree).
1665    If the precise function being called is known, FUNC is its FUNCTION_DECL;
1666    otherwise, FUNC is 0.  */
1667 #define FUNCTION_VALUE(VALTYPE, FUNC)  \
1668    ix86_function_value (VALTYPE)
1669 
1670 #define FUNCTION_VALUE_REGNO_P(N) \
1671   ix86_function_value_regno_p (N)
1672 
1673 /* Define how to find the value returned by a library function
1674    assuming the value has mode MODE.  */
1675 
1676 #define LIBCALL_VALUE(MODE) \
1677   ix86_libcall_value (MODE)
1678 
1679 /* Define the size of the result block used for communication between
1680    untyped_call and untyped_return.  The block contains a DImode value
1681    followed by the block used by fnsave and frstor.  */
1682 
1683 #define APPLY_RESULT_SIZE (8+108)
1684 
1685 /* 1 if N is a possible register number for function argument passing.  */
1686 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1687 
1688 /* Define a data type for recording info about an argument list
1689    during the scan of that argument list.  This data type should
1690    hold all necessary information about the function itself
1691    and about the args processed so far, enough to enable macros
1692    such as FUNCTION_ARG to determine where the next arg should go.  */
1693 
1694 typedef struct ix86_args {
1695   int words;			/* # words passed so far */
1696   int nregs;			/* # registers available for passing */
1697   int regno;			/* next available register number */
1698   int sse_words;		/* # sse words passed so far */
1699   int sse_nregs;		/* # sse registers available for passing */
1700   int sse_regno;		/* next available sse register number */
1701   int maybe_vaarg;		/* true for calls to possibly vardic fncts.  */
1702 } CUMULATIVE_ARGS;
1703 
1704 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1705    for a call to a function whose data type is FNTYPE.
1706    For a library call, FNTYPE is 0.  */
1707 
1708 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1709   init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME))
1710 
1711 /* Update the data in CUM to advance over an argument
1712    of mode MODE and data type TYPE.
1713    (TYPE is null for libcalls where that information may not be available.)  */
1714 
1715 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1716   function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1717 
1718 /* Define where to put the arguments to a function.
1719    Value is zero to push the argument on the stack,
1720    or a hard register in which to store the argument.
1721 
1722    MODE is the argument's machine mode.
1723    TYPE is the data type of the argument (as a tree).
1724     This is null for libcalls where that information may
1725     not be available.
1726    CUM is a variable of type CUMULATIVE_ARGS which gives info about
1727     the preceding args and about the function being called.
1728    NAMED is nonzero if this argument is a named parameter
1729     (otherwise it is an extra parameter matching an ellipsis).  */
1730 
1731 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1732   function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1733 
1734 /* For an arg passed partly in registers and partly in memory,
1735    this is the number of registers used.
1736    For args passed entirely in registers or entirely in memory, zero.  */
1737 
1738 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
1739 
1740 /* A C expression that indicates when an argument must be passed by
1741    reference.  If nonzero for an argument, a copy of that argument is
1742    made in memory and a pointer to the argument is passed instead of
1743    the argument itself.  The pointer is passed in whatever way is
1744    appropriate for passing a pointer to that type.  */
1745 
1746 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1747   function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
1748 
1749 /* If PIC, we cannot make sibling calls to global functions
1750    because the PLT requires %ebx live.
1751    If we are returning floats on the 80387 register stack, we cannot
1752    make a sibcall from a function that doesn't return a float to a
1753    function that does or, conversely, from a function that does return
1754    a float to a function that doesn't; the necessary stack adjustment
1755    would not be executed.  */
1756 #define FUNCTION_OK_FOR_SIBCALL(DECL)					\
1757   ((DECL)								\
1758    && (! flag_pic || ! TREE_PUBLIC (DECL))				\
1759    && (! TARGET_FLOAT_RETURNS_IN_80387					\
1760        || (FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (DECL))))	\
1761            == FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (cfun->decl)))))))
1762 
1763 /* Perform any needed actions needed for a function that is receiving a
1764    variable number of arguments.
1765 
1766    CUM is as above.
1767 
1768    MODE and TYPE are the mode and type of the current parameter.
1769 
1770    PRETEND_SIZE is a variable that should be set to the amount of stack
1771    that must be pushed by the prolog to pretend that our caller pushed
1772    it.
1773 
1774    Normally, this macro will push all remaining incoming registers on the
1775    stack and set PRETEND_SIZE to the length of the registers pushed.  */
1776 
1777 #define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL)	\
1778   ix86_setup_incoming_varargs (&(CUM), (MODE), (TYPE), &(PRETEND_SIZE), \
1779 			       (NO_RTL))
1780 
1781 /* Define the `__builtin_va_list' type for the ABI.  */
1782 #define BUILD_VA_LIST_TYPE(VALIST) \
1783   ((VALIST) = ix86_build_va_list ())
1784 
1785 /* Implement `va_start' for varargs and stdarg.  */
1786 #define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1787   ix86_va_start (VALIST, NEXTARG)
1788 
1789 /* Implement `va_arg'.  */
1790 #define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \
1791   ix86_va_arg ((VALIST), (TYPE))
1792 
1793 /* This macro is invoked at the end of compilation.  It is used here to
1794    output code for -fpic that will load the return address into %ebx.  */
1795 
1796 #undef ASM_FILE_END
1797 #define ASM_FILE_END(FILE)  ix86_asm_file_end (FILE)
1798 
1799 /* Output assembler code to FILE to increment profiler label # LABELNO
1800    for profiling a function entry.  */
1801 
1802 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1803 
1804 #define MCOUNT_NAME "_mcount"
1805 
1806 #define PROFILE_COUNT_REGISTER "edx"
1807 
1808 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1809    the stack pointer does not matter.  The value is tested only in
1810    functions that have frame pointers.
1811    No definition is equivalent to always zero.  */
1812 /* Note on the 386 it might be more efficient not to define this since
1813    we have to restore it ourselves from the frame pointer, in order to
1814    use pop */
1815 
1816 #define EXIT_IGNORE_STACK 1
1817 
1818 /* Output assembler code for a block containing the constant parts
1819    of a trampoline, leaving space for the variable parts.  */
1820 
1821 /* On the 386, the trampoline contains two instructions:
1822      mov #STATIC,ecx
1823      jmp FUNCTION
1824    The trampoline is generated entirely at runtime.  The operand of JMP
1825    is the address of FUNCTION relative to the instruction following the
1826    JMP (which is 5 bytes long).  */
1827 
1828 /* Length in units of the trampoline for entering a nested function.  */
1829 
1830 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1831 
1832 /* Emit RTL insns to initialize the variable parts of a trampoline.
1833    FNADDR is an RTX for the address of the function's pure code.
1834    CXT is an RTX for the static chain value for the function.  */
1835 
1836 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1837   x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1838 
1839 /* Definitions for register eliminations.
1840 
1841    This is an array of structures.  Each structure initializes one pair
1842    of eliminable registers.  The "from" register number is given first,
1843    followed by "to".  Eliminations of the same "from" register are listed
1844    in order of preference.
1845 
1846    There are two registers that can always be eliminated on the i386.
1847    The frame pointer and the arg pointer can be replaced by either the
1848    hard frame pointer or to the stack pointer, depending upon the
1849    circumstances.  The hard frame pointer is not used before reload and
1850    so it is not eligible for elimination.  */
1851 
1852 #define ELIMINABLE_REGS					\
1853 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1854  { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1855  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1856  { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}	\
1857 
1858 /* Given FROM and TO register numbers, say whether this elimination is
1859    allowed.  Frame pointer elimination is automatically handled.
1860 
1861    All other eliminations are valid.  */
1862 
1863 #define CAN_ELIMINATE(FROM, TO) \
1864   ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1865 
1866 /* Define the offset between two registers, one to be eliminated, and the other
1867    its replacement, at the start of a routine.  */
1868 
1869 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1870   ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1871 
1872 /* Addressing modes, and classification of registers for them.  */
1873 
1874 /* #define HAVE_POST_INCREMENT 0 */
1875 /* #define HAVE_POST_DECREMENT 0 */
1876 
1877 /* #define HAVE_PRE_DECREMENT 0 */
1878 /* #define HAVE_PRE_INCREMENT 0 */
1879 
1880 /* Macros to check register numbers against specific register classes.  */
1881 
1882 /* These assume that REGNO is a hard or pseudo reg number.
1883    They give nonzero only if REGNO is a hard reg of the suitable class
1884    or a pseudo reg currently allocated to a suitable hard reg.
1885    Since they use reg_renumber, they are safe only once reg_renumber
1886    has been allocated, which happens in local-alloc.c.  */
1887 
1888 #define REGNO_OK_FOR_INDEX_P(REGNO) 					\
1889   ((REGNO) < STACK_POINTER_REGNUM 					\
1890    || (REGNO >= FIRST_REX_INT_REG					\
1891        && (REGNO) <= LAST_REX_INT_REG)					\
1892    || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG		\
1893        && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG)		\
1894    || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
1895 
1896 #define REGNO_OK_FOR_BASE_P(REGNO) 					\
1897   ((REGNO) <= STACK_POINTER_REGNUM 					\
1898    || (REGNO) == ARG_POINTER_REGNUM 					\
1899    || (REGNO) == FRAME_POINTER_REGNUM 					\
1900    || (REGNO >= FIRST_REX_INT_REG					\
1901        && (REGNO) <= LAST_REX_INT_REG)					\
1902    || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG		\
1903        && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG)		\
1904    || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
1905 
1906 #define REGNO_OK_FOR_SIREG_P(REGNO) \
1907   ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1908 #define REGNO_OK_FOR_DIREG_P(REGNO) \
1909   ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1910 
1911 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1912    and check its validity for a certain class.
1913    We have two alternate definitions for each of them.
1914    The usual definition accepts all pseudo regs; the other rejects
1915    them unless they have been allocated suitable hard regs.
1916    The symbol REG_OK_STRICT causes the latter definition to be used.
1917 
1918    Most source files want to accept pseudo regs in the hope that
1919    they will get allocated to the class that the insn wants them to be in.
1920    Source files for reload pass need to be strict.
1921    After reload, it makes no difference, since pseudo regs have
1922    been eliminated by then.  */
1923 
1924 
1925 /* Non strict versions, pseudos are ok */
1926 #define REG_OK_FOR_INDEX_NONSTRICT_P(X)					\
1927   (REGNO (X) < STACK_POINTER_REGNUM					\
1928    || (REGNO (X) >= FIRST_REX_INT_REG					\
1929        && REGNO (X) <= LAST_REX_INT_REG)				\
1930    || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1931 
1932 #define REG_OK_FOR_BASE_NONSTRICT_P(X)					\
1933   (REGNO (X) <= STACK_POINTER_REGNUM					\
1934    || REGNO (X) == ARG_POINTER_REGNUM					\
1935    || REGNO (X) == FRAME_POINTER_REGNUM 				\
1936    || (REGNO (X) >= FIRST_REX_INT_REG					\
1937        && REGNO (X) <= LAST_REX_INT_REG)				\
1938    || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1939 
1940 /* Strict versions, hard registers only */
1941 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1942 #define REG_OK_FOR_BASE_STRICT_P(X)  REGNO_OK_FOR_BASE_P (REGNO (X))
1943 
1944 #ifndef REG_OK_STRICT
1945 #define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_NONSTRICT_P (X)
1946 #define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_NONSTRICT_P (X)
1947 
1948 #else
1949 #define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_STRICT_P (X)
1950 #define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_STRICT_P (X)
1951 #endif
1952 
1953 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1954    that is a valid memory address for an instruction.
1955    The MODE argument is the machine mode for the MEM expression
1956    that wants to use this address.
1957 
1958    The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1959    except for CONSTANT_ADDRESS_P which is usually machine-independent.
1960 
1961    See legitimize_pic_address in i386.c for details as to what
1962    constitutes a legitimate address when -fpic is used.  */
1963 
1964 #define MAX_REGS_PER_ADDRESS 2
1965 
1966 #define CONSTANT_ADDRESS_P(X)  constant_address_p (X)
1967 
1968 /* Nonzero if the constant value X is a legitimate general operand.
1969    It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
1970 
1971 #define LEGITIMATE_CONSTANT_P(X)  legitimate_constant_p (X)
1972 
1973 #ifdef REG_OK_STRICT
1974 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
1975 do {									\
1976   if (legitimate_address_p ((MODE), (X), 1))				\
1977     goto ADDR;								\
1978 } while (0)
1979 
1980 #else
1981 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
1982 do {									\
1983   if (legitimate_address_p ((MODE), (X), 0))				\
1984     goto ADDR;								\
1985 } while (0)
1986 
1987 #endif
1988 
1989 /* If defined, a C expression to determine the base term of address X.
1990    This macro is used in only one place: `find_base_term' in alias.c.
1991 
1992    It is always safe for this macro to not be defined.  It exists so
1993    that alias analysis can understand machine-dependent addresses.
1994 
1995    The typical use of this macro is to handle addresses containing
1996    a label_ref or symbol_ref within an UNSPEC.  */
1997 
1998 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1999 
2000 /* Try machine-dependent ways of modifying an illegitimate address
2001    to be legitimate.  If we find one, return the new, valid address.
2002    This macro is used in only one place: `memory_address' in explow.c.
2003 
2004    OLDX is the address as it was before break_out_memory_refs was called.
2005    In some cases it is useful to look at this to decide what needs to be done.
2006 
2007    MODE and WIN are passed so that this macro can use
2008    GO_IF_LEGITIMATE_ADDRESS.
2009 
2010    It is always safe for this macro to do nothing.  It exists to recognize
2011    opportunities to optimize the output.
2012 
2013    For the 80386, we handle X+REG by loading X into a register R and
2014    using R+REG.  R will go in a general reg and indexing will be used.
2015    However, if REG is a broken-out memory address or multiplication,
2016    nothing needs to be done because REG can certainly go in a general reg.
2017 
2018    When -fpic is used, special handling is needed for symbolic references.
2019    See comments by legitimize_pic_address in i386.c for details.  */
2020 
2021 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)				\
2022 do {									\
2023   (X) = legitimize_address ((X), (OLDX), (MODE));			\
2024   if (memory_address_p ((MODE), (X)))					\
2025     goto WIN;								\
2026 } while (0)
2027 
2028 #define REWRITE_ADDRESS(X) rewrite_address (X)
2029 
2030 /* Nonzero if the constant value X is a legitimate general operand
2031    when generating PIC code.  It is given that flag_pic is on and
2032    that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
2033 
2034 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
2035 
2036 #define SYMBOLIC_CONST(X)	\
2037   (GET_CODE (X) == SYMBOL_REF						\
2038    || GET_CODE (X) == LABEL_REF						\
2039    || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
2040 
2041 /* Go to LABEL if ADDR (a legitimate address expression)
2042    has an effect that depends on the machine mode it is used for.
2043    On the 80386, only postdecrement and postincrement address depend thus
2044    (the amount of decrement or increment being the length of the operand).  */
2045 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)	\
2046 do {							\
2047  if (GET_CODE (ADDR) == POST_INC			\
2048      || GET_CODE (ADDR) == POST_DEC)			\
2049    goto LABEL;						\
2050 } while (0)
2051 
2052 /* Codes for all the SSE/MMX builtins.  */
2053 enum ix86_builtins
2054 {
2055   IX86_BUILTIN_ADDPS,
2056   IX86_BUILTIN_ADDSS,
2057   IX86_BUILTIN_DIVPS,
2058   IX86_BUILTIN_DIVSS,
2059   IX86_BUILTIN_MULPS,
2060   IX86_BUILTIN_MULSS,
2061   IX86_BUILTIN_SUBPS,
2062   IX86_BUILTIN_SUBSS,
2063 
2064   IX86_BUILTIN_CMPEQPS,
2065   IX86_BUILTIN_CMPLTPS,
2066   IX86_BUILTIN_CMPLEPS,
2067   IX86_BUILTIN_CMPGTPS,
2068   IX86_BUILTIN_CMPGEPS,
2069   IX86_BUILTIN_CMPNEQPS,
2070   IX86_BUILTIN_CMPNLTPS,
2071   IX86_BUILTIN_CMPNLEPS,
2072   IX86_BUILTIN_CMPNGTPS,
2073   IX86_BUILTIN_CMPNGEPS,
2074   IX86_BUILTIN_CMPORDPS,
2075   IX86_BUILTIN_CMPUNORDPS,
2076   IX86_BUILTIN_CMPNEPS,
2077   IX86_BUILTIN_CMPEQSS,
2078   IX86_BUILTIN_CMPLTSS,
2079   IX86_BUILTIN_CMPLESS,
2080   IX86_BUILTIN_CMPNEQSS,
2081   IX86_BUILTIN_CMPNLTSS,
2082   IX86_BUILTIN_CMPNLESS,
2083   IX86_BUILTIN_CMPORDSS,
2084   IX86_BUILTIN_CMPUNORDSS,
2085   IX86_BUILTIN_CMPNESS,
2086 
2087   IX86_BUILTIN_COMIEQSS,
2088   IX86_BUILTIN_COMILTSS,
2089   IX86_BUILTIN_COMILESS,
2090   IX86_BUILTIN_COMIGTSS,
2091   IX86_BUILTIN_COMIGESS,
2092   IX86_BUILTIN_COMINEQSS,
2093   IX86_BUILTIN_UCOMIEQSS,
2094   IX86_BUILTIN_UCOMILTSS,
2095   IX86_BUILTIN_UCOMILESS,
2096   IX86_BUILTIN_UCOMIGTSS,
2097   IX86_BUILTIN_UCOMIGESS,
2098   IX86_BUILTIN_UCOMINEQSS,
2099 
2100   IX86_BUILTIN_CVTPI2PS,
2101   IX86_BUILTIN_CVTPS2PI,
2102   IX86_BUILTIN_CVTSI2SS,
2103   IX86_BUILTIN_CVTSI642SS,
2104   IX86_BUILTIN_CVTSS2SI,
2105   IX86_BUILTIN_CVTSS2SI64,
2106   IX86_BUILTIN_CVTTPS2PI,
2107   IX86_BUILTIN_CVTTSS2SI,
2108   IX86_BUILTIN_CVTTSS2SI64,
2109 
2110   IX86_BUILTIN_MAXPS,
2111   IX86_BUILTIN_MAXSS,
2112   IX86_BUILTIN_MINPS,
2113   IX86_BUILTIN_MINSS,
2114 
2115   IX86_BUILTIN_LOADAPS,
2116   IX86_BUILTIN_LOADUPS,
2117   IX86_BUILTIN_STOREAPS,
2118   IX86_BUILTIN_STOREUPS,
2119   IX86_BUILTIN_LOADSS,
2120   IX86_BUILTIN_STORESS,
2121   IX86_BUILTIN_MOVSS,
2122 
2123   IX86_BUILTIN_MOVHLPS,
2124   IX86_BUILTIN_MOVLHPS,
2125   IX86_BUILTIN_LOADHPS,
2126   IX86_BUILTIN_LOADLPS,
2127   IX86_BUILTIN_STOREHPS,
2128   IX86_BUILTIN_STORELPS,
2129 
2130   IX86_BUILTIN_MASKMOVQ,
2131   IX86_BUILTIN_MOVMSKPS,
2132   IX86_BUILTIN_PMOVMSKB,
2133 
2134   IX86_BUILTIN_MOVNTPS,
2135   IX86_BUILTIN_MOVNTQ,
2136 
2137   IX86_BUILTIN_LOADDQA,
2138   IX86_BUILTIN_LOADDQU,
2139   IX86_BUILTIN_STOREDQA,
2140   IX86_BUILTIN_STOREDQU,
2141   IX86_BUILTIN_MOVQ,
2142   IX86_BUILTIN_LOADD,
2143   IX86_BUILTIN_STORED,
2144 
2145   IX86_BUILTIN_CLRTI,
2146 
2147   IX86_BUILTIN_PACKSSWB,
2148   IX86_BUILTIN_PACKSSDW,
2149   IX86_BUILTIN_PACKUSWB,
2150 
2151   IX86_BUILTIN_PADDB,
2152   IX86_BUILTIN_PADDW,
2153   IX86_BUILTIN_PADDD,
2154   IX86_BUILTIN_PADDQ,
2155   IX86_BUILTIN_PADDSB,
2156   IX86_BUILTIN_PADDSW,
2157   IX86_BUILTIN_PADDUSB,
2158   IX86_BUILTIN_PADDUSW,
2159   IX86_BUILTIN_PSUBB,
2160   IX86_BUILTIN_PSUBW,
2161   IX86_BUILTIN_PSUBD,
2162   IX86_BUILTIN_PSUBQ,
2163   IX86_BUILTIN_PSUBSB,
2164   IX86_BUILTIN_PSUBSW,
2165   IX86_BUILTIN_PSUBUSB,
2166   IX86_BUILTIN_PSUBUSW,
2167 
2168   IX86_BUILTIN_PAND,
2169   IX86_BUILTIN_PANDN,
2170   IX86_BUILTIN_POR,
2171   IX86_BUILTIN_PXOR,
2172 
2173   IX86_BUILTIN_PAVGB,
2174   IX86_BUILTIN_PAVGW,
2175 
2176   IX86_BUILTIN_PCMPEQB,
2177   IX86_BUILTIN_PCMPEQW,
2178   IX86_BUILTIN_PCMPEQD,
2179   IX86_BUILTIN_PCMPGTB,
2180   IX86_BUILTIN_PCMPGTW,
2181   IX86_BUILTIN_PCMPGTD,
2182 
2183   IX86_BUILTIN_PEXTRW,
2184   IX86_BUILTIN_PINSRW,
2185 
2186   IX86_BUILTIN_PMADDWD,
2187 
2188   IX86_BUILTIN_PMAXSW,
2189   IX86_BUILTIN_PMAXUB,
2190   IX86_BUILTIN_PMINSW,
2191   IX86_BUILTIN_PMINUB,
2192 
2193   IX86_BUILTIN_PMULHUW,
2194   IX86_BUILTIN_PMULHW,
2195   IX86_BUILTIN_PMULLW,
2196 
2197   IX86_BUILTIN_PSADBW,
2198   IX86_BUILTIN_PSHUFW,
2199 
2200   IX86_BUILTIN_PSLLW,
2201   IX86_BUILTIN_PSLLD,
2202   IX86_BUILTIN_PSLLQ,
2203   IX86_BUILTIN_PSRAW,
2204   IX86_BUILTIN_PSRAD,
2205   IX86_BUILTIN_PSRLW,
2206   IX86_BUILTIN_PSRLD,
2207   IX86_BUILTIN_PSRLQ,
2208   IX86_BUILTIN_PSLLWI,
2209   IX86_BUILTIN_PSLLDI,
2210   IX86_BUILTIN_PSLLQI,
2211   IX86_BUILTIN_PSRAWI,
2212   IX86_BUILTIN_PSRADI,
2213   IX86_BUILTIN_PSRLWI,
2214   IX86_BUILTIN_PSRLDI,
2215   IX86_BUILTIN_PSRLQI,
2216 
2217   IX86_BUILTIN_PUNPCKHBW,
2218   IX86_BUILTIN_PUNPCKHWD,
2219   IX86_BUILTIN_PUNPCKHDQ,
2220   IX86_BUILTIN_PUNPCKLBW,
2221   IX86_BUILTIN_PUNPCKLWD,
2222   IX86_BUILTIN_PUNPCKLDQ,
2223 
2224   IX86_BUILTIN_SHUFPS,
2225 
2226   IX86_BUILTIN_RCPPS,
2227   IX86_BUILTIN_RCPSS,
2228   IX86_BUILTIN_RSQRTPS,
2229   IX86_BUILTIN_RSQRTSS,
2230   IX86_BUILTIN_SQRTPS,
2231   IX86_BUILTIN_SQRTSS,
2232 
2233   IX86_BUILTIN_UNPCKHPS,
2234   IX86_BUILTIN_UNPCKLPS,
2235 
2236   IX86_BUILTIN_ANDPS,
2237   IX86_BUILTIN_ANDNPS,
2238   IX86_BUILTIN_ORPS,
2239   IX86_BUILTIN_XORPS,
2240 
2241   IX86_BUILTIN_EMMS,
2242   IX86_BUILTIN_LDMXCSR,
2243   IX86_BUILTIN_STMXCSR,
2244   IX86_BUILTIN_SFENCE,
2245 
2246   /* 3DNow! Original */
2247   IX86_BUILTIN_FEMMS,
2248   IX86_BUILTIN_PAVGUSB,
2249   IX86_BUILTIN_PF2ID,
2250   IX86_BUILTIN_PFACC,
2251   IX86_BUILTIN_PFADD,
2252   IX86_BUILTIN_PFCMPEQ,
2253   IX86_BUILTIN_PFCMPGE,
2254   IX86_BUILTIN_PFCMPGT,
2255   IX86_BUILTIN_PFMAX,
2256   IX86_BUILTIN_PFMIN,
2257   IX86_BUILTIN_PFMUL,
2258   IX86_BUILTIN_PFRCP,
2259   IX86_BUILTIN_PFRCPIT1,
2260   IX86_BUILTIN_PFRCPIT2,
2261   IX86_BUILTIN_PFRSQIT1,
2262   IX86_BUILTIN_PFRSQRT,
2263   IX86_BUILTIN_PFSUB,
2264   IX86_BUILTIN_PFSUBR,
2265   IX86_BUILTIN_PI2FD,
2266   IX86_BUILTIN_PMULHRW,
2267 
2268   /* 3DNow! Athlon Extensions */
2269   IX86_BUILTIN_PF2IW,
2270   IX86_BUILTIN_PFNACC,
2271   IX86_BUILTIN_PFPNACC,
2272   IX86_BUILTIN_PI2FW,
2273   IX86_BUILTIN_PSWAPDSI,
2274   IX86_BUILTIN_PSWAPDSF,
2275 
2276   IX86_BUILTIN_SSE_ZERO,
2277   IX86_BUILTIN_MMX_ZERO,
2278 
2279   /* SSE2 */
2280   IX86_BUILTIN_ADDPD,
2281   IX86_BUILTIN_ADDSD,
2282   IX86_BUILTIN_DIVPD,
2283   IX86_BUILTIN_DIVSD,
2284   IX86_BUILTIN_MULPD,
2285   IX86_BUILTIN_MULSD,
2286   IX86_BUILTIN_SUBPD,
2287   IX86_BUILTIN_SUBSD,
2288 
2289   IX86_BUILTIN_CMPEQPD,
2290   IX86_BUILTIN_CMPLTPD,
2291   IX86_BUILTIN_CMPLEPD,
2292   IX86_BUILTIN_CMPGTPD,
2293   IX86_BUILTIN_CMPGEPD,
2294   IX86_BUILTIN_CMPNEQPD,
2295   IX86_BUILTIN_CMPNLTPD,
2296   IX86_BUILTIN_CMPNLEPD,
2297   IX86_BUILTIN_CMPNGTPD,
2298   IX86_BUILTIN_CMPNGEPD,
2299   IX86_BUILTIN_CMPORDPD,
2300   IX86_BUILTIN_CMPUNORDPD,
2301   IX86_BUILTIN_CMPNEPD,
2302   IX86_BUILTIN_CMPEQSD,
2303   IX86_BUILTIN_CMPLTSD,
2304   IX86_BUILTIN_CMPLESD,
2305   IX86_BUILTIN_CMPNEQSD,
2306   IX86_BUILTIN_CMPNLTSD,
2307   IX86_BUILTIN_CMPNLESD,
2308   IX86_BUILTIN_CMPORDSD,
2309   IX86_BUILTIN_CMPUNORDSD,
2310   IX86_BUILTIN_CMPNESD,
2311 
2312   IX86_BUILTIN_COMIEQSD,
2313   IX86_BUILTIN_COMILTSD,
2314   IX86_BUILTIN_COMILESD,
2315   IX86_BUILTIN_COMIGTSD,
2316   IX86_BUILTIN_COMIGESD,
2317   IX86_BUILTIN_COMINEQSD,
2318   IX86_BUILTIN_UCOMIEQSD,
2319   IX86_BUILTIN_UCOMILTSD,
2320   IX86_BUILTIN_UCOMILESD,
2321   IX86_BUILTIN_UCOMIGTSD,
2322   IX86_BUILTIN_UCOMIGESD,
2323   IX86_BUILTIN_UCOMINEQSD,
2324 
2325   IX86_BUILTIN_MAXPD,
2326   IX86_BUILTIN_MAXSD,
2327   IX86_BUILTIN_MINPD,
2328   IX86_BUILTIN_MINSD,
2329 
2330   IX86_BUILTIN_ANDPD,
2331   IX86_BUILTIN_ANDNPD,
2332   IX86_BUILTIN_ORPD,
2333   IX86_BUILTIN_XORPD,
2334 
2335   IX86_BUILTIN_SQRTPD,
2336   IX86_BUILTIN_SQRTSD,
2337 
2338   IX86_BUILTIN_UNPCKHPD,
2339   IX86_BUILTIN_UNPCKLPD,
2340 
2341   IX86_BUILTIN_SHUFPD,
2342 
2343   IX86_BUILTIN_LOADAPD,
2344   IX86_BUILTIN_LOADUPD,
2345   IX86_BUILTIN_STOREAPD,
2346   IX86_BUILTIN_STOREUPD,
2347   IX86_BUILTIN_LOADSD,
2348   IX86_BUILTIN_STORESD,
2349   IX86_BUILTIN_MOVSD,
2350 
2351   IX86_BUILTIN_LOADHPD,
2352   IX86_BUILTIN_LOADLPD,
2353   IX86_BUILTIN_STOREHPD,
2354   IX86_BUILTIN_STORELPD,
2355 
2356   IX86_BUILTIN_CVTDQ2PD,
2357   IX86_BUILTIN_CVTDQ2PS,
2358 
2359   IX86_BUILTIN_CVTPD2DQ,
2360   IX86_BUILTIN_CVTPD2PI,
2361   IX86_BUILTIN_CVTPD2PS,
2362   IX86_BUILTIN_CVTTPD2DQ,
2363   IX86_BUILTIN_CVTTPD2PI,
2364 
2365   IX86_BUILTIN_CVTPI2PD,
2366   IX86_BUILTIN_CVTSI2SD,
2367   IX86_BUILTIN_CVTSI642SD,
2368 
2369   IX86_BUILTIN_CVTSD2SI,
2370   IX86_BUILTIN_CVTSD2SI64,
2371   IX86_BUILTIN_CVTSD2SS,
2372   IX86_BUILTIN_CVTSS2SD,
2373   IX86_BUILTIN_CVTTSD2SI,
2374   IX86_BUILTIN_CVTTSD2SI64,
2375 
2376   IX86_BUILTIN_CVTPS2DQ,
2377   IX86_BUILTIN_CVTPS2PD,
2378   IX86_BUILTIN_CVTTPS2DQ,
2379 
2380   IX86_BUILTIN_MOVNTI,
2381   IX86_BUILTIN_MOVNTPD,
2382   IX86_BUILTIN_MOVNTDQ,
2383 
2384   IX86_BUILTIN_SETPD1,
2385   IX86_BUILTIN_SETPD,
2386   IX86_BUILTIN_CLRPD,
2387   IX86_BUILTIN_SETRPD,
2388   IX86_BUILTIN_LOADPD1,
2389   IX86_BUILTIN_LOADRPD,
2390   IX86_BUILTIN_STOREPD1,
2391   IX86_BUILTIN_STORERPD,
2392 
2393   /* SSE2 MMX */
2394   IX86_BUILTIN_MASKMOVDQU,
2395   IX86_BUILTIN_MOVMSKPD,
2396   IX86_BUILTIN_PMOVMSKB128,
2397   IX86_BUILTIN_MOVQ2DQ,
2398   IX86_BUILTIN_MOVDQ2Q,
2399 
2400   IX86_BUILTIN_PACKSSWB128,
2401   IX86_BUILTIN_PACKSSDW128,
2402   IX86_BUILTIN_PACKUSWB128,
2403 
2404   IX86_BUILTIN_PADDB128,
2405   IX86_BUILTIN_PADDW128,
2406   IX86_BUILTIN_PADDD128,
2407   IX86_BUILTIN_PADDQ128,
2408   IX86_BUILTIN_PADDSB128,
2409   IX86_BUILTIN_PADDSW128,
2410   IX86_BUILTIN_PADDUSB128,
2411   IX86_BUILTIN_PADDUSW128,
2412   IX86_BUILTIN_PSUBB128,
2413   IX86_BUILTIN_PSUBW128,
2414   IX86_BUILTIN_PSUBD128,
2415   IX86_BUILTIN_PSUBQ128,
2416   IX86_BUILTIN_PSUBSB128,
2417   IX86_BUILTIN_PSUBSW128,
2418   IX86_BUILTIN_PSUBUSB128,
2419   IX86_BUILTIN_PSUBUSW128,
2420 
2421   IX86_BUILTIN_PAND128,
2422   IX86_BUILTIN_PANDN128,
2423   IX86_BUILTIN_POR128,
2424   IX86_BUILTIN_PXOR128,
2425 
2426   IX86_BUILTIN_PAVGB128,
2427   IX86_BUILTIN_PAVGW128,
2428 
2429   IX86_BUILTIN_PCMPEQB128,
2430   IX86_BUILTIN_PCMPEQW128,
2431   IX86_BUILTIN_PCMPEQD128,
2432   IX86_BUILTIN_PCMPGTB128,
2433   IX86_BUILTIN_PCMPGTW128,
2434   IX86_BUILTIN_PCMPGTD128,
2435 
2436   IX86_BUILTIN_PEXTRW128,
2437   IX86_BUILTIN_PINSRW128,
2438 
2439   IX86_BUILTIN_PMADDWD128,
2440 
2441   IX86_BUILTIN_PMAXSW128,
2442   IX86_BUILTIN_PMAXUB128,
2443   IX86_BUILTIN_PMINSW128,
2444   IX86_BUILTIN_PMINUB128,
2445 
2446   IX86_BUILTIN_PMULUDQ,
2447   IX86_BUILTIN_PMULUDQ128,
2448   IX86_BUILTIN_PMULHUW128,
2449   IX86_BUILTIN_PMULHW128,
2450   IX86_BUILTIN_PMULLW128,
2451 
2452   IX86_BUILTIN_PSADBW128,
2453   IX86_BUILTIN_PSHUFHW,
2454   IX86_BUILTIN_PSHUFLW,
2455   IX86_BUILTIN_PSHUFD,
2456 
2457   IX86_BUILTIN_PSLLW128,
2458   IX86_BUILTIN_PSLLD128,
2459   IX86_BUILTIN_PSLLQ128,
2460   IX86_BUILTIN_PSRAW128,
2461   IX86_BUILTIN_PSRAD128,
2462   IX86_BUILTIN_PSRLW128,
2463   IX86_BUILTIN_PSRLD128,
2464   IX86_BUILTIN_PSRLQ128,
2465   IX86_BUILTIN_PSLLDQI128,
2466   IX86_BUILTIN_PSLLWI128,
2467   IX86_BUILTIN_PSLLDI128,
2468   IX86_BUILTIN_PSLLQI128,
2469   IX86_BUILTIN_PSRAWI128,
2470   IX86_BUILTIN_PSRADI128,
2471   IX86_BUILTIN_PSRLDQI128,
2472   IX86_BUILTIN_PSRLWI128,
2473   IX86_BUILTIN_PSRLDI128,
2474   IX86_BUILTIN_PSRLQI128,
2475 
2476   IX86_BUILTIN_PUNPCKHBW128,
2477   IX86_BUILTIN_PUNPCKHWD128,
2478   IX86_BUILTIN_PUNPCKHDQ128,
2479   IX86_BUILTIN_PUNPCKHQDQ128,
2480   IX86_BUILTIN_PUNPCKLBW128,
2481   IX86_BUILTIN_PUNPCKLWD128,
2482   IX86_BUILTIN_PUNPCKLDQ128,
2483   IX86_BUILTIN_PUNPCKLQDQ128,
2484 
2485   IX86_BUILTIN_CLFLUSH,
2486   IX86_BUILTIN_MFENCE,
2487   IX86_BUILTIN_LFENCE,
2488 
2489   /* Prescott New Instructions.  */
2490   IX86_BUILTIN_ADDSUBPS,
2491   IX86_BUILTIN_HADDPS,
2492   IX86_BUILTIN_HSUBPS,
2493   IX86_BUILTIN_MOVSHDUP,
2494   IX86_BUILTIN_MOVSLDUP,
2495   IX86_BUILTIN_ADDSUBPD,
2496   IX86_BUILTIN_HADDPD,
2497   IX86_BUILTIN_HSUBPD,
2498   IX86_BUILTIN_LOADDDUP,
2499   IX86_BUILTIN_MOVDDUP,
2500   IX86_BUILTIN_LDDQU,
2501 
2502   IX86_BUILTIN_MONITOR,
2503   IX86_BUILTIN_MWAIT,
2504 
2505   IX86_BUILTIN_MAX
2506 };
2507 
2508 #define TARGET_ENCODE_SECTION_INFO  ix86_encode_section_info
2509 #define TARGET_STRIP_NAME_ENCODING  ix86_strip_name_encoding
2510 
2511 #define ASM_OUTPUT_LABELREF(FILE,NAME)		\
2512   do {						\
2513     const char *xname = (NAME);			\
2514     if (xname[0] == '%')			\
2515       xname += 2;				\
2516     if (xname[0] == '*')			\
2517       xname += 1;				\
2518     else					\
2519       fputs (user_label_prefix, FILE);		\
2520     fputs (xname, FILE);			\
2521   } while (0)
2522 
2523 /* Max number of args passed in registers.  If this is more than 3, we will
2524    have problems with ebx (register #4), since it is a caller save register and
2525    is also used as the pic register in ELF.  So for now, don't allow more than
2526    3 registers to be passed in registers.  */
2527 
2528 #define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
2529 
2530 #define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : 0)
2531 
2532 
2533 /* Specify the machine mode that this machine uses
2534    for the index in the tablejump instruction.  */
2535 #define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
2536 
2537 /* Define as C expression which evaluates to nonzero if the tablejump
2538    instruction expects the table to contain offsets from the address of the
2539    table.
2540    Do not define this if the table should contain absolute addresses.  */
2541 /* #define CASE_VECTOR_PC_RELATIVE 1 */
2542 
2543 /* Define this as 1 if `char' should by default be signed; else as 0.  */
2544 #define DEFAULT_SIGNED_CHAR 1
2545 
2546 /* Number of bytes moved into a data cache for a single prefetch operation.  */
2547 #define PREFETCH_BLOCK ix86_cost->prefetch_block
2548 
2549 /* Number of prefetch operations that can be done in parallel.  */
2550 #define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
2551 
2552 /* Max number of bytes we can move from memory to memory
2553    in one reasonably fast instruction.  */
2554 #define MOVE_MAX 16
2555 
2556 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
2557    move efficiently, as opposed to  MOVE_MAX which is the maximum
2558    number of bytes we can move with a single instruction.  */
2559 #define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
2560 
2561 /* If a memory-to-memory move would take MOVE_RATIO or more simple
2562    move-instruction pairs, we will do a movstr or libcall instead.
2563    Increasing the value will always make code faster, but eventually
2564    incurs high cost in increased code size.
2565 
2566    If you don't define this, a reasonable default is used.  */
2567 
2568 #define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
2569 
2570 /* Define if shifts truncate the shift count
2571    which implies one can omit a sign-extension or zero-extension
2572    of a shift count.  */
2573 /* On i386, shifts do truncate the count.  But bit opcodes don't.  */
2574 
2575 /* #define SHIFT_COUNT_TRUNCATED */
2576 
2577 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2578    is done just by pretending it is already truncated.  */
2579 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2580 
2581 /* We assume that the store-condition-codes instructions store 0 for false
2582    and some other value for true.  This is the value stored for true.  */
2583 
2584 #define STORE_FLAG_VALUE 1
2585 
2586 /* When a prototype says `char' or `short', really pass an `int'.
2587    (The 386 can't easily push less than an int.)  */
2588 
2589 #define PROMOTE_PROTOTYPES 1
2590 
2591 /* A macro to update M and UNSIGNEDP when an object whose type is
2592    TYPE and which has the specified mode and signedness is to be
2593    stored in a register.  This macro is only called when TYPE is a
2594    scalar type.
2595 
2596    On i386 it is sometimes useful to promote HImode and QImode
2597    quantities to SImode.  The choice depends on target type.  */
2598 
2599 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) 		\
2600 do {							\
2601   if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS)	\
2602       || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS))	\
2603     (MODE) = SImode;					\
2604 } while (0)
2605 
2606 /* Specify the machine mode that pointers have.
2607    After generation of rtl, the compiler makes no further distinction
2608    between pointers and any other objects of this machine mode.  */
2609 #define Pmode (TARGET_64BIT ? DImode : SImode)
2610 
2611 /* A function address in a call instruction
2612    is a byte address (for indexing purposes)
2613    so give the MEM rtx a byte's mode.  */
2614 #define FUNCTION_MODE QImode
2615 
2616 /* A part of a C `switch' statement that describes the relative costs
2617    of constant RTL expressions.  It must contain `case' labels for
2618    expression codes `const_int', `const', `symbol_ref', `label_ref'
2619    and `const_double'.  Each case must ultimately reach a `return'
2620    statement to return the relative cost of the use of that kind of
2621    constant value in an expression.  The cost may depend on the
2622    precise value of the constant, which is available for examination
2623    in X, and the rtx code of the expression in which it is contained,
2624    found in OUTER_CODE.
2625 
2626    CODE is the expression code--redundant, since it can be obtained
2627    with `GET_CODE (X)'.  */
2628 
2629 #define CONST_COSTS(RTX, CODE, OUTER_CODE)			\
2630   case CONST_INT:						\
2631   case CONST:							\
2632   case LABEL_REF:						\
2633   case SYMBOL_REF:						\
2634     if (TARGET_64BIT && !x86_64_sign_extended_value (RTX))	\
2635       return 3;							\
2636     if (TARGET_64BIT && !x86_64_zero_extended_value (RTX))	\
2637       return 2;							\
2638     return flag_pic && SYMBOLIC_CONST (RTX) ? 1 : 0;		\
2639 								\
2640   case CONST_DOUBLE:						\
2641     if (GET_MODE (RTX) == VOIDmode)				\
2642       return 0;							\
2643     switch (standard_80387_constant_p (RTX))			\
2644       {								\
2645       case 1: /* 0.0 */						\
2646 	return 1;						\
2647       case 2: /* 1.0 */						\
2648 	return 2;						\
2649       default:							\
2650 	/* Start with (MEM (SYMBOL_REF)), since that's where	\
2651 	   it'll probably end up.  Add a penalty for size.  */	\
2652 	return (COSTS_N_INSNS (1) + (flag_pic != 0)		\
2653 		+ (GET_MODE (RTX) == SFmode ? 0			\
2654 		   : GET_MODE (RTX) == DFmode ? 1 : 2));	\
2655       }
2656 
2657 /* Delete the definition here when TOPLEVEL_COSTS_N_INSNS gets added to cse.c */
2658 #define TOPLEVEL_COSTS_N_INSNS(N) \
2659   do { total = COSTS_N_INSNS (N); goto egress_rtx_costs; } while (0)
2660 
2661 /* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
2662    This can be used, for example, to indicate how costly a multiply
2663    instruction is.  In writing this macro, you can use the construct
2664    `COSTS_N_INSNS (N)' to specify a cost equal to N fast
2665    instructions.  OUTER_CODE is the code of the expression in which X
2666    is contained.
2667 
2668    This macro is optional; do not define it if the default cost
2669    assumptions are adequate for the target machine.  */
2670 
2671 #define RTX_COSTS(X, CODE, OUTER_CODE)					\
2672   case ZERO_EXTEND:							\
2673     /* The zero extensions is often completely free on x86_64, so make	\
2674        it as cheap as possible.  */					\
2675     if (TARGET_64BIT && GET_MODE (X) == DImode				\
2676 	&& GET_MODE (XEXP (X, 0)) == SImode)				\
2677       {									\
2678 	total = 1; goto egress_rtx_costs;				\
2679       } 								\
2680     else								\
2681       TOPLEVEL_COSTS_N_INSNS (TARGET_ZERO_EXTEND_WITH_AND ?		\
2682 			      ix86_cost->add : ix86_cost->movzx);	\
2683     break;								\
2684   case SIGN_EXTEND:							\
2685     TOPLEVEL_COSTS_N_INSNS (ix86_cost->movsx);				\
2686     break;								\
2687   case ASHIFT:								\
2688     if (GET_CODE (XEXP (X, 1)) == CONST_INT				\
2689 	&& (GET_MODE (XEXP (X, 0)) != DImode || TARGET_64BIT))		\
2690       {									\
2691 	HOST_WIDE_INT value = INTVAL (XEXP (X, 1));			\
2692 	if (value == 1)							\
2693 	  TOPLEVEL_COSTS_N_INSNS (ix86_cost->add);			\
2694 	if ((value == 2 || value == 3)					\
2695 	    && !TARGET_DECOMPOSE_LEA					\
2696 	    && ix86_cost->lea <= ix86_cost->shift_const)		\
2697 	  TOPLEVEL_COSTS_N_INSNS (ix86_cost->lea);			\
2698       }									\
2699     /* fall through */							\
2700 		  							\
2701   case ROTATE:								\
2702   case ASHIFTRT:							\
2703   case LSHIFTRT:							\
2704   case ROTATERT:							\
2705     if (!TARGET_64BIT && GET_MODE (XEXP (X, 0)) == DImode)		\
2706       {									\
2707 	if (GET_CODE (XEXP (X, 1)) == CONST_INT)			\
2708 	  {								\
2709 	    if (INTVAL (XEXP (X, 1)) > 32)				\
2710 	      TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const + 2);	\
2711 	    else							\
2712 	      TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const * 2);	\
2713 	  }								\
2714 	else								\
2715 	  {								\
2716 	    if (GET_CODE (XEXP (X, 1)) == AND)				\
2717 	      TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 2);		\
2718 	    else							\
2719 	      TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 6 + 2);	\
2720 	  }								\
2721       }									\
2722     else								\
2723       {									\
2724 	if (GET_CODE (XEXP (X, 1)) == CONST_INT)			\
2725 	  TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_const);		\
2726 	else								\
2727 	  TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_var);		\
2728       }									\
2729     break;								\
2730 									\
2731   case MULT:								\
2732     if (FLOAT_MODE_P (GET_MODE (X)))					\
2733       TOPLEVEL_COSTS_N_INSNS (ix86_cost->fmul);				\
2734     else if (GET_CODE (XEXP (X, 1)) == CONST_INT)			\
2735       {									\
2736 	unsigned HOST_WIDE_INT value = INTVAL (XEXP (X, 1));		\
2737 	int nbits = 0;							\
2738 									\
2739 	while (value != 0)						\
2740 	  {								\
2741 	    nbits++;							\
2742 	    value >>= 1;						\
2743 	  } 								\
2744 									\
2745 	TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init			\
2746 			        + nbits * ix86_cost->mult_bit);		\
2747       }									\
2748     else			/* This is arbitrary */			\
2749       TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init			\
2750 			      + 7 * ix86_cost->mult_bit);		\
2751 									\
2752   case DIV:								\
2753   case UDIV:								\
2754   case MOD:								\
2755   case UMOD:								\
2756     if (FLOAT_MODE_P (GET_MODE (X)))					\
2757       TOPLEVEL_COSTS_N_INSNS (ix86_cost->fdiv);				\
2758     else								\
2759       TOPLEVEL_COSTS_N_INSNS (ix86_cost->divide);			\
2760     break;								\
2761 									\
2762   case PLUS:								\
2763     if (FLOAT_MODE_P (GET_MODE (X)))					\
2764       TOPLEVEL_COSTS_N_INSNS (ix86_cost->fadd);				\
2765     else if (!TARGET_DECOMPOSE_LEA					\
2766 	&& INTEGRAL_MODE_P (GET_MODE (X))				\
2767 	&& GET_MODE_BITSIZE (GET_MODE (X)) <= GET_MODE_BITSIZE (Pmode))	\
2768       {									\
2769         if (GET_CODE (XEXP (X, 0)) == PLUS				\
2770 	    && GET_CODE (XEXP (XEXP (X, 0), 0)) == MULT			\
2771 	    && GET_CODE (XEXP (XEXP (XEXP (X, 0), 0), 1)) == CONST_INT	\
2772 	    && CONSTANT_P (XEXP (X, 1)))				\
2773 	  {								\
2774 	    HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 0), 0), 1));\
2775 	    if (val == 2 || val == 4 || val == 8)			\
2776 	      {								\
2777 		return (COSTS_N_INSNS (ix86_cost->lea)			\
2778 			+ rtx_cost (XEXP (XEXP (X, 0), 1),		\
2779 				    (OUTER_CODE))			\
2780 			+ rtx_cost (XEXP (XEXP (XEXP (X, 0), 0), 0),	\
2781 				    (OUTER_CODE))			\
2782 			+ rtx_cost (XEXP (X, 1), (OUTER_CODE)));	\
2783 	      }								\
2784 	  }								\
2785 	else if (GET_CODE (XEXP (X, 0)) == MULT				\
2786 		 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT)	\
2787 	  {								\
2788 	    HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1));		\
2789 	    if (val == 2 || val == 4 || val == 8)			\
2790 	      {								\
2791 		return (COSTS_N_INSNS (ix86_cost->lea)			\
2792 			+ rtx_cost (XEXP (XEXP (X, 0), 0),		\
2793 				    (OUTER_CODE))			\
2794 			+ rtx_cost (XEXP (X, 1), (OUTER_CODE)));	\
2795 	      }								\
2796 	  }								\
2797 	else if (GET_CODE (XEXP (X, 0)) == PLUS)			\
2798 	  {								\
2799 	    return (COSTS_N_INSNS (ix86_cost->lea)			\
2800 		    + rtx_cost (XEXP (XEXP (X, 0), 0), (OUTER_CODE))	\
2801 		    + rtx_cost (XEXP (XEXP (X, 0), 1), (OUTER_CODE))	\
2802 		    + rtx_cost (XEXP (X, 1), (OUTER_CODE)));		\
2803 	  }								\
2804       }									\
2805     /* fall through */							\
2806 									\
2807   case MINUS:								\
2808     if (FLOAT_MODE_P (GET_MODE (X)))					\
2809       TOPLEVEL_COSTS_N_INSNS (ix86_cost->fadd);				\
2810     /* fall through */							\
2811 									\
2812   case AND:								\
2813   case IOR:								\
2814   case XOR:								\
2815     if (!TARGET_64BIT && GET_MODE (X) == DImode)			\
2816       return (COSTS_N_INSNS (ix86_cost->add) * 2			\
2817 	      + (rtx_cost (XEXP (X, 0), (OUTER_CODE))			\
2818 	         << (GET_MODE (XEXP (X, 0)) != DImode))			\
2819 	      + (rtx_cost (XEXP (X, 1), (OUTER_CODE))			\
2820  	         << (GET_MODE (XEXP (X, 1)) != DImode)));		\
2821     /* fall through */							\
2822 									\
2823   case NEG:								\
2824     if (FLOAT_MODE_P (GET_MODE (X)))					\
2825       TOPLEVEL_COSTS_N_INSNS (ix86_cost->fchs);				\
2826     /* fall through */							\
2827 									\
2828   case NOT:								\
2829     if (!TARGET_64BIT && GET_MODE (X) == DImode)			\
2830       TOPLEVEL_COSTS_N_INSNS (ix86_cost->add * 2);			\
2831     TOPLEVEL_COSTS_N_INSNS (ix86_cost->add);				\
2832 									\
2833   case FLOAT_EXTEND:							\
2834     if (!TARGET_SSE_MATH						\
2835 	|| !VALID_SSE_REG_MODE (GET_MODE (X)))				\
2836       TOPLEVEL_COSTS_N_INSNS (0);					\
2837     break;								\
2838 									\
2839   case ABS:								\
2840     if (FLOAT_MODE_P (GET_MODE (X)))					\
2841       TOPLEVEL_COSTS_N_INSNS (ix86_cost->fabs);				\
2842     break;								\
2843 									\
2844   case SQRT:								\
2845     if (FLOAT_MODE_P (GET_MODE (X)))					\
2846       TOPLEVEL_COSTS_N_INSNS (ix86_cost->fsqrt);			\
2847     break;								\
2848 									\
2849   egress_rtx_costs:							\
2850     break;
2851 
2852 
2853 /* An expression giving the cost of an addressing mode that contains
2854    ADDRESS.  If not defined, the cost is computed from the ADDRESS
2855    expression and the `CONST_COSTS' values.
2856 
2857    For most CISC machines, the default cost is a good approximation
2858    of the true cost of the addressing mode.  However, on RISC
2859    machines, all instructions normally have the same length and
2860    execution time.  Hence all addresses will have equal costs.
2861 
2862    In cases where more than one form of an address is known, the form
2863    with the lowest cost will be used.  If multiple forms have the
2864    same, lowest, cost, the one that is the most complex will be used.
2865 
2866    For example, suppose an address that is equal to the sum of a
2867    register and a constant is used twice in the same basic block.
2868    When this macro is not defined, the address will be computed in a
2869    register and memory references will be indirect through that
2870    register.  On machines where the cost of the addressing mode
2871    containing the sum is no higher than that of a simple indirect
2872    reference, this will produce an additional instruction and
2873    possibly require an additional register.  Proper specification of
2874    this macro eliminates this overhead for such machines.
2875 
2876    Similar use of this macro is made in strength reduction of loops.
2877 
2878    ADDRESS need not be valid as an address.  In such a case, the cost
2879    is not relevant and can be any value; invalid addresses need not be
2880    assigned a different cost.
2881 
2882    On machines where an address involving more than one register is as
2883    cheap as an address computation involving only one register,
2884    defining `ADDRESS_COST' to reflect this can cause two registers to
2885    be live over a region of code where only one would have been if
2886    `ADDRESS_COST' were not defined in that manner.  This effect should
2887    be considered in the definition of this macro.  Equivalent costs
2888    should probably only be given to addresses with different numbers
2889    of registers on machines with lots of registers.
2890 
2891    This macro will normally either not be defined or be defined as a
2892    constant.
2893 
2894    For i386, it is better to use a complex address than let gcc copy
2895    the address into a reg and make a new pseudo.  But not if the address
2896    requires to two regs - that would mean more pseudos with longer
2897    lifetimes.  */
2898 
2899 #define ADDRESS_COST(RTX) \
2900   ix86_address_cost (RTX)
2901 
2902 /* A C expression for the cost of moving data from a register in class FROM to
2903    one in class TO.  The classes are expressed using the enumeration values
2904    such as `GENERAL_REGS'.  A value of 2 is the default; other values are
2905    interpreted relative to that.
2906 
2907    It is not required that the cost always equal 2 when FROM is the same as TO;
2908    on some machines it is expensive to move between registers if they are not
2909    general registers.  */
2910 
2911 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2912    ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
2913 
2914 /* A C expression for the cost of moving data of mode M between a
2915    register and memory.  A value of 2 is the default; this cost is
2916    relative to those in `REGISTER_MOVE_COST'.
2917 
2918    If moving between registers and memory is more expensive than
2919    between two registers, you should define this macro to express the
2920    relative cost.  */
2921 
2922 #define MEMORY_MOVE_COST(MODE, CLASS, IN)	\
2923   ix86_memory_move_cost ((MODE), (CLASS), (IN))
2924 
2925 /* A C expression for the cost of a branch instruction.  A value of 1
2926    is the default; other values are interpreted relative to that.  */
2927 
2928 #define BRANCH_COST ix86_branch_cost
2929 
2930 /* Define this macro as a C expression which is nonzero if accessing
2931    less than a word of memory (i.e. a `char' or a `short') is no
2932    faster than accessing a word of memory, i.e., if such access
2933    require more than one instruction or if there is no difference in
2934    cost between byte and (aligned) word loads.
2935 
2936    When this macro is not defined, the compiler will access a field by
2937    finding the smallest containing object; when it is defined, a
2938    fullword load will be used if alignment permits.  Unless bytes
2939    accesses are faster than word accesses, using word accesses is
2940    preferable since it may eliminate subsequent memory access if
2941    subsequent accesses occur to other fields in the same word of the
2942    structure, but to different bytes.  */
2943 
2944 #define SLOW_BYTE_ACCESS 0
2945 
2946 /* Nonzero if access to memory by shorts is slow and undesirable.  */
2947 #define SLOW_SHORT_ACCESS 0
2948 
2949 /* Define this macro to be the value 1 if unaligned accesses have a
2950    cost many times greater than aligned accesses, for example if they
2951    are emulated in a trap handler.
2952 
2953    When this macro is nonzero, the compiler will act as if
2954    `STRICT_ALIGNMENT' were nonzero when generating code for block
2955    moves.  This can cause significantly more instructions to be
2956    produced.  Therefore, do not set this macro nonzero if unaligned
2957    accesses only add a cycle or two to the time for a memory access.
2958 
2959    If the value of this macro is always zero, it need not be defined.  */
2960 
2961 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
2962 
2963 /* Define this macro to inhibit strength reduction of memory
2964    addresses.  (On some machines, such strength reduction seems to do
2965    harm rather than good.)  */
2966 
2967 /* #define DONT_REDUCE_ADDR */
2968 
2969 /* Define this macro if it is as good or better to call a constant
2970    function address than to call an address kept in a register.
2971 
2972    Desirable on the 386 because a CALL with a constant address is
2973    faster than one with a register address.  */
2974 
2975 #define NO_FUNCTION_CSE
2976 
2977 /* Define this macro if it is as good or better for a function to call
2978    itself with an explicit address than to call an address kept in a
2979    register.  */
2980 
2981 #define NO_RECURSIVE_FUNCTION_CSE
2982 
2983 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2984    return the mode to be used for the comparison.
2985 
2986    For floating-point equality comparisons, CCFPEQmode should be used.
2987    VOIDmode should be used in all other cases.
2988 
2989    For integer comparisons against zero, reduce to CCNOmode or CCZmode if
2990    possible, to allow for more combinations.  */
2991 
2992 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
2993 
2994 /* Return nonzero if MODE implies a floating point inequality can be
2995    reversed.  */
2996 
2997 #define REVERSIBLE_CC_MODE(MODE) 1
2998 
2999 /* A C expression whose value is reversed condition code of the CODE for
3000    comparison done in CC_MODE mode.  */
3001 #define REVERSE_CONDITION(CODE, MODE) \
3002   ((MODE) != CCFPmode && (MODE) != CCFPUmode ? reverse_condition (CODE) \
3003    : reverse_condition_maybe_unordered (CODE))
3004 
3005 
3006 /* Control the assembler format that we output, to the extent
3007    this does not vary between assemblers.  */
3008 
3009 /* How to refer to registers in assembler output.
3010    This sequence is indexed by compiler's hard-register-number (see above).  */
3011 
3012 /* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
3013    For non floating point regs, the following are the HImode names.
3014 
3015    For float regs, the stack top is sometimes referred to as "%st(0)"
3016    instead of just "%st".  PRINT_REG handles this with the "y" code.  */
3017 
3018 #undef  HI_REGISTER_NAMES
3019 #define HI_REGISTER_NAMES						\
3020 {"ax","dx","cx","bx","si","di","bp","sp",				\
3021  "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","",	\
3022  "flags","fpsr", "dirflag", "frame",					\
3023  "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7",		\
3024  "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7"	,		\
3025  "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",			\
3026  "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
3027 
3028 #define REGISTER_NAMES HI_REGISTER_NAMES
3029 
3030 /* Table of additional register names to use in user input.  */
3031 
3032 #define ADDITIONAL_REGISTER_NAMES \
3033 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 },	\
3034   { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 },	\
3035   { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 },	\
3036   { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 },	\
3037   { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 },		\
3038   { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 },		\
3039   { "mm0", 8},  { "mm1", 9},  { "mm2", 10}, { "mm3", 11},	\
3040   { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} }
3041 
3042 /* Note we are omitting these since currently I don't know how
3043 to get gcc to use these, since they want the same but different
3044 number as al, and ax.
3045 */
3046 
3047 #define QI_REGISTER_NAMES \
3048 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
3049 
3050 /* These parallel the array above, and can be used to access bits 8:15
3051    of regs 0 through 3.  */
3052 
3053 #define QI_HIGH_REGISTER_NAMES \
3054 {"ah", "dh", "ch", "bh", }
3055 
3056 /* How to renumber registers for dbx and gdb.  */
3057 
3058 #define DBX_REGISTER_NUMBER(N) \
3059   (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
3060 
3061 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
3062 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
3063 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
3064 
3065 /* Before the prologue, RA is at 0(%esp).  */
3066 #define INCOMING_RETURN_ADDR_RTX \
3067   gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
3068 
3069 /* After the prologue, RA is at -4(AP) in the current frame.  */
3070 #define RETURN_ADDR_RTX(COUNT, FRAME)					   \
3071   ((COUNT) == 0								   \
3072    ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
3073    : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
3074 
3075 /* PC is dbx register 8; let's use that column for RA.  */
3076 #define DWARF_FRAME_RETURN_COLUMN 	(TARGET_64BIT ? 16 : 8)
3077 
3078 /* Before the prologue, the top of the frame is at 4(%esp).  */
3079 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
3080 
3081 /* Describe how we implement __builtin_eh_return.  */
3082 #define EH_RETURN_DATA_REGNO(N)	((N) < 2 ? (N) : INVALID_REGNUM)
3083 #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, 2)
3084 
3085 
3086 /* Select a format to encode pointers in exception handling data.  CODE
3087    is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
3088    true if the symbol may be affected by dynamic relocations.
3089 
3090    ??? All x86 object file formats are capable of representing this.
3091    After all, the relocation needed is the same as for the call insn.
3092    Whether or not a particular assembler allows us to enter such, I
3093    guess we'll have to see.  */
3094 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)       		\
3095   (flag_pic								\
3096     ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
3097    : DW_EH_PE_absptr)
3098 
3099 /* Store in OUTPUT a string (made with alloca) containing
3100    an assembler-name for a local static variable named NAME.
3101    LABELNO is an integer which is different for each call.  */
3102 
3103 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO)	\
3104 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10),	\
3105   sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
3106 
3107 /* This is how to output an insn to push a register on the stack.
3108    It need not be very fast code.  */
3109 
3110 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO)  \
3111 do {									\
3112   if (TARGET_64BIT)							\
3113     asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n",				\
3114 		 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0));	\
3115   else									\
3116     asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]);	\
3117 } while (0)
3118 
3119 /* This is how to output an insn to pop a register from the stack.
3120    It need not be very fast code.  */
3121 
3122 #define ASM_OUTPUT_REG_POP(FILE, REGNO)  \
3123 do {									\
3124   if (TARGET_64BIT)							\
3125     asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n",				\
3126 		 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0));	\
3127   else									\
3128     asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]);	\
3129 } while (0)
3130 
3131 /* This is how to output an element of a case-vector that is absolute.  */
3132 
3133 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
3134   ix86_output_addr_vec_elt ((FILE), (VALUE))
3135 
3136 /* This is how to output an element of a case-vector that is relative.  */
3137 
3138 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
3139   ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
3140 
3141 /* Under some conditions we need jump tables in the text section, because
3142    the assembler cannot handle label differences between sections.  */
3143 
3144 #define JUMP_TABLES_IN_TEXT_SECTION \
3145   (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
3146 
3147 /* A C statement that outputs an address constant appropriate to
3148    for DWARF debugging.  */
3149 
3150 #define ASM_OUTPUT_DWARF_ADDR_CONST(FILE, X) \
3151   i386_dwarf_output_addr_const ((FILE), (X))
3152 
3153 /* Either simplify a location expression, or return the original.  */
3154 
3155 #define ASM_SIMPLIFY_DWARF_ADDR(X) \
3156   i386_simplify_dwarf_addr (X)
3157 
3158 /* Emit a dtp-relative reference to a TLS variable.  */
3159 
3160 #ifdef HAVE_AS_TLS
3161 #define ASM_OUTPUT_DWARF_DTPREL(FILE, SIZE, X) \
3162   i386_output_dwarf_dtprel (FILE, SIZE, X)
3163 #endif
3164 
3165 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
3166    and switch back.  For x86 we do this only to save a few bytes that
3167    would otherwise be unused in the text section.  */
3168 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)	\
3169    asm (SECTION_OP "\n\t"				\
3170 	"call " USER_LABEL_PREFIX #FUNC "\n"		\
3171 	TEXT_SECTION_ASM_OP);
3172 
3173 /* Print operand X (an rtx) in assembler syntax to file FILE.
3174    CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
3175    Effect of various CODE letters is described in i386.c near
3176    print_operand function.  */
3177 
3178 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
3179   ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
3180 
3181 /* Print the name of a register based on its machine mode and number.
3182    If CODE is 'w', pretend the mode is HImode.
3183    If CODE is 'b', pretend the mode is QImode.
3184    If CODE is 'k', pretend the mode is SImode.
3185    If CODE is 'q', pretend the mode is DImode.
3186    If CODE is 'h', pretend the reg is the `high' byte register.
3187    If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op.  */
3188 
3189 #define PRINT_REG(X, CODE, FILE)  \
3190   print_reg ((X), (CODE), (FILE))
3191 
3192 #define PRINT_OPERAND(FILE, X, CODE)  \
3193   print_operand ((FILE), (X), (CODE))
3194 
3195 #define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
3196   print_operand_address ((FILE), (ADDR))
3197 
3198 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL)	\
3199 do {						\
3200   if (! output_addr_const_extra (FILE, (X)))	\
3201     goto FAIL;					\
3202 } while (0);
3203 
3204 /* Print the name of a register for based on its machine mode and number.
3205    This macro is used to print debugging output.
3206    This macro is different from PRINT_REG in that it may be used in
3207    programs that are not linked with aux-output.o.  */
3208 
3209 #define DEBUG_PRINT_REG(X, CODE, FILE)			\
3210   do { static const char * const hi_name[] = HI_REGISTER_NAMES;	\
3211        static const char * const qi_name[] = QI_REGISTER_NAMES;	\
3212        fprintf ((FILE), "%d ", REGNO (X));		\
3213        if (REGNO (X) == FLAGS_REG)			\
3214 	 { fputs ("flags", (FILE)); break; }		\
3215        if (REGNO (X) == DIRFLAG_REG)			\
3216 	 { fputs ("dirflag", (FILE)); break; }		\
3217        if (REGNO (X) == FPSR_REG)			\
3218 	 { fputs ("fpsr", (FILE)); break; }		\
3219        if (REGNO (X) == ARG_POINTER_REGNUM)		\
3220 	 { fputs ("argp", (FILE)); break; }		\
3221        if (REGNO (X) == FRAME_POINTER_REGNUM)		\
3222 	 { fputs ("frame", (FILE)); break; }		\
3223        if (STACK_TOP_P (X))				\
3224 	 { fputs ("st(0)", (FILE)); break; }		\
3225        if (FP_REG_P (X))				\
3226 	 { fputs (hi_name[REGNO(X)], (FILE)); break; }	\
3227        if (REX_INT_REG_P (X))				\
3228 	 {						\
3229 	   switch (GET_MODE_SIZE (GET_MODE (X)))	\
3230 	     {						\
3231 	     default:					\
3232 	     case 8:					\
3233 	       fprintf ((FILE), "r%i", REGNO (X)	\
3234 			- FIRST_REX_INT_REG + 8);	\
3235 	       break;					\
3236 	     case 4:					\
3237 	       fprintf ((FILE), "r%id", REGNO (X)	\
3238 			- FIRST_REX_INT_REG + 8);	\
3239 	       break;					\
3240 	     case 2:					\
3241 	       fprintf ((FILE), "r%iw", REGNO (X)	\
3242 			- FIRST_REX_INT_REG + 8);	\
3243 	       break;					\
3244 	     case 1:					\
3245 	       fprintf ((FILE), "r%ib", REGNO (X)	\
3246 			- FIRST_REX_INT_REG + 8);	\
3247 	       break;					\
3248 	     }						\
3249 	   break;					\
3250 	 }						\
3251        switch (GET_MODE_SIZE (GET_MODE (X)))		\
3252 	 {						\
3253 	 case 8:					\
3254 	   fputs ("r", (FILE));				\
3255 	   fputs (hi_name[REGNO (X)], (FILE));		\
3256 	   break;					\
3257 	 default:					\
3258 	   fputs ("e", (FILE));				\
3259 	 case 2:					\
3260 	   fputs (hi_name[REGNO (X)], (FILE));		\
3261 	   break;					\
3262 	 case 1:					\
3263 	   fputs (qi_name[REGNO (X)], (FILE));		\
3264 	   break;					\
3265 	 }						\
3266      } while (0)
3267 
3268 /* a letter which is not needed by the normal asm syntax, which
3269    we can use for operand syntax in the extended asm */
3270 
3271 #define ASM_OPERAND_LETTER '#'
3272 #define RET return ""
3273 #define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
3274 
3275 /* Define the codes that are matched by predicates in i386.c.  */
3276 
3277 #define PREDICATE_CODES							\
3278   {"x86_64_immediate_operand", {CONST_INT, SUBREG, REG,			\
3279 				SYMBOL_REF, LABEL_REF, CONST}},		\
3280   {"x86_64_nonmemory_operand", {CONST_INT, SUBREG, REG,			\
3281 				SYMBOL_REF, LABEL_REF, CONST}},		\
3282   {"x86_64_movabs_operand", {CONST_INT, SUBREG, REG,			\
3283 				SYMBOL_REF, LABEL_REF, CONST}},		\
3284   {"x86_64_szext_nonmemory_operand", {CONST_INT, SUBREG, REG,		\
3285 				     SYMBOL_REF, LABEL_REF, CONST}},	\
3286   {"x86_64_general_operand", {CONST_INT, SUBREG, REG, MEM,		\
3287 			      SYMBOL_REF, LABEL_REF, CONST}},		\
3288   {"x86_64_szext_general_operand", {CONST_INT, SUBREG, REG, MEM,	\
3289 				   SYMBOL_REF, LABEL_REF, CONST}},	\
3290   {"x86_64_zext_immediate_operand", {CONST_INT, CONST_DOUBLE, CONST,	\
3291 				       SYMBOL_REF, LABEL_REF}},		\
3292   {"shiftdi_operand", {SUBREG, REG, MEM}},				\
3293   {"const_int_1_operand", {CONST_INT}},					\
3294   {"const_int_1_31_operand", {CONST_INT}},				\
3295   {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}},			\
3296   {"aligned_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,	\
3297 		       LABEL_REF, SUBREG, REG, MEM}},			\
3298   {"pic_symbolic_operand", {CONST}},					\
3299   {"call_insn_operand", {REG, SUBREG, MEM, SYMBOL_REF}},		\
3300   {"constant_call_address_operand", {SYMBOL_REF, CONST}},		\
3301   {"const0_operand", {CONST_INT, CONST_DOUBLE}},			\
3302   {"const1_operand", {CONST_INT}},					\
3303   {"const248_operand", {CONST_INT}},					\
3304   {"incdec_operand", {CONST_INT}},					\
3305   {"mmx_reg_operand", {REG}},						\
3306   {"reg_no_sp_operand", {SUBREG, REG}},					\
3307   {"general_no_elim_operand", {CONST_INT, CONST_DOUBLE, CONST,		\
3308 			SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM}},	\
3309   {"nonmemory_no_elim_operand", {CONST_INT, REG, SUBREG}},		\
3310   {"index_register_operand", {SUBREG, REG}},				\
3311   {"flags_reg_operand", {REG}},						\
3312   {"q_regs_operand", {SUBREG, REG}},					\
3313   {"non_q_regs_operand", {SUBREG, REG}},				\
3314   {"fcmov_comparison_operator", {EQ, NE, LTU, GTU, LEU, GEU, UNORDERED, \
3315 				 ORDERED, LT, UNLT, GT, UNGT, LE, UNLE,	\
3316 				 GE, UNGE, LTGT, UNEQ}},		\
3317   {"sse_comparison_operator", {EQ, LT, LE, UNORDERED, NE, UNGE, UNGT,	\
3318 			       ORDERED, UNEQ, UNLT, UNLE, LTGT, GE, GT	\
3319 			       }},					\
3320   {"ix86_comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU,	\
3321 			       GTU, UNORDERED, ORDERED, UNLE, UNLT,	\
3322 			       UNGE, UNGT, LTGT, UNEQ }},		\
3323   {"cmp_fp_expander_operand", {CONST_DOUBLE, SUBREG, REG, MEM}},	\
3324   {"ext_register_operand", {SUBREG, REG}},				\
3325   {"binary_fp_operator", {PLUS, MINUS, MULT, DIV}},			\
3326   {"mult_operator", {MULT}},						\
3327   {"div_operator", {DIV}},						\
3328   {"arith_or_logical_operator", {PLUS, MULT, AND, IOR, XOR, SMIN, SMAX, \
3329 				 UMIN, UMAX, COMPARE, MINUS, DIV, MOD,	\
3330 				 UDIV, UMOD, ASHIFT, ROTATE, ASHIFTRT,	\
3331 				 LSHIFTRT, ROTATERT}},			\
3332   {"promotable_binary_operator", {PLUS, MULT, AND, IOR, XOR, ASHIFT}},	\
3333   {"memory_displacement_operand", {MEM}},				\
3334   {"cmpsi_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,	\
3335 		     LABEL_REF, SUBREG, REG, MEM, AND}},		\
3336   {"long_memory_operand", {MEM}},					\
3337   {"tls_symbolic_operand", {SYMBOL_REF}},				\
3338   {"global_dynamic_symbolic_operand", {SYMBOL_REF}},			\
3339   {"local_dynamic_symbolic_operand", {SYMBOL_REF}},			\
3340   {"initial_exec_symbolic_operand", {SYMBOL_REF}},			\
3341   {"local_exec_symbolic_operand", {SYMBOL_REF}},			\
3342   {"any_fp_register_operand", {REG}},					\
3343   {"register_and_not_any_fp_reg_operand", {REG}},			\
3344   {"fp_register_operand", {REG}},					\
3345   {"register_and_not_fp_reg_operand", {REG}},				\
3346   {"vector_move_operand", {CONST_VECTOR, SUBREG, REG, MEM}},		\
3347   {"compare_operator", {COMPARE}},
3348 
3349 /* A list of predicates that do special things with modes, and so
3350    should not elicit warnings for VOIDmode match_operand.  */
3351 
3352 #define SPECIAL_MODE_PREDICATES \
3353   "ext_register_operand",
3354 
3355 /* Which processor to schedule for. The cpu attribute defines a list that
3356    mirrors this list, so changes to i386.md must be made at the same time.  */
3357 
3358 enum processor_type
3359 {
3360   PROCESSOR_I386,			/* 80386 */
3361   PROCESSOR_I486,			/* 80486DX, 80486SX, 80486DX[24] */
3362   PROCESSOR_PENTIUM,
3363   PROCESSOR_PENTIUMPRO,
3364   PROCESSOR_K6,
3365   PROCESSOR_ATHLON,
3366   PROCESSOR_PENTIUM4,
3367   PROCESSOR_max
3368 };
3369 
3370 extern enum processor_type ix86_cpu;
3371 extern const char *ix86_cpu_string;
3372 
3373 extern enum processor_type ix86_arch;
3374 extern const char *ix86_arch_string;
3375 
3376 enum fpmath_unit
3377 {
3378   FPMATH_387 = 1,
3379   FPMATH_SSE = 2
3380 };
3381 
3382 extern enum fpmath_unit ix86_fpmath;
3383 extern const char *ix86_fpmath_string;
3384 
3385 enum tls_dialect
3386 {
3387   TLS_DIALECT_GNU,
3388   TLS_DIALECT_SUN
3389 };
3390 
3391 extern enum tls_dialect ix86_tls_dialect;
3392 extern const char *ix86_tls_dialect_string;
3393 
3394 enum cmodel {
3395   CM_32,	/* The traditional 32-bit ABI.  */
3396   CM_SMALL,	/* Assumes all code and data fits in the low 31 bits.  */
3397   CM_KERNEL,	/* Assumes all code and data fits in the high 31 bits.  */
3398   CM_MEDIUM,	/* Assumes code fits in the low 31 bits; data unlimited.  */
3399   CM_LARGE,	/* No assumptions.  */
3400   CM_SMALL_PIC	/* Assumes code+data+got/plt fits in a 31 bit region.  */
3401 };
3402 
3403 extern enum cmodel ix86_cmodel;
3404 extern const char *ix86_cmodel_string;
3405 
3406 /* Size of the RED_ZONE area.  */
3407 #define RED_ZONE_SIZE 128
3408 /* Reserved area of the red zone for temporaries.  */
3409 #define RED_ZONE_RESERVE 8
3410 
3411 enum asm_dialect {
3412   ASM_ATT,
3413   ASM_INTEL
3414 };
3415 
3416 extern const char *ix86_asm_string;
3417 extern enum asm_dialect ix86_asm_dialect;
3418 
3419 extern int ix86_regparm;
3420 extern const char *ix86_regparm_string;
3421 
3422 extern int ix86_preferred_stack_boundary;
3423 extern const char *ix86_preferred_stack_boundary_string;
3424 
3425 extern int ix86_branch_cost;
3426 extern const char *ix86_branch_cost_string;
3427 
3428 extern const char *ix86_debug_arg_string;
3429 extern const char *ix86_debug_addr_string;
3430 
3431 /* Obsoleted by -f options.  Remove before 3.2 ships.  */
3432 extern const char *ix86_align_loops_string;
3433 extern const char *ix86_align_jumps_string;
3434 extern const char *ix86_align_funcs_string;
3435 
3436 /* Smallest class containing REGNO.  */
3437 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
3438 
3439 extern rtx ix86_compare_op0;	/* operand 0 for comparisons */
3440 extern rtx ix86_compare_op1;	/* operand 1 for comparisons */
3441 
3442 /* To properly truncate FP values into integers, we need to set i387 control
3443    word.  We can't emit proper mode switching code before reload, as spills
3444    generated by reload may truncate values incorrectly, but we still can avoid
3445    redundant computation of new control word by the mode switching pass.
3446    The fldcw instructions are still emitted redundantly, but this is probably
3447    not going to be noticeable problem, as most CPUs do have fast path for
3448    the sequence.
3449 
3450    The machinery is to emit simple truncation instructions and split them
3451    before reload to instructions having USEs of two memory locations that
3452    are filled by this code to old and new control word.
3453 
3454    Post-reload pass may be later used to eliminate the redundant fildcw if
3455    needed.  */
3456 
3457 enum fp_cw_mode {FP_CW_STORED, FP_CW_UNINITIALIZED, FP_CW_ANY};
3458 
3459 /* Define this macro if the port needs extra instructions inserted
3460    for mode switching in an optimizing compilation.  */
3461 
3462 #define OPTIMIZE_MODE_SWITCHING(ENTITY) 1
3463 
3464 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
3465    initializer for an array of integers.  Each initializer element N
3466    refers to an entity that needs mode switching, and specifies the
3467    number of different modes that might need to be set for this
3468    entity.  The position of the initializer in the initializer -
3469    starting counting at zero - determines the integer that is used to
3470    refer to the mode-switched entity in question.  */
3471 
3472 #define NUM_MODES_FOR_MODE_SWITCHING { FP_CW_ANY }
3473 
3474 /* ENTITY is an integer specifying a mode-switched entity.  If
3475    `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
3476    return an integer value not larger than the corresponding element
3477    in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
3478    must be switched into prior to the execution of INSN.  */
3479 
3480 #define MODE_NEEDED(ENTITY, I)						\
3481   (GET_CODE (I) == CALL_INSN						\
3482    || (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 	\
3483 				|| GET_CODE (PATTERN (I)) == ASM_INPUT))\
3484    ? FP_CW_UNINITIALIZED						\
3485    : recog_memoized (I) < 0 || get_attr_type (I) != TYPE_FISTP		\
3486    ? FP_CW_ANY								\
3487    : FP_CW_STORED)
3488 
3489 /* This macro specifies the order in which modes for ENTITY are
3490    processed.  0 is the highest priority.  */
3491 
3492 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
3493 
3494 /* Generate one or more insns to set ENTITY to MODE.  HARD_REG_LIVE
3495    is the set of hard registers live at the point where the insn(s)
3496    are to be inserted.  */
3497 
3498 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) 			\
3499   ((MODE) == FP_CW_STORED						\
3500    ? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1),	\
3501 				  assign_386_stack_local (HImode, 2)), 0\
3502    : 0)
3503 
3504 /* Avoid renaming of stack registers, as doing so in combination with
3505    scheduling just increases amount of live registers at time and in
3506    the turn amount of fxch instructions needed.
3507 
3508    ??? Maybe Pentium chips benefits from renaming, someone can try...  */
3509 
3510 #define HARD_REGNO_RENAME_OK(SRC, TARGET)  \
3511    ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
3512 
3513 
3514 #define MACHINE_DEPENDENT_REORG(X) x86_machine_dependent_reorg(X)
3515 
3516 #define DLL_IMPORT_EXPORT_PREFIX '@'
3517 
3518 /*
3519 Local variables:
3520 version-control: t
3521 End:
3522 */
3523