1 //===----- CGOpenMPRuntime.cpp - Interface to OpenMP Runtimes -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides a class for OpenMP runtime code generation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGOpenMPRuntime.h"
14 #include "CGCXXABI.h"
15 #include "CGCleanup.h"
16 #include "CGRecordLayout.h"
17 #include "CodeGenFunction.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/APValue.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/OpenMPClause.h"
23 #include "clang/AST/StmtOpenMP.h"
24 #include "clang/AST/StmtVisitor.h"
25 #include "clang/Basic/BitmaskEnum.h"
26 #include "clang/Basic/FileManager.h"
27 #include "clang/Basic/OpenMPKinds.h"
28 #include "clang/Basic/SourceManager.h"
29 #include "clang/CodeGen/ConstantInitBuilder.h"
30 #include "llvm/ADT/ArrayRef.h"
31 #include "llvm/ADT/SetOperations.h"
32 #include "llvm/ADT/SmallBitVector.h"
33 #include "llvm/ADT/StringExtras.h"
34 #include "llvm/Bitcode/BitcodeReader.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/GlobalValue.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/Support/AtomicOrdering.h"
41 #include "llvm/Support/Format.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <cassert>
44 #include <numeric>
45 #include <optional>
46 
47 using namespace clang;
48 using namespace CodeGen;
49 using namespace llvm::omp;
50 
51 namespace {
52 /// Base class for handling code generation inside OpenMP regions.
53 class CGOpenMPRegionInfo : public CodeGenFunction::CGCapturedStmtInfo {
54 public:
55   /// Kinds of OpenMP regions used in codegen.
56   enum CGOpenMPRegionKind {
57     /// Region with outlined function for standalone 'parallel'
58     /// directive.
59     ParallelOutlinedRegion,
60     /// Region with outlined function for standalone 'task' directive.
61     TaskOutlinedRegion,
62     /// Region for constructs that do not require function outlining,
63     /// like 'for', 'sections', 'atomic' etc. directives.
64     InlinedRegion,
65     /// Region with outlined function for standalone 'target' directive.
66     TargetRegion,
67   };
68 
CGOpenMPRegionInfo(const CapturedStmt & CS,const CGOpenMPRegionKind RegionKind,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel)69   CGOpenMPRegionInfo(const CapturedStmt &CS,
70                      const CGOpenMPRegionKind RegionKind,
71                      const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
72                      bool HasCancel)
73       : CGCapturedStmtInfo(CS, CR_OpenMP), RegionKind(RegionKind),
74         CodeGen(CodeGen), Kind(Kind), HasCancel(HasCancel) {}
75 
CGOpenMPRegionInfo(const CGOpenMPRegionKind RegionKind,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel)76   CGOpenMPRegionInfo(const CGOpenMPRegionKind RegionKind,
77                      const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
78                      bool HasCancel)
79       : CGCapturedStmtInfo(CR_OpenMP), RegionKind(RegionKind), CodeGen(CodeGen),
80         Kind(Kind), HasCancel(HasCancel) {}
81 
82   /// Get a variable or parameter for storing global thread id
83   /// inside OpenMP construct.
84   virtual const VarDecl *getThreadIDVariable() const = 0;
85 
86   /// Emit the captured statement body.
87   void EmitBody(CodeGenFunction &CGF, const Stmt *S) override;
88 
89   /// Get an LValue for the current ThreadID variable.
90   /// \return LValue for thread id variable. This LValue always has type int32*.
91   virtual LValue getThreadIDVariableLValue(CodeGenFunction &CGF);
92 
emitUntiedSwitch(CodeGenFunction &)93   virtual void emitUntiedSwitch(CodeGenFunction & /*CGF*/) {}
94 
getRegionKind() const95   CGOpenMPRegionKind getRegionKind() const { return RegionKind; }
96 
getDirectiveKind() const97   OpenMPDirectiveKind getDirectiveKind() const { return Kind; }
98 
hasCancel() const99   bool hasCancel() const { return HasCancel; }
100 
classof(const CGCapturedStmtInfo * Info)101   static bool classof(const CGCapturedStmtInfo *Info) {
102     return Info->getKind() == CR_OpenMP;
103   }
104 
105   ~CGOpenMPRegionInfo() override = default;
106 
107 protected:
108   CGOpenMPRegionKind RegionKind;
109   RegionCodeGenTy CodeGen;
110   OpenMPDirectiveKind Kind;
111   bool HasCancel;
112 };
113 
114 /// API for captured statement code generation in OpenMP constructs.
115 class CGOpenMPOutlinedRegionInfo final : public CGOpenMPRegionInfo {
116 public:
CGOpenMPOutlinedRegionInfo(const CapturedStmt & CS,const VarDecl * ThreadIDVar,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel,StringRef HelperName)117   CGOpenMPOutlinedRegionInfo(const CapturedStmt &CS, const VarDecl *ThreadIDVar,
118                              const RegionCodeGenTy &CodeGen,
119                              OpenMPDirectiveKind Kind, bool HasCancel,
120                              StringRef HelperName)
121       : CGOpenMPRegionInfo(CS, ParallelOutlinedRegion, CodeGen, Kind,
122                            HasCancel),
123         ThreadIDVar(ThreadIDVar), HelperName(HelperName) {
124     assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
125   }
126 
127   /// Get a variable or parameter for storing global thread id
128   /// inside OpenMP construct.
getThreadIDVariable() const129   const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
130 
131   /// Get the name of the capture helper.
getHelperName() const132   StringRef getHelperName() const override { return HelperName; }
133 
classof(const CGCapturedStmtInfo * Info)134   static bool classof(const CGCapturedStmtInfo *Info) {
135     return CGOpenMPRegionInfo::classof(Info) &&
136            cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
137                ParallelOutlinedRegion;
138   }
139 
140 private:
141   /// A variable or parameter storing global thread id for OpenMP
142   /// constructs.
143   const VarDecl *ThreadIDVar;
144   StringRef HelperName;
145 };
146 
147 /// API for captured statement code generation in OpenMP constructs.
148 class CGOpenMPTaskOutlinedRegionInfo final : public CGOpenMPRegionInfo {
149 public:
150   class UntiedTaskActionTy final : public PrePostActionTy {
151     bool Untied;
152     const VarDecl *PartIDVar;
153     const RegionCodeGenTy UntiedCodeGen;
154     llvm::SwitchInst *UntiedSwitch = nullptr;
155 
156   public:
UntiedTaskActionTy(bool Tied,const VarDecl * PartIDVar,const RegionCodeGenTy & UntiedCodeGen)157     UntiedTaskActionTy(bool Tied, const VarDecl *PartIDVar,
158                        const RegionCodeGenTy &UntiedCodeGen)
159         : Untied(!Tied), PartIDVar(PartIDVar), UntiedCodeGen(UntiedCodeGen) {}
Enter(CodeGenFunction & CGF)160     void Enter(CodeGenFunction &CGF) override {
161       if (Untied) {
162         // Emit task switching point.
163         LValue PartIdLVal = CGF.EmitLoadOfPointerLValue(
164             CGF.GetAddrOfLocalVar(PartIDVar),
165             PartIDVar->getType()->castAs<PointerType>());
166         llvm::Value *Res =
167             CGF.EmitLoadOfScalar(PartIdLVal, PartIDVar->getLocation());
168         llvm::BasicBlock *DoneBB = CGF.createBasicBlock(".untied.done.");
169         UntiedSwitch = CGF.Builder.CreateSwitch(Res, DoneBB);
170         CGF.EmitBlock(DoneBB);
171         CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
172         CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp."));
173         UntiedSwitch->addCase(CGF.Builder.getInt32(0),
174                               CGF.Builder.GetInsertBlock());
175         emitUntiedSwitch(CGF);
176       }
177     }
emitUntiedSwitch(CodeGenFunction & CGF) const178     void emitUntiedSwitch(CodeGenFunction &CGF) const {
179       if (Untied) {
180         LValue PartIdLVal = CGF.EmitLoadOfPointerLValue(
181             CGF.GetAddrOfLocalVar(PartIDVar),
182             PartIDVar->getType()->castAs<PointerType>());
183         CGF.EmitStoreOfScalar(CGF.Builder.getInt32(UntiedSwitch->getNumCases()),
184                               PartIdLVal);
185         UntiedCodeGen(CGF);
186         CodeGenFunction::JumpDest CurPoint =
187             CGF.getJumpDestInCurrentScope(".untied.next.");
188         CGF.EmitBranch(CGF.ReturnBlock.getBlock());
189         CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp."));
190         UntiedSwitch->addCase(CGF.Builder.getInt32(UntiedSwitch->getNumCases()),
191                               CGF.Builder.GetInsertBlock());
192         CGF.EmitBranchThroughCleanup(CurPoint);
193         CGF.EmitBlock(CurPoint.getBlock());
194       }
195     }
getNumberOfParts() const196     unsigned getNumberOfParts() const { return UntiedSwitch->getNumCases(); }
197   };
CGOpenMPTaskOutlinedRegionInfo(const CapturedStmt & CS,const VarDecl * ThreadIDVar,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel,const UntiedTaskActionTy & Action)198   CGOpenMPTaskOutlinedRegionInfo(const CapturedStmt &CS,
199                                  const VarDecl *ThreadIDVar,
200                                  const RegionCodeGenTy &CodeGen,
201                                  OpenMPDirectiveKind Kind, bool HasCancel,
202                                  const UntiedTaskActionTy &Action)
203       : CGOpenMPRegionInfo(CS, TaskOutlinedRegion, CodeGen, Kind, HasCancel),
204         ThreadIDVar(ThreadIDVar), Action(Action) {
205     assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
206   }
207 
208   /// Get a variable or parameter for storing global thread id
209   /// inside OpenMP construct.
getThreadIDVariable() const210   const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
211 
212   /// Get an LValue for the current ThreadID variable.
213   LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override;
214 
215   /// Get the name of the capture helper.
getHelperName() const216   StringRef getHelperName() const override { return ".omp_outlined."; }
217 
emitUntiedSwitch(CodeGenFunction & CGF)218   void emitUntiedSwitch(CodeGenFunction &CGF) override {
219     Action.emitUntiedSwitch(CGF);
220   }
221 
classof(const CGCapturedStmtInfo * Info)222   static bool classof(const CGCapturedStmtInfo *Info) {
223     return CGOpenMPRegionInfo::classof(Info) &&
224            cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
225                TaskOutlinedRegion;
226   }
227 
228 private:
229   /// A variable or parameter storing global thread id for OpenMP
230   /// constructs.
231   const VarDecl *ThreadIDVar;
232   /// Action for emitting code for untied tasks.
233   const UntiedTaskActionTy &Action;
234 };
235 
236 /// API for inlined captured statement code generation in OpenMP
237 /// constructs.
238 class CGOpenMPInlinedRegionInfo : public CGOpenMPRegionInfo {
239 public:
CGOpenMPInlinedRegionInfo(CodeGenFunction::CGCapturedStmtInfo * OldCSI,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel)240   CGOpenMPInlinedRegionInfo(CodeGenFunction::CGCapturedStmtInfo *OldCSI,
241                             const RegionCodeGenTy &CodeGen,
242                             OpenMPDirectiveKind Kind, bool HasCancel)
243       : CGOpenMPRegionInfo(InlinedRegion, CodeGen, Kind, HasCancel),
244         OldCSI(OldCSI),
245         OuterRegionInfo(dyn_cast_or_null<CGOpenMPRegionInfo>(OldCSI)) {}
246 
247   // Retrieve the value of the context parameter.
getContextValue() const248   llvm::Value *getContextValue() const override {
249     if (OuterRegionInfo)
250       return OuterRegionInfo->getContextValue();
251     llvm_unreachable("No context value for inlined OpenMP region");
252   }
253 
setContextValue(llvm::Value * V)254   void setContextValue(llvm::Value *V) override {
255     if (OuterRegionInfo) {
256       OuterRegionInfo->setContextValue(V);
257       return;
258     }
259     llvm_unreachable("No context value for inlined OpenMP region");
260   }
261 
262   /// Lookup the captured field decl for a variable.
lookup(const VarDecl * VD) const263   const FieldDecl *lookup(const VarDecl *VD) const override {
264     if (OuterRegionInfo)
265       return OuterRegionInfo->lookup(VD);
266     // If there is no outer outlined region,no need to lookup in a list of
267     // captured variables, we can use the original one.
268     return nullptr;
269   }
270 
getThisFieldDecl() const271   FieldDecl *getThisFieldDecl() const override {
272     if (OuterRegionInfo)
273       return OuterRegionInfo->getThisFieldDecl();
274     return nullptr;
275   }
276 
277   /// Get a variable or parameter for storing global thread id
278   /// inside OpenMP construct.
getThreadIDVariable() const279   const VarDecl *getThreadIDVariable() const override {
280     if (OuterRegionInfo)
281       return OuterRegionInfo->getThreadIDVariable();
282     return nullptr;
283   }
284 
285   /// Get an LValue for the current ThreadID variable.
getThreadIDVariableLValue(CodeGenFunction & CGF)286   LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override {
287     if (OuterRegionInfo)
288       return OuterRegionInfo->getThreadIDVariableLValue(CGF);
289     llvm_unreachable("No LValue for inlined OpenMP construct");
290   }
291 
292   /// Get the name of the capture helper.
getHelperName() const293   StringRef getHelperName() const override {
294     if (auto *OuterRegionInfo = getOldCSI())
295       return OuterRegionInfo->getHelperName();
296     llvm_unreachable("No helper name for inlined OpenMP construct");
297   }
298 
emitUntiedSwitch(CodeGenFunction & CGF)299   void emitUntiedSwitch(CodeGenFunction &CGF) override {
300     if (OuterRegionInfo)
301       OuterRegionInfo->emitUntiedSwitch(CGF);
302   }
303 
getOldCSI() const304   CodeGenFunction::CGCapturedStmtInfo *getOldCSI() const { return OldCSI; }
305 
classof(const CGCapturedStmtInfo * Info)306   static bool classof(const CGCapturedStmtInfo *Info) {
307     return CGOpenMPRegionInfo::classof(Info) &&
308            cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == InlinedRegion;
309   }
310 
311   ~CGOpenMPInlinedRegionInfo() override = default;
312 
313 private:
314   /// CodeGen info about outer OpenMP region.
315   CodeGenFunction::CGCapturedStmtInfo *OldCSI;
316   CGOpenMPRegionInfo *OuterRegionInfo;
317 };
318 
319 /// API for captured statement code generation in OpenMP target
320 /// constructs. For this captures, implicit parameters are used instead of the
321 /// captured fields. The name of the target region has to be unique in a given
322 /// application so it is provided by the client, because only the client has
323 /// the information to generate that.
324 class CGOpenMPTargetRegionInfo final : public CGOpenMPRegionInfo {
325 public:
CGOpenMPTargetRegionInfo(const CapturedStmt & CS,const RegionCodeGenTy & CodeGen,StringRef HelperName)326   CGOpenMPTargetRegionInfo(const CapturedStmt &CS,
327                            const RegionCodeGenTy &CodeGen, StringRef HelperName)
328       : CGOpenMPRegionInfo(CS, TargetRegion, CodeGen, OMPD_target,
329                            /*HasCancel=*/false),
330         HelperName(HelperName) {}
331 
332   /// This is unused for target regions because each starts executing
333   /// with a single thread.
getThreadIDVariable() const334   const VarDecl *getThreadIDVariable() const override { return nullptr; }
335 
336   /// Get the name of the capture helper.
getHelperName() const337   StringRef getHelperName() const override { return HelperName; }
338 
classof(const CGCapturedStmtInfo * Info)339   static bool classof(const CGCapturedStmtInfo *Info) {
340     return CGOpenMPRegionInfo::classof(Info) &&
341            cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == TargetRegion;
342   }
343 
344 private:
345   StringRef HelperName;
346 };
347 
EmptyCodeGen(CodeGenFunction &,PrePostActionTy &)348 static void EmptyCodeGen(CodeGenFunction &, PrePostActionTy &) {
349   llvm_unreachable("No codegen for expressions");
350 }
351 /// API for generation of expressions captured in a innermost OpenMP
352 /// region.
353 class CGOpenMPInnerExprInfo final : public CGOpenMPInlinedRegionInfo {
354 public:
CGOpenMPInnerExprInfo(CodeGenFunction & CGF,const CapturedStmt & CS)355   CGOpenMPInnerExprInfo(CodeGenFunction &CGF, const CapturedStmt &CS)
356       : CGOpenMPInlinedRegionInfo(CGF.CapturedStmtInfo, EmptyCodeGen,
357                                   OMPD_unknown,
358                                   /*HasCancel=*/false),
359         PrivScope(CGF) {
360     // Make sure the globals captured in the provided statement are local by
361     // using the privatization logic. We assume the same variable is not
362     // captured more than once.
363     for (const auto &C : CS.captures()) {
364       if (!C.capturesVariable() && !C.capturesVariableByCopy())
365         continue;
366 
367       const VarDecl *VD = C.getCapturedVar();
368       if (VD->isLocalVarDeclOrParm())
369         continue;
370 
371       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD),
372                       /*RefersToEnclosingVariableOrCapture=*/false,
373                       VD->getType().getNonReferenceType(), VK_LValue,
374                       C.getLocation());
375       PrivScope.addPrivate(VD, CGF.EmitLValue(&DRE).getAddress(CGF));
376     }
377     (void)PrivScope.Privatize();
378   }
379 
380   /// Lookup the captured field decl for a variable.
lookup(const VarDecl * VD) const381   const FieldDecl *lookup(const VarDecl *VD) const override {
382     if (const FieldDecl *FD = CGOpenMPInlinedRegionInfo::lookup(VD))
383       return FD;
384     return nullptr;
385   }
386 
387   /// Emit the captured statement body.
EmitBody(CodeGenFunction & CGF,const Stmt * S)388   void EmitBody(CodeGenFunction &CGF, const Stmt *S) override {
389     llvm_unreachable("No body for expressions");
390   }
391 
392   /// Get a variable or parameter for storing global thread id
393   /// inside OpenMP construct.
getThreadIDVariable() const394   const VarDecl *getThreadIDVariable() const override {
395     llvm_unreachable("No thread id for expressions");
396   }
397 
398   /// Get the name of the capture helper.
getHelperName() const399   StringRef getHelperName() const override {
400     llvm_unreachable("No helper name for expressions");
401   }
402 
classof(const CGCapturedStmtInfo * Info)403   static bool classof(const CGCapturedStmtInfo *Info) { return false; }
404 
405 private:
406   /// Private scope to capture global variables.
407   CodeGenFunction::OMPPrivateScope PrivScope;
408 };
409 
410 /// RAII for emitting code of OpenMP constructs.
411 class InlinedOpenMPRegionRAII {
412   CodeGenFunction &CGF;
413   llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields;
414   FieldDecl *LambdaThisCaptureField = nullptr;
415   const CodeGen::CGBlockInfo *BlockInfo = nullptr;
416   bool NoInheritance = false;
417 
418 public:
419   /// Constructs region for combined constructs.
420   /// \param CodeGen Code generation sequence for combined directives. Includes
421   /// a list of functions used for code generation of implicitly inlined
422   /// regions.
InlinedOpenMPRegionRAII(CodeGenFunction & CGF,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel,bool NoInheritance=true)423   InlinedOpenMPRegionRAII(CodeGenFunction &CGF, const RegionCodeGenTy &CodeGen,
424                           OpenMPDirectiveKind Kind, bool HasCancel,
425                           bool NoInheritance = true)
426       : CGF(CGF), NoInheritance(NoInheritance) {
427     // Start emission for the construct.
428     CGF.CapturedStmtInfo = new CGOpenMPInlinedRegionInfo(
429         CGF.CapturedStmtInfo, CodeGen, Kind, HasCancel);
430     if (NoInheritance) {
431       std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields);
432       LambdaThisCaptureField = CGF.LambdaThisCaptureField;
433       CGF.LambdaThisCaptureField = nullptr;
434       BlockInfo = CGF.BlockInfo;
435       CGF.BlockInfo = nullptr;
436     }
437   }
438 
~InlinedOpenMPRegionRAII()439   ~InlinedOpenMPRegionRAII() {
440     // Restore original CapturedStmtInfo only if we're done with code emission.
441     auto *OldCSI =
442         cast<CGOpenMPInlinedRegionInfo>(CGF.CapturedStmtInfo)->getOldCSI();
443     delete CGF.CapturedStmtInfo;
444     CGF.CapturedStmtInfo = OldCSI;
445     if (NoInheritance) {
446       std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields);
447       CGF.LambdaThisCaptureField = LambdaThisCaptureField;
448       CGF.BlockInfo = BlockInfo;
449     }
450   }
451 };
452 
453 /// Values for bit flags used in the ident_t to describe the fields.
454 /// All enumeric elements are named and described in accordance with the code
455 /// from https://github.com/llvm/llvm-project/blob/main/openmp/runtime/src/kmp.h
456 enum OpenMPLocationFlags : unsigned {
457   /// Use trampoline for internal microtask.
458   OMP_IDENT_IMD = 0x01,
459   /// Use c-style ident structure.
460   OMP_IDENT_KMPC = 0x02,
461   /// Atomic reduction option for kmpc_reduce.
462   OMP_ATOMIC_REDUCE = 0x10,
463   /// Explicit 'barrier' directive.
464   OMP_IDENT_BARRIER_EXPL = 0x20,
465   /// Implicit barrier in code.
466   OMP_IDENT_BARRIER_IMPL = 0x40,
467   /// Implicit barrier in 'for' directive.
468   OMP_IDENT_BARRIER_IMPL_FOR = 0x40,
469   /// Implicit barrier in 'sections' directive.
470   OMP_IDENT_BARRIER_IMPL_SECTIONS = 0xC0,
471   /// Implicit barrier in 'single' directive.
472   OMP_IDENT_BARRIER_IMPL_SINGLE = 0x140,
473   /// Call of __kmp_for_static_init for static loop.
474   OMP_IDENT_WORK_LOOP = 0x200,
475   /// Call of __kmp_for_static_init for sections.
476   OMP_IDENT_WORK_SECTIONS = 0x400,
477   /// Call of __kmp_for_static_init for distribute.
478   OMP_IDENT_WORK_DISTRIBUTE = 0x800,
479   LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_IDENT_WORK_DISTRIBUTE)
480 };
481 
482 namespace {
483 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
484 /// Values for bit flags for marking which requires clauses have been used.
485 enum OpenMPOffloadingRequiresDirFlags : int64_t {
486   /// flag undefined.
487   OMP_REQ_UNDEFINED               = 0x000,
488   /// no requires clause present.
489   OMP_REQ_NONE                    = 0x001,
490   /// reverse_offload clause.
491   OMP_REQ_REVERSE_OFFLOAD         = 0x002,
492   /// unified_address clause.
493   OMP_REQ_UNIFIED_ADDRESS         = 0x004,
494   /// unified_shared_memory clause.
495   OMP_REQ_UNIFIED_SHARED_MEMORY   = 0x008,
496   /// dynamic_allocators clause.
497   OMP_REQ_DYNAMIC_ALLOCATORS      = 0x010,
498   LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_REQ_DYNAMIC_ALLOCATORS)
499 };
500 
501 enum OpenMPOffloadingReservedDeviceIDs {
502   /// Device ID if the device was not defined, runtime should get it
503   /// from environment variables in the spec.
504   OMP_DEVICEID_UNDEF = -1,
505 };
506 } // anonymous namespace
507 
508 /// Describes ident structure that describes a source location.
509 /// All descriptions are taken from
510 /// https://github.com/llvm/llvm-project/blob/main/openmp/runtime/src/kmp.h
511 /// Original structure:
512 /// typedef struct ident {
513 ///    kmp_int32 reserved_1;   /**<  might be used in Fortran;
514 ///                                  see above  */
515 ///    kmp_int32 flags;        /**<  also f.flags; KMP_IDENT_xxx flags;
516 ///                                  KMP_IDENT_KMPC identifies this union
517 ///                                  member  */
518 ///    kmp_int32 reserved_2;   /**<  not really used in Fortran any more;
519 ///                                  see above */
520 ///#if USE_ITT_BUILD
521 ///                            /*  but currently used for storing
522 ///                                region-specific ITT */
523 ///                            /*  contextual information. */
524 ///#endif /* USE_ITT_BUILD */
525 ///    kmp_int32 reserved_3;   /**< source[4] in Fortran, do not use for
526 ///                                 C++  */
527 ///    char const *psource;    /**< String describing the source location.
528 ///                            The string is composed of semi-colon separated
529 //                             fields which describe the source file,
530 ///                            the function and a pair of line numbers that
531 ///                            delimit the construct.
532 ///                             */
533 /// } ident_t;
534 enum IdentFieldIndex {
535   /// might be used in Fortran
536   IdentField_Reserved_1,
537   /// OMP_IDENT_xxx flags; OMP_IDENT_KMPC identifies this union member.
538   IdentField_Flags,
539   /// Not really used in Fortran any more
540   IdentField_Reserved_2,
541   /// Source[4] in Fortran, do not use for C++
542   IdentField_Reserved_3,
543   /// String describing the source location. The string is composed of
544   /// semi-colon separated fields which describe the source file, the function
545   /// and a pair of line numbers that delimit the construct.
546   IdentField_PSource
547 };
548 
549 /// Schedule types for 'omp for' loops (these enumerators are taken from
550 /// the enum sched_type in kmp.h).
551 enum OpenMPSchedType {
552   /// Lower bound for default (unordered) versions.
553   OMP_sch_lower = 32,
554   OMP_sch_static_chunked = 33,
555   OMP_sch_static = 34,
556   OMP_sch_dynamic_chunked = 35,
557   OMP_sch_guided_chunked = 36,
558   OMP_sch_runtime = 37,
559   OMP_sch_auto = 38,
560   /// static with chunk adjustment (e.g., simd)
561   OMP_sch_static_balanced_chunked = 45,
562   /// Lower bound for 'ordered' versions.
563   OMP_ord_lower = 64,
564   OMP_ord_static_chunked = 65,
565   OMP_ord_static = 66,
566   OMP_ord_dynamic_chunked = 67,
567   OMP_ord_guided_chunked = 68,
568   OMP_ord_runtime = 69,
569   OMP_ord_auto = 70,
570   OMP_sch_default = OMP_sch_static,
571   /// dist_schedule types
572   OMP_dist_sch_static_chunked = 91,
573   OMP_dist_sch_static = 92,
574   /// Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers.
575   /// Set if the monotonic schedule modifier was present.
576   OMP_sch_modifier_monotonic = (1 << 29),
577   /// Set if the nonmonotonic schedule modifier was present.
578   OMP_sch_modifier_nonmonotonic = (1 << 30),
579 };
580 
581 /// A basic class for pre|post-action for advanced codegen sequence for OpenMP
582 /// region.
583 class CleanupTy final : public EHScopeStack::Cleanup {
584   PrePostActionTy *Action;
585 
586 public:
CleanupTy(PrePostActionTy * Action)587   explicit CleanupTy(PrePostActionTy *Action) : Action(Action) {}
Emit(CodeGenFunction & CGF,Flags)588   void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
589     if (!CGF.HaveInsertPoint())
590       return;
591     Action->Exit(CGF);
592   }
593 };
594 
595 } // anonymous namespace
596 
operator ()(CodeGenFunction & CGF) const597 void RegionCodeGenTy::operator()(CodeGenFunction &CGF) const {
598   CodeGenFunction::RunCleanupsScope Scope(CGF);
599   if (PrePostAction) {
600     CGF.EHStack.pushCleanup<CleanupTy>(NormalAndEHCleanup, PrePostAction);
601     Callback(CodeGen, CGF, *PrePostAction);
602   } else {
603     PrePostActionTy Action;
604     Callback(CodeGen, CGF, Action);
605   }
606 }
607 
608 /// Check if the combiner is a call to UDR combiner and if it is so return the
609 /// UDR decl used for reduction.
610 static const OMPDeclareReductionDecl *
getReductionInit(const Expr * ReductionOp)611 getReductionInit(const Expr *ReductionOp) {
612   if (const auto *CE = dyn_cast<CallExpr>(ReductionOp))
613     if (const auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
614       if (const auto *DRE =
615               dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
616         if (const auto *DRD = dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl()))
617           return DRD;
618   return nullptr;
619 }
620 
emitInitWithReductionInitializer(CodeGenFunction & CGF,const OMPDeclareReductionDecl * DRD,const Expr * InitOp,Address Private,Address Original,QualType Ty)621 static void emitInitWithReductionInitializer(CodeGenFunction &CGF,
622                                              const OMPDeclareReductionDecl *DRD,
623                                              const Expr *InitOp,
624                                              Address Private, Address Original,
625                                              QualType Ty) {
626   if (DRD->getInitializer()) {
627     std::pair<llvm::Function *, llvm::Function *> Reduction =
628         CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
629     const auto *CE = cast<CallExpr>(InitOp);
630     const auto *OVE = cast<OpaqueValueExpr>(CE->getCallee());
631     const Expr *LHS = CE->getArg(/*Arg=*/0)->IgnoreParenImpCasts();
632     const Expr *RHS = CE->getArg(/*Arg=*/1)->IgnoreParenImpCasts();
633     const auto *LHSDRE =
634         cast<DeclRefExpr>(cast<UnaryOperator>(LHS)->getSubExpr());
635     const auto *RHSDRE =
636         cast<DeclRefExpr>(cast<UnaryOperator>(RHS)->getSubExpr());
637     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
638     PrivateScope.addPrivate(cast<VarDecl>(LHSDRE->getDecl()), Private);
639     PrivateScope.addPrivate(cast<VarDecl>(RHSDRE->getDecl()), Original);
640     (void)PrivateScope.Privatize();
641     RValue Func = RValue::get(Reduction.second);
642     CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
643     CGF.EmitIgnoredExpr(InitOp);
644   } else {
645     llvm::Constant *Init = CGF.CGM.EmitNullConstant(Ty);
646     std::string Name = CGF.CGM.getOpenMPRuntime().getName({"init"});
647     auto *GV = new llvm::GlobalVariable(
648         CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
649         llvm::GlobalValue::PrivateLinkage, Init, Name);
650     LValue LV = CGF.MakeNaturalAlignAddrLValue(GV, Ty);
651     RValue InitRVal;
652     switch (CGF.getEvaluationKind(Ty)) {
653     case TEK_Scalar:
654       InitRVal = CGF.EmitLoadOfLValue(LV, DRD->getLocation());
655       break;
656     case TEK_Complex:
657       InitRVal =
658           RValue::getComplex(CGF.EmitLoadOfComplex(LV, DRD->getLocation()));
659       break;
660     case TEK_Aggregate: {
661       OpaqueValueExpr OVE(DRD->getLocation(), Ty, VK_LValue);
662       CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, LV);
663       CGF.EmitAnyExprToMem(&OVE, Private, Ty.getQualifiers(),
664                            /*IsInitializer=*/false);
665       return;
666     }
667     }
668     OpaqueValueExpr OVE(DRD->getLocation(), Ty, VK_PRValue);
669     CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, InitRVal);
670     CGF.EmitAnyExprToMem(&OVE, Private, Ty.getQualifiers(),
671                          /*IsInitializer=*/false);
672   }
673 }
674 
675 /// Emit initialization of arrays of complex types.
676 /// \param DestAddr Address of the array.
677 /// \param Type Type of array.
678 /// \param Init Initial expression of array.
679 /// \param SrcAddr Address of the original array.
EmitOMPAggregateInit(CodeGenFunction & CGF,Address DestAddr,QualType Type,bool EmitDeclareReductionInit,const Expr * Init,const OMPDeclareReductionDecl * DRD,Address SrcAddr=Address::invalid ())680 static void EmitOMPAggregateInit(CodeGenFunction &CGF, Address DestAddr,
681                                  QualType Type, bool EmitDeclareReductionInit,
682                                  const Expr *Init,
683                                  const OMPDeclareReductionDecl *DRD,
684                                  Address SrcAddr = Address::invalid()) {
685   // Perform element-by-element initialization.
686   QualType ElementTy;
687 
688   // Drill down to the base element type on both arrays.
689   const ArrayType *ArrayTy = Type->getAsArrayTypeUnsafe();
690   llvm::Value *NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, DestAddr);
691   if (DRD)
692     SrcAddr =
693         CGF.Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
694 
695   llvm::Value *SrcBegin = nullptr;
696   if (DRD)
697     SrcBegin = SrcAddr.getPointer();
698   llvm::Value *DestBegin = DestAddr.getPointer();
699   // Cast from pointer to array type to pointer to single element.
700   llvm::Value *DestEnd =
701       CGF.Builder.CreateGEP(DestAddr.getElementType(), DestBegin, NumElements);
702   // The basic structure here is a while-do loop.
703   llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.arrayinit.body");
704   llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.arrayinit.done");
705   llvm::Value *IsEmpty =
706       CGF.Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arrayinit.isempty");
707   CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
708 
709   // Enter the loop body, making that address the current address.
710   llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock();
711   CGF.EmitBlock(BodyBB);
712 
713   CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
714 
715   llvm::PHINode *SrcElementPHI = nullptr;
716   Address SrcElementCurrent = Address::invalid();
717   if (DRD) {
718     SrcElementPHI = CGF.Builder.CreatePHI(SrcBegin->getType(), 2,
719                                           "omp.arraycpy.srcElementPast");
720     SrcElementPHI->addIncoming(SrcBegin, EntryBB);
721     SrcElementCurrent =
722         Address(SrcElementPHI, SrcAddr.getElementType(),
723                 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
724   }
725   llvm::PHINode *DestElementPHI = CGF.Builder.CreatePHI(
726       DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
727   DestElementPHI->addIncoming(DestBegin, EntryBB);
728   Address DestElementCurrent =
729       Address(DestElementPHI, DestAddr.getElementType(),
730               DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
731 
732   // Emit copy.
733   {
734     CodeGenFunction::RunCleanupsScope InitScope(CGF);
735     if (EmitDeclareReductionInit) {
736       emitInitWithReductionInitializer(CGF, DRD, Init, DestElementCurrent,
737                                        SrcElementCurrent, ElementTy);
738     } else
739       CGF.EmitAnyExprToMem(Init, DestElementCurrent, ElementTy.getQualifiers(),
740                            /*IsInitializer=*/false);
741   }
742 
743   if (DRD) {
744     // Shift the address forward by one element.
745     llvm::Value *SrcElementNext = CGF.Builder.CreateConstGEP1_32(
746         SrcAddr.getElementType(), SrcElementPHI, /*Idx0=*/1,
747         "omp.arraycpy.dest.element");
748     SrcElementPHI->addIncoming(SrcElementNext, CGF.Builder.GetInsertBlock());
749   }
750 
751   // Shift the address forward by one element.
752   llvm::Value *DestElementNext = CGF.Builder.CreateConstGEP1_32(
753       DestAddr.getElementType(), DestElementPHI, /*Idx0=*/1,
754       "omp.arraycpy.dest.element");
755   // Check whether we've reached the end.
756   llvm::Value *Done =
757       CGF.Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
758   CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
759   DestElementPHI->addIncoming(DestElementNext, CGF.Builder.GetInsertBlock());
760 
761   // Done.
762   CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
763 }
764 
emitSharedLValue(CodeGenFunction & CGF,const Expr * E)765 LValue ReductionCodeGen::emitSharedLValue(CodeGenFunction &CGF, const Expr *E) {
766   return CGF.EmitOMPSharedLValue(E);
767 }
768 
emitSharedLValueUB(CodeGenFunction & CGF,const Expr * E)769 LValue ReductionCodeGen::emitSharedLValueUB(CodeGenFunction &CGF,
770                                             const Expr *E) {
771   if (const auto *OASE = dyn_cast<OMPArraySectionExpr>(E))
772     return CGF.EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false);
773   return LValue();
774 }
775 
emitAggregateInitialization(CodeGenFunction & CGF,unsigned N,Address PrivateAddr,Address SharedAddr,const OMPDeclareReductionDecl * DRD)776 void ReductionCodeGen::emitAggregateInitialization(
777     CodeGenFunction &CGF, unsigned N, Address PrivateAddr, Address SharedAddr,
778     const OMPDeclareReductionDecl *DRD) {
779   // Emit VarDecl with copy init for arrays.
780   // Get the address of the original variable captured in current
781   // captured region.
782   const auto *PrivateVD =
783       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
784   bool EmitDeclareReductionInit =
785       DRD && (DRD->getInitializer() || !PrivateVD->hasInit());
786   EmitOMPAggregateInit(CGF, PrivateAddr, PrivateVD->getType(),
787                        EmitDeclareReductionInit,
788                        EmitDeclareReductionInit ? ClausesData[N].ReductionOp
789                                                 : PrivateVD->getInit(),
790                        DRD, SharedAddr);
791 }
792 
ReductionCodeGen(ArrayRef<const Expr * > Shareds,ArrayRef<const Expr * > Origs,ArrayRef<const Expr * > Privates,ArrayRef<const Expr * > ReductionOps)793 ReductionCodeGen::ReductionCodeGen(ArrayRef<const Expr *> Shareds,
794                                    ArrayRef<const Expr *> Origs,
795                                    ArrayRef<const Expr *> Privates,
796                                    ArrayRef<const Expr *> ReductionOps) {
797   ClausesData.reserve(Shareds.size());
798   SharedAddresses.reserve(Shareds.size());
799   Sizes.reserve(Shareds.size());
800   BaseDecls.reserve(Shareds.size());
801   const auto *IOrig = Origs.begin();
802   const auto *IPriv = Privates.begin();
803   const auto *IRed = ReductionOps.begin();
804   for (const Expr *Ref : Shareds) {
805     ClausesData.emplace_back(Ref, *IOrig, *IPriv, *IRed);
806     std::advance(IOrig, 1);
807     std::advance(IPriv, 1);
808     std::advance(IRed, 1);
809   }
810 }
811 
emitSharedOrigLValue(CodeGenFunction & CGF,unsigned N)812 void ReductionCodeGen::emitSharedOrigLValue(CodeGenFunction &CGF, unsigned N) {
813   assert(SharedAddresses.size() == N && OrigAddresses.size() == N &&
814          "Number of generated lvalues must be exactly N.");
815   LValue First = emitSharedLValue(CGF, ClausesData[N].Shared);
816   LValue Second = emitSharedLValueUB(CGF, ClausesData[N].Shared);
817   SharedAddresses.emplace_back(First, Second);
818   if (ClausesData[N].Shared == ClausesData[N].Ref) {
819     OrigAddresses.emplace_back(First, Second);
820   } else {
821     LValue First = emitSharedLValue(CGF, ClausesData[N].Ref);
822     LValue Second = emitSharedLValueUB(CGF, ClausesData[N].Ref);
823     OrigAddresses.emplace_back(First, Second);
824   }
825 }
826 
emitAggregateType(CodeGenFunction & CGF,unsigned N)827 void ReductionCodeGen::emitAggregateType(CodeGenFunction &CGF, unsigned N) {
828   QualType PrivateType = getPrivateType(N);
829   bool AsArraySection = isa<OMPArraySectionExpr>(ClausesData[N].Ref);
830   if (!PrivateType->isVariablyModifiedType()) {
831     Sizes.emplace_back(
832         CGF.getTypeSize(OrigAddresses[N].first.getType().getNonReferenceType()),
833         nullptr);
834     return;
835   }
836   llvm::Value *Size;
837   llvm::Value *SizeInChars;
838   auto *ElemType = OrigAddresses[N].first.getAddress(CGF).getElementType();
839   auto *ElemSizeOf = llvm::ConstantExpr::getSizeOf(ElemType);
840   if (AsArraySection) {
841     Size = CGF.Builder.CreatePtrDiff(ElemType,
842                                      OrigAddresses[N].second.getPointer(CGF),
843                                      OrigAddresses[N].first.getPointer(CGF));
844     Size = CGF.Builder.CreateNUWAdd(
845         Size, llvm::ConstantInt::get(Size->getType(), /*V=*/1));
846     SizeInChars = CGF.Builder.CreateNUWMul(Size, ElemSizeOf);
847   } else {
848     SizeInChars =
849         CGF.getTypeSize(OrigAddresses[N].first.getType().getNonReferenceType());
850     Size = CGF.Builder.CreateExactUDiv(SizeInChars, ElemSizeOf);
851   }
852   Sizes.emplace_back(SizeInChars, Size);
853   CodeGenFunction::OpaqueValueMapping OpaqueMap(
854       CGF,
855       cast<OpaqueValueExpr>(
856           CGF.getContext().getAsVariableArrayType(PrivateType)->getSizeExpr()),
857       RValue::get(Size));
858   CGF.EmitVariablyModifiedType(PrivateType);
859 }
860 
emitAggregateType(CodeGenFunction & CGF,unsigned N,llvm::Value * Size)861 void ReductionCodeGen::emitAggregateType(CodeGenFunction &CGF, unsigned N,
862                                          llvm::Value *Size) {
863   QualType PrivateType = getPrivateType(N);
864   if (!PrivateType->isVariablyModifiedType()) {
865     assert(!Size && !Sizes[N].second &&
866            "Size should be nullptr for non-variably modified reduction "
867            "items.");
868     return;
869   }
870   CodeGenFunction::OpaqueValueMapping OpaqueMap(
871       CGF,
872       cast<OpaqueValueExpr>(
873           CGF.getContext().getAsVariableArrayType(PrivateType)->getSizeExpr()),
874       RValue::get(Size));
875   CGF.EmitVariablyModifiedType(PrivateType);
876 }
877 
emitInitialization(CodeGenFunction & CGF,unsigned N,Address PrivateAddr,Address SharedAddr,llvm::function_ref<bool (CodeGenFunction &)> DefaultInit)878 void ReductionCodeGen::emitInitialization(
879     CodeGenFunction &CGF, unsigned N, Address PrivateAddr, Address SharedAddr,
880     llvm::function_ref<bool(CodeGenFunction &)> DefaultInit) {
881   assert(SharedAddresses.size() > N && "No variable was generated");
882   const auto *PrivateVD =
883       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
884   const OMPDeclareReductionDecl *DRD =
885       getReductionInit(ClausesData[N].ReductionOp);
886   if (CGF.getContext().getAsArrayType(PrivateVD->getType())) {
887     if (DRD && DRD->getInitializer())
888       (void)DefaultInit(CGF);
889     emitAggregateInitialization(CGF, N, PrivateAddr, SharedAddr, DRD);
890   } else if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) {
891     (void)DefaultInit(CGF);
892     QualType SharedType = SharedAddresses[N].first.getType();
893     emitInitWithReductionInitializer(CGF, DRD, ClausesData[N].ReductionOp,
894                                      PrivateAddr, SharedAddr, SharedType);
895   } else if (!DefaultInit(CGF) && PrivateVD->hasInit() &&
896              !CGF.isTrivialInitializer(PrivateVD->getInit())) {
897     CGF.EmitAnyExprToMem(PrivateVD->getInit(), PrivateAddr,
898                          PrivateVD->getType().getQualifiers(),
899                          /*IsInitializer=*/false);
900   }
901 }
902 
needCleanups(unsigned N)903 bool ReductionCodeGen::needCleanups(unsigned N) {
904   QualType PrivateType = getPrivateType(N);
905   QualType::DestructionKind DTorKind = PrivateType.isDestructedType();
906   return DTorKind != QualType::DK_none;
907 }
908 
emitCleanups(CodeGenFunction & CGF,unsigned N,Address PrivateAddr)909 void ReductionCodeGen::emitCleanups(CodeGenFunction &CGF, unsigned N,
910                                     Address PrivateAddr) {
911   QualType PrivateType = getPrivateType(N);
912   QualType::DestructionKind DTorKind = PrivateType.isDestructedType();
913   if (needCleanups(N)) {
914     PrivateAddr = CGF.Builder.CreateElementBitCast(
915         PrivateAddr, CGF.ConvertTypeForMem(PrivateType));
916     CGF.pushDestroy(DTorKind, PrivateAddr, PrivateType);
917   }
918 }
919 
loadToBegin(CodeGenFunction & CGF,QualType BaseTy,QualType ElTy,LValue BaseLV)920 static LValue loadToBegin(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
921                           LValue BaseLV) {
922   BaseTy = BaseTy.getNonReferenceType();
923   while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
924          !CGF.getContext().hasSameType(BaseTy, ElTy)) {
925     if (const auto *PtrTy = BaseTy->getAs<PointerType>()) {
926       BaseLV = CGF.EmitLoadOfPointerLValue(BaseLV.getAddress(CGF), PtrTy);
927     } else {
928       LValue RefLVal = CGF.MakeAddrLValue(BaseLV.getAddress(CGF), BaseTy);
929       BaseLV = CGF.EmitLoadOfReferenceLValue(RefLVal);
930     }
931     BaseTy = BaseTy->getPointeeType();
932   }
933   return CGF.MakeAddrLValue(
934       CGF.Builder.CreateElementBitCast(BaseLV.getAddress(CGF),
935                                        CGF.ConvertTypeForMem(ElTy)),
936       BaseLV.getType(), BaseLV.getBaseInfo(),
937       CGF.CGM.getTBAAInfoForSubobject(BaseLV, BaseLV.getType()));
938 }
939 
castToBase(CodeGenFunction & CGF,QualType BaseTy,QualType ElTy,Address OriginalBaseAddress,llvm::Value * Addr)940 static Address castToBase(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
941                           Address OriginalBaseAddress, llvm::Value *Addr) {
942   Address Tmp = Address::invalid();
943   Address TopTmp = Address::invalid();
944   Address MostTopTmp = Address::invalid();
945   BaseTy = BaseTy.getNonReferenceType();
946   while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
947          !CGF.getContext().hasSameType(BaseTy, ElTy)) {
948     Tmp = CGF.CreateMemTemp(BaseTy);
949     if (TopTmp.isValid())
950       CGF.Builder.CreateStore(Tmp.getPointer(), TopTmp);
951     else
952       MostTopTmp = Tmp;
953     TopTmp = Tmp;
954     BaseTy = BaseTy->getPointeeType();
955   }
956 
957   if (Tmp.isValid()) {
958     Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
959         Addr, Tmp.getElementType());
960     CGF.Builder.CreateStore(Addr, Tmp);
961     return MostTopTmp;
962   }
963 
964   Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
965       Addr, OriginalBaseAddress.getType());
966   return OriginalBaseAddress.withPointer(Addr);
967 }
968 
getBaseDecl(const Expr * Ref,const DeclRefExpr * & DE)969 static const VarDecl *getBaseDecl(const Expr *Ref, const DeclRefExpr *&DE) {
970   const VarDecl *OrigVD = nullptr;
971   if (const auto *OASE = dyn_cast<OMPArraySectionExpr>(Ref)) {
972     const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
973     while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
974       Base = TempOASE->getBase()->IgnoreParenImpCasts();
975     while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
976       Base = TempASE->getBase()->IgnoreParenImpCasts();
977     DE = cast<DeclRefExpr>(Base);
978     OrigVD = cast<VarDecl>(DE->getDecl());
979   } else if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Ref)) {
980     const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
981     while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
982       Base = TempASE->getBase()->IgnoreParenImpCasts();
983     DE = cast<DeclRefExpr>(Base);
984     OrigVD = cast<VarDecl>(DE->getDecl());
985   }
986   return OrigVD;
987 }
988 
adjustPrivateAddress(CodeGenFunction & CGF,unsigned N,Address PrivateAddr)989 Address ReductionCodeGen::adjustPrivateAddress(CodeGenFunction &CGF, unsigned N,
990                                                Address PrivateAddr) {
991   const DeclRefExpr *DE;
992   if (const VarDecl *OrigVD = ::getBaseDecl(ClausesData[N].Ref, DE)) {
993     BaseDecls.emplace_back(OrigVD);
994     LValue OriginalBaseLValue = CGF.EmitLValue(DE);
995     LValue BaseLValue =
996         loadToBegin(CGF, OrigVD->getType(), SharedAddresses[N].first.getType(),
997                     OriginalBaseLValue);
998     Address SharedAddr = SharedAddresses[N].first.getAddress(CGF);
999     llvm::Value *Adjustment = CGF.Builder.CreatePtrDiff(
1000         SharedAddr.getElementType(), BaseLValue.getPointer(CGF),
1001         SharedAddr.getPointer());
1002     llvm::Value *PrivatePointer =
1003         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
1004             PrivateAddr.getPointer(), SharedAddr.getType());
1005     llvm::Value *Ptr = CGF.Builder.CreateGEP(
1006         SharedAddr.getElementType(), PrivatePointer, Adjustment);
1007     return castToBase(CGF, OrigVD->getType(),
1008                       SharedAddresses[N].first.getType(),
1009                       OriginalBaseLValue.getAddress(CGF), Ptr);
1010   }
1011   BaseDecls.emplace_back(
1012       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Ref)->getDecl()));
1013   return PrivateAddr;
1014 }
1015 
usesReductionInitializer(unsigned N) const1016 bool ReductionCodeGen::usesReductionInitializer(unsigned N) const {
1017   const OMPDeclareReductionDecl *DRD =
1018       getReductionInit(ClausesData[N].ReductionOp);
1019   return DRD && DRD->getInitializer();
1020 }
1021 
getThreadIDVariableLValue(CodeGenFunction & CGF)1022 LValue CGOpenMPRegionInfo::getThreadIDVariableLValue(CodeGenFunction &CGF) {
1023   return CGF.EmitLoadOfPointerLValue(
1024       CGF.GetAddrOfLocalVar(getThreadIDVariable()),
1025       getThreadIDVariable()->getType()->castAs<PointerType>());
1026 }
1027 
EmitBody(CodeGenFunction & CGF,const Stmt * S)1028 void CGOpenMPRegionInfo::EmitBody(CodeGenFunction &CGF, const Stmt *S) {
1029   if (!CGF.HaveInsertPoint())
1030     return;
1031   // 1.2.2 OpenMP Language Terminology
1032   // Structured block - An executable statement with a single entry at the
1033   // top and a single exit at the bottom.
1034   // The point of exit cannot be a branch out of the structured block.
1035   // longjmp() and throw() must not violate the entry/exit criteria.
1036   CGF.EHStack.pushTerminate();
1037   if (S)
1038     CGF.incrementProfileCounter(S);
1039   CodeGen(CGF);
1040   CGF.EHStack.popTerminate();
1041 }
1042 
getThreadIDVariableLValue(CodeGenFunction & CGF)1043 LValue CGOpenMPTaskOutlinedRegionInfo::getThreadIDVariableLValue(
1044     CodeGenFunction &CGF) {
1045   return CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(getThreadIDVariable()),
1046                             getThreadIDVariable()->getType(),
1047                             AlignmentSource::Decl);
1048 }
1049 
addFieldToRecordDecl(ASTContext & C,DeclContext * DC,QualType FieldTy)1050 static FieldDecl *addFieldToRecordDecl(ASTContext &C, DeclContext *DC,
1051                                        QualType FieldTy) {
1052   auto *Field = FieldDecl::Create(
1053       C, DC, SourceLocation(), SourceLocation(), /*Id=*/nullptr, FieldTy,
1054       C.getTrivialTypeSourceInfo(FieldTy, SourceLocation()),
1055       /*BW=*/nullptr, /*Mutable=*/false, /*InitStyle=*/ICIS_NoInit);
1056   Field->setAccess(AS_public);
1057   DC->addDecl(Field);
1058   return Field;
1059 }
1060 
CGOpenMPRuntime(CodeGenModule & CGM)1061 CGOpenMPRuntime::CGOpenMPRuntime(CodeGenModule &CGM)
1062     : CGM(CGM), OMPBuilder(CGM.getModule()), OffloadEntriesInfoManager() {
1063   KmpCriticalNameTy = llvm::ArrayType::get(CGM.Int32Ty, /*NumElements*/ 8);
1064   llvm::OpenMPIRBuilderConfig Config(CGM.getLangOpts().OpenMPIsDevice, false,
1065                                      hasRequiresUnifiedSharedMemory(),
1066                                      CGM.getLangOpts().OpenMPOffloadMandatory);
1067   // Initialize Types used in OpenMPIRBuilder from OMPKinds.def
1068   OMPBuilder.initialize();
1069   OMPBuilder.setConfig(Config);
1070   OffloadEntriesInfoManager.setConfig(Config);
1071   loadOffloadInfoMetadata();
1072 }
1073 
clear()1074 void CGOpenMPRuntime::clear() {
1075   InternalVars.clear();
1076   // Clean non-target variable declarations possibly used only in debug info.
1077   for (const auto &Data : EmittedNonTargetVariables) {
1078     if (!Data.getValue().pointsToAliveValue())
1079       continue;
1080     auto *GV = dyn_cast<llvm::GlobalVariable>(Data.getValue());
1081     if (!GV)
1082       continue;
1083     if (!GV->isDeclaration() || GV->getNumUses() > 0)
1084       continue;
1085     GV->eraseFromParent();
1086   }
1087 }
1088 
getName(ArrayRef<StringRef> Parts) const1089 std::string CGOpenMPRuntime::getName(ArrayRef<StringRef> Parts) const {
1090   return OMPBuilder.createPlatformSpecificName(Parts);
1091 }
1092 
1093 static llvm::Function *
emitCombinerOrInitializer(CodeGenModule & CGM,QualType Ty,const Expr * CombinerInitializer,const VarDecl * In,const VarDecl * Out,bool IsCombiner)1094 emitCombinerOrInitializer(CodeGenModule &CGM, QualType Ty,
1095                           const Expr *CombinerInitializer, const VarDecl *In,
1096                           const VarDecl *Out, bool IsCombiner) {
1097   // void .omp_combiner.(Ty *in, Ty *out);
1098   ASTContext &C = CGM.getContext();
1099   QualType PtrTy = C.getPointerType(Ty).withRestrict();
1100   FunctionArgList Args;
1101   ImplicitParamDecl OmpOutParm(C, /*DC=*/nullptr, Out->getLocation(),
1102                                /*Id=*/nullptr, PtrTy, ImplicitParamDecl::Other);
1103   ImplicitParamDecl OmpInParm(C, /*DC=*/nullptr, In->getLocation(),
1104                               /*Id=*/nullptr, PtrTy, ImplicitParamDecl::Other);
1105   Args.push_back(&OmpOutParm);
1106   Args.push_back(&OmpInParm);
1107   const CGFunctionInfo &FnInfo =
1108       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
1109   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
1110   std::string Name = CGM.getOpenMPRuntime().getName(
1111       {IsCombiner ? "omp_combiner" : "omp_initializer", ""});
1112   auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
1113                                     Name, &CGM.getModule());
1114   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
1115   if (CGM.getLangOpts().Optimize) {
1116     Fn->removeFnAttr(llvm::Attribute::NoInline);
1117     Fn->removeFnAttr(llvm::Attribute::OptimizeNone);
1118     Fn->addFnAttr(llvm::Attribute::AlwaysInline);
1119   }
1120   CodeGenFunction CGF(CGM);
1121   // Map "T omp_in;" variable to "*omp_in_parm" value in all expressions.
1122   // Map "T omp_out;" variable to "*omp_out_parm" value in all expressions.
1123   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, In->getLocation(),
1124                     Out->getLocation());
1125   CodeGenFunction::OMPPrivateScope Scope(CGF);
1126   Address AddrIn = CGF.GetAddrOfLocalVar(&OmpInParm);
1127   Scope.addPrivate(
1128       In, CGF.EmitLoadOfPointerLValue(AddrIn, PtrTy->castAs<PointerType>())
1129               .getAddress(CGF));
1130   Address AddrOut = CGF.GetAddrOfLocalVar(&OmpOutParm);
1131   Scope.addPrivate(
1132       Out, CGF.EmitLoadOfPointerLValue(AddrOut, PtrTy->castAs<PointerType>())
1133                .getAddress(CGF));
1134   (void)Scope.Privatize();
1135   if (!IsCombiner && Out->hasInit() &&
1136       !CGF.isTrivialInitializer(Out->getInit())) {
1137     CGF.EmitAnyExprToMem(Out->getInit(), CGF.GetAddrOfLocalVar(Out),
1138                          Out->getType().getQualifiers(),
1139                          /*IsInitializer=*/true);
1140   }
1141   if (CombinerInitializer)
1142     CGF.EmitIgnoredExpr(CombinerInitializer);
1143   Scope.ForceCleanup();
1144   CGF.FinishFunction();
1145   return Fn;
1146 }
1147 
emitUserDefinedReduction(CodeGenFunction * CGF,const OMPDeclareReductionDecl * D)1148 void CGOpenMPRuntime::emitUserDefinedReduction(
1149     CodeGenFunction *CGF, const OMPDeclareReductionDecl *D) {
1150   if (UDRMap.count(D) > 0)
1151     return;
1152   llvm::Function *Combiner = emitCombinerOrInitializer(
1153       CGM, D->getType(), D->getCombiner(),
1154       cast<VarDecl>(cast<DeclRefExpr>(D->getCombinerIn())->getDecl()),
1155       cast<VarDecl>(cast<DeclRefExpr>(D->getCombinerOut())->getDecl()),
1156       /*IsCombiner=*/true);
1157   llvm::Function *Initializer = nullptr;
1158   if (const Expr *Init = D->getInitializer()) {
1159     Initializer = emitCombinerOrInitializer(
1160         CGM, D->getType(),
1161         D->getInitializerKind() == OMPDeclareReductionDecl::CallInit ? Init
1162                                                                      : nullptr,
1163         cast<VarDecl>(cast<DeclRefExpr>(D->getInitOrig())->getDecl()),
1164         cast<VarDecl>(cast<DeclRefExpr>(D->getInitPriv())->getDecl()),
1165         /*IsCombiner=*/false);
1166   }
1167   UDRMap.try_emplace(D, Combiner, Initializer);
1168   if (CGF) {
1169     auto &Decls = FunctionUDRMap.FindAndConstruct(CGF->CurFn);
1170     Decls.second.push_back(D);
1171   }
1172 }
1173 
1174 std::pair<llvm::Function *, llvm::Function *>
getUserDefinedReduction(const OMPDeclareReductionDecl * D)1175 CGOpenMPRuntime::getUserDefinedReduction(const OMPDeclareReductionDecl *D) {
1176   auto I = UDRMap.find(D);
1177   if (I != UDRMap.end())
1178     return I->second;
1179   emitUserDefinedReduction(/*CGF=*/nullptr, D);
1180   return UDRMap.lookup(D);
1181 }
1182 
1183 namespace {
1184 // Temporary RAII solution to perform a push/pop stack event on the OpenMP IR
1185 // Builder if one is present.
1186 struct PushAndPopStackRAII {
PushAndPopStackRAII__anon7bb087080311::PushAndPopStackRAII1187   PushAndPopStackRAII(llvm::OpenMPIRBuilder *OMPBuilder, CodeGenFunction &CGF,
1188                       bool HasCancel, llvm::omp::Directive Kind)
1189       : OMPBuilder(OMPBuilder) {
1190     if (!OMPBuilder)
1191       return;
1192 
1193     // The following callback is the crucial part of clangs cleanup process.
1194     //
1195     // NOTE:
1196     // Once the OpenMPIRBuilder is used to create parallel regions (and
1197     // similar), the cancellation destination (Dest below) is determined via
1198     // IP. That means if we have variables to finalize we split the block at IP,
1199     // use the new block (=BB) as destination to build a JumpDest (via
1200     // getJumpDestInCurrentScope(BB)) which then is fed to
1201     // EmitBranchThroughCleanup. Furthermore, there will not be the need
1202     // to push & pop an FinalizationInfo object.
1203     // The FiniCB will still be needed but at the point where the
1204     // OpenMPIRBuilder is asked to construct a parallel (or similar) construct.
1205     auto FiniCB = [&CGF](llvm::OpenMPIRBuilder::InsertPointTy IP) {
1206       assert(IP.getBlock()->end() == IP.getPoint() &&
1207              "Clang CG should cause non-terminated block!");
1208       CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1209       CGF.Builder.restoreIP(IP);
1210       CodeGenFunction::JumpDest Dest =
1211           CGF.getOMPCancelDestination(OMPD_parallel);
1212       CGF.EmitBranchThroughCleanup(Dest);
1213     };
1214 
1215     // TODO: Remove this once we emit parallel regions through the
1216     //       OpenMPIRBuilder as it can do this setup internally.
1217     llvm::OpenMPIRBuilder::FinalizationInfo FI({FiniCB, Kind, HasCancel});
1218     OMPBuilder->pushFinalizationCB(std::move(FI));
1219   }
~PushAndPopStackRAII__anon7bb087080311::PushAndPopStackRAII1220   ~PushAndPopStackRAII() {
1221     if (OMPBuilder)
1222       OMPBuilder->popFinalizationCB();
1223   }
1224   llvm::OpenMPIRBuilder *OMPBuilder;
1225 };
1226 } // namespace
1227 
emitParallelOrTeamsOutlinedFunction(CodeGenModule & CGM,const OMPExecutableDirective & D,const CapturedStmt * CS,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const StringRef OutlinedHelperName,const RegionCodeGenTy & CodeGen)1228 static llvm::Function *emitParallelOrTeamsOutlinedFunction(
1229     CodeGenModule &CGM, const OMPExecutableDirective &D, const CapturedStmt *CS,
1230     const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind,
1231     const StringRef OutlinedHelperName, const RegionCodeGenTy &CodeGen) {
1232   assert(ThreadIDVar->getType()->isPointerType() &&
1233          "thread id variable must be of type kmp_int32 *");
1234   CodeGenFunction CGF(CGM, true);
1235   bool HasCancel = false;
1236   if (const auto *OPD = dyn_cast<OMPParallelDirective>(&D))
1237     HasCancel = OPD->hasCancel();
1238   else if (const auto *OPD = dyn_cast<OMPTargetParallelDirective>(&D))
1239     HasCancel = OPD->hasCancel();
1240   else if (const auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&D))
1241     HasCancel = OPSD->hasCancel();
1242   else if (const auto *OPFD = dyn_cast<OMPParallelForDirective>(&D))
1243     HasCancel = OPFD->hasCancel();
1244   else if (const auto *OPFD = dyn_cast<OMPTargetParallelForDirective>(&D))
1245     HasCancel = OPFD->hasCancel();
1246   else if (const auto *OPFD = dyn_cast<OMPDistributeParallelForDirective>(&D))
1247     HasCancel = OPFD->hasCancel();
1248   else if (const auto *OPFD =
1249                dyn_cast<OMPTeamsDistributeParallelForDirective>(&D))
1250     HasCancel = OPFD->hasCancel();
1251   else if (const auto *OPFD =
1252                dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&D))
1253     HasCancel = OPFD->hasCancel();
1254 
1255   // TODO: Temporarily inform the OpenMPIRBuilder, if any, about the new
1256   //       parallel region to make cancellation barriers work properly.
1257   llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
1258   PushAndPopStackRAII PSR(&OMPBuilder, CGF, HasCancel, InnermostKind);
1259   CGOpenMPOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen, InnermostKind,
1260                                     HasCancel, OutlinedHelperName);
1261   CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
1262   return CGF.GenerateOpenMPCapturedStmtFunction(*CS, D.getBeginLoc());
1263 }
1264 
emitParallelOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)1265 llvm::Function *CGOpenMPRuntime::emitParallelOutlinedFunction(
1266     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1267     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1268   const CapturedStmt *CS = D.getCapturedStmt(OMPD_parallel);
1269   return emitParallelOrTeamsOutlinedFunction(
1270       CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen);
1271 }
1272 
emitTeamsOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)1273 llvm::Function *CGOpenMPRuntime::emitTeamsOutlinedFunction(
1274     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1275     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1276   const CapturedStmt *CS = D.getCapturedStmt(OMPD_teams);
1277   return emitParallelOrTeamsOutlinedFunction(
1278       CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen);
1279 }
1280 
emitTaskOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,const VarDecl * PartIDVar,const VarDecl * TaskTVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen,bool Tied,unsigned & NumberOfParts)1281 llvm::Function *CGOpenMPRuntime::emitTaskOutlinedFunction(
1282     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1283     const VarDecl *PartIDVar, const VarDecl *TaskTVar,
1284     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
1285     bool Tied, unsigned &NumberOfParts) {
1286   auto &&UntiedCodeGen = [this, &D, TaskTVar](CodeGenFunction &CGF,
1287                                               PrePostActionTy &) {
1288     llvm::Value *ThreadID = getThreadID(CGF, D.getBeginLoc());
1289     llvm::Value *UpLoc = emitUpdateLocation(CGF, D.getBeginLoc());
1290     llvm::Value *TaskArgs[] = {
1291         UpLoc, ThreadID,
1292         CGF.EmitLoadOfPointerLValue(CGF.GetAddrOfLocalVar(TaskTVar),
1293                                     TaskTVar->getType()->castAs<PointerType>())
1294             .getPointer(CGF)};
1295     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1296                             CGM.getModule(), OMPRTL___kmpc_omp_task),
1297                         TaskArgs);
1298   };
1299   CGOpenMPTaskOutlinedRegionInfo::UntiedTaskActionTy Action(Tied, PartIDVar,
1300                                                             UntiedCodeGen);
1301   CodeGen.setAction(Action);
1302   assert(!ThreadIDVar->getType()->isPointerType() &&
1303          "thread id variable must be of type kmp_int32 for tasks");
1304   const OpenMPDirectiveKind Region =
1305       isOpenMPTaskLoopDirective(D.getDirectiveKind()) ? OMPD_taskloop
1306                                                       : OMPD_task;
1307   const CapturedStmt *CS = D.getCapturedStmt(Region);
1308   bool HasCancel = false;
1309   if (const auto *TD = dyn_cast<OMPTaskDirective>(&D))
1310     HasCancel = TD->hasCancel();
1311   else if (const auto *TD = dyn_cast<OMPTaskLoopDirective>(&D))
1312     HasCancel = TD->hasCancel();
1313   else if (const auto *TD = dyn_cast<OMPMasterTaskLoopDirective>(&D))
1314     HasCancel = TD->hasCancel();
1315   else if (const auto *TD = dyn_cast<OMPParallelMasterTaskLoopDirective>(&D))
1316     HasCancel = TD->hasCancel();
1317 
1318   CodeGenFunction CGF(CGM, true);
1319   CGOpenMPTaskOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen,
1320                                         InnermostKind, HasCancel, Action);
1321   CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
1322   llvm::Function *Res = CGF.GenerateCapturedStmtFunction(*CS);
1323   if (!Tied)
1324     NumberOfParts = Action.getNumberOfParts();
1325   return Res;
1326 }
1327 
setLocThreadIdInsertPt(CodeGenFunction & CGF,bool AtCurrentPoint)1328 void CGOpenMPRuntime::setLocThreadIdInsertPt(CodeGenFunction &CGF,
1329                                              bool AtCurrentPoint) {
1330   auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1331   assert(!Elem.second.ServiceInsertPt && "Insert point is set already.");
1332 
1333   llvm::Value *Undef = llvm::UndefValue::get(CGF.Int32Ty);
1334   if (AtCurrentPoint) {
1335     Elem.second.ServiceInsertPt = new llvm::BitCastInst(
1336         Undef, CGF.Int32Ty, "svcpt", CGF.Builder.GetInsertBlock());
1337   } else {
1338     Elem.second.ServiceInsertPt =
1339         new llvm::BitCastInst(Undef, CGF.Int32Ty, "svcpt");
1340     Elem.second.ServiceInsertPt->insertAfter(CGF.AllocaInsertPt);
1341   }
1342 }
1343 
clearLocThreadIdInsertPt(CodeGenFunction & CGF)1344 void CGOpenMPRuntime::clearLocThreadIdInsertPt(CodeGenFunction &CGF) {
1345   auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1346   if (Elem.second.ServiceInsertPt) {
1347     llvm::Instruction *Ptr = Elem.second.ServiceInsertPt;
1348     Elem.second.ServiceInsertPt = nullptr;
1349     Ptr->eraseFromParent();
1350   }
1351 }
1352 
getIdentStringFromSourceLocation(CodeGenFunction & CGF,SourceLocation Loc,SmallString<128> & Buffer)1353 static StringRef getIdentStringFromSourceLocation(CodeGenFunction &CGF,
1354                                                   SourceLocation Loc,
1355                                                   SmallString<128> &Buffer) {
1356   llvm::raw_svector_ostream OS(Buffer);
1357   // Build debug location
1358   PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc);
1359   OS << ";" << PLoc.getFilename() << ";";
1360   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CGF.CurFuncDecl))
1361     OS << FD->getQualifiedNameAsString();
1362   OS << ";" << PLoc.getLine() << ";" << PLoc.getColumn() << ";;";
1363   return OS.str();
1364 }
1365 
emitUpdateLocation(CodeGenFunction & CGF,SourceLocation Loc,unsigned Flags,bool EmitLoc)1366 llvm::Value *CGOpenMPRuntime::emitUpdateLocation(CodeGenFunction &CGF,
1367                                                  SourceLocation Loc,
1368                                                  unsigned Flags, bool EmitLoc) {
1369   uint32_t SrcLocStrSize;
1370   llvm::Constant *SrcLocStr;
1371   if ((!EmitLoc &&
1372        CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo) ||
1373       Loc.isInvalid()) {
1374     SrcLocStr = OMPBuilder.getOrCreateDefaultSrcLocStr(SrcLocStrSize);
1375   } else {
1376     std::string FunctionName;
1377     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CGF.CurFuncDecl))
1378       FunctionName = FD->getQualifiedNameAsString();
1379     PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc);
1380     const char *FileName = PLoc.getFilename();
1381     unsigned Line = PLoc.getLine();
1382     unsigned Column = PLoc.getColumn();
1383     SrcLocStr = OMPBuilder.getOrCreateSrcLocStr(FunctionName, FileName, Line,
1384                                                 Column, SrcLocStrSize);
1385   }
1386   unsigned Reserved2Flags = getDefaultLocationReserved2Flags();
1387   return OMPBuilder.getOrCreateIdent(
1388       SrcLocStr, SrcLocStrSize, llvm::omp::IdentFlag(Flags), Reserved2Flags);
1389 }
1390 
getThreadID(CodeGenFunction & CGF,SourceLocation Loc)1391 llvm::Value *CGOpenMPRuntime::getThreadID(CodeGenFunction &CGF,
1392                                           SourceLocation Loc) {
1393   assert(CGF.CurFn && "No function in current CodeGenFunction.");
1394   // If the OpenMPIRBuilder is used we need to use it for all thread id calls as
1395   // the clang invariants used below might be broken.
1396   if (CGM.getLangOpts().OpenMPIRBuilder) {
1397     SmallString<128> Buffer;
1398     OMPBuilder.updateToLocation(CGF.Builder.saveIP());
1399     uint32_t SrcLocStrSize;
1400     auto *SrcLocStr = OMPBuilder.getOrCreateSrcLocStr(
1401         getIdentStringFromSourceLocation(CGF, Loc, Buffer), SrcLocStrSize);
1402     return OMPBuilder.getOrCreateThreadID(
1403         OMPBuilder.getOrCreateIdent(SrcLocStr, SrcLocStrSize));
1404   }
1405 
1406   llvm::Value *ThreadID = nullptr;
1407   // Check whether we've already cached a load of the thread id in this
1408   // function.
1409   auto I = OpenMPLocThreadIDMap.find(CGF.CurFn);
1410   if (I != OpenMPLocThreadIDMap.end()) {
1411     ThreadID = I->second.ThreadID;
1412     if (ThreadID != nullptr)
1413       return ThreadID;
1414   }
1415   // If exceptions are enabled, do not use parameter to avoid possible crash.
1416   if (auto *OMPRegionInfo =
1417           dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
1418     if (OMPRegionInfo->getThreadIDVariable()) {
1419       // Check if this an outlined function with thread id passed as argument.
1420       LValue LVal = OMPRegionInfo->getThreadIDVariableLValue(CGF);
1421       llvm::BasicBlock *TopBlock = CGF.AllocaInsertPt->getParent();
1422       if (!CGF.EHStack.requiresLandingPad() || !CGF.getLangOpts().Exceptions ||
1423           !CGF.getLangOpts().CXXExceptions ||
1424           CGF.Builder.GetInsertBlock() == TopBlock ||
1425           !isa<llvm::Instruction>(LVal.getPointer(CGF)) ||
1426           cast<llvm::Instruction>(LVal.getPointer(CGF))->getParent() ==
1427               TopBlock ||
1428           cast<llvm::Instruction>(LVal.getPointer(CGF))->getParent() ==
1429               CGF.Builder.GetInsertBlock()) {
1430         ThreadID = CGF.EmitLoadOfScalar(LVal, Loc);
1431         // If value loaded in entry block, cache it and use it everywhere in
1432         // function.
1433         if (CGF.Builder.GetInsertBlock() == TopBlock) {
1434           auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1435           Elem.second.ThreadID = ThreadID;
1436         }
1437         return ThreadID;
1438       }
1439     }
1440   }
1441 
1442   // This is not an outlined function region - need to call __kmpc_int32
1443   // kmpc_global_thread_num(ident_t *loc).
1444   // Generate thread id value and cache this value for use across the
1445   // function.
1446   auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1447   if (!Elem.second.ServiceInsertPt)
1448     setLocThreadIdInsertPt(CGF);
1449   CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1450   CGF.Builder.SetInsertPoint(Elem.second.ServiceInsertPt);
1451   llvm::CallInst *Call = CGF.Builder.CreateCall(
1452       OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
1453                                             OMPRTL___kmpc_global_thread_num),
1454       emitUpdateLocation(CGF, Loc));
1455   Call->setCallingConv(CGF.getRuntimeCC());
1456   Elem.second.ThreadID = Call;
1457   return Call;
1458 }
1459 
functionFinished(CodeGenFunction & CGF)1460 void CGOpenMPRuntime::functionFinished(CodeGenFunction &CGF) {
1461   assert(CGF.CurFn && "No function in current CodeGenFunction.");
1462   if (OpenMPLocThreadIDMap.count(CGF.CurFn)) {
1463     clearLocThreadIdInsertPt(CGF);
1464     OpenMPLocThreadIDMap.erase(CGF.CurFn);
1465   }
1466   if (FunctionUDRMap.count(CGF.CurFn) > 0) {
1467     for(const auto *D : FunctionUDRMap[CGF.CurFn])
1468       UDRMap.erase(D);
1469     FunctionUDRMap.erase(CGF.CurFn);
1470   }
1471   auto I = FunctionUDMMap.find(CGF.CurFn);
1472   if (I != FunctionUDMMap.end()) {
1473     for(const auto *D : I->second)
1474       UDMMap.erase(D);
1475     FunctionUDMMap.erase(I);
1476   }
1477   LastprivateConditionalToTypes.erase(CGF.CurFn);
1478   FunctionToUntiedTaskStackMap.erase(CGF.CurFn);
1479 }
1480 
getIdentTyPointerTy()1481 llvm::Type *CGOpenMPRuntime::getIdentTyPointerTy() {
1482   return OMPBuilder.IdentPtr;
1483 }
1484 
getKmpc_MicroPointerTy()1485 llvm::Type *CGOpenMPRuntime::getKmpc_MicroPointerTy() {
1486   if (!Kmpc_MicroTy) {
1487     // Build void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...)
1488     llvm::Type *MicroParams[] = {llvm::PointerType::getUnqual(CGM.Int32Ty),
1489                                  llvm::PointerType::getUnqual(CGM.Int32Ty)};
1490     Kmpc_MicroTy = llvm::FunctionType::get(CGM.VoidTy, MicroParams, true);
1491   }
1492   return llvm::PointerType::getUnqual(Kmpc_MicroTy);
1493 }
1494 
1495 llvm::FunctionCallee
createForStaticInitFunction(unsigned IVSize,bool IVSigned,bool IsGPUDistribute)1496 CGOpenMPRuntime::createForStaticInitFunction(unsigned IVSize, bool IVSigned,
1497                                              bool IsGPUDistribute) {
1498   assert((IVSize == 32 || IVSize == 64) &&
1499          "IV size is not compatible with the omp runtime");
1500   StringRef Name;
1501   if (IsGPUDistribute)
1502     Name = IVSize == 32 ? (IVSigned ? "__kmpc_distribute_static_init_4"
1503                                     : "__kmpc_distribute_static_init_4u")
1504                         : (IVSigned ? "__kmpc_distribute_static_init_8"
1505                                     : "__kmpc_distribute_static_init_8u");
1506   else
1507     Name = IVSize == 32 ? (IVSigned ? "__kmpc_for_static_init_4"
1508                                     : "__kmpc_for_static_init_4u")
1509                         : (IVSigned ? "__kmpc_for_static_init_8"
1510                                     : "__kmpc_for_static_init_8u");
1511 
1512   llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
1513   auto *PtrTy = llvm::PointerType::getUnqual(ITy);
1514   llvm::Type *TypeParams[] = {
1515     getIdentTyPointerTy(),                     // loc
1516     CGM.Int32Ty,                               // tid
1517     CGM.Int32Ty,                               // schedtype
1518     llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
1519     PtrTy,                                     // p_lower
1520     PtrTy,                                     // p_upper
1521     PtrTy,                                     // p_stride
1522     ITy,                                       // incr
1523     ITy                                        // chunk
1524   };
1525   auto *FnTy =
1526       llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1527   return CGM.CreateRuntimeFunction(FnTy, Name);
1528 }
1529 
1530 llvm::FunctionCallee
createDispatchInitFunction(unsigned IVSize,bool IVSigned)1531 CGOpenMPRuntime::createDispatchInitFunction(unsigned IVSize, bool IVSigned) {
1532   assert((IVSize == 32 || IVSize == 64) &&
1533          "IV size is not compatible with the omp runtime");
1534   StringRef Name =
1535       IVSize == 32
1536           ? (IVSigned ? "__kmpc_dispatch_init_4" : "__kmpc_dispatch_init_4u")
1537           : (IVSigned ? "__kmpc_dispatch_init_8" : "__kmpc_dispatch_init_8u");
1538   llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
1539   llvm::Type *TypeParams[] = { getIdentTyPointerTy(), // loc
1540                                CGM.Int32Ty,           // tid
1541                                CGM.Int32Ty,           // schedtype
1542                                ITy,                   // lower
1543                                ITy,                   // upper
1544                                ITy,                   // stride
1545                                ITy                    // chunk
1546   };
1547   auto *FnTy =
1548       llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1549   return CGM.CreateRuntimeFunction(FnTy, Name);
1550 }
1551 
1552 llvm::FunctionCallee
createDispatchFiniFunction(unsigned IVSize,bool IVSigned)1553 CGOpenMPRuntime::createDispatchFiniFunction(unsigned IVSize, bool IVSigned) {
1554   assert((IVSize == 32 || IVSize == 64) &&
1555          "IV size is not compatible with the omp runtime");
1556   StringRef Name =
1557       IVSize == 32
1558           ? (IVSigned ? "__kmpc_dispatch_fini_4" : "__kmpc_dispatch_fini_4u")
1559           : (IVSigned ? "__kmpc_dispatch_fini_8" : "__kmpc_dispatch_fini_8u");
1560   llvm::Type *TypeParams[] = {
1561       getIdentTyPointerTy(), // loc
1562       CGM.Int32Ty,           // tid
1563   };
1564   auto *FnTy =
1565       llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1566   return CGM.CreateRuntimeFunction(FnTy, Name);
1567 }
1568 
1569 llvm::FunctionCallee
createDispatchNextFunction(unsigned IVSize,bool IVSigned)1570 CGOpenMPRuntime::createDispatchNextFunction(unsigned IVSize, bool IVSigned) {
1571   assert((IVSize == 32 || IVSize == 64) &&
1572          "IV size is not compatible with the omp runtime");
1573   StringRef Name =
1574       IVSize == 32
1575           ? (IVSigned ? "__kmpc_dispatch_next_4" : "__kmpc_dispatch_next_4u")
1576           : (IVSigned ? "__kmpc_dispatch_next_8" : "__kmpc_dispatch_next_8u");
1577   llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
1578   auto *PtrTy = llvm::PointerType::getUnqual(ITy);
1579   llvm::Type *TypeParams[] = {
1580     getIdentTyPointerTy(),                     // loc
1581     CGM.Int32Ty,                               // tid
1582     llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
1583     PtrTy,                                     // p_lower
1584     PtrTy,                                     // p_upper
1585     PtrTy                                      // p_stride
1586   };
1587   auto *FnTy =
1588       llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
1589   return CGM.CreateRuntimeFunction(FnTy, Name);
1590 }
1591 
1592 /// Obtain information that uniquely identifies a target entry. This
1593 /// consists of the file and device IDs as well as line number associated with
1594 /// the relevant entry source location.
1595 static llvm::TargetRegionEntryInfo
getTargetEntryUniqueInfo(ASTContext & C,SourceLocation Loc,StringRef ParentName="")1596 getTargetEntryUniqueInfo(ASTContext &C, SourceLocation Loc,
1597                          StringRef ParentName = "") {
1598   SourceManager &SM = C.getSourceManager();
1599 
1600   // The loc should be always valid and have a file ID (the user cannot use
1601   // #pragma directives in macros)
1602 
1603   assert(Loc.isValid() && "Source location is expected to be always valid.");
1604 
1605   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1606   assert(PLoc.isValid() && "Source location is expected to be always valid.");
1607 
1608   llvm::sys::fs::UniqueID ID;
1609   if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
1610     PLoc = SM.getPresumedLoc(Loc, /*UseLineDirectives=*/false);
1611     assert(PLoc.isValid() && "Source location is expected to be always valid.");
1612     if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
1613       SM.getDiagnostics().Report(diag::err_cannot_open_file)
1614           << PLoc.getFilename() << EC.message();
1615   }
1616 
1617   return llvm::TargetRegionEntryInfo(ParentName, ID.getDevice(), ID.getFile(),
1618                                      PLoc.getLine());
1619 }
1620 
getAddrOfDeclareTargetVar(const VarDecl * VD)1621 Address CGOpenMPRuntime::getAddrOfDeclareTargetVar(const VarDecl *VD) {
1622   if (CGM.getLangOpts().OpenMPSimd)
1623     return Address::invalid();
1624   std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
1625       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
1626   if (Res && (*Res == OMPDeclareTargetDeclAttr::MT_Link ||
1627               ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
1628                 *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
1629                HasRequiresUnifiedSharedMemory))) {
1630     SmallString<64> PtrName;
1631     {
1632       llvm::raw_svector_ostream OS(PtrName);
1633       OS << CGM.getMangledName(GlobalDecl(VD));
1634       if (!VD->isExternallyVisible()) {
1635         auto EntryInfo = getTargetEntryUniqueInfo(
1636             CGM.getContext(), VD->getCanonicalDecl()->getBeginLoc());
1637         OS << llvm::format("_%x", EntryInfo.FileID);
1638       }
1639       OS << "_decl_tgt_ref_ptr";
1640     }
1641     llvm::Value *Ptr = CGM.getModule().getNamedValue(PtrName);
1642     QualType PtrTy = CGM.getContext().getPointerType(VD->getType());
1643     llvm::Type *LlvmPtrTy = CGM.getTypes().ConvertTypeForMem(PtrTy);
1644     if (!Ptr) {
1645       Ptr = OMPBuilder.getOrCreateInternalVariable(LlvmPtrTy, PtrName);
1646 
1647       auto *GV = cast<llvm::GlobalVariable>(Ptr);
1648       GV->setLinkage(llvm::GlobalValue::WeakAnyLinkage);
1649 
1650       if (!CGM.getLangOpts().OpenMPIsDevice)
1651         GV->setInitializer(CGM.GetAddrOfGlobal(VD));
1652       registerTargetGlobalVariable(VD, cast<llvm::Constant>(Ptr));
1653     }
1654     return Address(Ptr, LlvmPtrTy, CGM.getContext().getDeclAlign(VD));
1655   }
1656   return Address::invalid();
1657 }
1658 
1659 llvm::Constant *
getOrCreateThreadPrivateCache(const VarDecl * VD)1660 CGOpenMPRuntime::getOrCreateThreadPrivateCache(const VarDecl *VD) {
1661   assert(!CGM.getLangOpts().OpenMPUseTLS ||
1662          !CGM.getContext().getTargetInfo().isTLSSupported());
1663   // Lookup the entry, lazily creating it if necessary.
1664   std::string Suffix = getName({"cache", ""});
1665   return OMPBuilder.getOrCreateInternalVariable(
1666       CGM.Int8PtrPtrTy, Twine(CGM.getMangledName(VD)).concat(Suffix).str());
1667 }
1668 
getAddrOfThreadPrivate(CodeGenFunction & CGF,const VarDecl * VD,Address VDAddr,SourceLocation Loc)1669 Address CGOpenMPRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF,
1670                                                 const VarDecl *VD,
1671                                                 Address VDAddr,
1672                                                 SourceLocation Loc) {
1673   if (CGM.getLangOpts().OpenMPUseTLS &&
1674       CGM.getContext().getTargetInfo().isTLSSupported())
1675     return VDAddr;
1676 
1677   llvm::Type *VarTy = VDAddr.getElementType();
1678   llvm::Value *Args[] = {
1679       emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
1680       CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.Int8PtrTy),
1681       CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)),
1682       getOrCreateThreadPrivateCache(VD)};
1683   return Address(
1684       CGF.EmitRuntimeCall(
1685           OMPBuilder.getOrCreateRuntimeFunction(
1686               CGM.getModule(), OMPRTL___kmpc_threadprivate_cached),
1687           Args),
1688       CGF.Int8Ty, VDAddr.getAlignment());
1689 }
1690 
emitThreadPrivateVarInit(CodeGenFunction & CGF,Address VDAddr,llvm::Value * Ctor,llvm::Value * CopyCtor,llvm::Value * Dtor,SourceLocation Loc)1691 void CGOpenMPRuntime::emitThreadPrivateVarInit(
1692     CodeGenFunction &CGF, Address VDAddr, llvm::Value *Ctor,
1693     llvm::Value *CopyCtor, llvm::Value *Dtor, SourceLocation Loc) {
1694   // Call kmp_int32 __kmpc_global_thread_num(&loc) to init OpenMP runtime
1695   // library.
1696   llvm::Value *OMPLoc = emitUpdateLocation(CGF, Loc);
1697   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1698                           CGM.getModule(), OMPRTL___kmpc_global_thread_num),
1699                       OMPLoc);
1700   // Call __kmpc_threadprivate_register(&loc, &var, ctor, cctor/*NULL*/, dtor)
1701   // to register constructor/destructor for variable.
1702   llvm::Value *Args[] = {
1703       OMPLoc, CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.VoidPtrTy),
1704       Ctor, CopyCtor, Dtor};
1705   CGF.EmitRuntimeCall(
1706       OMPBuilder.getOrCreateRuntimeFunction(
1707           CGM.getModule(), OMPRTL___kmpc_threadprivate_register),
1708       Args);
1709 }
1710 
emitThreadPrivateVarDefinition(const VarDecl * VD,Address VDAddr,SourceLocation Loc,bool PerformInit,CodeGenFunction * CGF)1711 llvm::Function *CGOpenMPRuntime::emitThreadPrivateVarDefinition(
1712     const VarDecl *VD, Address VDAddr, SourceLocation Loc,
1713     bool PerformInit, CodeGenFunction *CGF) {
1714   if (CGM.getLangOpts().OpenMPUseTLS &&
1715       CGM.getContext().getTargetInfo().isTLSSupported())
1716     return nullptr;
1717 
1718   VD = VD->getDefinition(CGM.getContext());
1719   if (VD && ThreadPrivateWithDefinition.insert(CGM.getMangledName(VD)).second) {
1720     QualType ASTTy = VD->getType();
1721 
1722     llvm::Value *Ctor = nullptr, *CopyCtor = nullptr, *Dtor = nullptr;
1723     const Expr *Init = VD->getAnyInitializer();
1724     if (CGM.getLangOpts().CPlusPlus && PerformInit) {
1725       // Generate function that re-emits the declaration's initializer into the
1726       // threadprivate copy of the variable VD
1727       CodeGenFunction CtorCGF(CGM);
1728       FunctionArgList Args;
1729       ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, Loc,
1730                             /*Id=*/nullptr, CGM.getContext().VoidPtrTy,
1731                             ImplicitParamDecl::Other);
1732       Args.push_back(&Dst);
1733 
1734       const auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(
1735           CGM.getContext().VoidPtrTy, Args);
1736       llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
1737       std::string Name = getName({"__kmpc_global_ctor_", ""});
1738       llvm::Function *Fn =
1739           CGM.CreateGlobalInitOrCleanUpFunction(FTy, Name, FI, Loc);
1740       CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidPtrTy, Fn, FI,
1741                             Args, Loc, Loc);
1742       llvm::Value *ArgVal = CtorCGF.EmitLoadOfScalar(
1743           CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
1744           CGM.getContext().VoidPtrTy, Dst.getLocation());
1745       Address Arg(ArgVal, CtorCGF.Int8Ty, VDAddr.getAlignment());
1746       Arg = CtorCGF.Builder.CreateElementBitCast(
1747           Arg, CtorCGF.ConvertTypeForMem(ASTTy));
1748       CtorCGF.EmitAnyExprToMem(Init, Arg, Init->getType().getQualifiers(),
1749                                /*IsInitializer=*/true);
1750       ArgVal = CtorCGF.EmitLoadOfScalar(
1751           CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
1752           CGM.getContext().VoidPtrTy, Dst.getLocation());
1753       CtorCGF.Builder.CreateStore(ArgVal, CtorCGF.ReturnValue);
1754       CtorCGF.FinishFunction();
1755       Ctor = Fn;
1756     }
1757     if (VD->getType().isDestructedType() != QualType::DK_none) {
1758       // Generate function that emits destructor call for the threadprivate copy
1759       // of the variable VD
1760       CodeGenFunction DtorCGF(CGM);
1761       FunctionArgList Args;
1762       ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, Loc,
1763                             /*Id=*/nullptr, CGM.getContext().VoidPtrTy,
1764                             ImplicitParamDecl::Other);
1765       Args.push_back(&Dst);
1766 
1767       const auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(
1768           CGM.getContext().VoidTy, Args);
1769       llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
1770       std::string Name = getName({"__kmpc_global_dtor_", ""});
1771       llvm::Function *Fn =
1772           CGM.CreateGlobalInitOrCleanUpFunction(FTy, Name, FI, Loc);
1773       auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF);
1774       DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI, Args,
1775                             Loc, Loc);
1776       // Create a scope with an artificial location for the body of this function.
1777       auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF);
1778       llvm::Value *ArgVal = DtorCGF.EmitLoadOfScalar(
1779           DtorCGF.GetAddrOfLocalVar(&Dst),
1780           /*Volatile=*/false, CGM.getContext().VoidPtrTy, Dst.getLocation());
1781       DtorCGF.emitDestroy(
1782           Address(ArgVal, DtorCGF.Int8Ty, VDAddr.getAlignment()), ASTTy,
1783           DtorCGF.getDestroyer(ASTTy.isDestructedType()),
1784           DtorCGF.needsEHCleanup(ASTTy.isDestructedType()));
1785       DtorCGF.FinishFunction();
1786       Dtor = Fn;
1787     }
1788     // Do not emit init function if it is not required.
1789     if (!Ctor && !Dtor)
1790       return nullptr;
1791 
1792     llvm::Type *CopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
1793     auto *CopyCtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CopyCtorTyArgs,
1794                                                /*isVarArg=*/false)
1795                            ->getPointerTo();
1796     // Copying constructor for the threadprivate variable.
1797     // Must be NULL - reserved by runtime, but currently it requires that this
1798     // parameter is always NULL. Otherwise it fires assertion.
1799     CopyCtor = llvm::Constant::getNullValue(CopyCtorTy);
1800     if (Ctor == nullptr) {
1801       auto *CtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy,
1802                                              /*isVarArg=*/false)
1803                          ->getPointerTo();
1804       Ctor = llvm::Constant::getNullValue(CtorTy);
1805     }
1806     if (Dtor == nullptr) {
1807       auto *DtorTy = llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy,
1808                                              /*isVarArg=*/false)
1809                          ->getPointerTo();
1810       Dtor = llvm::Constant::getNullValue(DtorTy);
1811     }
1812     if (!CGF) {
1813       auto *InitFunctionTy =
1814           llvm::FunctionType::get(CGM.VoidTy, /*isVarArg*/ false);
1815       std::string Name = getName({"__omp_threadprivate_init_", ""});
1816       llvm::Function *InitFunction = CGM.CreateGlobalInitOrCleanUpFunction(
1817           InitFunctionTy, Name, CGM.getTypes().arrangeNullaryFunction());
1818       CodeGenFunction InitCGF(CGM);
1819       FunctionArgList ArgList;
1820       InitCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, InitFunction,
1821                             CGM.getTypes().arrangeNullaryFunction(), ArgList,
1822                             Loc, Loc);
1823       emitThreadPrivateVarInit(InitCGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
1824       InitCGF.FinishFunction();
1825       return InitFunction;
1826     }
1827     emitThreadPrivateVarInit(*CGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
1828   }
1829   return nullptr;
1830 }
1831 
emitDeclareTargetVarDefinition(const VarDecl * VD,llvm::GlobalVariable * Addr,bool PerformInit)1832 bool CGOpenMPRuntime::emitDeclareTargetVarDefinition(const VarDecl *VD,
1833                                                      llvm::GlobalVariable *Addr,
1834                                                      bool PerformInit) {
1835   if (CGM.getLangOpts().OMPTargetTriples.empty() &&
1836       !CGM.getLangOpts().OpenMPIsDevice)
1837     return false;
1838   std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
1839       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
1840   if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_Link ||
1841       ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
1842         *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
1843        HasRequiresUnifiedSharedMemory))
1844     return CGM.getLangOpts().OpenMPIsDevice;
1845   VD = VD->getDefinition(CGM.getContext());
1846   assert(VD && "Unknown VarDecl");
1847 
1848   if (!DeclareTargetWithDefinition.insert(CGM.getMangledName(VD)).second)
1849     return CGM.getLangOpts().OpenMPIsDevice;
1850 
1851   QualType ASTTy = VD->getType();
1852   SourceLocation Loc = VD->getCanonicalDecl()->getBeginLoc();
1853 
1854   // Produce the unique prefix to identify the new target regions. We use
1855   // the source location of the variable declaration which we know to not
1856   // conflict with any target region.
1857   auto EntryInfo =
1858       getTargetEntryUniqueInfo(CGM.getContext(), Loc, VD->getName());
1859   SmallString<128> Buffer, Out;
1860   OffloadEntriesInfoManager.getTargetRegionEntryFnName(Buffer, EntryInfo);
1861 
1862   const Expr *Init = VD->getAnyInitializer();
1863   if (CGM.getLangOpts().CPlusPlus && PerformInit) {
1864     llvm::Constant *Ctor;
1865     llvm::Constant *ID;
1866     if (CGM.getLangOpts().OpenMPIsDevice) {
1867       // Generate function that re-emits the declaration's initializer into
1868       // the threadprivate copy of the variable VD
1869       CodeGenFunction CtorCGF(CGM);
1870 
1871       const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction();
1872       llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
1873       llvm::Function *Fn = CGM.CreateGlobalInitOrCleanUpFunction(
1874           FTy, Twine(Buffer, "_ctor"), FI, Loc, false,
1875           llvm::GlobalValue::WeakODRLinkage);
1876       Fn->setVisibility(llvm::GlobalValue::ProtectedVisibility);
1877       if (CGM.getTriple().isAMDGCN())
1878         Fn->setCallingConv(llvm::CallingConv::AMDGPU_KERNEL);
1879       auto NL = ApplyDebugLocation::CreateEmpty(CtorCGF);
1880       CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI,
1881                             FunctionArgList(), Loc, Loc);
1882       auto AL = ApplyDebugLocation::CreateArtificial(CtorCGF);
1883       llvm::Constant *AddrInAS0 = Addr;
1884       if (Addr->getAddressSpace() != 0)
1885         AddrInAS0 = llvm::ConstantExpr::getAddrSpaceCast(
1886             Addr, llvm::PointerType::getWithSamePointeeType(
1887                       cast<llvm::PointerType>(Addr->getType()), 0));
1888       CtorCGF.EmitAnyExprToMem(Init,
1889                                Address(AddrInAS0, Addr->getValueType(),
1890                                        CGM.getContext().getDeclAlign(VD)),
1891                                Init->getType().getQualifiers(),
1892                                /*IsInitializer=*/true);
1893       CtorCGF.FinishFunction();
1894       Ctor = Fn;
1895       ID = llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy);
1896     } else {
1897       Ctor = new llvm::GlobalVariable(
1898           CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
1899           llvm::GlobalValue::PrivateLinkage,
1900           llvm::Constant::getNullValue(CGM.Int8Ty), Twine(Buffer, "_ctor"));
1901       ID = Ctor;
1902     }
1903 
1904     // Register the information for the entry associated with the constructor.
1905     Out.clear();
1906     auto CtorEntryInfo = EntryInfo;
1907     CtorEntryInfo.ParentName = Twine(Buffer, "_ctor").toStringRef(Out);
1908     OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
1909         CtorEntryInfo, Ctor, ID,
1910         llvm::OffloadEntriesInfoManager::OMPTargetRegionEntryCtor);
1911   }
1912   if (VD->getType().isDestructedType() != QualType::DK_none) {
1913     llvm::Constant *Dtor;
1914     llvm::Constant *ID;
1915     if (CGM.getLangOpts().OpenMPIsDevice) {
1916       // Generate function that emits destructor call for the threadprivate
1917       // copy of the variable VD
1918       CodeGenFunction DtorCGF(CGM);
1919 
1920       const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction();
1921       llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
1922       llvm::Function *Fn = CGM.CreateGlobalInitOrCleanUpFunction(
1923           FTy, Twine(Buffer, "_dtor"), FI, Loc, false,
1924           llvm::GlobalValue::WeakODRLinkage);
1925       Fn->setVisibility(llvm::GlobalValue::ProtectedVisibility);
1926       if (CGM.getTriple().isAMDGCN())
1927         Fn->setCallingConv(llvm::CallingConv::AMDGPU_KERNEL);
1928       auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF);
1929       DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI,
1930                             FunctionArgList(), Loc, Loc);
1931       // Create a scope with an artificial location for the body of this
1932       // function.
1933       auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF);
1934       llvm::Constant *AddrInAS0 = Addr;
1935       if (Addr->getAddressSpace() != 0)
1936         AddrInAS0 = llvm::ConstantExpr::getAddrSpaceCast(
1937             Addr, llvm::PointerType::getWithSamePointeeType(
1938                       cast<llvm::PointerType>(Addr->getType()), 0));
1939       DtorCGF.emitDestroy(Address(AddrInAS0, Addr->getValueType(),
1940                                   CGM.getContext().getDeclAlign(VD)),
1941                           ASTTy, DtorCGF.getDestroyer(ASTTy.isDestructedType()),
1942                           DtorCGF.needsEHCleanup(ASTTy.isDestructedType()));
1943       DtorCGF.FinishFunction();
1944       Dtor = Fn;
1945       ID = llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy);
1946     } else {
1947       Dtor = new llvm::GlobalVariable(
1948           CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
1949           llvm::GlobalValue::PrivateLinkage,
1950           llvm::Constant::getNullValue(CGM.Int8Ty), Twine(Buffer, "_dtor"));
1951       ID = Dtor;
1952     }
1953     // Register the information for the entry associated with the destructor.
1954     Out.clear();
1955     auto DtorEntryInfo = EntryInfo;
1956     DtorEntryInfo.ParentName = Twine(Buffer, "_dtor").toStringRef(Out);
1957     OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
1958         DtorEntryInfo, Dtor, ID,
1959         llvm::OffloadEntriesInfoManager::OMPTargetRegionEntryDtor);
1960   }
1961   return CGM.getLangOpts().OpenMPIsDevice;
1962 }
1963 
getAddrOfArtificialThreadPrivate(CodeGenFunction & CGF,QualType VarType,StringRef Name)1964 Address CGOpenMPRuntime::getAddrOfArtificialThreadPrivate(CodeGenFunction &CGF,
1965                                                           QualType VarType,
1966                                                           StringRef Name) {
1967   std::string Suffix = getName({"artificial", ""});
1968   llvm::Type *VarLVType = CGF.ConvertTypeForMem(VarType);
1969   llvm::GlobalVariable *GAddr = OMPBuilder.getOrCreateInternalVariable(
1970       VarLVType, Twine(Name).concat(Suffix).str());
1971   if (CGM.getLangOpts().OpenMP && CGM.getLangOpts().OpenMPUseTLS &&
1972       CGM.getTarget().isTLSSupported()) {
1973     GAddr->setThreadLocal(/*Val=*/true);
1974     return Address(GAddr, GAddr->getValueType(),
1975                    CGM.getContext().getTypeAlignInChars(VarType));
1976   }
1977   std::string CacheSuffix = getName({"cache", ""});
1978   llvm::Value *Args[] = {
1979       emitUpdateLocation(CGF, SourceLocation()),
1980       getThreadID(CGF, SourceLocation()),
1981       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(GAddr, CGM.VoidPtrTy),
1982       CGF.Builder.CreateIntCast(CGF.getTypeSize(VarType), CGM.SizeTy,
1983                                 /*isSigned=*/false),
1984       OMPBuilder.getOrCreateInternalVariable(
1985           CGM.VoidPtrPtrTy,
1986           Twine(Name).concat(Suffix).concat(CacheSuffix).str())};
1987   return Address(
1988       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
1989           CGF.EmitRuntimeCall(
1990               OMPBuilder.getOrCreateRuntimeFunction(
1991                   CGM.getModule(), OMPRTL___kmpc_threadprivate_cached),
1992               Args),
1993           VarLVType->getPointerTo(/*AddrSpace=*/0)),
1994       VarLVType, CGM.getContext().getTypeAlignInChars(VarType));
1995 }
1996 
emitIfClause(CodeGenFunction & CGF,const Expr * Cond,const RegionCodeGenTy & ThenGen,const RegionCodeGenTy & ElseGen)1997 void CGOpenMPRuntime::emitIfClause(CodeGenFunction &CGF, const Expr *Cond,
1998                                    const RegionCodeGenTy &ThenGen,
1999                                    const RegionCodeGenTy &ElseGen) {
2000   CodeGenFunction::LexicalScope ConditionScope(CGF, Cond->getSourceRange());
2001 
2002   // If the condition constant folds and can be elided, try to avoid emitting
2003   // the condition and the dead arm of the if/else.
2004   bool CondConstant;
2005   if (CGF.ConstantFoldsToSimpleInteger(Cond, CondConstant)) {
2006     if (CondConstant)
2007       ThenGen(CGF);
2008     else
2009       ElseGen(CGF);
2010     return;
2011   }
2012 
2013   // Otherwise, the condition did not fold, or we couldn't elide it.  Just
2014   // emit the conditional branch.
2015   llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("omp_if.then");
2016   llvm::BasicBlock *ElseBlock = CGF.createBasicBlock("omp_if.else");
2017   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("omp_if.end");
2018   CGF.EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, /*TrueCount=*/0);
2019 
2020   // Emit the 'then' code.
2021   CGF.EmitBlock(ThenBlock);
2022   ThenGen(CGF);
2023   CGF.EmitBranch(ContBlock);
2024   // Emit the 'else' code if present.
2025   // There is no need to emit line number for unconditional branch.
2026   (void)ApplyDebugLocation::CreateEmpty(CGF);
2027   CGF.EmitBlock(ElseBlock);
2028   ElseGen(CGF);
2029   // There is no need to emit line number for unconditional branch.
2030   (void)ApplyDebugLocation::CreateEmpty(CGF);
2031   CGF.EmitBranch(ContBlock);
2032   // Emit the continuation block for code after the if.
2033   CGF.EmitBlock(ContBlock, /*IsFinished=*/true);
2034 }
2035 
emitParallelCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars,const Expr * IfCond,llvm::Value * NumThreads)2036 void CGOpenMPRuntime::emitParallelCall(CodeGenFunction &CGF, SourceLocation Loc,
2037                                        llvm::Function *OutlinedFn,
2038                                        ArrayRef<llvm::Value *> CapturedVars,
2039                                        const Expr *IfCond,
2040                                        llvm::Value *NumThreads) {
2041   if (!CGF.HaveInsertPoint())
2042     return;
2043   llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
2044   auto &M = CGM.getModule();
2045   auto &&ThenGen = [&M, OutlinedFn, CapturedVars, RTLoc,
2046                     this](CodeGenFunction &CGF, PrePostActionTy &) {
2047     // Build call __kmpc_fork_call(loc, n, microtask, var1, .., varn);
2048     CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
2049     llvm::Value *Args[] = {
2050         RTLoc,
2051         CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars
2052         CGF.Builder.CreateBitCast(OutlinedFn, RT.getKmpc_MicroPointerTy())};
2053     llvm::SmallVector<llvm::Value *, 16> RealArgs;
2054     RealArgs.append(std::begin(Args), std::end(Args));
2055     RealArgs.append(CapturedVars.begin(), CapturedVars.end());
2056 
2057     llvm::FunctionCallee RTLFn =
2058         OMPBuilder.getOrCreateRuntimeFunction(M, OMPRTL___kmpc_fork_call);
2059     CGF.EmitRuntimeCall(RTLFn, RealArgs);
2060   };
2061   auto &&ElseGen = [&M, OutlinedFn, CapturedVars, RTLoc, Loc,
2062                     this](CodeGenFunction &CGF, PrePostActionTy &) {
2063     CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
2064     llvm::Value *ThreadID = RT.getThreadID(CGF, Loc);
2065     // Build calls:
2066     // __kmpc_serialized_parallel(&Loc, GTid);
2067     llvm::Value *Args[] = {RTLoc, ThreadID};
2068     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2069                             M, OMPRTL___kmpc_serialized_parallel),
2070                         Args);
2071 
2072     // OutlinedFn(&GTid, &zero_bound, CapturedStruct);
2073     Address ThreadIDAddr = RT.emitThreadIDAddress(CGF, Loc);
2074     Address ZeroAddrBound =
2075         CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
2076                                          /*Name=*/".bound.zero.addr");
2077     CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddrBound);
2078     llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
2079     // ThreadId for serialized parallels is 0.
2080     OutlinedFnArgs.push_back(ThreadIDAddr.getPointer());
2081     OutlinedFnArgs.push_back(ZeroAddrBound.getPointer());
2082     OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
2083 
2084     // Ensure we do not inline the function. This is trivially true for the ones
2085     // passed to __kmpc_fork_call but the ones called in serialized regions
2086     // could be inlined. This is not a perfect but it is closer to the invariant
2087     // we want, namely, every data environment starts with a new function.
2088     // TODO: We should pass the if condition to the runtime function and do the
2089     //       handling there. Much cleaner code.
2090     OutlinedFn->removeFnAttr(llvm::Attribute::AlwaysInline);
2091     OutlinedFn->addFnAttr(llvm::Attribute::NoInline);
2092     RT.emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
2093 
2094     // __kmpc_end_serialized_parallel(&Loc, GTid);
2095     llvm::Value *EndArgs[] = {RT.emitUpdateLocation(CGF, Loc), ThreadID};
2096     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2097                             M, OMPRTL___kmpc_end_serialized_parallel),
2098                         EndArgs);
2099   };
2100   if (IfCond) {
2101     emitIfClause(CGF, IfCond, ThenGen, ElseGen);
2102   } else {
2103     RegionCodeGenTy ThenRCG(ThenGen);
2104     ThenRCG(CGF);
2105   }
2106 }
2107 
2108 // If we're inside an (outlined) parallel region, use the region info's
2109 // thread-ID variable (it is passed in a first argument of the outlined function
2110 // as "kmp_int32 *gtid"). Otherwise, if we're not inside parallel region, but in
2111 // regular serial code region, get thread ID by calling kmp_int32
2112 // kmpc_global_thread_num(ident_t *loc), stash this thread ID in a temporary and
2113 // return the address of that temp.
emitThreadIDAddress(CodeGenFunction & CGF,SourceLocation Loc)2114 Address CGOpenMPRuntime::emitThreadIDAddress(CodeGenFunction &CGF,
2115                                              SourceLocation Loc) {
2116   if (auto *OMPRegionInfo =
2117           dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
2118     if (OMPRegionInfo->getThreadIDVariable())
2119       return OMPRegionInfo->getThreadIDVariableLValue(CGF).getAddress(CGF);
2120 
2121   llvm::Value *ThreadID = getThreadID(CGF, Loc);
2122   QualType Int32Ty =
2123       CGF.getContext().getIntTypeForBitwidth(/*DestWidth*/ 32, /*Signed*/ true);
2124   Address ThreadIDTemp = CGF.CreateMemTemp(Int32Ty, /*Name*/ ".threadid_temp.");
2125   CGF.EmitStoreOfScalar(ThreadID,
2126                         CGF.MakeAddrLValue(ThreadIDTemp, Int32Ty));
2127 
2128   return ThreadIDTemp;
2129 }
2130 
getCriticalRegionLock(StringRef CriticalName)2131 llvm::Value *CGOpenMPRuntime::getCriticalRegionLock(StringRef CriticalName) {
2132   std::string Prefix = Twine("gomp_critical_user_", CriticalName).str();
2133   std::string Name = getName({Prefix, "var"});
2134   return OMPBuilder.getOrCreateInternalVariable(KmpCriticalNameTy, Name);
2135 }
2136 
2137 namespace {
2138 /// Common pre(post)-action for different OpenMP constructs.
2139 class CommonActionTy final : public PrePostActionTy {
2140   llvm::FunctionCallee EnterCallee;
2141   ArrayRef<llvm::Value *> EnterArgs;
2142   llvm::FunctionCallee ExitCallee;
2143   ArrayRef<llvm::Value *> ExitArgs;
2144   bool Conditional;
2145   llvm::BasicBlock *ContBlock = nullptr;
2146 
2147 public:
CommonActionTy(llvm::FunctionCallee EnterCallee,ArrayRef<llvm::Value * > EnterArgs,llvm::FunctionCallee ExitCallee,ArrayRef<llvm::Value * > ExitArgs,bool Conditional=false)2148   CommonActionTy(llvm::FunctionCallee EnterCallee,
2149                  ArrayRef<llvm::Value *> EnterArgs,
2150                  llvm::FunctionCallee ExitCallee,
2151                  ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false)
2152       : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
2153         ExitArgs(ExitArgs), Conditional(Conditional) {}
Enter(CodeGenFunction & CGF)2154   void Enter(CodeGenFunction &CGF) override {
2155     llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
2156     if (Conditional) {
2157       llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
2158       auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
2159       ContBlock = CGF.createBasicBlock("omp_if.end");
2160       // Generate the branch (If-stmt)
2161       CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
2162       CGF.EmitBlock(ThenBlock);
2163     }
2164   }
Done(CodeGenFunction & CGF)2165   void Done(CodeGenFunction &CGF) {
2166     // Emit the rest of blocks/branches
2167     CGF.EmitBranch(ContBlock);
2168     CGF.EmitBlock(ContBlock, true);
2169   }
Exit(CodeGenFunction & CGF)2170   void Exit(CodeGenFunction &CGF) override {
2171     CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
2172   }
2173 };
2174 } // anonymous namespace
2175 
emitCriticalRegion(CodeGenFunction & CGF,StringRef CriticalName,const RegionCodeGenTy & CriticalOpGen,SourceLocation Loc,const Expr * Hint)2176 void CGOpenMPRuntime::emitCriticalRegion(CodeGenFunction &CGF,
2177                                          StringRef CriticalName,
2178                                          const RegionCodeGenTy &CriticalOpGen,
2179                                          SourceLocation Loc, const Expr *Hint) {
2180   // __kmpc_critical[_with_hint](ident_t *, gtid, Lock[, hint]);
2181   // CriticalOpGen();
2182   // __kmpc_end_critical(ident_t *, gtid, Lock);
2183   // Prepare arguments and build a call to __kmpc_critical
2184   if (!CGF.HaveInsertPoint())
2185     return;
2186   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
2187                          getCriticalRegionLock(CriticalName)};
2188   llvm::SmallVector<llvm::Value *, 4> EnterArgs(std::begin(Args),
2189                                                 std::end(Args));
2190   if (Hint) {
2191     EnterArgs.push_back(CGF.Builder.CreateIntCast(
2192         CGF.EmitScalarExpr(Hint), CGM.Int32Ty, /*isSigned=*/false));
2193   }
2194   CommonActionTy Action(
2195       OMPBuilder.getOrCreateRuntimeFunction(
2196           CGM.getModule(),
2197           Hint ? OMPRTL___kmpc_critical_with_hint : OMPRTL___kmpc_critical),
2198       EnterArgs,
2199       OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
2200                                             OMPRTL___kmpc_end_critical),
2201       Args);
2202   CriticalOpGen.setAction(Action);
2203   emitInlinedDirective(CGF, OMPD_critical, CriticalOpGen);
2204 }
2205 
emitMasterRegion(CodeGenFunction & CGF,const RegionCodeGenTy & MasterOpGen,SourceLocation Loc)2206 void CGOpenMPRuntime::emitMasterRegion(CodeGenFunction &CGF,
2207                                        const RegionCodeGenTy &MasterOpGen,
2208                                        SourceLocation Loc) {
2209   if (!CGF.HaveInsertPoint())
2210     return;
2211   // if(__kmpc_master(ident_t *, gtid)) {
2212   //   MasterOpGen();
2213   //   __kmpc_end_master(ident_t *, gtid);
2214   // }
2215   // Prepare arguments and build a call to __kmpc_master
2216   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
2217   CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction(
2218                             CGM.getModule(), OMPRTL___kmpc_master),
2219                         Args,
2220                         OMPBuilder.getOrCreateRuntimeFunction(
2221                             CGM.getModule(), OMPRTL___kmpc_end_master),
2222                         Args,
2223                         /*Conditional=*/true);
2224   MasterOpGen.setAction(Action);
2225   emitInlinedDirective(CGF, OMPD_master, MasterOpGen);
2226   Action.Done(CGF);
2227 }
2228 
emitMaskedRegion(CodeGenFunction & CGF,const RegionCodeGenTy & MaskedOpGen,SourceLocation Loc,const Expr * Filter)2229 void CGOpenMPRuntime::emitMaskedRegion(CodeGenFunction &CGF,
2230                                        const RegionCodeGenTy &MaskedOpGen,
2231                                        SourceLocation Loc, const Expr *Filter) {
2232   if (!CGF.HaveInsertPoint())
2233     return;
2234   // if(__kmpc_masked(ident_t *, gtid, filter)) {
2235   //   MaskedOpGen();
2236   //   __kmpc_end_masked(iden_t *, gtid);
2237   // }
2238   // Prepare arguments and build a call to __kmpc_masked
2239   llvm::Value *FilterVal = Filter
2240                                ? CGF.EmitScalarExpr(Filter, CGF.Int32Ty)
2241                                : llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/0);
2242   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
2243                          FilterVal};
2244   llvm::Value *ArgsEnd[] = {emitUpdateLocation(CGF, Loc),
2245                             getThreadID(CGF, Loc)};
2246   CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction(
2247                             CGM.getModule(), OMPRTL___kmpc_masked),
2248                         Args,
2249                         OMPBuilder.getOrCreateRuntimeFunction(
2250                             CGM.getModule(), OMPRTL___kmpc_end_masked),
2251                         ArgsEnd,
2252                         /*Conditional=*/true);
2253   MaskedOpGen.setAction(Action);
2254   emitInlinedDirective(CGF, OMPD_masked, MaskedOpGen);
2255   Action.Done(CGF);
2256 }
2257 
emitTaskyieldCall(CodeGenFunction & CGF,SourceLocation Loc)2258 void CGOpenMPRuntime::emitTaskyieldCall(CodeGenFunction &CGF,
2259                                         SourceLocation Loc) {
2260   if (!CGF.HaveInsertPoint())
2261     return;
2262   if (CGF.CGM.getLangOpts().OpenMPIRBuilder) {
2263     OMPBuilder.createTaskyield(CGF.Builder);
2264   } else {
2265     // Build call __kmpc_omp_taskyield(loc, thread_id, 0);
2266     llvm::Value *Args[] = {
2267         emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
2268         llvm::ConstantInt::get(CGM.IntTy, /*V=*/0, /*isSigned=*/true)};
2269     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2270                             CGM.getModule(), OMPRTL___kmpc_omp_taskyield),
2271                         Args);
2272   }
2273 
2274   if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
2275     Region->emitUntiedSwitch(CGF);
2276 }
2277 
emitTaskgroupRegion(CodeGenFunction & CGF,const RegionCodeGenTy & TaskgroupOpGen,SourceLocation Loc)2278 void CGOpenMPRuntime::emitTaskgroupRegion(CodeGenFunction &CGF,
2279                                           const RegionCodeGenTy &TaskgroupOpGen,
2280                                           SourceLocation Loc) {
2281   if (!CGF.HaveInsertPoint())
2282     return;
2283   // __kmpc_taskgroup(ident_t *, gtid);
2284   // TaskgroupOpGen();
2285   // __kmpc_end_taskgroup(ident_t *, gtid);
2286   // Prepare arguments and build a call to __kmpc_taskgroup
2287   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
2288   CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction(
2289                             CGM.getModule(), OMPRTL___kmpc_taskgroup),
2290                         Args,
2291                         OMPBuilder.getOrCreateRuntimeFunction(
2292                             CGM.getModule(), OMPRTL___kmpc_end_taskgroup),
2293                         Args);
2294   TaskgroupOpGen.setAction(Action);
2295   emitInlinedDirective(CGF, OMPD_taskgroup, TaskgroupOpGen);
2296 }
2297 
2298 /// Given an array of pointers to variables, project the address of a
2299 /// given variable.
emitAddrOfVarFromArray(CodeGenFunction & CGF,Address Array,unsigned Index,const VarDecl * Var)2300 static Address emitAddrOfVarFromArray(CodeGenFunction &CGF, Address Array,
2301                                       unsigned Index, const VarDecl *Var) {
2302   // Pull out the pointer to the variable.
2303   Address PtrAddr = CGF.Builder.CreateConstArrayGEP(Array, Index);
2304   llvm::Value *Ptr = CGF.Builder.CreateLoad(PtrAddr);
2305 
2306   llvm::Type *ElemTy = CGF.ConvertTypeForMem(Var->getType());
2307   return Address(
2308       CGF.Builder.CreateBitCast(
2309           Ptr, ElemTy->getPointerTo(Ptr->getType()->getPointerAddressSpace())),
2310       ElemTy, CGF.getContext().getDeclAlign(Var));
2311 }
2312 
emitCopyprivateCopyFunction(CodeGenModule & CGM,llvm::Type * ArgsElemType,ArrayRef<const Expr * > CopyprivateVars,ArrayRef<const Expr * > DestExprs,ArrayRef<const Expr * > SrcExprs,ArrayRef<const Expr * > AssignmentOps,SourceLocation Loc)2313 static llvm::Value *emitCopyprivateCopyFunction(
2314     CodeGenModule &CGM, llvm::Type *ArgsElemType,
2315     ArrayRef<const Expr *> CopyprivateVars, ArrayRef<const Expr *> DestExprs,
2316     ArrayRef<const Expr *> SrcExprs, ArrayRef<const Expr *> AssignmentOps,
2317     SourceLocation Loc) {
2318   ASTContext &C = CGM.getContext();
2319   // void copy_func(void *LHSArg, void *RHSArg);
2320   FunctionArgList Args;
2321   ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
2322                            ImplicitParamDecl::Other);
2323   ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
2324                            ImplicitParamDecl::Other);
2325   Args.push_back(&LHSArg);
2326   Args.push_back(&RHSArg);
2327   const auto &CGFI =
2328       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2329   std::string Name =
2330       CGM.getOpenMPRuntime().getName({"omp", "copyprivate", "copy_func"});
2331   auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
2332                                     llvm::GlobalValue::InternalLinkage, Name,
2333                                     &CGM.getModule());
2334   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2335   Fn->setDoesNotRecurse();
2336   CodeGenFunction CGF(CGM);
2337   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2338   // Dest = (void*[n])(LHSArg);
2339   // Src = (void*[n])(RHSArg);
2340   Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2341                   CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
2342                   ArgsElemType->getPointerTo()),
2343               ArgsElemType, CGF.getPointerAlign());
2344   Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2345                   CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
2346                   ArgsElemType->getPointerTo()),
2347               ArgsElemType, CGF.getPointerAlign());
2348   // *(Type0*)Dst[0] = *(Type0*)Src[0];
2349   // *(Type1*)Dst[1] = *(Type1*)Src[1];
2350   // ...
2351   // *(Typen*)Dst[n] = *(Typen*)Src[n];
2352   for (unsigned I = 0, E = AssignmentOps.size(); I < E; ++I) {
2353     const auto *DestVar =
2354         cast<VarDecl>(cast<DeclRefExpr>(DestExprs[I])->getDecl());
2355     Address DestAddr = emitAddrOfVarFromArray(CGF, LHS, I, DestVar);
2356 
2357     const auto *SrcVar =
2358         cast<VarDecl>(cast<DeclRefExpr>(SrcExprs[I])->getDecl());
2359     Address SrcAddr = emitAddrOfVarFromArray(CGF, RHS, I, SrcVar);
2360 
2361     const auto *VD = cast<DeclRefExpr>(CopyprivateVars[I])->getDecl();
2362     QualType Type = VD->getType();
2363     CGF.EmitOMPCopy(Type, DestAddr, SrcAddr, DestVar, SrcVar, AssignmentOps[I]);
2364   }
2365   CGF.FinishFunction();
2366   return Fn;
2367 }
2368 
emitSingleRegion(CodeGenFunction & CGF,const RegionCodeGenTy & SingleOpGen,SourceLocation Loc,ArrayRef<const Expr * > CopyprivateVars,ArrayRef<const Expr * > SrcExprs,ArrayRef<const Expr * > DstExprs,ArrayRef<const Expr * > AssignmentOps)2369 void CGOpenMPRuntime::emitSingleRegion(CodeGenFunction &CGF,
2370                                        const RegionCodeGenTy &SingleOpGen,
2371                                        SourceLocation Loc,
2372                                        ArrayRef<const Expr *> CopyprivateVars,
2373                                        ArrayRef<const Expr *> SrcExprs,
2374                                        ArrayRef<const Expr *> DstExprs,
2375                                        ArrayRef<const Expr *> AssignmentOps) {
2376   if (!CGF.HaveInsertPoint())
2377     return;
2378   assert(CopyprivateVars.size() == SrcExprs.size() &&
2379          CopyprivateVars.size() == DstExprs.size() &&
2380          CopyprivateVars.size() == AssignmentOps.size());
2381   ASTContext &C = CGM.getContext();
2382   // int32 did_it = 0;
2383   // if(__kmpc_single(ident_t *, gtid)) {
2384   //   SingleOpGen();
2385   //   __kmpc_end_single(ident_t *, gtid);
2386   //   did_it = 1;
2387   // }
2388   // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
2389   // <copy_func>, did_it);
2390 
2391   Address DidIt = Address::invalid();
2392   if (!CopyprivateVars.empty()) {
2393     // int32 did_it = 0;
2394     QualType KmpInt32Ty =
2395         C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
2396     DidIt = CGF.CreateMemTemp(KmpInt32Ty, ".omp.copyprivate.did_it");
2397     CGF.Builder.CreateStore(CGF.Builder.getInt32(0), DidIt);
2398   }
2399   // Prepare arguments and build a call to __kmpc_single
2400   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
2401   CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction(
2402                             CGM.getModule(), OMPRTL___kmpc_single),
2403                         Args,
2404                         OMPBuilder.getOrCreateRuntimeFunction(
2405                             CGM.getModule(), OMPRTL___kmpc_end_single),
2406                         Args,
2407                         /*Conditional=*/true);
2408   SingleOpGen.setAction(Action);
2409   emitInlinedDirective(CGF, OMPD_single, SingleOpGen);
2410   if (DidIt.isValid()) {
2411     // did_it = 1;
2412     CGF.Builder.CreateStore(CGF.Builder.getInt32(1), DidIt);
2413   }
2414   Action.Done(CGF);
2415   // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
2416   // <copy_func>, did_it);
2417   if (DidIt.isValid()) {
2418     llvm::APInt ArraySize(/*unsigned int numBits=*/32, CopyprivateVars.size());
2419     QualType CopyprivateArrayTy = C.getConstantArrayType(
2420         C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal,
2421         /*IndexTypeQuals=*/0);
2422     // Create a list of all private variables for copyprivate.
2423     Address CopyprivateList =
2424         CGF.CreateMemTemp(CopyprivateArrayTy, ".omp.copyprivate.cpr_list");
2425     for (unsigned I = 0, E = CopyprivateVars.size(); I < E; ++I) {
2426       Address Elem = CGF.Builder.CreateConstArrayGEP(CopyprivateList, I);
2427       CGF.Builder.CreateStore(
2428           CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2429               CGF.EmitLValue(CopyprivateVars[I]).getPointer(CGF),
2430               CGF.VoidPtrTy),
2431           Elem);
2432     }
2433     // Build function that copies private values from single region to all other
2434     // threads in the corresponding parallel region.
2435     llvm::Value *CpyFn = emitCopyprivateCopyFunction(
2436         CGM, CGF.ConvertTypeForMem(CopyprivateArrayTy), CopyprivateVars,
2437         SrcExprs, DstExprs, AssignmentOps, Loc);
2438     llvm::Value *BufSize = CGF.getTypeSize(CopyprivateArrayTy);
2439     Address CL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2440         CopyprivateList, CGF.VoidPtrTy, CGF.Int8Ty);
2441     llvm::Value *DidItVal = CGF.Builder.CreateLoad(DidIt);
2442     llvm::Value *Args[] = {
2443         emitUpdateLocation(CGF, Loc), // ident_t *<loc>
2444         getThreadID(CGF, Loc),        // i32 <gtid>
2445         BufSize,                      // size_t <buf_size>
2446         CL.getPointer(),              // void *<copyprivate list>
2447         CpyFn,                        // void (*) (void *, void *) <copy_func>
2448         DidItVal                      // i32 did_it
2449     };
2450     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2451                             CGM.getModule(), OMPRTL___kmpc_copyprivate),
2452                         Args);
2453   }
2454 }
2455 
emitOrderedRegion(CodeGenFunction & CGF,const RegionCodeGenTy & OrderedOpGen,SourceLocation Loc,bool IsThreads)2456 void CGOpenMPRuntime::emitOrderedRegion(CodeGenFunction &CGF,
2457                                         const RegionCodeGenTy &OrderedOpGen,
2458                                         SourceLocation Loc, bool IsThreads) {
2459   if (!CGF.HaveInsertPoint())
2460     return;
2461   // __kmpc_ordered(ident_t *, gtid);
2462   // OrderedOpGen();
2463   // __kmpc_end_ordered(ident_t *, gtid);
2464   // Prepare arguments and build a call to __kmpc_ordered
2465   if (IsThreads) {
2466     llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
2467     CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction(
2468                               CGM.getModule(), OMPRTL___kmpc_ordered),
2469                           Args,
2470                           OMPBuilder.getOrCreateRuntimeFunction(
2471                               CGM.getModule(), OMPRTL___kmpc_end_ordered),
2472                           Args);
2473     OrderedOpGen.setAction(Action);
2474     emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen);
2475     return;
2476   }
2477   emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen);
2478 }
2479 
getDefaultFlagsForBarriers(OpenMPDirectiveKind Kind)2480 unsigned CGOpenMPRuntime::getDefaultFlagsForBarriers(OpenMPDirectiveKind Kind) {
2481   unsigned Flags;
2482   if (Kind == OMPD_for)
2483     Flags = OMP_IDENT_BARRIER_IMPL_FOR;
2484   else if (Kind == OMPD_sections)
2485     Flags = OMP_IDENT_BARRIER_IMPL_SECTIONS;
2486   else if (Kind == OMPD_single)
2487     Flags = OMP_IDENT_BARRIER_IMPL_SINGLE;
2488   else if (Kind == OMPD_barrier)
2489     Flags = OMP_IDENT_BARRIER_EXPL;
2490   else
2491     Flags = OMP_IDENT_BARRIER_IMPL;
2492   return Flags;
2493 }
2494 
getDefaultScheduleAndChunk(CodeGenFunction & CGF,const OMPLoopDirective & S,OpenMPScheduleClauseKind & ScheduleKind,const Expr * & ChunkExpr) const2495 void CGOpenMPRuntime::getDefaultScheduleAndChunk(
2496     CodeGenFunction &CGF, const OMPLoopDirective &S,
2497     OpenMPScheduleClauseKind &ScheduleKind, const Expr *&ChunkExpr) const {
2498   // Check if the loop directive is actually a doacross loop directive. In this
2499   // case choose static, 1 schedule.
2500   if (llvm::any_of(
2501           S.getClausesOfKind<OMPOrderedClause>(),
2502           [](const OMPOrderedClause *C) { return C->getNumForLoops(); })) {
2503     ScheduleKind = OMPC_SCHEDULE_static;
2504     // Chunk size is 1 in this case.
2505     llvm::APInt ChunkSize(32, 1);
2506     ChunkExpr = IntegerLiteral::Create(
2507         CGF.getContext(), ChunkSize,
2508         CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
2509         SourceLocation());
2510   }
2511 }
2512 
emitBarrierCall(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind Kind,bool EmitChecks,bool ForceSimpleCall)2513 void CGOpenMPRuntime::emitBarrierCall(CodeGenFunction &CGF, SourceLocation Loc,
2514                                       OpenMPDirectiveKind Kind, bool EmitChecks,
2515                                       bool ForceSimpleCall) {
2516   // Check if we should use the OMPBuilder
2517   auto *OMPRegionInfo =
2518       dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo);
2519   if (CGF.CGM.getLangOpts().OpenMPIRBuilder) {
2520     CGF.Builder.restoreIP(OMPBuilder.createBarrier(
2521         CGF.Builder, Kind, ForceSimpleCall, EmitChecks));
2522     return;
2523   }
2524 
2525   if (!CGF.HaveInsertPoint())
2526     return;
2527   // Build call __kmpc_cancel_barrier(loc, thread_id);
2528   // Build call __kmpc_barrier(loc, thread_id);
2529   unsigned Flags = getDefaultFlagsForBarriers(Kind);
2530   // Build call __kmpc_cancel_barrier(loc, thread_id) or __kmpc_barrier(loc,
2531   // thread_id);
2532   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
2533                          getThreadID(CGF, Loc)};
2534   if (OMPRegionInfo) {
2535     if (!ForceSimpleCall && OMPRegionInfo->hasCancel()) {
2536       llvm::Value *Result = CGF.EmitRuntimeCall(
2537           OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
2538                                                 OMPRTL___kmpc_cancel_barrier),
2539           Args);
2540       if (EmitChecks) {
2541         // if (__kmpc_cancel_barrier()) {
2542         //   exit from construct;
2543         // }
2544         llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
2545         llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
2546         llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
2547         CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
2548         CGF.EmitBlock(ExitBB);
2549         //   exit from construct;
2550         CodeGenFunction::JumpDest CancelDestination =
2551             CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
2552         CGF.EmitBranchThroughCleanup(CancelDestination);
2553         CGF.EmitBlock(ContBB, /*IsFinished=*/true);
2554       }
2555       return;
2556     }
2557   }
2558   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2559                           CGM.getModule(), OMPRTL___kmpc_barrier),
2560                       Args);
2561 }
2562 
emitErrorCall(CodeGenFunction & CGF,SourceLocation Loc,Expr * ME,bool IsFatal)2563 void CGOpenMPRuntime::emitErrorCall(CodeGenFunction &CGF, SourceLocation Loc,
2564                                     Expr *ME, bool IsFatal) {
2565   llvm::Value *MVL =
2566       ME ? CGF.EmitStringLiteralLValue(cast<StringLiteral>(ME)).getPointer(CGF)
2567          : llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
2568   // Build call void __kmpc_error(ident_t *loc, int severity, const char
2569   // *message)
2570   llvm::Value *Args[] = {
2571       emitUpdateLocation(CGF, Loc, /*Flags=*/0, /*GenLoc=*/true),
2572       llvm::ConstantInt::get(CGM.Int32Ty, IsFatal ? 2 : 1),
2573       CGF.Builder.CreatePointerCast(MVL, CGM.Int8PtrTy)};
2574   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2575                           CGM.getModule(), OMPRTL___kmpc_error),
2576                       Args);
2577 }
2578 
2579 /// Map the OpenMP loop schedule to the runtime enumeration.
getRuntimeSchedule(OpenMPScheduleClauseKind ScheduleKind,bool Chunked,bool Ordered)2580 static OpenMPSchedType getRuntimeSchedule(OpenMPScheduleClauseKind ScheduleKind,
2581                                           bool Chunked, bool Ordered) {
2582   switch (ScheduleKind) {
2583   case OMPC_SCHEDULE_static:
2584     return Chunked ? (Ordered ? OMP_ord_static_chunked : OMP_sch_static_chunked)
2585                    : (Ordered ? OMP_ord_static : OMP_sch_static);
2586   case OMPC_SCHEDULE_dynamic:
2587     return Ordered ? OMP_ord_dynamic_chunked : OMP_sch_dynamic_chunked;
2588   case OMPC_SCHEDULE_guided:
2589     return Ordered ? OMP_ord_guided_chunked : OMP_sch_guided_chunked;
2590   case OMPC_SCHEDULE_runtime:
2591     return Ordered ? OMP_ord_runtime : OMP_sch_runtime;
2592   case OMPC_SCHEDULE_auto:
2593     return Ordered ? OMP_ord_auto : OMP_sch_auto;
2594   case OMPC_SCHEDULE_unknown:
2595     assert(!Chunked && "chunk was specified but schedule kind not known");
2596     return Ordered ? OMP_ord_static : OMP_sch_static;
2597   }
2598   llvm_unreachable("Unexpected runtime schedule");
2599 }
2600 
2601 /// Map the OpenMP distribute schedule to the runtime enumeration.
2602 static OpenMPSchedType
getRuntimeSchedule(OpenMPDistScheduleClauseKind ScheduleKind,bool Chunked)2603 getRuntimeSchedule(OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) {
2604   // only static is allowed for dist_schedule
2605   return Chunked ? OMP_dist_sch_static_chunked : OMP_dist_sch_static;
2606 }
2607 
isStaticNonchunked(OpenMPScheduleClauseKind ScheduleKind,bool Chunked) const2608 bool CGOpenMPRuntime::isStaticNonchunked(OpenMPScheduleClauseKind ScheduleKind,
2609                                          bool Chunked) const {
2610   OpenMPSchedType Schedule =
2611       getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false);
2612   return Schedule == OMP_sch_static;
2613 }
2614 
isStaticNonchunked(OpenMPDistScheduleClauseKind ScheduleKind,bool Chunked) const2615 bool CGOpenMPRuntime::isStaticNonchunked(
2616     OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const {
2617   OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked);
2618   return Schedule == OMP_dist_sch_static;
2619 }
2620 
isStaticChunked(OpenMPScheduleClauseKind ScheduleKind,bool Chunked) const2621 bool CGOpenMPRuntime::isStaticChunked(OpenMPScheduleClauseKind ScheduleKind,
2622                                       bool Chunked) const {
2623   OpenMPSchedType Schedule =
2624       getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false);
2625   return Schedule == OMP_sch_static_chunked;
2626 }
2627 
isStaticChunked(OpenMPDistScheduleClauseKind ScheduleKind,bool Chunked) const2628 bool CGOpenMPRuntime::isStaticChunked(
2629     OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const {
2630   OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked);
2631   return Schedule == OMP_dist_sch_static_chunked;
2632 }
2633 
isDynamic(OpenMPScheduleClauseKind ScheduleKind) const2634 bool CGOpenMPRuntime::isDynamic(OpenMPScheduleClauseKind ScheduleKind) const {
2635   OpenMPSchedType Schedule =
2636       getRuntimeSchedule(ScheduleKind, /*Chunked=*/false, /*Ordered=*/false);
2637   assert(Schedule != OMP_sch_static_chunked && "cannot be chunked here");
2638   return Schedule != OMP_sch_static;
2639 }
2640 
addMonoNonMonoModifier(CodeGenModule & CGM,OpenMPSchedType Schedule,OpenMPScheduleClauseModifier M1,OpenMPScheduleClauseModifier M2)2641 static int addMonoNonMonoModifier(CodeGenModule &CGM, OpenMPSchedType Schedule,
2642                                   OpenMPScheduleClauseModifier M1,
2643                                   OpenMPScheduleClauseModifier M2) {
2644   int Modifier = 0;
2645   switch (M1) {
2646   case OMPC_SCHEDULE_MODIFIER_monotonic:
2647     Modifier = OMP_sch_modifier_monotonic;
2648     break;
2649   case OMPC_SCHEDULE_MODIFIER_nonmonotonic:
2650     Modifier = OMP_sch_modifier_nonmonotonic;
2651     break;
2652   case OMPC_SCHEDULE_MODIFIER_simd:
2653     if (Schedule == OMP_sch_static_chunked)
2654       Schedule = OMP_sch_static_balanced_chunked;
2655     break;
2656   case OMPC_SCHEDULE_MODIFIER_last:
2657   case OMPC_SCHEDULE_MODIFIER_unknown:
2658     break;
2659   }
2660   switch (M2) {
2661   case OMPC_SCHEDULE_MODIFIER_monotonic:
2662     Modifier = OMP_sch_modifier_monotonic;
2663     break;
2664   case OMPC_SCHEDULE_MODIFIER_nonmonotonic:
2665     Modifier = OMP_sch_modifier_nonmonotonic;
2666     break;
2667   case OMPC_SCHEDULE_MODIFIER_simd:
2668     if (Schedule == OMP_sch_static_chunked)
2669       Schedule = OMP_sch_static_balanced_chunked;
2670     break;
2671   case OMPC_SCHEDULE_MODIFIER_last:
2672   case OMPC_SCHEDULE_MODIFIER_unknown:
2673     break;
2674   }
2675   // OpenMP 5.0, 2.9.2 Worksharing-Loop Construct, Desription.
2676   // If the static schedule kind is specified or if the ordered clause is
2677   // specified, and if the nonmonotonic modifier is not specified, the effect is
2678   // as if the monotonic modifier is specified. Otherwise, unless the monotonic
2679   // modifier is specified, the effect is as if the nonmonotonic modifier is
2680   // specified.
2681   if (CGM.getLangOpts().OpenMP >= 50 && Modifier == 0) {
2682     if (!(Schedule == OMP_sch_static_chunked || Schedule == OMP_sch_static ||
2683           Schedule == OMP_sch_static_balanced_chunked ||
2684           Schedule == OMP_ord_static_chunked || Schedule == OMP_ord_static ||
2685           Schedule == OMP_dist_sch_static_chunked ||
2686           Schedule == OMP_dist_sch_static))
2687       Modifier = OMP_sch_modifier_nonmonotonic;
2688   }
2689   return Schedule | Modifier;
2690 }
2691 
emitForDispatchInit(CodeGenFunction & CGF,SourceLocation Loc,const OpenMPScheduleTy & ScheduleKind,unsigned IVSize,bool IVSigned,bool Ordered,const DispatchRTInput & DispatchValues)2692 void CGOpenMPRuntime::emitForDispatchInit(
2693     CodeGenFunction &CGF, SourceLocation Loc,
2694     const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned,
2695     bool Ordered, const DispatchRTInput &DispatchValues) {
2696   if (!CGF.HaveInsertPoint())
2697     return;
2698   OpenMPSchedType Schedule = getRuntimeSchedule(
2699       ScheduleKind.Schedule, DispatchValues.Chunk != nullptr, Ordered);
2700   assert(Ordered ||
2701          (Schedule != OMP_sch_static && Schedule != OMP_sch_static_chunked &&
2702           Schedule != OMP_ord_static && Schedule != OMP_ord_static_chunked &&
2703           Schedule != OMP_sch_static_balanced_chunked));
2704   // Call __kmpc_dispatch_init(
2705   //          ident_t *loc, kmp_int32 tid, kmp_int32 schedule,
2706   //          kmp_int[32|64] lower, kmp_int[32|64] upper,
2707   //          kmp_int[32|64] stride, kmp_int[32|64] chunk);
2708 
2709   // If the Chunk was not specified in the clause - use default value 1.
2710   llvm::Value *Chunk = DispatchValues.Chunk ? DispatchValues.Chunk
2711                                             : CGF.Builder.getIntN(IVSize, 1);
2712   llvm::Value *Args[] = {
2713       emitUpdateLocation(CGF, Loc),
2714       getThreadID(CGF, Loc),
2715       CGF.Builder.getInt32(addMonoNonMonoModifier(
2716           CGM, Schedule, ScheduleKind.M1, ScheduleKind.M2)), // Schedule type
2717       DispatchValues.LB,                                     // Lower
2718       DispatchValues.UB,                                     // Upper
2719       CGF.Builder.getIntN(IVSize, 1),                        // Stride
2720       Chunk                                                  // Chunk
2721   };
2722   CGF.EmitRuntimeCall(createDispatchInitFunction(IVSize, IVSigned), Args);
2723 }
2724 
emitForStaticInitCall(CodeGenFunction & CGF,llvm::Value * UpdateLocation,llvm::Value * ThreadId,llvm::FunctionCallee ForStaticInitFunction,OpenMPSchedType Schedule,OpenMPScheduleClauseModifier M1,OpenMPScheduleClauseModifier M2,const CGOpenMPRuntime::StaticRTInput & Values)2725 static void emitForStaticInitCall(
2726     CodeGenFunction &CGF, llvm::Value *UpdateLocation, llvm::Value *ThreadId,
2727     llvm::FunctionCallee ForStaticInitFunction, OpenMPSchedType Schedule,
2728     OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2,
2729     const CGOpenMPRuntime::StaticRTInput &Values) {
2730   if (!CGF.HaveInsertPoint())
2731     return;
2732 
2733   assert(!Values.Ordered);
2734   assert(Schedule == OMP_sch_static || Schedule == OMP_sch_static_chunked ||
2735          Schedule == OMP_sch_static_balanced_chunked ||
2736          Schedule == OMP_ord_static || Schedule == OMP_ord_static_chunked ||
2737          Schedule == OMP_dist_sch_static ||
2738          Schedule == OMP_dist_sch_static_chunked);
2739 
2740   // Call __kmpc_for_static_init(
2741   //          ident_t *loc, kmp_int32 tid, kmp_int32 schedtype,
2742   //          kmp_int32 *p_lastiter, kmp_int[32|64] *p_lower,
2743   //          kmp_int[32|64] *p_upper, kmp_int[32|64] *p_stride,
2744   //          kmp_int[32|64] incr, kmp_int[32|64] chunk);
2745   llvm::Value *Chunk = Values.Chunk;
2746   if (Chunk == nullptr) {
2747     assert((Schedule == OMP_sch_static || Schedule == OMP_ord_static ||
2748             Schedule == OMP_dist_sch_static) &&
2749            "expected static non-chunked schedule");
2750     // If the Chunk was not specified in the clause - use default value 1.
2751     Chunk = CGF.Builder.getIntN(Values.IVSize, 1);
2752   } else {
2753     assert((Schedule == OMP_sch_static_chunked ||
2754             Schedule == OMP_sch_static_balanced_chunked ||
2755             Schedule == OMP_ord_static_chunked ||
2756             Schedule == OMP_dist_sch_static_chunked) &&
2757            "expected static chunked schedule");
2758   }
2759   llvm::Value *Args[] = {
2760       UpdateLocation,
2761       ThreadId,
2762       CGF.Builder.getInt32(addMonoNonMonoModifier(CGF.CGM, Schedule, M1,
2763                                                   M2)), // Schedule type
2764       Values.IL.getPointer(),                           // &isLastIter
2765       Values.LB.getPointer(),                           // &LB
2766       Values.UB.getPointer(),                           // &UB
2767       Values.ST.getPointer(),                           // &Stride
2768       CGF.Builder.getIntN(Values.IVSize, 1),            // Incr
2769       Chunk                                             // Chunk
2770   };
2771   CGF.EmitRuntimeCall(ForStaticInitFunction, Args);
2772 }
2773 
emitForStaticInit(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind DKind,const OpenMPScheduleTy & ScheduleKind,const StaticRTInput & Values)2774 void CGOpenMPRuntime::emitForStaticInit(CodeGenFunction &CGF,
2775                                         SourceLocation Loc,
2776                                         OpenMPDirectiveKind DKind,
2777                                         const OpenMPScheduleTy &ScheduleKind,
2778                                         const StaticRTInput &Values) {
2779   OpenMPSchedType ScheduleNum = getRuntimeSchedule(
2780       ScheduleKind.Schedule, Values.Chunk != nullptr, Values.Ordered);
2781   assert(isOpenMPWorksharingDirective(DKind) &&
2782          "Expected loop-based or sections-based directive.");
2783   llvm::Value *UpdatedLocation = emitUpdateLocation(CGF, Loc,
2784                                              isOpenMPLoopDirective(DKind)
2785                                                  ? OMP_IDENT_WORK_LOOP
2786                                                  : OMP_IDENT_WORK_SECTIONS);
2787   llvm::Value *ThreadId = getThreadID(CGF, Loc);
2788   llvm::FunctionCallee StaticInitFunction =
2789       createForStaticInitFunction(Values.IVSize, Values.IVSigned, false);
2790   auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc);
2791   emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction,
2792                         ScheduleNum, ScheduleKind.M1, ScheduleKind.M2, Values);
2793 }
2794 
emitDistributeStaticInit(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDistScheduleClauseKind SchedKind,const CGOpenMPRuntime::StaticRTInput & Values)2795 void CGOpenMPRuntime::emitDistributeStaticInit(
2796     CodeGenFunction &CGF, SourceLocation Loc,
2797     OpenMPDistScheduleClauseKind SchedKind,
2798     const CGOpenMPRuntime::StaticRTInput &Values) {
2799   OpenMPSchedType ScheduleNum =
2800       getRuntimeSchedule(SchedKind, Values.Chunk != nullptr);
2801   llvm::Value *UpdatedLocation =
2802       emitUpdateLocation(CGF, Loc, OMP_IDENT_WORK_DISTRIBUTE);
2803   llvm::Value *ThreadId = getThreadID(CGF, Loc);
2804   llvm::FunctionCallee StaticInitFunction;
2805   bool isGPUDistribute =
2806       CGM.getLangOpts().OpenMPIsDevice &&
2807       (CGM.getTriple().isAMDGCN() || CGM.getTriple().isNVPTX());
2808   StaticInitFunction = createForStaticInitFunction(
2809       Values.IVSize, Values.IVSigned, isGPUDistribute);
2810 
2811   emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction,
2812                         ScheduleNum, OMPC_SCHEDULE_MODIFIER_unknown,
2813                         OMPC_SCHEDULE_MODIFIER_unknown, Values);
2814 }
2815 
emitForStaticFinish(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind DKind)2816 void CGOpenMPRuntime::emitForStaticFinish(CodeGenFunction &CGF,
2817                                           SourceLocation Loc,
2818                                           OpenMPDirectiveKind DKind) {
2819   if (!CGF.HaveInsertPoint())
2820     return;
2821   // Call __kmpc_for_static_fini(ident_t *loc, kmp_int32 tid);
2822   llvm::Value *Args[] = {
2823       emitUpdateLocation(CGF, Loc,
2824                          isOpenMPDistributeDirective(DKind)
2825                              ? OMP_IDENT_WORK_DISTRIBUTE
2826                              : isOpenMPLoopDirective(DKind)
2827                                    ? OMP_IDENT_WORK_LOOP
2828                                    : OMP_IDENT_WORK_SECTIONS),
2829       getThreadID(CGF, Loc)};
2830   auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc);
2831   if (isOpenMPDistributeDirective(DKind) && CGM.getLangOpts().OpenMPIsDevice &&
2832       (CGM.getTriple().isAMDGCN() || CGM.getTriple().isNVPTX()))
2833     CGF.EmitRuntimeCall(
2834         OMPBuilder.getOrCreateRuntimeFunction(
2835             CGM.getModule(), OMPRTL___kmpc_distribute_static_fini),
2836         Args);
2837   else
2838     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2839                             CGM.getModule(), OMPRTL___kmpc_for_static_fini),
2840                         Args);
2841 }
2842 
emitForOrderedIterationEnd(CodeGenFunction & CGF,SourceLocation Loc,unsigned IVSize,bool IVSigned)2843 void CGOpenMPRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF,
2844                                                  SourceLocation Loc,
2845                                                  unsigned IVSize,
2846                                                  bool IVSigned) {
2847   if (!CGF.HaveInsertPoint())
2848     return;
2849   // Call __kmpc_for_dynamic_fini_(4|8)[u](ident_t *loc, kmp_int32 tid);
2850   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
2851   CGF.EmitRuntimeCall(createDispatchFiniFunction(IVSize, IVSigned), Args);
2852 }
2853 
emitForNext(CodeGenFunction & CGF,SourceLocation Loc,unsigned IVSize,bool IVSigned,Address IL,Address LB,Address UB,Address ST)2854 llvm::Value *CGOpenMPRuntime::emitForNext(CodeGenFunction &CGF,
2855                                           SourceLocation Loc, unsigned IVSize,
2856                                           bool IVSigned, Address IL,
2857                                           Address LB, Address UB,
2858                                           Address ST) {
2859   // Call __kmpc_dispatch_next(
2860   //          ident_t *loc, kmp_int32 tid, kmp_int32 *p_lastiter,
2861   //          kmp_int[32|64] *p_lower, kmp_int[32|64] *p_upper,
2862   //          kmp_int[32|64] *p_stride);
2863   llvm::Value *Args[] = {
2864       emitUpdateLocation(CGF, Loc),
2865       getThreadID(CGF, Loc),
2866       IL.getPointer(), // &isLastIter
2867       LB.getPointer(), // &Lower
2868       UB.getPointer(), // &Upper
2869       ST.getPointer()  // &Stride
2870   };
2871   llvm::Value *Call =
2872       CGF.EmitRuntimeCall(createDispatchNextFunction(IVSize, IVSigned), Args);
2873   return CGF.EmitScalarConversion(
2874       Call, CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/1),
2875       CGF.getContext().BoolTy, Loc);
2876 }
2877 
emitNumThreadsClause(CodeGenFunction & CGF,llvm::Value * NumThreads,SourceLocation Loc)2878 void CGOpenMPRuntime::emitNumThreadsClause(CodeGenFunction &CGF,
2879                                            llvm::Value *NumThreads,
2880                                            SourceLocation Loc) {
2881   if (!CGF.HaveInsertPoint())
2882     return;
2883   // Build call __kmpc_push_num_threads(&loc, global_tid, num_threads)
2884   llvm::Value *Args[] = {
2885       emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
2886       CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned*/ true)};
2887   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2888                           CGM.getModule(), OMPRTL___kmpc_push_num_threads),
2889                       Args);
2890 }
2891 
emitProcBindClause(CodeGenFunction & CGF,ProcBindKind ProcBind,SourceLocation Loc)2892 void CGOpenMPRuntime::emitProcBindClause(CodeGenFunction &CGF,
2893                                          ProcBindKind ProcBind,
2894                                          SourceLocation Loc) {
2895   if (!CGF.HaveInsertPoint())
2896     return;
2897   assert(ProcBind != OMP_PROC_BIND_unknown && "Unsupported proc_bind value.");
2898   // Build call __kmpc_push_proc_bind(&loc, global_tid, proc_bind)
2899   llvm::Value *Args[] = {
2900       emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
2901       llvm::ConstantInt::get(CGM.IntTy, unsigned(ProcBind), /*isSigned=*/true)};
2902   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2903                           CGM.getModule(), OMPRTL___kmpc_push_proc_bind),
2904                       Args);
2905 }
2906 
emitFlush(CodeGenFunction & CGF,ArrayRef<const Expr * >,SourceLocation Loc,llvm::AtomicOrdering AO)2907 void CGOpenMPRuntime::emitFlush(CodeGenFunction &CGF, ArrayRef<const Expr *>,
2908                                 SourceLocation Loc, llvm::AtomicOrdering AO) {
2909   if (CGF.CGM.getLangOpts().OpenMPIRBuilder) {
2910     OMPBuilder.createFlush(CGF.Builder);
2911   } else {
2912     if (!CGF.HaveInsertPoint())
2913       return;
2914     // Build call void __kmpc_flush(ident_t *loc)
2915     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2916                             CGM.getModule(), OMPRTL___kmpc_flush),
2917                         emitUpdateLocation(CGF, Loc));
2918   }
2919 }
2920 
2921 namespace {
2922 /// Indexes of fields for type kmp_task_t.
2923 enum KmpTaskTFields {
2924   /// List of shared variables.
2925   KmpTaskTShareds,
2926   /// Task routine.
2927   KmpTaskTRoutine,
2928   /// Partition id for the untied tasks.
2929   KmpTaskTPartId,
2930   /// Function with call of destructors for private variables.
2931   Data1,
2932   /// Task priority.
2933   Data2,
2934   /// (Taskloops only) Lower bound.
2935   KmpTaskTLowerBound,
2936   /// (Taskloops only) Upper bound.
2937   KmpTaskTUpperBound,
2938   /// (Taskloops only) Stride.
2939   KmpTaskTStride,
2940   /// (Taskloops only) Is last iteration flag.
2941   KmpTaskTLastIter,
2942   /// (Taskloops only) Reduction data.
2943   KmpTaskTReductions,
2944 };
2945 } // anonymous namespace
2946 
createOffloadEntriesAndInfoMetadata()2947 void CGOpenMPRuntime::createOffloadEntriesAndInfoMetadata() {
2948   // If we are in simd mode or there are no entries, we don't need to do
2949   // anything.
2950   if (CGM.getLangOpts().OpenMPSimd || OffloadEntriesInfoManager.empty())
2951     return;
2952 
2953   llvm::OpenMPIRBuilder::EmitMetadataErrorReportFunctionTy &&ErrorReportFn =
2954       [this](llvm::OpenMPIRBuilder::EmitMetadataErrorKind Kind,
2955              const llvm::TargetRegionEntryInfo &EntryInfo) -> void {
2956     SourceLocation Loc;
2957     if (Kind != llvm::OpenMPIRBuilder::EMIT_MD_GLOBAL_VAR_LINK_ERROR) {
2958       for (auto I = CGM.getContext().getSourceManager().fileinfo_begin(),
2959                 E = CGM.getContext().getSourceManager().fileinfo_end();
2960            I != E; ++I) {
2961         if (I->getFirst()->getUniqueID().getDevice() == EntryInfo.DeviceID &&
2962             I->getFirst()->getUniqueID().getFile() == EntryInfo.FileID) {
2963           Loc = CGM.getContext().getSourceManager().translateFileLineCol(
2964               I->getFirst(), EntryInfo.Line, 1);
2965           break;
2966         }
2967       }
2968     }
2969     switch (Kind) {
2970     case llvm::OpenMPIRBuilder::EMIT_MD_TARGET_REGION_ERROR: {
2971       unsigned DiagID = CGM.getDiags().getCustomDiagID(
2972           DiagnosticsEngine::Error, "Offloading entry for target region in "
2973                                     "%0 is incorrect: either the "
2974                                     "address or the ID is invalid.");
2975       CGM.getDiags().Report(Loc, DiagID) << EntryInfo.ParentName;
2976     } break;
2977     case llvm::OpenMPIRBuilder::EMIT_MD_DECLARE_TARGET_ERROR: {
2978       unsigned DiagID = CGM.getDiags().getCustomDiagID(
2979           DiagnosticsEngine::Error, "Offloading entry for declare target "
2980                                     "variable %0 is incorrect: the "
2981                                     "address is invalid.");
2982       CGM.getDiags().Report(Loc, DiagID) << EntryInfo.ParentName;
2983     } break;
2984     case llvm::OpenMPIRBuilder::EMIT_MD_GLOBAL_VAR_LINK_ERROR: {
2985       unsigned DiagID = CGM.getDiags().getCustomDiagID(
2986           DiagnosticsEngine::Error,
2987           "Offloading entry for declare target variable is incorrect: the "
2988           "address is invalid.");
2989       CGM.getDiags().Report(DiagID);
2990     } break;
2991     }
2992   };
2993 
2994   OMPBuilder.createOffloadEntriesAndInfoMetadata(OffloadEntriesInfoManager,
2995                                                  ErrorReportFn);
2996 }
2997 
2998 /// Loads all the offload entries information from the host IR
2999 /// metadata.
loadOffloadInfoMetadata()3000 void CGOpenMPRuntime::loadOffloadInfoMetadata() {
3001   // If we are in target mode, load the metadata from the host IR. This code has
3002   // to match the metadaata creation in createOffloadEntriesAndInfoMetadata().
3003 
3004   if (!CGM.getLangOpts().OpenMPIsDevice)
3005     return;
3006 
3007   if (CGM.getLangOpts().OMPHostIRFile.empty())
3008     return;
3009 
3010   auto Buf = llvm::MemoryBuffer::getFile(CGM.getLangOpts().OMPHostIRFile);
3011   if (auto EC = Buf.getError()) {
3012     CGM.getDiags().Report(diag::err_cannot_open_file)
3013         << CGM.getLangOpts().OMPHostIRFile << EC.message();
3014     return;
3015   }
3016 
3017   llvm::LLVMContext C;
3018   auto ME = expectedToErrorOrAndEmitErrors(
3019       C, llvm::parseBitcodeFile(Buf.get()->getMemBufferRef(), C));
3020 
3021   if (auto EC = ME.getError()) {
3022     unsigned DiagID = CGM.getDiags().getCustomDiagID(
3023         DiagnosticsEngine::Error, "Unable to parse host IR file '%0':'%1'");
3024     CGM.getDiags().Report(DiagID)
3025         << CGM.getLangOpts().OMPHostIRFile << EC.message();
3026     return;
3027   }
3028 
3029   OMPBuilder.loadOffloadInfoMetadata(*ME.get(), OffloadEntriesInfoManager);
3030 }
3031 
emitKmpRoutineEntryT(QualType KmpInt32Ty)3032 void CGOpenMPRuntime::emitKmpRoutineEntryT(QualType KmpInt32Ty) {
3033   if (!KmpRoutineEntryPtrTy) {
3034     // Build typedef kmp_int32 (* kmp_routine_entry_t)(kmp_int32, void *); type.
3035     ASTContext &C = CGM.getContext();
3036     QualType KmpRoutineEntryTyArgs[] = {KmpInt32Ty, C.VoidPtrTy};
3037     FunctionProtoType::ExtProtoInfo EPI;
3038     KmpRoutineEntryPtrQTy = C.getPointerType(
3039         C.getFunctionType(KmpInt32Ty, KmpRoutineEntryTyArgs, EPI));
3040     KmpRoutineEntryPtrTy = CGM.getTypes().ConvertType(KmpRoutineEntryPtrQTy);
3041   }
3042 }
3043 
3044 namespace {
3045 struct PrivateHelpersTy {
PrivateHelpersTy__anon7bb087080c11::PrivateHelpersTy3046   PrivateHelpersTy(const Expr *OriginalRef, const VarDecl *Original,
3047                    const VarDecl *PrivateCopy, const VarDecl *PrivateElemInit)
3048       : OriginalRef(OriginalRef), Original(Original), PrivateCopy(PrivateCopy),
3049         PrivateElemInit(PrivateElemInit) {}
PrivateHelpersTy__anon7bb087080c11::PrivateHelpersTy3050   PrivateHelpersTy(const VarDecl *Original) : Original(Original) {}
3051   const Expr *OriginalRef = nullptr;
3052   const VarDecl *Original = nullptr;
3053   const VarDecl *PrivateCopy = nullptr;
3054   const VarDecl *PrivateElemInit = nullptr;
isLocalPrivate__anon7bb087080c11::PrivateHelpersTy3055   bool isLocalPrivate() const {
3056     return !OriginalRef && !PrivateCopy && !PrivateElemInit;
3057   }
3058 };
3059 typedef std::pair<CharUnits /*Align*/, PrivateHelpersTy> PrivateDataTy;
3060 } // anonymous namespace
3061 
isAllocatableDecl(const VarDecl * VD)3062 static bool isAllocatableDecl(const VarDecl *VD) {
3063   const VarDecl *CVD = VD->getCanonicalDecl();
3064   if (!CVD->hasAttr<OMPAllocateDeclAttr>())
3065     return false;
3066   const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>();
3067   // Use the default allocation.
3068   return !(AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc &&
3069            !AA->getAllocator());
3070 }
3071 
3072 static RecordDecl *
createPrivatesRecordDecl(CodeGenModule & CGM,ArrayRef<PrivateDataTy> Privates)3073 createPrivatesRecordDecl(CodeGenModule &CGM, ArrayRef<PrivateDataTy> Privates) {
3074   if (!Privates.empty()) {
3075     ASTContext &C = CGM.getContext();
3076     // Build struct .kmp_privates_t. {
3077     //         /*  private vars  */
3078     //       };
3079     RecordDecl *RD = C.buildImplicitRecord(".kmp_privates.t");
3080     RD->startDefinition();
3081     for (const auto &Pair : Privates) {
3082       const VarDecl *VD = Pair.second.Original;
3083       QualType Type = VD->getType().getNonReferenceType();
3084       // If the private variable is a local variable with lvalue ref type,
3085       // allocate the pointer instead of the pointee type.
3086       if (Pair.second.isLocalPrivate()) {
3087         if (VD->getType()->isLValueReferenceType())
3088           Type = C.getPointerType(Type);
3089         if (isAllocatableDecl(VD))
3090           Type = C.getPointerType(Type);
3091       }
3092       FieldDecl *FD = addFieldToRecordDecl(C, RD, Type);
3093       if (VD->hasAttrs()) {
3094         for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
3095              E(VD->getAttrs().end());
3096              I != E; ++I)
3097           FD->addAttr(*I);
3098       }
3099     }
3100     RD->completeDefinition();
3101     return RD;
3102   }
3103   return nullptr;
3104 }
3105 
3106 static RecordDecl *
createKmpTaskTRecordDecl(CodeGenModule & CGM,OpenMPDirectiveKind Kind,QualType KmpInt32Ty,QualType KmpRoutineEntryPointerQTy)3107 createKmpTaskTRecordDecl(CodeGenModule &CGM, OpenMPDirectiveKind Kind,
3108                          QualType KmpInt32Ty,
3109                          QualType KmpRoutineEntryPointerQTy) {
3110   ASTContext &C = CGM.getContext();
3111   // Build struct kmp_task_t {
3112   //         void *              shareds;
3113   //         kmp_routine_entry_t routine;
3114   //         kmp_int32           part_id;
3115   //         kmp_cmplrdata_t data1;
3116   //         kmp_cmplrdata_t data2;
3117   // For taskloops additional fields:
3118   //         kmp_uint64          lb;
3119   //         kmp_uint64          ub;
3120   //         kmp_int64           st;
3121   //         kmp_int32           liter;
3122   //         void *              reductions;
3123   //       };
3124   RecordDecl *UD = C.buildImplicitRecord("kmp_cmplrdata_t", TTK_Union);
3125   UD->startDefinition();
3126   addFieldToRecordDecl(C, UD, KmpInt32Ty);
3127   addFieldToRecordDecl(C, UD, KmpRoutineEntryPointerQTy);
3128   UD->completeDefinition();
3129   QualType KmpCmplrdataTy = C.getRecordType(UD);
3130   RecordDecl *RD = C.buildImplicitRecord("kmp_task_t");
3131   RD->startDefinition();
3132   addFieldToRecordDecl(C, RD, C.VoidPtrTy);
3133   addFieldToRecordDecl(C, RD, KmpRoutineEntryPointerQTy);
3134   addFieldToRecordDecl(C, RD, KmpInt32Ty);
3135   addFieldToRecordDecl(C, RD, KmpCmplrdataTy);
3136   addFieldToRecordDecl(C, RD, KmpCmplrdataTy);
3137   if (isOpenMPTaskLoopDirective(Kind)) {
3138     QualType KmpUInt64Ty =
3139         CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0);
3140     QualType KmpInt64Ty =
3141         CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
3142     addFieldToRecordDecl(C, RD, KmpUInt64Ty);
3143     addFieldToRecordDecl(C, RD, KmpUInt64Ty);
3144     addFieldToRecordDecl(C, RD, KmpInt64Ty);
3145     addFieldToRecordDecl(C, RD, KmpInt32Ty);
3146     addFieldToRecordDecl(C, RD, C.VoidPtrTy);
3147   }
3148   RD->completeDefinition();
3149   return RD;
3150 }
3151 
3152 static RecordDecl *
createKmpTaskTWithPrivatesRecordDecl(CodeGenModule & CGM,QualType KmpTaskTQTy,ArrayRef<PrivateDataTy> Privates)3153 createKmpTaskTWithPrivatesRecordDecl(CodeGenModule &CGM, QualType KmpTaskTQTy,
3154                                      ArrayRef<PrivateDataTy> Privates) {
3155   ASTContext &C = CGM.getContext();
3156   // Build struct kmp_task_t_with_privates {
3157   //         kmp_task_t task_data;
3158   //         .kmp_privates_t. privates;
3159   //       };
3160   RecordDecl *RD = C.buildImplicitRecord("kmp_task_t_with_privates");
3161   RD->startDefinition();
3162   addFieldToRecordDecl(C, RD, KmpTaskTQTy);
3163   if (const RecordDecl *PrivateRD = createPrivatesRecordDecl(CGM, Privates))
3164     addFieldToRecordDecl(C, RD, C.getRecordType(PrivateRD));
3165   RD->completeDefinition();
3166   return RD;
3167 }
3168 
3169 /// Emit a proxy function which accepts kmp_task_t as the second
3170 /// argument.
3171 /// \code
3172 /// kmp_int32 .omp_task_entry.(kmp_int32 gtid, kmp_task_t *tt) {
3173 ///   TaskFunction(gtid, tt->part_id, &tt->privates, task_privates_map, tt,
3174 ///   For taskloops:
3175 ///   tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter,
3176 ///   tt->reductions, tt->shareds);
3177 ///   return 0;
3178 /// }
3179 /// \endcode
3180 static llvm::Function *
emitProxyTaskFunction(CodeGenModule & CGM,SourceLocation Loc,OpenMPDirectiveKind Kind,QualType KmpInt32Ty,QualType KmpTaskTWithPrivatesPtrQTy,QualType KmpTaskTWithPrivatesQTy,QualType KmpTaskTQTy,QualType SharedsPtrTy,llvm::Function * TaskFunction,llvm::Value * TaskPrivatesMap)3181 emitProxyTaskFunction(CodeGenModule &CGM, SourceLocation Loc,
3182                       OpenMPDirectiveKind Kind, QualType KmpInt32Ty,
3183                       QualType KmpTaskTWithPrivatesPtrQTy,
3184                       QualType KmpTaskTWithPrivatesQTy, QualType KmpTaskTQTy,
3185                       QualType SharedsPtrTy, llvm::Function *TaskFunction,
3186                       llvm::Value *TaskPrivatesMap) {
3187   ASTContext &C = CGM.getContext();
3188   FunctionArgList Args;
3189   ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty,
3190                             ImplicitParamDecl::Other);
3191   ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3192                                 KmpTaskTWithPrivatesPtrQTy.withRestrict(),
3193                                 ImplicitParamDecl::Other);
3194   Args.push_back(&GtidArg);
3195   Args.push_back(&TaskTypeArg);
3196   const auto &TaskEntryFnInfo =
3197       CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args);
3198   llvm::FunctionType *TaskEntryTy =
3199       CGM.getTypes().GetFunctionType(TaskEntryFnInfo);
3200   std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_entry", ""});
3201   auto *TaskEntry = llvm::Function::Create(
3202       TaskEntryTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule());
3203   CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskEntry, TaskEntryFnInfo);
3204   TaskEntry->setDoesNotRecurse();
3205   CodeGenFunction CGF(CGM);
3206   CGF.StartFunction(GlobalDecl(), KmpInt32Ty, TaskEntry, TaskEntryFnInfo, Args,
3207                     Loc, Loc);
3208 
3209   // TaskFunction(gtid, tt->task_data.part_id, &tt->privates, task_privates_map,
3210   // tt,
3211   // For taskloops:
3212   // tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter,
3213   // tt->task_data.shareds);
3214   llvm::Value *GtidParam = CGF.EmitLoadOfScalar(
3215       CGF.GetAddrOfLocalVar(&GtidArg), /*Volatile=*/false, KmpInt32Ty, Loc);
3216   LValue TDBase = CGF.EmitLoadOfPointerLValue(
3217       CGF.GetAddrOfLocalVar(&TaskTypeArg),
3218       KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
3219   const auto *KmpTaskTWithPrivatesQTyRD =
3220       cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
3221   LValue Base =
3222       CGF.EmitLValueForField(TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
3223   const auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
3224   auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
3225   LValue PartIdLVal = CGF.EmitLValueForField(Base, *PartIdFI);
3226   llvm::Value *PartidParam = PartIdLVal.getPointer(CGF);
3227 
3228   auto SharedsFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTShareds);
3229   LValue SharedsLVal = CGF.EmitLValueForField(Base, *SharedsFI);
3230   llvm::Value *SharedsParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3231       CGF.EmitLoadOfScalar(SharedsLVal, Loc),
3232       CGF.ConvertTypeForMem(SharedsPtrTy));
3233 
3234   auto PrivatesFI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin(), 1);
3235   llvm::Value *PrivatesParam;
3236   if (PrivatesFI != KmpTaskTWithPrivatesQTyRD->field_end()) {
3237     LValue PrivatesLVal = CGF.EmitLValueForField(TDBase, *PrivatesFI);
3238     PrivatesParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3239         PrivatesLVal.getPointer(CGF), CGF.VoidPtrTy);
3240   } else {
3241     PrivatesParam = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
3242   }
3243 
3244   llvm::Value *CommonArgs[] = {
3245       GtidParam, PartidParam, PrivatesParam, TaskPrivatesMap,
3246       CGF.Builder
3247           .CreatePointerBitCastOrAddrSpaceCast(TDBase.getAddress(CGF),
3248                                                CGF.VoidPtrTy, CGF.Int8Ty)
3249           .getPointer()};
3250   SmallVector<llvm::Value *, 16> CallArgs(std::begin(CommonArgs),
3251                                           std::end(CommonArgs));
3252   if (isOpenMPTaskLoopDirective(Kind)) {
3253     auto LBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound);
3254     LValue LBLVal = CGF.EmitLValueForField(Base, *LBFI);
3255     llvm::Value *LBParam = CGF.EmitLoadOfScalar(LBLVal, Loc);
3256     auto UBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound);
3257     LValue UBLVal = CGF.EmitLValueForField(Base, *UBFI);
3258     llvm::Value *UBParam = CGF.EmitLoadOfScalar(UBLVal, Loc);
3259     auto StFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTStride);
3260     LValue StLVal = CGF.EmitLValueForField(Base, *StFI);
3261     llvm::Value *StParam = CGF.EmitLoadOfScalar(StLVal, Loc);
3262     auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter);
3263     LValue LILVal = CGF.EmitLValueForField(Base, *LIFI);
3264     llvm::Value *LIParam = CGF.EmitLoadOfScalar(LILVal, Loc);
3265     auto RFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTReductions);
3266     LValue RLVal = CGF.EmitLValueForField(Base, *RFI);
3267     llvm::Value *RParam = CGF.EmitLoadOfScalar(RLVal, Loc);
3268     CallArgs.push_back(LBParam);
3269     CallArgs.push_back(UBParam);
3270     CallArgs.push_back(StParam);
3271     CallArgs.push_back(LIParam);
3272     CallArgs.push_back(RParam);
3273   }
3274   CallArgs.push_back(SharedsParam);
3275 
3276   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, Loc, TaskFunction,
3277                                                   CallArgs);
3278   CGF.EmitStoreThroughLValue(RValue::get(CGF.Builder.getInt32(/*C=*/0)),
3279                              CGF.MakeAddrLValue(CGF.ReturnValue, KmpInt32Ty));
3280   CGF.FinishFunction();
3281   return TaskEntry;
3282 }
3283 
emitDestructorsFunction(CodeGenModule & CGM,SourceLocation Loc,QualType KmpInt32Ty,QualType KmpTaskTWithPrivatesPtrQTy,QualType KmpTaskTWithPrivatesQTy)3284 static llvm::Value *emitDestructorsFunction(CodeGenModule &CGM,
3285                                             SourceLocation Loc,
3286                                             QualType KmpInt32Ty,
3287                                             QualType KmpTaskTWithPrivatesPtrQTy,
3288                                             QualType KmpTaskTWithPrivatesQTy) {
3289   ASTContext &C = CGM.getContext();
3290   FunctionArgList Args;
3291   ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty,
3292                             ImplicitParamDecl::Other);
3293   ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3294                                 KmpTaskTWithPrivatesPtrQTy.withRestrict(),
3295                                 ImplicitParamDecl::Other);
3296   Args.push_back(&GtidArg);
3297   Args.push_back(&TaskTypeArg);
3298   const auto &DestructorFnInfo =
3299       CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args);
3300   llvm::FunctionType *DestructorFnTy =
3301       CGM.getTypes().GetFunctionType(DestructorFnInfo);
3302   std::string Name =
3303       CGM.getOpenMPRuntime().getName({"omp_task_destructor", ""});
3304   auto *DestructorFn =
3305       llvm::Function::Create(DestructorFnTy, llvm::GlobalValue::InternalLinkage,
3306                              Name, &CGM.getModule());
3307   CGM.SetInternalFunctionAttributes(GlobalDecl(), DestructorFn,
3308                                     DestructorFnInfo);
3309   DestructorFn->setDoesNotRecurse();
3310   CodeGenFunction CGF(CGM);
3311   CGF.StartFunction(GlobalDecl(), KmpInt32Ty, DestructorFn, DestructorFnInfo,
3312                     Args, Loc, Loc);
3313 
3314   LValue Base = CGF.EmitLoadOfPointerLValue(
3315       CGF.GetAddrOfLocalVar(&TaskTypeArg),
3316       KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
3317   const auto *KmpTaskTWithPrivatesQTyRD =
3318       cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
3319   auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
3320   Base = CGF.EmitLValueForField(Base, *FI);
3321   for (const auto *Field :
3322        cast<RecordDecl>(FI->getType()->getAsTagDecl())->fields()) {
3323     if (QualType::DestructionKind DtorKind =
3324             Field->getType().isDestructedType()) {
3325       LValue FieldLValue = CGF.EmitLValueForField(Base, Field);
3326       CGF.pushDestroy(DtorKind, FieldLValue.getAddress(CGF), Field->getType());
3327     }
3328   }
3329   CGF.FinishFunction();
3330   return DestructorFn;
3331 }
3332 
3333 /// Emit a privates mapping function for correct handling of private and
3334 /// firstprivate variables.
3335 /// \code
3336 /// void .omp_task_privates_map.(const .privates. *noalias privs, <ty1>
3337 /// **noalias priv1,...,  <tyn> **noalias privn) {
3338 ///   *priv1 = &.privates.priv1;
3339 ///   ...;
3340 ///   *privn = &.privates.privn;
3341 /// }
3342 /// \endcode
3343 static llvm::Value *
emitTaskPrivateMappingFunction(CodeGenModule & CGM,SourceLocation Loc,const OMPTaskDataTy & Data,QualType PrivatesQTy,ArrayRef<PrivateDataTy> Privates)3344 emitTaskPrivateMappingFunction(CodeGenModule &CGM, SourceLocation Loc,
3345                                const OMPTaskDataTy &Data, QualType PrivatesQTy,
3346                                ArrayRef<PrivateDataTy> Privates) {
3347   ASTContext &C = CGM.getContext();
3348   FunctionArgList Args;
3349   ImplicitParamDecl TaskPrivatesArg(
3350       C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3351       C.getPointerType(PrivatesQTy).withConst().withRestrict(),
3352       ImplicitParamDecl::Other);
3353   Args.push_back(&TaskPrivatesArg);
3354   llvm::DenseMap<CanonicalDeclPtr<const VarDecl>, unsigned> PrivateVarsPos;
3355   unsigned Counter = 1;
3356   for (const Expr *E : Data.PrivateVars) {
3357     Args.push_back(ImplicitParamDecl::Create(
3358         C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3359         C.getPointerType(C.getPointerType(E->getType()))
3360             .withConst()
3361             .withRestrict(),
3362         ImplicitParamDecl::Other));
3363     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3364     PrivateVarsPos[VD] = Counter;
3365     ++Counter;
3366   }
3367   for (const Expr *E : Data.FirstprivateVars) {
3368     Args.push_back(ImplicitParamDecl::Create(
3369         C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3370         C.getPointerType(C.getPointerType(E->getType()))
3371             .withConst()
3372             .withRestrict(),
3373         ImplicitParamDecl::Other));
3374     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3375     PrivateVarsPos[VD] = Counter;
3376     ++Counter;
3377   }
3378   for (const Expr *E : Data.LastprivateVars) {
3379     Args.push_back(ImplicitParamDecl::Create(
3380         C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3381         C.getPointerType(C.getPointerType(E->getType()))
3382             .withConst()
3383             .withRestrict(),
3384         ImplicitParamDecl::Other));
3385     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3386     PrivateVarsPos[VD] = Counter;
3387     ++Counter;
3388   }
3389   for (const VarDecl *VD : Data.PrivateLocals) {
3390     QualType Ty = VD->getType().getNonReferenceType();
3391     if (VD->getType()->isLValueReferenceType())
3392       Ty = C.getPointerType(Ty);
3393     if (isAllocatableDecl(VD))
3394       Ty = C.getPointerType(Ty);
3395     Args.push_back(ImplicitParamDecl::Create(
3396         C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3397         C.getPointerType(C.getPointerType(Ty)).withConst().withRestrict(),
3398         ImplicitParamDecl::Other));
3399     PrivateVarsPos[VD] = Counter;
3400     ++Counter;
3401   }
3402   const auto &TaskPrivatesMapFnInfo =
3403       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
3404   llvm::FunctionType *TaskPrivatesMapTy =
3405       CGM.getTypes().GetFunctionType(TaskPrivatesMapFnInfo);
3406   std::string Name =
3407       CGM.getOpenMPRuntime().getName({"omp_task_privates_map", ""});
3408   auto *TaskPrivatesMap = llvm::Function::Create(
3409       TaskPrivatesMapTy, llvm::GlobalValue::InternalLinkage, Name,
3410       &CGM.getModule());
3411   CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskPrivatesMap,
3412                                     TaskPrivatesMapFnInfo);
3413   if (CGM.getLangOpts().Optimize) {
3414     TaskPrivatesMap->removeFnAttr(llvm::Attribute::NoInline);
3415     TaskPrivatesMap->removeFnAttr(llvm::Attribute::OptimizeNone);
3416     TaskPrivatesMap->addFnAttr(llvm::Attribute::AlwaysInline);
3417   }
3418   CodeGenFunction CGF(CGM);
3419   CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskPrivatesMap,
3420                     TaskPrivatesMapFnInfo, Args, Loc, Loc);
3421 
3422   // *privi = &.privates.privi;
3423   LValue Base = CGF.EmitLoadOfPointerLValue(
3424       CGF.GetAddrOfLocalVar(&TaskPrivatesArg),
3425       TaskPrivatesArg.getType()->castAs<PointerType>());
3426   const auto *PrivatesQTyRD = cast<RecordDecl>(PrivatesQTy->getAsTagDecl());
3427   Counter = 0;
3428   for (const FieldDecl *Field : PrivatesQTyRD->fields()) {
3429     LValue FieldLVal = CGF.EmitLValueForField(Base, Field);
3430     const VarDecl *VD = Args[PrivateVarsPos[Privates[Counter].second.Original]];
3431     LValue RefLVal =
3432         CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
3433     LValue RefLoadLVal = CGF.EmitLoadOfPointerLValue(
3434         RefLVal.getAddress(CGF), RefLVal.getType()->castAs<PointerType>());
3435     CGF.EmitStoreOfScalar(FieldLVal.getPointer(CGF), RefLoadLVal);
3436     ++Counter;
3437   }
3438   CGF.FinishFunction();
3439   return TaskPrivatesMap;
3440 }
3441 
3442 /// Emit initialization for private variables in task-based directives.
emitPrivatesInit(CodeGenFunction & CGF,const OMPExecutableDirective & D,Address KmpTaskSharedsPtr,LValue TDBase,const RecordDecl * KmpTaskTWithPrivatesQTyRD,QualType SharedsTy,QualType SharedsPtrTy,const OMPTaskDataTy & Data,ArrayRef<PrivateDataTy> Privates,bool ForDup)3443 static void emitPrivatesInit(CodeGenFunction &CGF,
3444                              const OMPExecutableDirective &D,
3445                              Address KmpTaskSharedsPtr, LValue TDBase,
3446                              const RecordDecl *KmpTaskTWithPrivatesQTyRD,
3447                              QualType SharedsTy, QualType SharedsPtrTy,
3448                              const OMPTaskDataTy &Data,
3449                              ArrayRef<PrivateDataTy> Privates, bool ForDup) {
3450   ASTContext &C = CGF.getContext();
3451   auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
3452   LValue PrivatesBase = CGF.EmitLValueForField(TDBase, *FI);
3453   OpenMPDirectiveKind Kind = isOpenMPTaskLoopDirective(D.getDirectiveKind())
3454                                  ? OMPD_taskloop
3455                                  : OMPD_task;
3456   const CapturedStmt &CS = *D.getCapturedStmt(Kind);
3457   CodeGenFunction::CGCapturedStmtInfo CapturesInfo(CS);
3458   LValue SrcBase;
3459   bool IsTargetTask =
3460       isOpenMPTargetDataManagementDirective(D.getDirectiveKind()) ||
3461       isOpenMPTargetExecutionDirective(D.getDirectiveKind());
3462   // For target-based directives skip 4 firstprivate arrays BasePointersArray,
3463   // PointersArray, SizesArray, and MappersArray. The original variables for
3464   // these arrays are not captured and we get their addresses explicitly.
3465   if ((!IsTargetTask && !Data.FirstprivateVars.empty() && ForDup) ||
3466       (IsTargetTask && KmpTaskSharedsPtr.isValid())) {
3467     SrcBase = CGF.MakeAddrLValue(
3468         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3469             KmpTaskSharedsPtr, CGF.ConvertTypeForMem(SharedsPtrTy),
3470             CGF.ConvertTypeForMem(SharedsTy)),
3471         SharedsTy);
3472   }
3473   FI = cast<RecordDecl>(FI->getType()->getAsTagDecl())->field_begin();
3474   for (const PrivateDataTy &Pair : Privates) {
3475     // Do not initialize private locals.
3476     if (Pair.second.isLocalPrivate()) {
3477       ++FI;
3478       continue;
3479     }
3480     const VarDecl *VD = Pair.second.PrivateCopy;
3481     const Expr *Init = VD->getAnyInitializer();
3482     if (Init && (!ForDup || (isa<CXXConstructExpr>(Init) &&
3483                              !CGF.isTrivialInitializer(Init)))) {
3484       LValue PrivateLValue = CGF.EmitLValueForField(PrivatesBase, *FI);
3485       if (const VarDecl *Elem = Pair.second.PrivateElemInit) {
3486         const VarDecl *OriginalVD = Pair.second.Original;
3487         // Check if the variable is the target-based BasePointersArray,
3488         // PointersArray, SizesArray, or MappersArray.
3489         LValue SharedRefLValue;
3490         QualType Type = PrivateLValue.getType();
3491         const FieldDecl *SharedField = CapturesInfo.lookup(OriginalVD);
3492         if (IsTargetTask && !SharedField) {
3493           assert(isa<ImplicitParamDecl>(OriginalVD) &&
3494                  isa<CapturedDecl>(OriginalVD->getDeclContext()) &&
3495                  cast<CapturedDecl>(OriginalVD->getDeclContext())
3496                          ->getNumParams() == 0 &&
3497                  isa<TranslationUnitDecl>(
3498                      cast<CapturedDecl>(OriginalVD->getDeclContext())
3499                          ->getDeclContext()) &&
3500                  "Expected artificial target data variable.");
3501           SharedRefLValue =
3502               CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(OriginalVD), Type);
3503         } else if (ForDup) {
3504           SharedRefLValue = CGF.EmitLValueForField(SrcBase, SharedField);
3505           SharedRefLValue = CGF.MakeAddrLValue(
3506               SharedRefLValue.getAddress(CGF).withAlignment(
3507                   C.getDeclAlign(OriginalVD)),
3508               SharedRefLValue.getType(), LValueBaseInfo(AlignmentSource::Decl),
3509               SharedRefLValue.getTBAAInfo());
3510         } else if (CGF.LambdaCaptureFields.count(
3511                        Pair.second.Original->getCanonicalDecl()) > 0 ||
3512                    isa_and_nonnull<BlockDecl>(CGF.CurCodeDecl)) {
3513           SharedRefLValue = CGF.EmitLValue(Pair.second.OriginalRef);
3514         } else {
3515           // Processing for implicitly captured variables.
3516           InlinedOpenMPRegionRAII Region(
3517               CGF, [](CodeGenFunction &, PrePostActionTy &) {}, OMPD_unknown,
3518               /*HasCancel=*/false, /*NoInheritance=*/true);
3519           SharedRefLValue = CGF.EmitLValue(Pair.second.OriginalRef);
3520         }
3521         if (Type->isArrayType()) {
3522           // Initialize firstprivate array.
3523           if (!isa<CXXConstructExpr>(Init) || CGF.isTrivialInitializer(Init)) {
3524             // Perform simple memcpy.
3525             CGF.EmitAggregateAssign(PrivateLValue, SharedRefLValue, Type);
3526           } else {
3527             // Initialize firstprivate array using element-by-element
3528             // initialization.
3529             CGF.EmitOMPAggregateAssign(
3530                 PrivateLValue.getAddress(CGF), SharedRefLValue.getAddress(CGF),
3531                 Type,
3532                 [&CGF, Elem, Init, &CapturesInfo](Address DestElement,
3533                                                   Address SrcElement) {
3534                   // Clean up any temporaries needed by the initialization.
3535                   CodeGenFunction::OMPPrivateScope InitScope(CGF);
3536                   InitScope.addPrivate(Elem, SrcElement);
3537                   (void)InitScope.Privatize();
3538                   // Emit initialization for single element.
3539                   CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(
3540                       CGF, &CapturesInfo);
3541                   CGF.EmitAnyExprToMem(Init, DestElement,
3542                                        Init->getType().getQualifiers(),
3543                                        /*IsInitializer=*/false);
3544                 });
3545           }
3546         } else {
3547           CodeGenFunction::OMPPrivateScope InitScope(CGF);
3548           InitScope.addPrivate(Elem, SharedRefLValue.getAddress(CGF));
3549           (void)InitScope.Privatize();
3550           CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CapturesInfo);
3551           CGF.EmitExprAsInit(Init, VD, PrivateLValue,
3552                              /*capturedByInit=*/false);
3553         }
3554       } else {
3555         CGF.EmitExprAsInit(Init, VD, PrivateLValue, /*capturedByInit=*/false);
3556       }
3557     }
3558     ++FI;
3559   }
3560 }
3561 
3562 /// Check if duplication function is required for taskloops.
checkInitIsRequired(CodeGenFunction & CGF,ArrayRef<PrivateDataTy> Privates)3563 static bool checkInitIsRequired(CodeGenFunction &CGF,
3564                                 ArrayRef<PrivateDataTy> Privates) {
3565   bool InitRequired = false;
3566   for (const PrivateDataTy &Pair : Privates) {
3567     if (Pair.second.isLocalPrivate())
3568       continue;
3569     const VarDecl *VD = Pair.second.PrivateCopy;
3570     const Expr *Init = VD->getAnyInitializer();
3571     InitRequired = InitRequired || (isa_and_nonnull<CXXConstructExpr>(Init) &&
3572                                     !CGF.isTrivialInitializer(Init));
3573     if (InitRequired)
3574       break;
3575   }
3576   return InitRequired;
3577 }
3578 
3579 
3580 /// Emit task_dup function (for initialization of
3581 /// private/firstprivate/lastprivate vars and last_iter flag)
3582 /// \code
3583 /// void __task_dup_entry(kmp_task_t *task_dst, const kmp_task_t *task_src, int
3584 /// lastpriv) {
3585 /// // setup lastprivate flag
3586 ///    task_dst->last = lastpriv;
3587 /// // could be constructor calls here...
3588 /// }
3589 /// \endcode
3590 static llvm::Value *
emitTaskDupFunction(CodeGenModule & CGM,SourceLocation Loc,const OMPExecutableDirective & D,QualType KmpTaskTWithPrivatesPtrQTy,const RecordDecl * KmpTaskTWithPrivatesQTyRD,const RecordDecl * KmpTaskTQTyRD,QualType SharedsTy,QualType SharedsPtrTy,const OMPTaskDataTy & Data,ArrayRef<PrivateDataTy> Privates,bool WithLastIter)3591 emitTaskDupFunction(CodeGenModule &CGM, SourceLocation Loc,
3592                     const OMPExecutableDirective &D,
3593                     QualType KmpTaskTWithPrivatesPtrQTy,
3594                     const RecordDecl *KmpTaskTWithPrivatesQTyRD,
3595                     const RecordDecl *KmpTaskTQTyRD, QualType SharedsTy,
3596                     QualType SharedsPtrTy, const OMPTaskDataTy &Data,
3597                     ArrayRef<PrivateDataTy> Privates, bool WithLastIter) {
3598   ASTContext &C = CGM.getContext();
3599   FunctionArgList Args;
3600   ImplicitParamDecl DstArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3601                            KmpTaskTWithPrivatesPtrQTy,
3602                            ImplicitParamDecl::Other);
3603   ImplicitParamDecl SrcArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3604                            KmpTaskTWithPrivatesPtrQTy,
3605                            ImplicitParamDecl::Other);
3606   ImplicitParamDecl LastprivArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
3607                                 ImplicitParamDecl::Other);
3608   Args.push_back(&DstArg);
3609   Args.push_back(&SrcArg);
3610   Args.push_back(&LastprivArg);
3611   const auto &TaskDupFnInfo =
3612       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
3613   llvm::FunctionType *TaskDupTy = CGM.getTypes().GetFunctionType(TaskDupFnInfo);
3614   std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_dup", ""});
3615   auto *TaskDup = llvm::Function::Create(
3616       TaskDupTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule());
3617   CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskDup, TaskDupFnInfo);
3618   TaskDup->setDoesNotRecurse();
3619   CodeGenFunction CGF(CGM);
3620   CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskDup, TaskDupFnInfo, Args, Loc,
3621                     Loc);
3622 
3623   LValue TDBase = CGF.EmitLoadOfPointerLValue(
3624       CGF.GetAddrOfLocalVar(&DstArg),
3625       KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
3626   // task_dst->liter = lastpriv;
3627   if (WithLastIter) {
3628     auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter);
3629     LValue Base = CGF.EmitLValueForField(
3630         TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
3631     LValue LILVal = CGF.EmitLValueForField(Base, *LIFI);
3632     llvm::Value *Lastpriv = CGF.EmitLoadOfScalar(
3633         CGF.GetAddrOfLocalVar(&LastprivArg), /*Volatile=*/false, C.IntTy, Loc);
3634     CGF.EmitStoreOfScalar(Lastpriv, LILVal);
3635   }
3636 
3637   // Emit initial values for private copies (if any).
3638   assert(!Privates.empty());
3639   Address KmpTaskSharedsPtr = Address::invalid();
3640   if (!Data.FirstprivateVars.empty()) {
3641     LValue TDBase = CGF.EmitLoadOfPointerLValue(
3642         CGF.GetAddrOfLocalVar(&SrcArg),
3643         KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
3644     LValue Base = CGF.EmitLValueForField(
3645         TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
3646     KmpTaskSharedsPtr = Address(
3647         CGF.EmitLoadOfScalar(CGF.EmitLValueForField(
3648                                  Base, *std::next(KmpTaskTQTyRD->field_begin(),
3649                                                   KmpTaskTShareds)),
3650                              Loc),
3651         CGF.Int8Ty, CGM.getNaturalTypeAlignment(SharedsTy));
3652   }
3653   emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, TDBase, KmpTaskTWithPrivatesQTyRD,
3654                    SharedsTy, SharedsPtrTy, Data, Privates, /*ForDup=*/true);
3655   CGF.FinishFunction();
3656   return TaskDup;
3657 }
3658 
3659 /// Checks if destructor function is required to be generated.
3660 /// \return true if cleanups are required, false otherwise.
3661 static bool
checkDestructorsRequired(const RecordDecl * KmpTaskTWithPrivatesQTyRD,ArrayRef<PrivateDataTy> Privates)3662 checkDestructorsRequired(const RecordDecl *KmpTaskTWithPrivatesQTyRD,
3663                          ArrayRef<PrivateDataTy> Privates) {
3664   for (const PrivateDataTy &P : Privates) {
3665     if (P.second.isLocalPrivate())
3666       continue;
3667     QualType Ty = P.second.Original->getType().getNonReferenceType();
3668     if (Ty.isDestructedType())
3669       return true;
3670   }
3671   return false;
3672 }
3673 
3674 namespace {
3675 /// Loop generator for OpenMP iterator expression.
3676 class OMPIteratorGeneratorScope final
3677     : public CodeGenFunction::OMPPrivateScope {
3678   CodeGenFunction &CGF;
3679   const OMPIteratorExpr *E = nullptr;
3680   SmallVector<CodeGenFunction::JumpDest, 4> ContDests;
3681   SmallVector<CodeGenFunction::JumpDest, 4> ExitDests;
3682   OMPIteratorGeneratorScope() = delete;
3683   OMPIteratorGeneratorScope(OMPIteratorGeneratorScope &) = delete;
3684 
3685 public:
OMPIteratorGeneratorScope(CodeGenFunction & CGF,const OMPIteratorExpr * E)3686   OMPIteratorGeneratorScope(CodeGenFunction &CGF, const OMPIteratorExpr *E)
3687       : CodeGenFunction::OMPPrivateScope(CGF), CGF(CGF), E(E) {
3688     if (!E)
3689       return;
3690     SmallVector<llvm::Value *, 4> Uppers;
3691     for (unsigned I = 0, End = E->numOfIterators(); I < End; ++I) {
3692       Uppers.push_back(CGF.EmitScalarExpr(E->getHelper(I).Upper));
3693       const auto *VD = cast<VarDecl>(E->getIteratorDecl(I));
3694       addPrivate(VD, CGF.CreateMemTemp(VD->getType(), VD->getName()));
3695       const OMPIteratorHelperData &HelperData = E->getHelper(I);
3696       addPrivate(
3697           HelperData.CounterVD,
3698           CGF.CreateMemTemp(HelperData.CounterVD->getType(), "counter.addr"));
3699     }
3700     Privatize();
3701 
3702     for (unsigned I = 0, End = E->numOfIterators(); I < End; ++I) {
3703       const OMPIteratorHelperData &HelperData = E->getHelper(I);
3704       LValue CLVal =
3705           CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(HelperData.CounterVD),
3706                              HelperData.CounterVD->getType());
3707       // Counter = 0;
3708       CGF.EmitStoreOfScalar(
3709           llvm::ConstantInt::get(CLVal.getAddress(CGF).getElementType(), 0),
3710           CLVal);
3711       CodeGenFunction::JumpDest &ContDest =
3712           ContDests.emplace_back(CGF.getJumpDestInCurrentScope("iter.cont"));
3713       CodeGenFunction::JumpDest &ExitDest =
3714           ExitDests.emplace_back(CGF.getJumpDestInCurrentScope("iter.exit"));
3715       // N = <number-of_iterations>;
3716       llvm::Value *N = Uppers[I];
3717       // cont:
3718       // if (Counter < N) goto body; else goto exit;
3719       CGF.EmitBlock(ContDest.getBlock());
3720       auto *CVal =
3721           CGF.EmitLoadOfScalar(CLVal, HelperData.CounterVD->getLocation());
3722       llvm::Value *Cmp =
3723           HelperData.CounterVD->getType()->isSignedIntegerOrEnumerationType()
3724               ? CGF.Builder.CreateICmpSLT(CVal, N)
3725               : CGF.Builder.CreateICmpULT(CVal, N);
3726       llvm::BasicBlock *BodyBB = CGF.createBasicBlock("iter.body");
3727       CGF.Builder.CreateCondBr(Cmp, BodyBB, ExitDest.getBlock());
3728       // body:
3729       CGF.EmitBlock(BodyBB);
3730       // Iteri = Begini + Counter * Stepi;
3731       CGF.EmitIgnoredExpr(HelperData.Update);
3732     }
3733   }
~OMPIteratorGeneratorScope()3734   ~OMPIteratorGeneratorScope() {
3735     if (!E)
3736       return;
3737     for (unsigned I = E->numOfIterators(); I > 0; --I) {
3738       // Counter = Counter + 1;
3739       const OMPIteratorHelperData &HelperData = E->getHelper(I - 1);
3740       CGF.EmitIgnoredExpr(HelperData.CounterUpdate);
3741       // goto cont;
3742       CGF.EmitBranchThroughCleanup(ContDests[I - 1]);
3743       // exit:
3744       CGF.EmitBlock(ExitDests[I - 1].getBlock(), /*IsFinished=*/I == 1);
3745     }
3746   }
3747 };
3748 } // namespace
3749 
3750 static std::pair<llvm::Value *, llvm::Value *>
getPointerAndSize(CodeGenFunction & CGF,const Expr * E)3751 getPointerAndSize(CodeGenFunction &CGF, const Expr *E) {
3752   const auto *OASE = dyn_cast<OMPArrayShapingExpr>(E);
3753   llvm::Value *Addr;
3754   if (OASE) {
3755     const Expr *Base = OASE->getBase();
3756     Addr = CGF.EmitScalarExpr(Base);
3757   } else {
3758     Addr = CGF.EmitLValue(E).getPointer(CGF);
3759   }
3760   llvm::Value *SizeVal;
3761   QualType Ty = E->getType();
3762   if (OASE) {
3763     SizeVal = CGF.getTypeSize(OASE->getBase()->getType()->getPointeeType());
3764     for (const Expr *SE : OASE->getDimensions()) {
3765       llvm::Value *Sz = CGF.EmitScalarExpr(SE);
3766       Sz = CGF.EmitScalarConversion(
3767           Sz, SE->getType(), CGF.getContext().getSizeType(), SE->getExprLoc());
3768       SizeVal = CGF.Builder.CreateNUWMul(SizeVal, Sz);
3769     }
3770   } else if (const auto *ASE =
3771                  dyn_cast<OMPArraySectionExpr>(E->IgnoreParenImpCasts())) {
3772     LValue UpAddrLVal =
3773         CGF.EmitOMPArraySectionExpr(ASE, /*IsLowerBound=*/false);
3774     Address UpAddrAddress = UpAddrLVal.getAddress(CGF);
3775     llvm::Value *UpAddr = CGF.Builder.CreateConstGEP1_32(
3776         UpAddrAddress.getElementType(), UpAddrAddress.getPointer(), /*Idx0=*/1);
3777     llvm::Value *LowIntPtr = CGF.Builder.CreatePtrToInt(Addr, CGF.SizeTy);
3778     llvm::Value *UpIntPtr = CGF.Builder.CreatePtrToInt(UpAddr, CGF.SizeTy);
3779     SizeVal = CGF.Builder.CreateNUWSub(UpIntPtr, LowIntPtr);
3780   } else {
3781     SizeVal = CGF.getTypeSize(Ty);
3782   }
3783   return std::make_pair(Addr, SizeVal);
3784 }
3785 
3786 /// Builds kmp_depend_info, if it is not built yet, and builds flags type.
getKmpAffinityType(ASTContext & C,QualType & KmpTaskAffinityInfoTy)3787 static void getKmpAffinityType(ASTContext &C, QualType &KmpTaskAffinityInfoTy) {
3788   QualType FlagsTy = C.getIntTypeForBitwidth(32, /*Signed=*/false);
3789   if (KmpTaskAffinityInfoTy.isNull()) {
3790     RecordDecl *KmpAffinityInfoRD =
3791         C.buildImplicitRecord("kmp_task_affinity_info_t");
3792     KmpAffinityInfoRD->startDefinition();
3793     addFieldToRecordDecl(C, KmpAffinityInfoRD, C.getIntPtrType());
3794     addFieldToRecordDecl(C, KmpAffinityInfoRD, C.getSizeType());
3795     addFieldToRecordDecl(C, KmpAffinityInfoRD, FlagsTy);
3796     KmpAffinityInfoRD->completeDefinition();
3797     KmpTaskAffinityInfoTy = C.getRecordType(KmpAffinityInfoRD);
3798   }
3799 }
3800 
3801 CGOpenMPRuntime::TaskResultTy
emitTaskInit(CodeGenFunction & CGF,SourceLocation Loc,const OMPExecutableDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const OMPTaskDataTy & Data)3802 CGOpenMPRuntime::emitTaskInit(CodeGenFunction &CGF, SourceLocation Loc,
3803                               const OMPExecutableDirective &D,
3804                               llvm::Function *TaskFunction, QualType SharedsTy,
3805                               Address Shareds, const OMPTaskDataTy &Data) {
3806   ASTContext &C = CGM.getContext();
3807   llvm::SmallVector<PrivateDataTy, 4> Privates;
3808   // Aggregate privates and sort them by the alignment.
3809   const auto *I = Data.PrivateCopies.begin();
3810   for (const Expr *E : Data.PrivateVars) {
3811     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3812     Privates.emplace_back(
3813         C.getDeclAlign(VD),
3814         PrivateHelpersTy(E, VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
3815                          /*PrivateElemInit=*/nullptr));
3816     ++I;
3817   }
3818   I = Data.FirstprivateCopies.begin();
3819   const auto *IElemInitRef = Data.FirstprivateInits.begin();
3820   for (const Expr *E : Data.FirstprivateVars) {
3821     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3822     Privates.emplace_back(
3823         C.getDeclAlign(VD),
3824         PrivateHelpersTy(
3825             E, VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
3826             cast<VarDecl>(cast<DeclRefExpr>(*IElemInitRef)->getDecl())));
3827     ++I;
3828     ++IElemInitRef;
3829   }
3830   I = Data.LastprivateCopies.begin();
3831   for (const Expr *E : Data.LastprivateVars) {
3832     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3833     Privates.emplace_back(
3834         C.getDeclAlign(VD),
3835         PrivateHelpersTy(E, VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
3836                          /*PrivateElemInit=*/nullptr));
3837     ++I;
3838   }
3839   for (const VarDecl *VD : Data.PrivateLocals) {
3840     if (isAllocatableDecl(VD))
3841       Privates.emplace_back(CGM.getPointerAlign(), PrivateHelpersTy(VD));
3842     else
3843       Privates.emplace_back(C.getDeclAlign(VD), PrivateHelpersTy(VD));
3844   }
3845   llvm::stable_sort(Privates,
3846                     [](const PrivateDataTy &L, const PrivateDataTy &R) {
3847                       return L.first > R.first;
3848                     });
3849   QualType KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
3850   // Build type kmp_routine_entry_t (if not built yet).
3851   emitKmpRoutineEntryT(KmpInt32Ty);
3852   // Build type kmp_task_t (if not built yet).
3853   if (isOpenMPTaskLoopDirective(D.getDirectiveKind())) {
3854     if (SavedKmpTaskloopTQTy.isNull()) {
3855       SavedKmpTaskloopTQTy = C.getRecordType(createKmpTaskTRecordDecl(
3856           CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy));
3857     }
3858     KmpTaskTQTy = SavedKmpTaskloopTQTy;
3859   } else {
3860     assert((D.getDirectiveKind() == OMPD_task ||
3861             isOpenMPTargetExecutionDirective(D.getDirectiveKind()) ||
3862             isOpenMPTargetDataManagementDirective(D.getDirectiveKind())) &&
3863            "Expected taskloop, task or target directive");
3864     if (SavedKmpTaskTQTy.isNull()) {
3865       SavedKmpTaskTQTy = C.getRecordType(createKmpTaskTRecordDecl(
3866           CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy));
3867     }
3868     KmpTaskTQTy = SavedKmpTaskTQTy;
3869   }
3870   const auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
3871   // Build particular struct kmp_task_t for the given task.
3872   const RecordDecl *KmpTaskTWithPrivatesQTyRD =
3873       createKmpTaskTWithPrivatesRecordDecl(CGM, KmpTaskTQTy, Privates);
3874   QualType KmpTaskTWithPrivatesQTy = C.getRecordType(KmpTaskTWithPrivatesQTyRD);
3875   QualType KmpTaskTWithPrivatesPtrQTy =
3876       C.getPointerType(KmpTaskTWithPrivatesQTy);
3877   llvm::Type *KmpTaskTWithPrivatesTy = CGF.ConvertType(KmpTaskTWithPrivatesQTy);
3878   llvm::Type *KmpTaskTWithPrivatesPtrTy =
3879       KmpTaskTWithPrivatesTy->getPointerTo();
3880   llvm::Value *KmpTaskTWithPrivatesTySize =
3881       CGF.getTypeSize(KmpTaskTWithPrivatesQTy);
3882   QualType SharedsPtrTy = C.getPointerType(SharedsTy);
3883 
3884   // Emit initial values for private copies (if any).
3885   llvm::Value *TaskPrivatesMap = nullptr;
3886   llvm::Type *TaskPrivatesMapTy =
3887       std::next(TaskFunction->arg_begin(), 3)->getType();
3888   if (!Privates.empty()) {
3889     auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
3890     TaskPrivatesMap =
3891         emitTaskPrivateMappingFunction(CGM, Loc, Data, FI->getType(), Privates);
3892     TaskPrivatesMap = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3893         TaskPrivatesMap, TaskPrivatesMapTy);
3894   } else {
3895     TaskPrivatesMap = llvm::ConstantPointerNull::get(
3896         cast<llvm::PointerType>(TaskPrivatesMapTy));
3897   }
3898   // Build a proxy function kmp_int32 .omp_task_entry.(kmp_int32 gtid,
3899   // kmp_task_t *tt);
3900   llvm::Function *TaskEntry = emitProxyTaskFunction(
3901       CGM, Loc, D.getDirectiveKind(), KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy,
3902       KmpTaskTWithPrivatesQTy, KmpTaskTQTy, SharedsPtrTy, TaskFunction,
3903       TaskPrivatesMap);
3904 
3905   // Build call kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
3906   // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
3907   // kmp_routine_entry_t *task_entry);
3908   // Task flags. Format is taken from
3909   // https://github.com/llvm/llvm-project/blob/main/openmp/runtime/src/kmp.h,
3910   // description of kmp_tasking_flags struct.
3911   enum {
3912     TiedFlag = 0x1,
3913     FinalFlag = 0x2,
3914     DestructorsFlag = 0x8,
3915     PriorityFlag = 0x20,
3916     DetachableFlag = 0x40,
3917   };
3918   unsigned Flags = Data.Tied ? TiedFlag : 0;
3919   bool NeedsCleanup = false;
3920   if (!Privates.empty()) {
3921     NeedsCleanup =
3922         checkDestructorsRequired(KmpTaskTWithPrivatesQTyRD, Privates);
3923     if (NeedsCleanup)
3924       Flags = Flags | DestructorsFlag;
3925   }
3926   if (Data.Priority.getInt())
3927     Flags = Flags | PriorityFlag;
3928   if (D.hasClausesOfKind<OMPDetachClause>())
3929     Flags = Flags | DetachableFlag;
3930   llvm::Value *TaskFlags =
3931       Data.Final.getPointer()
3932           ? CGF.Builder.CreateSelect(Data.Final.getPointer(),
3933                                      CGF.Builder.getInt32(FinalFlag),
3934                                      CGF.Builder.getInt32(/*C=*/0))
3935           : CGF.Builder.getInt32(Data.Final.getInt() ? FinalFlag : 0);
3936   TaskFlags = CGF.Builder.CreateOr(TaskFlags, CGF.Builder.getInt32(Flags));
3937   llvm::Value *SharedsSize = CGM.getSize(C.getTypeSizeInChars(SharedsTy));
3938   SmallVector<llvm::Value *, 8> AllocArgs = {emitUpdateLocation(CGF, Loc),
3939       getThreadID(CGF, Loc), TaskFlags, KmpTaskTWithPrivatesTySize,
3940       SharedsSize, CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3941           TaskEntry, KmpRoutineEntryPtrTy)};
3942   llvm::Value *NewTask;
3943   if (D.hasClausesOfKind<OMPNowaitClause>()) {
3944     // Check if we have any device clause associated with the directive.
3945     const Expr *Device = nullptr;
3946     if (auto *C = D.getSingleClause<OMPDeviceClause>())
3947       Device = C->getDevice();
3948     // Emit device ID if any otherwise use default value.
3949     llvm::Value *DeviceID;
3950     if (Device)
3951       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
3952                                            CGF.Int64Ty, /*isSigned=*/true);
3953     else
3954       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
3955     AllocArgs.push_back(DeviceID);
3956     NewTask = CGF.EmitRuntimeCall(
3957         OMPBuilder.getOrCreateRuntimeFunction(
3958             CGM.getModule(), OMPRTL___kmpc_omp_target_task_alloc),
3959         AllocArgs);
3960   } else {
3961     NewTask =
3962         CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
3963                                 CGM.getModule(), OMPRTL___kmpc_omp_task_alloc),
3964                             AllocArgs);
3965   }
3966   // Emit detach clause initialization.
3967   // evt = (typeof(evt))__kmpc_task_allow_completion_event(loc, tid,
3968   // task_descriptor);
3969   if (const auto *DC = D.getSingleClause<OMPDetachClause>()) {
3970     const Expr *Evt = DC->getEventHandler()->IgnoreParenImpCasts();
3971     LValue EvtLVal = CGF.EmitLValue(Evt);
3972 
3973     // Build kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref,
3974     // int gtid, kmp_task_t *task);
3975     llvm::Value *Loc = emitUpdateLocation(CGF, DC->getBeginLoc());
3976     llvm::Value *Tid = getThreadID(CGF, DC->getBeginLoc());
3977     Tid = CGF.Builder.CreateIntCast(Tid, CGF.IntTy, /*isSigned=*/false);
3978     llvm::Value *EvtVal = CGF.EmitRuntimeCall(
3979         OMPBuilder.getOrCreateRuntimeFunction(
3980             CGM.getModule(), OMPRTL___kmpc_task_allow_completion_event),
3981         {Loc, Tid, NewTask});
3982     EvtVal = CGF.EmitScalarConversion(EvtVal, C.VoidPtrTy, Evt->getType(),
3983                                       Evt->getExprLoc());
3984     CGF.EmitStoreOfScalar(EvtVal, EvtLVal);
3985   }
3986   // Process affinity clauses.
3987   if (D.hasClausesOfKind<OMPAffinityClause>()) {
3988     // Process list of affinity data.
3989     ASTContext &C = CGM.getContext();
3990     Address AffinitiesArray = Address::invalid();
3991     // Calculate number of elements to form the array of affinity data.
3992     llvm::Value *NumOfElements = nullptr;
3993     unsigned NumAffinities = 0;
3994     for (const auto *C : D.getClausesOfKind<OMPAffinityClause>()) {
3995       if (const Expr *Modifier = C->getModifier()) {
3996         const auto *IE = cast<OMPIteratorExpr>(Modifier->IgnoreParenImpCasts());
3997         for (unsigned I = 0, E = IE->numOfIterators(); I < E; ++I) {
3998           llvm::Value *Sz = CGF.EmitScalarExpr(IE->getHelper(I).Upper);
3999           Sz = CGF.Builder.CreateIntCast(Sz, CGF.SizeTy, /*isSigned=*/false);
4000           NumOfElements =
4001               NumOfElements ? CGF.Builder.CreateNUWMul(NumOfElements, Sz) : Sz;
4002         }
4003       } else {
4004         NumAffinities += C->varlist_size();
4005       }
4006     }
4007     getKmpAffinityType(CGM.getContext(), KmpTaskAffinityInfoTy);
4008     // Fields ids in kmp_task_affinity_info record.
4009     enum RTLAffinityInfoFieldsTy { BaseAddr, Len, Flags };
4010 
4011     QualType KmpTaskAffinityInfoArrayTy;
4012     if (NumOfElements) {
4013       NumOfElements = CGF.Builder.CreateNUWAdd(
4014           llvm::ConstantInt::get(CGF.SizeTy, NumAffinities), NumOfElements);
4015       auto *OVE = new (C) OpaqueValueExpr(
4016           Loc,
4017           C.getIntTypeForBitwidth(C.getTypeSize(C.getSizeType()), /*Signed=*/0),
4018           VK_PRValue);
4019       CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, OVE,
4020                                                     RValue::get(NumOfElements));
4021       KmpTaskAffinityInfoArrayTy =
4022           C.getVariableArrayType(KmpTaskAffinityInfoTy, OVE, ArrayType::Normal,
4023                                  /*IndexTypeQuals=*/0, SourceRange(Loc, Loc));
4024       // Properly emit variable-sized array.
4025       auto *PD = ImplicitParamDecl::Create(C, KmpTaskAffinityInfoArrayTy,
4026                                            ImplicitParamDecl::Other);
4027       CGF.EmitVarDecl(*PD);
4028       AffinitiesArray = CGF.GetAddrOfLocalVar(PD);
4029       NumOfElements = CGF.Builder.CreateIntCast(NumOfElements, CGF.Int32Ty,
4030                                                 /*isSigned=*/false);
4031     } else {
4032       KmpTaskAffinityInfoArrayTy = C.getConstantArrayType(
4033           KmpTaskAffinityInfoTy,
4034           llvm::APInt(C.getTypeSize(C.getSizeType()), NumAffinities), nullptr,
4035           ArrayType::Normal, /*IndexTypeQuals=*/0);
4036       AffinitiesArray =
4037           CGF.CreateMemTemp(KmpTaskAffinityInfoArrayTy, ".affs.arr.addr");
4038       AffinitiesArray = CGF.Builder.CreateConstArrayGEP(AffinitiesArray, 0);
4039       NumOfElements = llvm::ConstantInt::get(CGM.Int32Ty, NumAffinities,
4040                                              /*isSigned=*/false);
4041     }
4042 
4043     const auto *KmpAffinityInfoRD = KmpTaskAffinityInfoTy->getAsRecordDecl();
4044     // Fill array by elements without iterators.
4045     unsigned Pos = 0;
4046     bool HasIterator = false;
4047     for (const auto *C : D.getClausesOfKind<OMPAffinityClause>()) {
4048       if (C->getModifier()) {
4049         HasIterator = true;
4050         continue;
4051       }
4052       for (const Expr *E : C->varlists()) {
4053         llvm::Value *Addr;
4054         llvm::Value *Size;
4055         std::tie(Addr, Size) = getPointerAndSize(CGF, E);
4056         LValue Base =
4057             CGF.MakeAddrLValue(CGF.Builder.CreateConstGEP(AffinitiesArray, Pos),
4058                                KmpTaskAffinityInfoTy);
4059         // affs[i].base_addr = &<Affinities[i].second>;
4060         LValue BaseAddrLVal = CGF.EmitLValueForField(
4061             Base, *std::next(KmpAffinityInfoRD->field_begin(), BaseAddr));
4062         CGF.EmitStoreOfScalar(CGF.Builder.CreatePtrToInt(Addr, CGF.IntPtrTy),
4063                               BaseAddrLVal);
4064         // affs[i].len = sizeof(<Affinities[i].second>);
4065         LValue LenLVal = CGF.EmitLValueForField(
4066             Base, *std::next(KmpAffinityInfoRD->field_begin(), Len));
4067         CGF.EmitStoreOfScalar(Size, LenLVal);
4068         ++Pos;
4069       }
4070     }
4071     LValue PosLVal;
4072     if (HasIterator) {
4073       PosLVal = CGF.MakeAddrLValue(
4074           CGF.CreateMemTemp(C.getSizeType(), "affs.counter.addr"),
4075           C.getSizeType());
4076       CGF.EmitStoreOfScalar(llvm::ConstantInt::get(CGF.SizeTy, Pos), PosLVal);
4077     }
4078     // Process elements with iterators.
4079     for (const auto *C : D.getClausesOfKind<OMPAffinityClause>()) {
4080       const Expr *Modifier = C->getModifier();
4081       if (!Modifier)
4082         continue;
4083       OMPIteratorGeneratorScope IteratorScope(
4084           CGF, cast_or_null<OMPIteratorExpr>(Modifier->IgnoreParenImpCasts()));
4085       for (const Expr *E : C->varlists()) {
4086         llvm::Value *Addr;
4087         llvm::Value *Size;
4088         std::tie(Addr, Size) = getPointerAndSize(CGF, E);
4089         llvm::Value *Idx = CGF.EmitLoadOfScalar(PosLVal, E->getExprLoc());
4090         LValue Base = CGF.MakeAddrLValue(
4091             CGF.Builder.CreateGEP(AffinitiesArray, Idx), KmpTaskAffinityInfoTy);
4092         // affs[i].base_addr = &<Affinities[i].second>;
4093         LValue BaseAddrLVal = CGF.EmitLValueForField(
4094             Base, *std::next(KmpAffinityInfoRD->field_begin(), BaseAddr));
4095         CGF.EmitStoreOfScalar(CGF.Builder.CreatePtrToInt(Addr, CGF.IntPtrTy),
4096                               BaseAddrLVal);
4097         // affs[i].len = sizeof(<Affinities[i].second>);
4098         LValue LenLVal = CGF.EmitLValueForField(
4099             Base, *std::next(KmpAffinityInfoRD->field_begin(), Len));
4100         CGF.EmitStoreOfScalar(Size, LenLVal);
4101         Idx = CGF.Builder.CreateNUWAdd(
4102             Idx, llvm::ConstantInt::get(Idx->getType(), 1));
4103         CGF.EmitStoreOfScalar(Idx, PosLVal);
4104       }
4105     }
4106     // Call to kmp_int32 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref,
4107     // kmp_int32 gtid, kmp_task_t *new_task, kmp_int32
4108     // naffins, kmp_task_affinity_info_t *affin_list);
4109     llvm::Value *LocRef = emitUpdateLocation(CGF, Loc);
4110     llvm::Value *GTid = getThreadID(CGF, Loc);
4111     llvm::Value *AffinListPtr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4112         AffinitiesArray.getPointer(), CGM.VoidPtrTy);
4113     // FIXME: Emit the function and ignore its result for now unless the
4114     // runtime function is properly implemented.
4115     (void)CGF.EmitRuntimeCall(
4116         OMPBuilder.getOrCreateRuntimeFunction(
4117             CGM.getModule(), OMPRTL___kmpc_omp_reg_task_with_affinity),
4118         {LocRef, GTid, NewTask, NumOfElements, AffinListPtr});
4119   }
4120   llvm::Value *NewTaskNewTaskTTy =
4121       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4122           NewTask, KmpTaskTWithPrivatesPtrTy);
4123   LValue Base = CGF.MakeNaturalAlignAddrLValue(NewTaskNewTaskTTy,
4124                                                KmpTaskTWithPrivatesQTy);
4125   LValue TDBase =
4126       CGF.EmitLValueForField(Base, *KmpTaskTWithPrivatesQTyRD->field_begin());
4127   // Fill the data in the resulting kmp_task_t record.
4128   // Copy shareds if there are any.
4129   Address KmpTaskSharedsPtr = Address::invalid();
4130   if (!SharedsTy->getAsStructureType()->getDecl()->field_empty()) {
4131     KmpTaskSharedsPtr = Address(
4132         CGF.EmitLoadOfScalar(
4133             CGF.EmitLValueForField(
4134                 TDBase,
4135                 *std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTShareds)),
4136             Loc),
4137         CGF.Int8Ty, CGM.getNaturalTypeAlignment(SharedsTy));
4138     LValue Dest = CGF.MakeAddrLValue(KmpTaskSharedsPtr, SharedsTy);
4139     LValue Src = CGF.MakeAddrLValue(Shareds, SharedsTy);
4140     CGF.EmitAggregateCopy(Dest, Src, SharedsTy, AggValueSlot::DoesNotOverlap);
4141   }
4142   // Emit initial values for private copies (if any).
4143   TaskResultTy Result;
4144   if (!Privates.empty()) {
4145     emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, Base, KmpTaskTWithPrivatesQTyRD,
4146                      SharedsTy, SharedsPtrTy, Data, Privates,
4147                      /*ForDup=*/false);
4148     if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) &&
4149         (!Data.LastprivateVars.empty() || checkInitIsRequired(CGF, Privates))) {
4150       Result.TaskDupFn = emitTaskDupFunction(
4151           CGM, Loc, D, KmpTaskTWithPrivatesPtrQTy, KmpTaskTWithPrivatesQTyRD,
4152           KmpTaskTQTyRD, SharedsTy, SharedsPtrTy, Data, Privates,
4153           /*WithLastIter=*/!Data.LastprivateVars.empty());
4154     }
4155   }
4156   // Fields of union "kmp_cmplrdata_t" for destructors and priority.
4157   enum { Priority = 0, Destructors = 1 };
4158   // Provide pointer to function with destructors for privates.
4159   auto FI = std::next(KmpTaskTQTyRD->field_begin(), Data1);
4160   const RecordDecl *KmpCmplrdataUD =
4161       (*FI)->getType()->getAsUnionType()->getDecl();
4162   if (NeedsCleanup) {
4163     llvm::Value *DestructorFn = emitDestructorsFunction(
4164         CGM, Loc, KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy,
4165         KmpTaskTWithPrivatesQTy);
4166     LValue Data1LV = CGF.EmitLValueForField(TDBase, *FI);
4167     LValue DestructorsLV = CGF.EmitLValueForField(
4168         Data1LV, *std::next(KmpCmplrdataUD->field_begin(), Destructors));
4169     CGF.EmitStoreOfScalar(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4170                               DestructorFn, KmpRoutineEntryPtrTy),
4171                           DestructorsLV);
4172   }
4173   // Set priority.
4174   if (Data.Priority.getInt()) {
4175     LValue Data2LV = CGF.EmitLValueForField(
4176         TDBase, *std::next(KmpTaskTQTyRD->field_begin(), Data2));
4177     LValue PriorityLV = CGF.EmitLValueForField(
4178         Data2LV, *std::next(KmpCmplrdataUD->field_begin(), Priority));
4179     CGF.EmitStoreOfScalar(Data.Priority.getPointer(), PriorityLV);
4180   }
4181   Result.NewTask = NewTask;
4182   Result.TaskEntry = TaskEntry;
4183   Result.NewTaskNewTaskTTy = NewTaskNewTaskTTy;
4184   Result.TDBase = TDBase;
4185   Result.KmpTaskTQTyRD = KmpTaskTQTyRD;
4186   return Result;
4187 }
4188 
4189 /// Translates internal dependency kind into the runtime kind.
translateDependencyKind(OpenMPDependClauseKind K)4190 static RTLDependenceKindTy translateDependencyKind(OpenMPDependClauseKind K) {
4191   RTLDependenceKindTy DepKind;
4192   switch (K) {
4193   case OMPC_DEPEND_in:
4194     DepKind = RTLDependenceKindTy::DepIn;
4195     break;
4196   // Out and InOut dependencies must use the same code.
4197   case OMPC_DEPEND_out:
4198   case OMPC_DEPEND_inout:
4199     DepKind = RTLDependenceKindTy::DepInOut;
4200     break;
4201   case OMPC_DEPEND_mutexinoutset:
4202     DepKind = RTLDependenceKindTy::DepMutexInOutSet;
4203     break;
4204   case OMPC_DEPEND_inoutset:
4205     DepKind = RTLDependenceKindTy::DepInOutSet;
4206     break;
4207   case OMPC_DEPEND_outallmemory:
4208     DepKind = RTLDependenceKindTy::DepOmpAllMem;
4209     break;
4210   case OMPC_DEPEND_source:
4211   case OMPC_DEPEND_sink:
4212   case OMPC_DEPEND_depobj:
4213   case OMPC_DEPEND_inoutallmemory:
4214   case OMPC_DEPEND_unknown:
4215     llvm_unreachable("Unknown task dependence type");
4216   }
4217   return DepKind;
4218 }
4219 
4220 /// Builds kmp_depend_info, if it is not built yet, and builds flags type.
getDependTypes(ASTContext & C,QualType & KmpDependInfoTy,QualType & FlagsTy)4221 static void getDependTypes(ASTContext &C, QualType &KmpDependInfoTy,
4222                            QualType &FlagsTy) {
4223   FlagsTy = C.getIntTypeForBitwidth(C.getTypeSize(C.BoolTy), /*Signed=*/false);
4224   if (KmpDependInfoTy.isNull()) {
4225     RecordDecl *KmpDependInfoRD = C.buildImplicitRecord("kmp_depend_info");
4226     KmpDependInfoRD->startDefinition();
4227     addFieldToRecordDecl(C, KmpDependInfoRD, C.getIntPtrType());
4228     addFieldToRecordDecl(C, KmpDependInfoRD, C.getSizeType());
4229     addFieldToRecordDecl(C, KmpDependInfoRD, FlagsTy);
4230     KmpDependInfoRD->completeDefinition();
4231     KmpDependInfoTy = C.getRecordType(KmpDependInfoRD);
4232   }
4233 }
4234 
4235 std::pair<llvm::Value *, LValue>
getDepobjElements(CodeGenFunction & CGF,LValue DepobjLVal,SourceLocation Loc)4236 CGOpenMPRuntime::getDepobjElements(CodeGenFunction &CGF, LValue DepobjLVal,
4237                                    SourceLocation Loc) {
4238   ASTContext &C = CGM.getContext();
4239   QualType FlagsTy;
4240   getDependTypes(C, KmpDependInfoTy, FlagsTy);
4241   RecordDecl *KmpDependInfoRD =
4242       cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
4243   QualType KmpDependInfoPtrTy = C.getPointerType(KmpDependInfoTy);
4244   LValue Base = CGF.EmitLoadOfPointerLValue(
4245       CGF.Builder.CreateElementBitCast(
4246           DepobjLVal.getAddress(CGF),
4247           CGF.ConvertTypeForMem(KmpDependInfoPtrTy)),
4248       KmpDependInfoPtrTy->castAs<PointerType>());
4249   Address DepObjAddr = CGF.Builder.CreateGEP(
4250       Base.getAddress(CGF),
4251       llvm::ConstantInt::get(CGF.IntPtrTy, -1, /*isSigned=*/true));
4252   LValue NumDepsBase = CGF.MakeAddrLValue(
4253       DepObjAddr, KmpDependInfoTy, Base.getBaseInfo(), Base.getTBAAInfo());
4254   // NumDeps = deps[i].base_addr;
4255   LValue BaseAddrLVal = CGF.EmitLValueForField(
4256       NumDepsBase,
4257       *std::next(KmpDependInfoRD->field_begin(),
4258                  static_cast<unsigned int>(RTLDependInfoFields::BaseAddr)));
4259   llvm::Value *NumDeps = CGF.EmitLoadOfScalar(BaseAddrLVal, Loc);
4260   return std::make_pair(NumDeps, Base);
4261 }
4262 
emitDependData(CodeGenFunction & CGF,QualType & KmpDependInfoTy,llvm::PointerUnion<unsigned *,LValue * > Pos,const OMPTaskDataTy::DependData & Data,Address DependenciesArray)4263 static void emitDependData(CodeGenFunction &CGF, QualType &KmpDependInfoTy,
4264                            llvm::PointerUnion<unsigned *, LValue *> Pos,
4265                            const OMPTaskDataTy::DependData &Data,
4266                            Address DependenciesArray) {
4267   CodeGenModule &CGM = CGF.CGM;
4268   ASTContext &C = CGM.getContext();
4269   QualType FlagsTy;
4270   getDependTypes(C, KmpDependInfoTy, FlagsTy);
4271   RecordDecl *KmpDependInfoRD =
4272       cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
4273   llvm::Type *LLVMFlagsTy = CGF.ConvertTypeForMem(FlagsTy);
4274 
4275   OMPIteratorGeneratorScope IteratorScope(
4276       CGF, cast_or_null<OMPIteratorExpr>(
4277                Data.IteratorExpr ? Data.IteratorExpr->IgnoreParenImpCasts()
4278                                  : nullptr));
4279   for (const Expr *E : Data.DepExprs) {
4280     llvm::Value *Addr;
4281     llvm::Value *Size;
4282 
4283     // The expression will be a nullptr in the 'omp_all_memory' case.
4284     if (E) {
4285       std::tie(Addr, Size) = getPointerAndSize(CGF, E);
4286       Addr = CGF.Builder.CreatePtrToInt(Addr, CGF.IntPtrTy);
4287     } else {
4288       Addr = llvm::ConstantInt::get(CGF.IntPtrTy, 0);
4289       Size = llvm::ConstantInt::get(CGF.SizeTy, 0);
4290     }
4291     LValue Base;
4292     if (unsigned *P = Pos.dyn_cast<unsigned *>()) {
4293       Base = CGF.MakeAddrLValue(
4294           CGF.Builder.CreateConstGEP(DependenciesArray, *P), KmpDependInfoTy);
4295     } else {
4296       assert(E && "Expected a non-null expression");
4297       LValue &PosLVal = *Pos.get<LValue *>();
4298       llvm::Value *Idx = CGF.EmitLoadOfScalar(PosLVal, E->getExprLoc());
4299       Base = CGF.MakeAddrLValue(
4300           CGF.Builder.CreateGEP(DependenciesArray, Idx), KmpDependInfoTy);
4301     }
4302     // deps[i].base_addr = &<Dependencies[i].second>;
4303     LValue BaseAddrLVal = CGF.EmitLValueForField(
4304         Base,
4305         *std::next(KmpDependInfoRD->field_begin(),
4306                    static_cast<unsigned int>(RTLDependInfoFields::BaseAddr)));
4307     CGF.EmitStoreOfScalar(Addr, BaseAddrLVal);
4308     // deps[i].len = sizeof(<Dependencies[i].second>);
4309     LValue LenLVal = CGF.EmitLValueForField(
4310         Base, *std::next(KmpDependInfoRD->field_begin(),
4311                          static_cast<unsigned int>(RTLDependInfoFields::Len)));
4312     CGF.EmitStoreOfScalar(Size, LenLVal);
4313     // deps[i].flags = <Dependencies[i].first>;
4314     RTLDependenceKindTy DepKind = translateDependencyKind(Data.DepKind);
4315     LValue FlagsLVal = CGF.EmitLValueForField(
4316         Base,
4317         *std::next(KmpDependInfoRD->field_begin(),
4318                    static_cast<unsigned int>(RTLDependInfoFields::Flags)));
4319     CGF.EmitStoreOfScalar(
4320         llvm::ConstantInt::get(LLVMFlagsTy, static_cast<unsigned int>(DepKind)),
4321         FlagsLVal);
4322     if (unsigned *P = Pos.dyn_cast<unsigned *>()) {
4323       ++(*P);
4324     } else {
4325       LValue &PosLVal = *Pos.get<LValue *>();
4326       llvm::Value *Idx = CGF.EmitLoadOfScalar(PosLVal, E->getExprLoc());
4327       Idx = CGF.Builder.CreateNUWAdd(Idx,
4328                                      llvm::ConstantInt::get(Idx->getType(), 1));
4329       CGF.EmitStoreOfScalar(Idx, PosLVal);
4330     }
4331   }
4332 }
4333 
emitDepobjElementsSizes(CodeGenFunction & CGF,QualType & KmpDependInfoTy,const OMPTaskDataTy::DependData & Data)4334 SmallVector<llvm::Value *, 4> CGOpenMPRuntime::emitDepobjElementsSizes(
4335     CodeGenFunction &CGF, QualType &KmpDependInfoTy,
4336     const OMPTaskDataTy::DependData &Data) {
4337   assert(Data.DepKind == OMPC_DEPEND_depobj &&
4338          "Expected depobj dependency kind.");
4339   SmallVector<llvm::Value *, 4> Sizes;
4340   SmallVector<LValue, 4> SizeLVals;
4341   ASTContext &C = CGF.getContext();
4342   {
4343     OMPIteratorGeneratorScope IteratorScope(
4344         CGF, cast_or_null<OMPIteratorExpr>(
4345                  Data.IteratorExpr ? Data.IteratorExpr->IgnoreParenImpCasts()
4346                                    : nullptr));
4347     for (const Expr *E : Data.DepExprs) {
4348       llvm::Value *NumDeps;
4349       LValue Base;
4350       LValue DepobjLVal = CGF.EmitLValue(E->IgnoreParenImpCasts());
4351       std::tie(NumDeps, Base) =
4352           getDepobjElements(CGF, DepobjLVal, E->getExprLoc());
4353       LValue NumLVal = CGF.MakeAddrLValue(
4354           CGF.CreateMemTemp(C.getUIntPtrType(), "depobj.size.addr"),
4355           C.getUIntPtrType());
4356       CGF.Builder.CreateStore(llvm::ConstantInt::get(CGF.IntPtrTy, 0),
4357                               NumLVal.getAddress(CGF));
4358       llvm::Value *PrevVal = CGF.EmitLoadOfScalar(NumLVal, E->getExprLoc());
4359       llvm::Value *Add = CGF.Builder.CreateNUWAdd(PrevVal, NumDeps);
4360       CGF.EmitStoreOfScalar(Add, NumLVal);
4361       SizeLVals.push_back(NumLVal);
4362     }
4363   }
4364   for (unsigned I = 0, E = SizeLVals.size(); I < E; ++I) {
4365     llvm::Value *Size =
4366         CGF.EmitLoadOfScalar(SizeLVals[I], Data.DepExprs[I]->getExprLoc());
4367     Sizes.push_back(Size);
4368   }
4369   return Sizes;
4370 }
4371 
emitDepobjElements(CodeGenFunction & CGF,QualType & KmpDependInfoTy,LValue PosLVal,const OMPTaskDataTy::DependData & Data,Address DependenciesArray)4372 void CGOpenMPRuntime::emitDepobjElements(CodeGenFunction &CGF,
4373                                          QualType &KmpDependInfoTy,
4374                                          LValue PosLVal,
4375                                          const OMPTaskDataTy::DependData &Data,
4376                                          Address DependenciesArray) {
4377   assert(Data.DepKind == OMPC_DEPEND_depobj &&
4378          "Expected depobj dependency kind.");
4379   llvm::Value *ElSize = CGF.getTypeSize(KmpDependInfoTy);
4380   {
4381     OMPIteratorGeneratorScope IteratorScope(
4382         CGF, cast_or_null<OMPIteratorExpr>(
4383                  Data.IteratorExpr ? Data.IteratorExpr->IgnoreParenImpCasts()
4384                                    : nullptr));
4385     for (unsigned I = 0, End = Data.DepExprs.size(); I < End; ++I) {
4386       const Expr *E = Data.DepExprs[I];
4387       llvm::Value *NumDeps;
4388       LValue Base;
4389       LValue DepobjLVal = CGF.EmitLValue(E->IgnoreParenImpCasts());
4390       std::tie(NumDeps, Base) =
4391           getDepobjElements(CGF, DepobjLVal, E->getExprLoc());
4392 
4393       // memcopy dependency data.
4394       llvm::Value *Size = CGF.Builder.CreateNUWMul(
4395           ElSize,
4396           CGF.Builder.CreateIntCast(NumDeps, CGF.SizeTy, /*isSigned=*/false));
4397       llvm::Value *Pos = CGF.EmitLoadOfScalar(PosLVal, E->getExprLoc());
4398       Address DepAddr = CGF.Builder.CreateGEP(DependenciesArray, Pos);
4399       CGF.Builder.CreateMemCpy(DepAddr, Base.getAddress(CGF), Size);
4400 
4401       // Increase pos.
4402       // pos += size;
4403       llvm::Value *Add = CGF.Builder.CreateNUWAdd(Pos, NumDeps);
4404       CGF.EmitStoreOfScalar(Add, PosLVal);
4405     }
4406   }
4407 }
4408 
emitDependClause(CodeGenFunction & CGF,ArrayRef<OMPTaskDataTy::DependData> Dependencies,SourceLocation Loc)4409 std::pair<llvm::Value *, Address> CGOpenMPRuntime::emitDependClause(
4410     CodeGenFunction &CGF, ArrayRef<OMPTaskDataTy::DependData> Dependencies,
4411     SourceLocation Loc) {
4412   if (llvm::all_of(Dependencies, [](const OMPTaskDataTy::DependData &D) {
4413         return D.DepExprs.empty();
4414       }))
4415     return std::make_pair(nullptr, Address::invalid());
4416   // Process list of dependencies.
4417   ASTContext &C = CGM.getContext();
4418   Address DependenciesArray = Address::invalid();
4419   llvm::Value *NumOfElements = nullptr;
4420   unsigned NumDependencies = std::accumulate(
4421       Dependencies.begin(), Dependencies.end(), 0,
4422       [](unsigned V, const OMPTaskDataTy::DependData &D) {
4423         return D.DepKind == OMPC_DEPEND_depobj
4424                    ? V
4425                    : (V + (D.IteratorExpr ? 0 : D.DepExprs.size()));
4426       });
4427   QualType FlagsTy;
4428   getDependTypes(C, KmpDependInfoTy, FlagsTy);
4429   bool HasDepobjDeps = false;
4430   bool HasRegularWithIterators = false;
4431   llvm::Value *NumOfDepobjElements = llvm::ConstantInt::get(CGF.IntPtrTy, 0);
4432   llvm::Value *NumOfRegularWithIterators =
4433       llvm::ConstantInt::get(CGF.IntPtrTy, 0);
4434   // Calculate number of depobj dependencies and regular deps with the
4435   // iterators.
4436   for (const OMPTaskDataTy::DependData &D : Dependencies) {
4437     if (D.DepKind == OMPC_DEPEND_depobj) {
4438       SmallVector<llvm::Value *, 4> Sizes =
4439           emitDepobjElementsSizes(CGF, KmpDependInfoTy, D);
4440       for (llvm::Value *Size : Sizes) {
4441         NumOfDepobjElements =
4442             CGF.Builder.CreateNUWAdd(NumOfDepobjElements, Size);
4443       }
4444       HasDepobjDeps = true;
4445       continue;
4446     }
4447     // Include number of iterations, if any.
4448 
4449     if (const auto *IE = cast_or_null<OMPIteratorExpr>(D.IteratorExpr)) {
4450       for (unsigned I = 0, E = IE->numOfIterators(); I < E; ++I) {
4451         llvm::Value *Sz = CGF.EmitScalarExpr(IE->getHelper(I).Upper);
4452         Sz = CGF.Builder.CreateIntCast(Sz, CGF.IntPtrTy, /*isSigned=*/false);
4453         llvm::Value *NumClauseDeps = CGF.Builder.CreateNUWMul(
4454             Sz, llvm::ConstantInt::get(CGF.IntPtrTy, D.DepExprs.size()));
4455         NumOfRegularWithIterators =
4456             CGF.Builder.CreateNUWAdd(NumOfRegularWithIterators, NumClauseDeps);
4457       }
4458       HasRegularWithIterators = true;
4459       continue;
4460     }
4461   }
4462 
4463   QualType KmpDependInfoArrayTy;
4464   if (HasDepobjDeps || HasRegularWithIterators) {
4465     NumOfElements = llvm::ConstantInt::get(CGM.IntPtrTy, NumDependencies,
4466                                            /*isSigned=*/false);
4467     if (HasDepobjDeps) {
4468       NumOfElements =
4469           CGF.Builder.CreateNUWAdd(NumOfDepobjElements, NumOfElements);
4470     }
4471     if (HasRegularWithIterators) {
4472       NumOfElements =
4473           CGF.Builder.CreateNUWAdd(NumOfRegularWithIterators, NumOfElements);
4474     }
4475     auto *OVE = new (C) OpaqueValueExpr(
4476         Loc, C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0),
4477         VK_PRValue);
4478     CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, OVE,
4479                                                   RValue::get(NumOfElements));
4480     KmpDependInfoArrayTy =
4481         C.getVariableArrayType(KmpDependInfoTy, OVE, ArrayType::Normal,
4482                                /*IndexTypeQuals=*/0, SourceRange(Loc, Loc));
4483     // CGF.EmitVariablyModifiedType(KmpDependInfoArrayTy);
4484     // Properly emit variable-sized array.
4485     auto *PD = ImplicitParamDecl::Create(C, KmpDependInfoArrayTy,
4486                                          ImplicitParamDecl::Other);
4487     CGF.EmitVarDecl(*PD);
4488     DependenciesArray = CGF.GetAddrOfLocalVar(PD);
4489     NumOfElements = CGF.Builder.CreateIntCast(NumOfElements, CGF.Int32Ty,
4490                                               /*isSigned=*/false);
4491   } else {
4492     KmpDependInfoArrayTy = C.getConstantArrayType(
4493         KmpDependInfoTy, llvm::APInt(/*numBits=*/64, NumDependencies), nullptr,
4494         ArrayType::Normal, /*IndexTypeQuals=*/0);
4495     DependenciesArray =
4496         CGF.CreateMemTemp(KmpDependInfoArrayTy, ".dep.arr.addr");
4497     DependenciesArray = CGF.Builder.CreateConstArrayGEP(DependenciesArray, 0);
4498     NumOfElements = llvm::ConstantInt::get(CGM.Int32Ty, NumDependencies,
4499                                            /*isSigned=*/false);
4500   }
4501   unsigned Pos = 0;
4502   for (unsigned I = 0, End = Dependencies.size(); I < End; ++I) {
4503     if (Dependencies[I].DepKind == OMPC_DEPEND_depobj ||
4504         Dependencies[I].IteratorExpr)
4505       continue;
4506     emitDependData(CGF, KmpDependInfoTy, &Pos, Dependencies[I],
4507                    DependenciesArray);
4508   }
4509   // Copy regular dependencies with iterators.
4510   LValue PosLVal = CGF.MakeAddrLValue(
4511       CGF.CreateMemTemp(C.getSizeType(), "dep.counter.addr"), C.getSizeType());
4512   CGF.EmitStoreOfScalar(llvm::ConstantInt::get(CGF.SizeTy, Pos), PosLVal);
4513   for (unsigned I = 0, End = Dependencies.size(); I < End; ++I) {
4514     if (Dependencies[I].DepKind == OMPC_DEPEND_depobj ||
4515         !Dependencies[I].IteratorExpr)
4516       continue;
4517     emitDependData(CGF, KmpDependInfoTy, &PosLVal, Dependencies[I],
4518                    DependenciesArray);
4519   }
4520   // Copy final depobj arrays without iterators.
4521   if (HasDepobjDeps) {
4522     for (unsigned I = 0, End = Dependencies.size(); I < End; ++I) {
4523       if (Dependencies[I].DepKind != OMPC_DEPEND_depobj)
4524         continue;
4525       emitDepobjElements(CGF, KmpDependInfoTy, PosLVal, Dependencies[I],
4526                          DependenciesArray);
4527     }
4528   }
4529   DependenciesArray = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4530       DependenciesArray, CGF.VoidPtrTy, CGF.Int8Ty);
4531   return std::make_pair(NumOfElements, DependenciesArray);
4532 }
4533 
emitDepobjDependClause(CodeGenFunction & CGF,const OMPTaskDataTy::DependData & Dependencies,SourceLocation Loc)4534 Address CGOpenMPRuntime::emitDepobjDependClause(
4535     CodeGenFunction &CGF, const OMPTaskDataTy::DependData &Dependencies,
4536     SourceLocation Loc) {
4537   if (Dependencies.DepExprs.empty())
4538     return Address::invalid();
4539   // Process list of dependencies.
4540   ASTContext &C = CGM.getContext();
4541   Address DependenciesArray = Address::invalid();
4542   unsigned NumDependencies = Dependencies.DepExprs.size();
4543   QualType FlagsTy;
4544   getDependTypes(C, KmpDependInfoTy, FlagsTy);
4545   RecordDecl *KmpDependInfoRD =
4546       cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
4547 
4548   llvm::Value *Size;
4549   // Define type kmp_depend_info[<Dependencies.size()>];
4550   // For depobj reserve one extra element to store the number of elements.
4551   // It is required to handle depobj(x) update(in) construct.
4552   // kmp_depend_info[<Dependencies.size()>] deps;
4553   llvm::Value *NumDepsVal;
4554   CharUnits Align = C.getTypeAlignInChars(KmpDependInfoTy);
4555   if (const auto *IE =
4556           cast_or_null<OMPIteratorExpr>(Dependencies.IteratorExpr)) {
4557     NumDepsVal = llvm::ConstantInt::get(CGF.SizeTy, 1);
4558     for (unsigned I = 0, E = IE->numOfIterators(); I < E; ++I) {
4559       llvm::Value *Sz = CGF.EmitScalarExpr(IE->getHelper(I).Upper);
4560       Sz = CGF.Builder.CreateIntCast(Sz, CGF.SizeTy, /*isSigned=*/false);
4561       NumDepsVal = CGF.Builder.CreateNUWMul(NumDepsVal, Sz);
4562     }
4563     Size = CGF.Builder.CreateNUWAdd(llvm::ConstantInt::get(CGF.SizeTy, 1),
4564                                     NumDepsVal);
4565     CharUnits SizeInBytes =
4566         C.getTypeSizeInChars(KmpDependInfoTy).alignTo(Align);
4567     llvm::Value *RecSize = CGM.getSize(SizeInBytes);
4568     Size = CGF.Builder.CreateNUWMul(Size, RecSize);
4569     NumDepsVal =
4570         CGF.Builder.CreateIntCast(NumDepsVal, CGF.IntPtrTy, /*isSigned=*/false);
4571   } else {
4572     QualType KmpDependInfoArrayTy = C.getConstantArrayType(
4573         KmpDependInfoTy, llvm::APInt(/*numBits=*/64, NumDependencies + 1),
4574         nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0);
4575     CharUnits Sz = C.getTypeSizeInChars(KmpDependInfoArrayTy);
4576     Size = CGM.getSize(Sz.alignTo(Align));
4577     NumDepsVal = llvm::ConstantInt::get(CGF.IntPtrTy, NumDependencies);
4578   }
4579   // Need to allocate on the dynamic memory.
4580   llvm::Value *ThreadID = getThreadID(CGF, Loc);
4581   // Use default allocator.
4582   llvm::Value *Allocator = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
4583   llvm::Value *Args[] = {ThreadID, Size, Allocator};
4584 
4585   llvm::Value *Addr =
4586       CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
4587                               CGM.getModule(), OMPRTL___kmpc_alloc),
4588                           Args, ".dep.arr.addr");
4589   llvm::Type *KmpDependInfoLlvmTy = CGF.ConvertTypeForMem(KmpDependInfoTy);
4590   Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4591       Addr, KmpDependInfoLlvmTy->getPointerTo());
4592   DependenciesArray = Address(Addr, KmpDependInfoLlvmTy, Align);
4593   // Write number of elements in the first element of array for depobj.
4594   LValue Base = CGF.MakeAddrLValue(DependenciesArray, KmpDependInfoTy);
4595   // deps[i].base_addr = NumDependencies;
4596   LValue BaseAddrLVal = CGF.EmitLValueForField(
4597       Base,
4598       *std::next(KmpDependInfoRD->field_begin(),
4599                  static_cast<unsigned int>(RTLDependInfoFields::BaseAddr)));
4600   CGF.EmitStoreOfScalar(NumDepsVal, BaseAddrLVal);
4601   llvm::PointerUnion<unsigned *, LValue *> Pos;
4602   unsigned Idx = 1;
4603   LValue PosLVal;
4604   if (Dependencies.IteratorExpr) {
4605     PosLVal = CGF.MakeAddrLValue(
4606         CGF.CreateMemTemp(C.getSizeType(), "iterator.counter.addr"),
4607         C.getSizeType());
4608     CGF.EmitStoreOfScalar(llvm::ConstantInt::get(CGF.SizeTy, Idx), PosLVal,
4609                           /*IsInit=*/true);
4610     Pos = &PosLVal;
4611   } else {
4612     Pos = &Idx;
4613   }
4614   emitDependData(CGF, KmpDependInfoTy, Pos, Dependencies, DependenciesArray);
4615   DependenciesArray = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4616       CGF.Builder.CreateConstGEP(DependenciesArray, 1), CGF.VoidPtrTy,
4617       CGF.Int8Ty);
4618   return DependenciesArray;
4619 }
4620 
emitDestroyClause(CodeGenFunction & CGF,LValue DepobjLVal,SourceLocation Loc)4621 void CGOpenMPRuntime::emitDestroyClause(CodeGenFunction &CGF, LValue DepobjLVal,
4622                                         SourceLocation Loc) {
4623   ASTContext &C = CGM.getContext();
4624   QualType FlagsTy;
4625   getDependTypes(C, KmpDependInfoTy, FlagsTy);
4626   LValue Base = CGF.EmitLoadOfPointerLValue(
4627       DepobjLVal.getAddress(CGF), C.VoidPtrTy.castAs<PointerType>());
4628   QualType KmpDependInfoPtrTy = C.getPointerType(KmpDependInfoTy);
4629   Address Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4630       Base.getAddress(CGF), CGF.ConvertTypeForMem(KmpDependInfoPtrTy),
4631       CGF.ConvertTypeForMem(KmpDependInfoTy));
4632   llvm::Value *DepObjAddr = CGF.Builder.CreateGEP(
4633       Addr.getElementType(), Addr.getPointer(),
4634       llvm::ConstantInt::get(CGF.IntPtrTy, -1, /*isSigned=*/true));
4635   DepObjAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(DepObjAddr,
4636                                                                CGF.VoidPtrTy);
4637   llvm::Value *ThreadID = getThreadID(CGF, Loc);
4638   // Use default allocator.
4639   llvm::Value *Allocator = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
4640   llvm::Value *Args[] = {ThreadID, DepObjAddr, Allocator};
4641 
4642   // _kmpc_free(gtid, addr, nullptr);
4643   (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
4644                                 CGM.getModule(), OMPRTL___kmpc_free),
4645                             Args);
4646 }
4647 
emitUpdateClause(CodeGenFunction & CGF,LValue DepobjLVal,OpenMPDependClauseKind NewDepKind,SourceLocation Loc)4648 void CGOpenMPRuntime::emitUpdateClause(CodeGenFunction &CGF, LValue DepobjLVal,
4649                                        OpenMPDependClauseKind NewDepKind,
4650                                        SourceLocation Loc) {
4651   ASTContext &C = CGM.getContext();
4652   QualType FlagsTy;
4653   getDependTypes(C, KmpDependInfoTy, FlagsTy);
4654   RecordDecl *KmpDependInfoRD =
4655       cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
4656   llvm::Type *LLVMFlagsTy = CGF.ConvertTypeForMem(FlagsTy);
4657   llvm::Value *NumDeps;
4658   LValue Base;
4659   std::tie(NumDeps, Base) = getDepobjElements(CGF, DepobjLVal, Loc);
4660 
4661   Address Begin = Base.getAddress(CGF);
4662   // Cast from pointer to array type to pointer to single element.
4663   llvm::Value *End = CGF.Builder.CreateGEP(
4664       Begin.getElementType(), Begin.getPointer(), NumDeps);
4665   // The basic structure here is a while-do loop.
4666   llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.body");
4667   llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.done");
4668   llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock();
4669   CGF.EmitBlock(BodyBB);
4670   llvm::PHINode *ElementPHI =
4671       CGF.Builder.CreatePHI(Begin.getType(), 2, "omp.elementPast");
4672   ElementPHI->addIncoming(Begin.getPointer(), EntryBB);
4673   Begin = Begin.withPointer(ElementPHI);
4674   Base = CGF.MakeAddrLValue(Begin, KmpDependInfoTy, Base.getBaseInfo(),
4675                             Base.getTBAAInfo());
4676   // deps[i].flags = NewDepKind;
4677   RTLDependenceKindTy DepKind = translateDependencyKind(NewDepKind);
4678   LValue FlagsLVal = CGF.EmitLValueForField(
4679       Base, *std::next(KmpDependInfoRD->field_begin(),
4680                        static_cast<unsigned int>(RTLDependInfoFields::Flags)));
4681   CGF.EmitStoreOfScalar(
4682       llvm::ConstantInt::get(LLVMFlagsTy, static_cast<unsigned int>(DepKind)),
4683       FlagsLVal);
4684 
4685   // Shift the address forward by one element.
4686   Address ElementNext =
4687       CGF.Builder.CreateConstGEP(Begin, /*Index=*/1, "omp.elementNext");
4688   ElementPHI->addIncoming(ElementNext.getPointer(),
4689                           CGF.Builder.GetInsertBlock());
4690   llvm::Value *IsEmpty =
4691       CGF.Builder.CreateICmpEQ(ElementNext.getPointer(), End, "omp.isempty");
4692   CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
4693   // Done.
4694   CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
4695 }
4696 
emitTaskCall(CodeGenFunction & CGF,SourceLocation Loc,const OMPExecutableDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const Expr * IfCond,const OMPTaskDataTy & Data)4697 void CGOpenMPRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc,
4698                                    const OMPExecutableDirective &D,
4699                                    llvm::Function *TaskFunction,
4700                                    QualType SharedsTy, Address Shareds,
4701                                    const Expr *IfCond,
4702                                    const OMPTaskDataTy &Data) {
4703   if (!CGF.HaveInsertPoint())
4704     return;
4705 
4706   TaskResultTy Result =
4707       emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data);
4708   llvm::Value *NewTask = Result.NewTask;
4709   llvm::Function *TaskEntry = Result.TaskEntry;
4710   llvm::Value *NewTaskNewTaskTTy = Result.NewTaskNewTaskTTy;
4711   LValue TDBase = Result.TDBase;
4712   const RecordDecl *KmpTaskTQTyRD = Result.KmpTaskTQTyRD;
4713   // Process list of dependences.
4714   Address DependenciesArray = Address::invalid();
4715   llvm::Value *NumOfElements;
4716   std::tie(NumOfElements, DependenciesArray) =
4717       emitDependClause(CGF, Data.Dependences, Loc);
4718 
4719   // NOTE: routine and part_id fields are initialized by __kmpc_omp_task_alloc()
4720   // libcall.
4721   // Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid,
4722   // kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list,
4723   // kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list) if dependence
4724   // list is not empty
4725   llvm::Value *ThreadID = getThreadID(CGF, Loc);
4726   llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc);
4727   llvm::Value *TaskArgs[] = { UpLoc, ThreadID, NewTask };
4728   llvm::Value *DepTaskArgs[7];
4729   if (!Data.Dependences.empty()) {
4730     DepTaskArgs[0] = UpLoc;
4731     DepTaskArgs[1] = ThreadID;
4732     DepTaskArgs[2] = NewTask;
4733     DepTaskArgs[3] = NumOfElements;
4734     DepTaskArgs[4] = DependenciesArray.getPointer();
4735     DepTaskArgs[5] = CGF.Builder.getInt32(0);
4736     DepTaskArgs[6] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
4737   }
4738   auto &&ThenCodeGen = [this, &Data, TDBase, KmpTaskTQTyRD, &TaskArgs,
4739                         &DepTaskArgs](CodeGenFunction &CGF, PrePostActionTy &) {
4740     if (!Data.Tied) {
4741       auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
4742       LValue PartIdLVal = CGF.EmitLValueForField(TDBase, *PartIdFI);
4743       CGF.EmitStoreOfScalar(CGF.Builder.getInt32(0), PartIdLVal);
4744     }
4745     if (!Data.Dependences.empty()) {
4746       CGF.EmitRuntimeCall(
4747           OMPBuilder.getOrCreateRuntimeFunction(
4748               CGM.getModule(), OMPRTL___kmpc_omp_task_with_deps),
4749           DepTaskArgs);
4750     } else {
4751       CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
4752                               CGM.getModule(), OMPRTL___kmpc_omp_task),
4753                           TaskArgs);
4754     }
4755     // Check if parent region is untied and build return for untied task;
4756     if (auto *Region =
4757             dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
4758       Region->emitUntiedSwitch(CGF);
4759   };
4760 
4761   llvm::Value *DepWaitTaskArgs[7];
4762   if (!Data.Dependences.empty()) {
4763     DepWaitTaskArgs[0] = UpLoc;
4764     DepWaitTaskArgs[1] = ThreadID;
4765     DepWaitTaskArgs[2] = NumOfElements;
4766     DepWaitTaskArgs[3] = DependenciesArray.getPointer();
4767     DepWaitTaskArgs[4] = CGF.Builder.getInt32(0);
4768     DepWaitTaskArgs[5] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
4769     DepWaitTaskArgs[6] =
4770         llvm::ConstantInt::get(CGF.Int32Ty, Data.HasNowaitClause);
4771   }
4772   auto &M = CGM.getModule();
4773   auto &&ElseCodeGen = [this, &M, &TaskArgs, ThreadID, NewTaskNewTaskTTy,
4774                         TaskEntry, &Data, &DepWaitTaskArgs,
4775                         Loc](CodeGenFunction &CGF, PrePostActionTy &) {
4776     CodeGenFunction::RunCleanupsScope LocalScope(CGF);
4777     // Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid,
4778     // kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32
4779     // ndeps_noalias, kmp_depend_info_t *noalias_dep_list); if dependence info
4780     // is specified.
4781     if (!Data.Dependences.empty())
4782       CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
4783                               M, OMPRTL___kmpc_omp_taskwait_deps_51),
4784                           DepWaitTaskArgs);
4785     // Call proxy_task_entry(gtid, new_task);
4786     auto &&CodeGen = [TaskEntry, ThreadID, NewTaskNewTaskTTy,
4787                       Loc](CodeGenFunction &CGF, PrePostActionTy &Action) {
4788       Action.Enter(CGF);
4789       llvm::Value *OutlinedFnArgs[] = {ThreadID, NewTaskNewTaskTTy};
4790       CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, Loc, TaskEntry,
4791                                                           OutlinedFnArgs);
4792     };
4793 
4794     // Build void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid,
4795     // kmp_task_t *new_task);
4796     // Build void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid,
4797     // kmp_task_t *new_task);
4798     RegionCodeGenTy RCG(CodeGen);
4799     CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction(
4800                               M, OMPRTL___kmpc_omp_task_begin_if0),
4801                           TaskArgs,
4802                           OMPBuilder.getOrCreateRuntimeFunction(
4803                               M, OMPRTL___kmpc_omp_task_complete_if0),
4804                           TaskArgs);
4805     RCG.setAction(Action);
4806     RCG(CGF);
4807   };
4808 
4809   if (IfCond) {
4810     emitIfClause(CGF, IfCond, ThenCodeGen, ElseCodeGen);
4811   } else {
4812     RegionCodeGenTy ThenRCG(ThenCodeGen);
4813     ThenRCG(CGF);
4814   }
4815 }
4816 
emitTaskLoopCall(CodeGenFunction & CGF,SourceLocation Loc,const OMPLoopDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const Expr * IfCond,const OMPTaskDataTy & Data)4817 void CGOpenMPRuntime::emitTaskLoopCall(CodeGenFunction &CGF, SourceLocation Loc,
4818                                        const OMPLoopDirective &D,
4819                                        llvm::Function *TaskFunction,
4820                                        QualType SharedsTy, Address Shareds,
4821                                        const Expr *IfCond,
4822                                        const OMPTaskDataTy &Data) {
4823   if (!CGF.HaveInsertPoint())
4824     return;
4825   TaskResultTy Result =
4826       emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data);
4827   // NOTE: routine and part_id fields are initialized by __kmpc_omp_task_alloc()
4828   // libcall.
4829   // Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
4830   // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
4831   // sched, kmp_uint64 grainsize, void *task_dup);
4832   llvm::Value *ThreadID = getThreadID(CGF, Loc);
4833   llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc);
4834   llvm::Value *IfVal;
4835   if (IfCond) {
4836     IfVal = CGF.Builder.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.IntTy,
4837                                       /*isSigned=*/true);
4838   } else {
4839     IfVal = llvm::ConstantInt::getSigned(CGF.IntTy, /*V=*/1);
4840   }
4841 
4842   LValue LBLVal = CGF.EmitLValueForField(
4843       Result.TDBase,
4844       *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound));
4845   const auto *LBVar =
4846       cast<VarDecl>(cast<DeclRefExpr>(D.getLowerBoundVariable())->getDecl());
4847   CGF.EmitAnyExprToMem(LBVar->getInit(), LBLVal.getAddress(CGF),
4848                        LBLVal.getQuals(),
4849                        /*IsInitializer=*/true);
4850   LValue UBLVal = CGF.EmitLValueForField(
4851       Result.TDBase,
4852       *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound));
4853   const auto *UBVar =
4854       cast<VarDecl>(cast<DeclRefExpr>(D.getUpperBoundVariable())->getDecl());
4855   CGF.EmitAnyExprToMem(UBVar->getInit(), UBLVal.getAddress(CGF),
4856                        UBLVal.getQuals(),
4857                        /*IsInitializer=*/true);
4858   LValue StLVal = CGF.EmitLValueForField(
4859       Result.TDBase,
4860       *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTStride));
4861   const auto *StVar =
4862       cast<VarDecl>(cast<DeclRefExpr>(D.getStrideVariable())->getDecl());
4863   CGF.EmitAnyExprToMem(StVar->getInit(), StLVal.getAddress(CGF),
4864                        StLVal.getQuals(),
4865                        /*IsInitializer=*/true);
4866   // Store reductions address.
4867   LValue RedLVal = CGF.EmitLValueForField(
4868       Result.TDBase,
4869       *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTReductions));
4870   if (Data.Reductions) {
4871     CGF.EmitStoreOfScalar(Data.Reductions, RedLVal);
4872   } else {
4873     CGF.EmitNullInitialization(RedLVal.getAddress(CGF),
4874                                CGF.getContext().VoidPtrTy);
4875   }
4876   enum { NoSchedule = 0, Grainsize = 1, NumTasks = 2 };
4877   llvm::Value *TaskArgs[] = {
4878       UpLoc,
4879       ThreadID,
4880       Result.NewTask,
4881       IfVal,
4882       LBLVal.getPointer(CGF),
4883       UBLVal.getPointer(CGF),
4884       CGF.EmitLoadOfScalar(StLVal, Loc),
4885       llvm::ConstantInt::getSigned(
4886           CGF.IntTy, 1), // Always 1 because taskgroup emitted by the compiler
4887       llvm::ConstantInt::getSigned(
4888           CGF.IntTy, Data.Schedule.getPointer()
4889                          ? Data.Schedule.getInt() ? NumTasks : Grainsize
4890                          : NoSchedule),
4891       Data.Schedule.getPointer()
4892           ? CGF.Builder.CreateIntCast(Data.Schedule.getPointer(), CGF.Int64Ty,
4893                                       /*isSigned=*/false)
4894           : llvm::ConstantInt::get(CGF.Int64Ty, /*V=*/0),
4895       Result.TaskDupFn ? CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4896                              Result.TaskDupFn, CGF.VoidPtrTy)
4897                        : llvm::ConstantPointerNull::get(CGF.VoidPtrTy)};
4898   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
4899                           CGM.getModule(), OMPRTL___kmpc_taskloop),
4900                       TaskArgs);
4901 }
4902 
4903 /// Emit reduction operation for each element of array (required for
4904 /// array sections) LHS op = RHS.
4905 /// \param Type Type of array.
4906 /// \param LHSVar Variable on the left side of the reduction operation
4907 /// (references element of array in original variable).
4908 /// \param RHSVar Variable on the right side of the reduction operation
4909 /// (references element of array in original variable).
4910 /// \param RedOpGen Generator of reduction operation with use of LHSVar and
4911 /// RHSVar.
EmitOMPAggregateReduction(CodeGenFunction & CGF,QualType Type,const VarDecl * LHSVar,const VarDecl * RHSVar,const llvm::function_ref<void (CodeGenFunction & CGF,const Expr *,const Expr *,const Expr *)> & RedOpGen,const Expr * XExpr=nullptr,const Expr * EExpr=nullptr,const Expr * UpExpr=nullptr)4912 static void EmitOMPAggregateReduction(
4913     CodeGenFunction &CGF, QualType Type, const VarDecl *LHSVar,
4914     const VarDecl *RHSVar,
4915     const llvm::function_ref<void(CodeGenFunction &CGF, const Expr *,
4916                                   const Expr *, const Expr *)> &RedOpGen,
4917     const Expr *XExpr = nullptr, const Expr *EExpr = nullptr,
4918     const Expr *UpExpr = nullptr) {
4919   // Perform element-by-element initialization.
4920   QualType ElementTy;
4921   Address LHSAddr = CGF.GetAddrOfLocalVar(LHSVar);
4922   Address RHSAddr = CGF.GetAddrOfLocalVar(RHSVar);
4923 
4924   // Drill down to the base element type on both arrays.
4925   const ArrayType *ArrayTy = Type->getAsArrayTypeUnsafe();
4926   llvm::Value *NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, LHSAddr);
4927 
4928   llvm::Value *RHSBegin = RHSAddr.getPointer();
4929   llvm::Value *LHSBegin = LHSAddr.getPointer();
4930   // Cast from pointer to array type to pointer to single element.
4931   llvm::Value *LHSEnd =
4932       CGF.Builder.CreateGEP(LHSAddr.getElementType(), LHSBegin, NumElements);
4933   // The basic structure here is a while-do loop.
4934   llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.arraycpy.body");
4935   llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.arraycpy.done");
4936   llvm::Value *IsEmpty =
4937       CGF.Builder.CreateICmpEQ(LHSBegin, LHSEnd, "omp.arraycpy.isempty");
4938   CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
4939 
4940   // Enter the loop body, making that address the current address.
4941   llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock();
4942   CGF.EmitBlock(BodyBB);
4943 
4944   CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
4945 
4946   llvm::PHINode *RHSElementPHI = CGF.Builder.CreatePHI(
4947       RHSBegin->getType(), 2, "omp.arraycpy.srcElementPast");
4948   RHSElementPHI->addIncoming(RHSBegin, EntryBB);
4949   Address RHSElementCurrent(
4950       RHSElementPHI, RHSAddr.getElementType(),
4951       RHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
4952 
4953   llvm::PHINode *LHSElementPHI = CGF.Builder.CreatePHI(
4954       LHSBegin->getType(), 2, "omp.arraycpy.destElementPast");
4955   LHSElementPHI->addIncoming(LHSBegin, EntryBB);
4956   Address LHSElementCurrent(
4957       LHSElementPHI, LHSAddr.getElementType(),
4958       LHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
4959 
4960   // Emit copy.
4961   CodeGenFunction::OMPPrivateScope Scope(CGF);
4962   Scope.addPrivate(LHSVar, LHSElementCurrent);
4963   Scope.addPrivate(RHSVar, RHSElementCurrent);
4964   Scope.Privatize();
4965   RedOpGen(CGF, XExpr, EExpr, UpExpr);
4966   Scope.ForceCleanup();
4967 
4968   // Shift the address forward by one element.
4969   llvm::Value *LHSElementNext = CGF.Builder.CreateConstGEP1_32(
4970       LHSAddr.getElementType(), LHSElementPHI, /*Idx0=*/1,
4971       "omp.arraycpy.dest.element");
4972   llvm::Value *RHSElementNext = CGF.Builder.CreateConstGEP1_32(
4973       RHSAddr.getElementType(), RHSElementPHI, /*Idx0=*/1,
4974       "omp.arraycpy.src.element");
4975   // Check whether we've reached the end.
4976   llvm::Value *Done =
4977       CGF.Builder.CreateICmpEQ(LHSElementNext, LHSEnd, "omp.arraycpy.done");
4978   CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
4979   LHSElementPHI->addIncoming(LHSElementNext, CGF.Builder.GetInsertBlock());
4980   RHSElementPHI->addIncoming(RHSElementNext, CGF.Builder.GetInsertBlock());
4981 
4982   // Done.
4983   CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
4984 }
4985 
4986 /// Emit reduction combiner. If the combiner is a simple expression emit it as
4987 /// is, otherwise consider it as combiner of UDR decl and emit it as a call of
4988 /// UDR combiner function.
emitReductionCombiner(CodeGenFunction & CGF,const Expr * ReductionOp)4989 static void emitReductionCombiner(CodeGenFunction &CGF,
4990                                   const Expr *ReductionOp) {
4991   if (const auto *CE = dyn_cast<CallExpr>(ReductionOp))
4992     if (const auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
4993       if (const auto *DRE =
4994               dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
4995         if (const auto *DRD =
4996                 dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl())) {
4997           std::pair<llvm::Function *, llvm::Function *> Reduction =
4998               CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
4999           RValue Func = RValue::get(Reduction.first);
5000           CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
5001           CGF.EmitIgnoredExpr(ReductionOp);
5002           return;
5003         }
5004   CGF.EmitIgnoredExpr(ReductionOp);
5005 }
5006 
emitReductionFunction(SourceLocation Loc,llvm::Type * ArgsElemType,ArrayRef<const Expr * > Privates,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,ArrayRef<const Expr * > ReductionOps)5007 llvm::Function *CGOpenMPRuntime::emitReductionFunction(
5008     SourceLocation Loc, llvm::Type *ArgsElemType,
5009     ArrayRef<const Expr *> Privates, ArrayRef<const Expr *> LHSExprs,
5010     ArrayRef<const Expr *> RHSExprs, ArrayRef<const Expr *> ReductionOps) {
5011   ASTContext &C = CGM.getContext();
5012 
5013   // void reduction_func(void *LHSArg, void *RHSArg);
5014   FunctionArgList Args;
5015   ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
5016                            ImplicitParamDecl::Other);
5017   ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
5018                            ImplicitParamDecl::Other);
5019   Args.push_back(&LHSArg);
5020   Args.push_back(&RHSArg);
5021   const auto &CGFI =
5022       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
5023   std::string Name = getName({"omp", "reduction", "reduction_func"});
5024   auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
5025                                     llvm::GlobalValue::InternalLinkage, Name,
5026                                     &CGM.getModule());
5027   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
5028   Fn->setDoesNotRecurse();
5029   CodeGenFunction CGF(CGM);
5030   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
5031 
5032   // Dst = (void*[n])(LHSArg);
5033   // Src = (void*[n])(RHSArg);
5034   Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5035                   CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
5036                   ArgsElemType->getPointerTo()),
5037               ArgsElemType, CGF.getPointerAlign());
5038   Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5039                   CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
5040                   ArgsElemType->getPointerTo()),
5041               ArgsElemType, CGF.getPointerAlign());
5042 
5043   //  ...
5044   //  *(Type<i>*)lhs[i] = RedOp<i>(*(Type<i>*)lhs[i], *(Type<i>*)rhs[i]);
5045   //  ...
5046   CodeGenFunction::OMPPrivateScope Scope(CGF);
5047   const auto *IPriv = Privates.begin();
5048   unsigned Idx = 0;
5049   for (unsigned I = 0, E = ReductionOps.size(); I < E; ++I, ++IPriv, ++Idx) {
5050     const auto *RHSVar =
5051         cast<VarDecl>(cast<DeclRefExpr>(RHSExprs[I])->getDecl());
5052     Scope.addPrivate(RHSVar, emitAddrOfVarFromArray(CGF, RHS, Idx, RHSVar));
5053     const auto *LHSVar =
5054         cast<VarDecl>(cast<DeclRefExpr>(LHSExprs[I])->getDecl());
5055     Scope.addPrivate(LHSVar, emitAddrOfVarFromArray(CGF, LHS, Idx, LHSVar));
5056     QualType PrivTy = (*IPriv)->getType();
5057     if (PrivTy->isVariablyModifiedType()) {
5058       // Get array size and emit VLA type.
5059       ++Idx;
5060       Address Elem = CGF.Builder.CreateConstArrayGEP(LHS, Idx);
5061       llvm::Value *Ptr = CGF.Builder.CreateLoad(Elem);
5062       const VariableArrayType *VLA =
5063           CGF.getContext().getAsVariableArrayType(PrivTy);
5064       const auto *OVE = cast<OpaqueValueExpr>(VLA->getSizeExpr());
5065       CodeGenFunction::OpaqueValueMapping OpaqueMap(
5066           CGF, OVE, RValue::get(CGF.Builder.CreatePtrToInt(Ptr, CGF.SizeTy)));
5067       CGF.EmitVariablyModifiedType(PrivTy);
5068     }
5069   }
5070   Scope.Privatize();
5071   IPriv = Privates.begin();
5072   const auto *ILHS = LHSExprs.begin();
5073   const auto *IRHS = RHSExprs.begin();
5074   for (const Expr *E : ReductionOps) {
5075     if ((*IPriv)->getType()->isArrayType()) {
5076       // Emit reduction for array section.
5077       const auto *LHSVar = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
5078       const auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
5079       EmitOMPAggregateReduction(
5080           CGF, (*IPriv)->getType(), LHSVar, RHSVar,
5081           [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) {
5082             emitReductionCombiner(CGF, E);
5083           });
5084     } else {
5085       // Emit reduction for array subscript or single variable.
5086       emitReductionCombiner(CGF, E);
5087     }
5088     ++IPriv;
5089     ++ILHS;
5090     ++IRHS;
5091   }
5092   Scope.ForceCleanup();
5093   CGF.FinishFunction();
5094   return Fn;
5095 }
5096 
emitSingleReductionCombiner(CodeGenFunction & CGF,const Expr * ReductionOp,const Expr * PrivateRef,const DeclRefExpr * LHS,const DeclRefExpr * RHS)5097 void CGOpenMPRuntime::emitSingleReductionCombiner(CodeGenFunction &CGF,
5098                                                   const Expr *ReductionOp,
5099                                                   const Expr *PrivateRef,
5100                                                   const DeclRefExpr *LHS,
5101                                                   const DeclRefExpr *RHS) {
5102   if (PrivateRef->getType()->isArrayType()) {
5103     // Emit reduction for array section.
5104     const auto *LHSVar = cast<VarDecl>(LHS->getDecl());
5105     const auto *RHSVar = cast<VarDecl>(RHS->getDecl());
5106     EmitOMPAggregateReduction(
5107         CGF, PrivateRef->getType(), LHSVar, RHSVar,
5108         [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) {
5109           emitReductionCombiner(CGF, ReductionOp);
5110         });
5111   } else {
5112     // Emit reduction for array subscript or single variable.
5113     emitReductionCombiner(CGF, ReductionOp);
5114   }
5115 }
5116 
emitReduction(CodeGenFunction & CGF,SourceLocation Loc,ArrayRef<const Expr * > Privates,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,ArrayRef<const Expr * > ReductionOps,ReductionOptionsTy Options)5117 void CGOpenMPRuntime::emitReduction(CodeGenFunction &CGF, SourceLocation Loc,
5118                                     ArrayRef<const Expr *> Privates,
5119                                     ArrayRef<const Expr *> LHSExprs,
5120                                     ArrayRef<const Expr *> RHSExprs,
5121                                     ArrayRef<const Expr *> ReductionOps,
5122                                     ReductionOptionsTy Options) {
5123   if (!CGF.HaveInsertPoint())
5124     return;
5125 
5126   bool WithNowait = Options.WithNowait;
5127   bool SimpleReduction = Options.SimpleReduction;
5128 
5129   // Next code should be emitted for reduction:
5130   //
5131   // static kmp_critical_name lock = { 0 };
5132   //
5133   // void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
5134   //  *(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
5135   //  ...
5136   //  *(Type<n>-1*)lhs[<n>-1] = ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
5137   //  *(Type<n>-1*)rhs[<n>-1]);
5138   // }
5139   //
5140   // ...
5141   // void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
5142   // switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
5143   // RedList, reduce_func, &<lock>)) {
5144   // case 1:
5145   //  ...
5146   //  <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
5147   //  ...
5148   // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
5149   // break;
5150   // case 2:
5151   //  ...
5152   //  Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
5153   //  ...
5154   // [__kmpc_end_reduce(<loc>, <gtid>, &<lock>);]
5155   // break;
5156   // default:;
5157   // }
5158   //
5159   // if SimpleReduction is true, only the next code is generated:
5160   //  ...
5161   //  <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
5162   //  ...
5163 
5164   ASTContext &C = CGM.getContext();
5165 
5166   if (SimpleReduction) {
5167     CodeGenFunction::RunCleanupsScope Scope(CGF);
5168     const auto *IPriv = Privates.begin();
5169     const auto *ILHS = LHSExprs.begin();
5170     const auto *IRHS = RHSExprs.begin();
5171     for (const Expr *E : ReductionOps) {
5172       emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
5173                                   cast<DeclRefExpr>(*IRHS));
5174       ++IPriv;
5175       ++ILHS;
5176       ++IRHS;
5177     }
5178     return;
5179   }
5180 
5181   // 1. Build a list of reduction variables.
5182   // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
5183   auto Size = RHSExprs.size();
5184   for (const Expr *E : Privates) {
5185     if (E->getType()->isVariablyModifiedType())
5186       // Reserve place for array size.
5187       ++Size;
5188   }
5189   llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
5190   QualType ReductionArrayTy =
5191       C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal,
5192                              /*IndexTypeQuals=*/0);
5193   Address ReductionList =
5194       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
5195   const auto *IPriv = Privates.begin();
5196   unsigned Idx = 0;
5197   for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
5198     Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
5199     CGF.Builder.CreateStore(
5200         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5201             CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy),
5202         Elem);
5203     if ((*IPriv)->getType()->isVariablyModifiedType()) {
5204       // Store array size.
5205       ++Idx;
5206       Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
5207       llvm::Value *Size = CGF.Builder.CreateIntCast(
5208           CGF.getVLASize(
5209                  CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
5210               .NumElts,
5211           CGF.SizeTy, /*isSigned=*/false);
5212       CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
5213                               Elem);
5214     }
5215   }
5216 
5217   // 2. Emit reduce_func().
5218   llvm::Function *ReductionFn =
5219       emitReductionFunction(Loc, CGF.ConvertTypeForMem(ReductionArrayTy),
5220                             Privates, LHSExprs, RHSExprs, ReductionOps);
5221 
5222   // 3. Create static kmp_critical_name lock = { 0 };
5223   std::string Name = getName({"reduction"});
5224   llvm::Value *Lock = getCriticalRegionLock(Name);
5225 
5226   // 4. Build res = __kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
5227   // RedList, reduce_func, &<lock>);
5228   llvm::Value *IdentTLoc = emitUpdateLocation(CGF, Loc, OMP_ATOMIC_REDUCE);
5229   llvm::Value *ThreadId = getThreadID(CGF, Loc);
5230   llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
5231   llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5232       ReductionList.getPointer(), CGF.VoidPtrTy);
5233   llvm::Value *Args[] = {
5234       IdentTLoc,                             // ident_t *<loc>
5235       ThreadId,                              // i32 <gtid>
5236       CGF.Builder.getInt32(RHSExprs.size()), // i32 <n>
5237       ReductionArrayTySize,                  // size_type sizeof(RedList)
5238       RL,                                    // void *RedList
5239       ReductionFn, // void (*) (void *, void *) <reduce_func>
5240       Lock         // kmp_critical_name *&<lock>
5241   };
5242   llvm::Value *Res = CGF.EmitRuntimeCall(
5243       OMPBuilder.getOrCreateRuntimeFunction(
5244           CGM.getModule(),
5245           WithNowait ? OMPRTL___kmpc_reduce_nowait : OMPRTL___kmpc_reduce),
5246       Args);
5247 
5248   // 5. Build switch(res)
5249   llvm::BasicBlock *DefaultBB = CGF.createBasicBlock(".omp.reduction.default");
5250   llvm::SwitchInst *SwInst =
5251       CGF.Builder.CreateSwitch(Res, DefaultBB, /*NumCases=*/2);
5252 
5253   // 6. Build case 1:
5254   //  ...
5255   //  <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
5256   //  ...
5257   // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
5258   // break;
5259   llvm::BasicBlock *Case1BB = CGF.createBasicBlock(".omp.reduction.case1");
5260   SwInst->addCase(CGF.Builder.getInt32(1), Case1BB);
5261   CGF.EmitBlock(Case1BB);
5262 
5263   // Add emission of __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
5264   llvm::Value *EndArgs[] = {
5265       IdentTLoc, // ident_t *<loc>
5266       ThreadId,  // i32 <gtid>
5267       Lock       // kmp_critical_name *&<lock>
5268   };
5269   auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps](
5270                        CodeGenFunction &CGF, PrePostActionTy &Action) {
5271     CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
5272     const auto *IPriv = Privates.begin();
5273     const auto *ILHS = LHSExprs.begin();
5274     const auto *IRHS = RHSExprs.begin();
5275     for (const Expr *E : ReductionOps) {
5276       RT.emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
5277                                      cast<DeclRefExpr>(*IRHS));
5278       ++IPriv;
5279       ++ILHS;
5280       ++IRHS;
5281     }
5282   };
5283   RegionCodeGenTy RCG(CodeGen);
5284   CommonActionTy Action(
5285       nullptr, std::nullopt,
5286       OMPBuilder.getOrCreateRuntimeFunction(
5287           CGM.getModule(), WithNowait ? OMPRTL___kmpc_end_reduce_nowait
5288                                       : OMPRTL___kmpc_end_reduce),
5289       EndArgs);
5290   RCG.setAction(Action);
5291   RCG(CGF);
5292 
5293   CGF.EmitBranch(DefaultBB);
5294 
5295   // 7. Build case 2:
5296   //  ...
5297   //  Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
5298   //  ...
5299   // break;
5300   llvm::BasicBlock *Case2BB = CGF.createBasicBlock(".omp.reduction.case2");
5301   SwInst->addCase(CGF.Builder.getInt32(2), Case2BB);
5302   CGF.EmitBlock(Case2BB);
5303 
5304   auto &&AtomicCodeGen = [Loc, Privates, LHSExprs, RHSExprs, ReductionOps](
5305                              CodeGenFunction &CGF, PrePostActionTy &Action) {
5306     const auto *ILHS = LHSExprs.begin();
5307     const auto *IRHS = RHSExprs.begin();
5308     const auto *IPriv = Privates.begin();
5309     for (const Expr *E : ReductionOps) {
5310       const Expr *XExpr = nullptr;
5311       const Expr *EExpr = nullptr;
5312       const Expr *UpExpr = nullptr;
5313       BinaryOperatorKind BO = BO_Comma;
5314       if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
5315         if (BO->getOpcode() == BO_Assign) {
5316           XExpr = BO->getLHS();
5317           UpExpr = BO->getRHS();
5318         }
5319       }
5320       // Try to emit update expression as a simple atomic.
5321       const Expr *RHSExpr = UpExpr;
5322       if (RHSExpr) {
5323         // Analyze RHS part of the whole expression.
5324         if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(
5325                 RHSExpr->IgnoreParenImpCasts())) {
5326           // If this is a conditional operator, analyze its condition for
5327           // min/max reduction operator.
5328           RHSExpr = ACO->getCond();
5329         }
5330         if (const auto *BORHS =
5331                 dyn_cast<BinaryOperator>(RHSExpr->IgnoreParenImpCasts())) {
5332           EExpr = BORHS->getRHS();
5333           BO = BORHS->getOpcode();
5334         }
5335       }
5336       if (XExpr) {
5337         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
5338         auto &&AtomicRedGen = [BO, VD,
5339                                Loc](CodeGenFunction &CGF, const Expr *XExpr,
5340                                     const Expr *EExpr, const Expr *UpExpr) {
5341           LValue X = CGF.EmitLValue(XExpr);
5342           RValue E;
5343           if (EExpr)
5344             E = CGF.EmitAnyExpr(EExpr);
5345           CGF.EmitOMPAtomicSimpleUpdateExpr(
5346               X, E, BO, /*IsXLHSInRHSPart=*/true,
5347               llvm::AtomicOrdering::Monotonic, Loc,
5348               [&CGF, UpExpr, VD, Loc](RValue XRValue) {
5349                 CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
5350                 Address LHSTemp = CGF.CreateMemTemp(VD->getType());
5351                 CGF.emitOMPSimpleStore(
5352                     CGF.MakeAddrLValue(LHSTemp, VD->getType()), XRValue,
5353                     VD->getType().getNonReferenceType(), Loc);
5354                 PrivateScope.addPrivate(VD, LHSTemp);
5355                 (void)PrivateScope.Privatize();
5356                 return CGF.EmitAnyExpr(UpExpr);
5357               });
5358         };
5359         if ((*IPriv)->getType()->isArrayType()) {
5360           // Emit atomic reduction for array section.
5361           const auto *RHSVar =
5362               cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
5363           EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), VD, RHSVar,
5364                                     AtomicRedGen, XExpr, EExpr, UpExpr);
5365         } else {
5366           // Emit atomic reduction for array subscript or single variable.
5367           AtomicRedGen(CGF, XExpr, EExpr, UpExpr);
5368         }
5369       } else {
5370         // Emit as a critical region.
5371         auto &&CritRedGen = [E, Loc](CodeGenFunction &CGF, const Expr *,
5372                                            const Expr *, const Expr *) {
5373           CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
5374           std::string Name = RT.getName({"atomic_reduction"});
5375           RT.emitCriticalRegion(
5376               CGF, Name,
5377               [=](CodeGenFunction &CGF, PrePostActionTy &Action) {
5378                 Action.Enter(CGF);
5379                 emitReductionCombiner(CGF, E);
5380               },
5381               Loc);
5382         };
5383         if ((*IPriv)->getType()->isArrayType()) {
5384           const auto *LHSVar =
5385               cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
5386           const auto *RHSVar =
5387               cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
5388           EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), LHSVar, RHSVar,
5389                                     CritRedGen);
5390         } else {
5391           CritRedGen(CGF, nullptr, nullptr, nullptr);
5392         }
5393       }
5394       ++ILHS;
5395       ++IRHS;
5396       ++IPriv;
5397     }
5398   };
5399   RegionCodeGenTy AtomicRCG(AtomicCodeGen);
5400   if (!WithNowait) {
5401     // Add emission of __kmpc_end_reduce(<loc>, <gtid>, &<lock>);
5402     llvm::Value *EndArgs[] = {
5403         IdentTLoc, // ident_t *<loc>
5404         ThreadId,  // i32 <gtid>
5405         Lock       // kmp_critical_name *&<lock>
5406     };
5407     CommonActionTy Action(nullptr, std::nullopt,
5408                           OMPBuilder.getOrCreateRuntimeFunction(
5409                               CGM.getModule(), OMPRTL___kmpc_end_reduce),
5410                           EndArgs);
5411     AtomicRCG.setAction(Action);
5412     AtomicRCG(CGF);
5413   } else {
5414     AtomicRCG(CGF);
5415   }
5416 
5417   CGF.EmitBranch(DefaultBB);
5418   CGF.EmitBlock(DefaultBB, /*IsFinished=*/true);
5419 }
5420 
5421 /// Generates unique name for artificial threadprivate variables.
5422 /// Format is: <Prefix> "." <Decl_mangled_name> "_" "<Decl_start_loc_raw_enc>"
generateUniqueName(CodeGenModule & CGM,StringRef Prefix,const Expr * Ref)5423 static std::string generateUniqueName(CodeGenModule &CGM, StringRef Prefix,
5424                                       const Expr *Ref) {
5425   SmallString<256> Buffer;
5426   llvm::raw_svector_ostream Out(Buffer);
5427   const clang::DeclRefExpr *DE;
5428   const VarDecl *D = ::getBaseDecl(Ref, DE);
5429   if (!D)
5430     D = cast<VarDecl>(cast<DeclRefExpr>(Ref)->getDecl());
5431   D = D->getCanonicalDecl();
5432   std::string Name = CGM.getOpenMPRuntime().getName(
5433       {D->isLocalVarDeclOrParm() ? D->getName() : CGM.getMangledName(D)});
5434   Out << Prefix << Name << "_"
5435       << D->getCanonicalDecl()->getBeginLoc().getRawEncoding();
5436   return std::string(Out.str());
5437 }
5438 
5439 /// Emits reduction initializer function:
5440 /// \code
5441 /// void @.red_init(void* %arg, void* %orig) {
5442 /// %0 = bitcast void* %arg to <type>*
5443 /// store <type> <init>, <type>* %0
5444 /// ret void
5445 /// }
5446 /// \endcode
emitReduceInitFunction(CodeGenModule & CGM,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N)5447 static llvm::Value *emitReduceInitFunction(CodeGenModule &CGM,
5448                                            SourceLocation Loc,
5449                                            ReductionCodeGen &RCG, unsigned N) {
5450   ASTContext &C = CGM.getContext();
5451   QualType VoidPtrTy = C.VoidPtrTy;
5452   VoidPtrTy.addRestrict();
5453   FunctionArgList Args;
5454   ImplicitParamDecl Param(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, VoidPtrTy,
5455                           ImplicitParamDecl::Other);
5456   ImplicitParamDecl ParamOrig(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, VoidPtrTy,
5457                               ImplicitParamDecl::Other);
5458   Args.emplace_back(&Param);
5459   Args.emplace_back(&ParamOrig);
5460   const auto &FnInfo =
5461       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
5462   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
5463   std::string Name = CGM.getOpenMPRuntime().getName({"red_init", ""});
5464   auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
5465                                     Name, &CGM.getModule());
5466   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
5467   Fn->setDoesNotRecurse();
5468   CodeGenFunction CGF(CGM);
5469   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
5470   QualType PrivateType = RCG.getPrivateType(N);
5471   Address PrivateAddr = CGF.EmitLoadOfPointer(
5472       CGF.Builder.CreateElementBitCast(
5473           CGF.GetAddrOfLocalVar(&Param),
5474           CGF.ConvertTypeForMem(PrivateType)->getPointerTo()),
5475       C.getPointerType(PrivateType)->castAs<PointerType>());
5476   llvm::Value *Size = nullptr;
5477   // If the size of the reduction item is non-constant, load it from global
5478   // threadprivate variable.
5479   if (RCG.getSizes(N).second) {
5480     Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
5481         CGF, CGM.getContext().getSizeType(),
5482         generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
5483     Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
5484                                 CGM.getContext().getSizeType(), Loc);
5485   }
5486   RCG.emitAggregateType(CGF, N, Size);
5487   Address OrigAddr = Address::invalid();
5488   // If initializer uses initializer from declare reduction construct, emit a
5489   // pointer to the address of the original reduction item (reuired by reduction
5490   // initializer)
5491   if (RCG.usesReductionInitializer(N)) {
5492     Address SharedAddr = CGF.GetAddrOfLocalVar(&ParamOrig);
5493     OrigAddr = CGF.EmitLoadOfPointer(
5494         SharedAddr,
5495         CGM.getContext().VoidPtrTy.castAs<PointerType>()->getTypePtr());
5496   }
5497   // Emit the initializer:
5498   // %0 = bitcast void* %arg to <type>*
5499   // store <type> <init>, <type>* %0
5500   RCG.emitInitialization(CGF, N, PrivateAddr, OrigAddr,
5501                          [](CodeGenFunction &) { return false; });
5502   CGF.FinishFunction();
5503   return Fn;
5504 }
5505 
5506 /// Emits reduction combiner function:
5507 /// \code
5508 /// void @.red_comb(void* %arg0, void* %arg1) {
5509 /// %lhs = bitcast void* %arg0 to <type>*
5510 /// %rhs = bitcast void* %arg1 to <type>*
5511 /// %2 = <ReductionOp>(<type>* %lhs, <type>* %rhs)
5512 /// store <type> %2, <type>* %lhs
5513 /// ret void
5514 /// }
5515 /// \endcode
emitReduceCombFunction(CodeGenModule & CGM,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N,const Expr * ReductionOp,const Expr * LHS,const Expr * RHS,const Expr * PrivateRef)5516 static llvm::Value *emitReduceCombFunction(CodeGenModule &CGM,
5517                                            SourceLocation Loc,
5518                                            ReductionCodeGen &RCG, unsigned N,
5519                                            const Expr *ReductionOp,
5520                                            const Expr *LHS, const Expr *RHS,
5521                                            const Expr *PrivateRef) {
5522   ASTContext &C = CGM.getContext();
5523   const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(LHS)->getDecl());
5524   const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(RHS)->getDecl());
5525   FunctionArgList Args;
5526   ImplicitParamDecl ParamInOut(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
5527                                C.VoidPtrTy, ImplicitParamDecl::Other);
5528   ImplicitParamDecl ParamIn(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
5529                             ImplicitParamDecl::Other);
5530   Args.emplace_back(&ParamInOut);
5531   Args.emplace_back(&ParamIn);
5532   const auto &FnInfo =
5533       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
5534   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
5535   std::string Name = CGM.getOpenMPRuntime().getName({"red_comb", ""});
5536   auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
5537                                     Name, &CGM.getModule());
5538   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
5539   Fn->setDoesNotRecurse();
5540   CodeGenFunction CGF(CGM);
5541   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
5542   llvm::Value *Size = nullptr;
5543   // If the size of the reduction item is non-constant, load it from global
5544   // threadprivate variable.
5545   if (RCG.getSizes(N).second) {
5546     Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
5547         CGF, CGM.getContext().getSizeType(),
5548         generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
5549     Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
5550                                 CGM.getContext().getSizeType(), Loc);
5551   }
5552   RCG.emitAggregateType(CGF, N, Size);
5553   // Remap lhs and rhs variables to the addresses of the function arguments.
5554   // %lhs = bitcast void* %arg0 to <type>*
5555   // %rhs = bitcast void* %arg1 to <type>*
5556   CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
5557   PrivateScope.addPrivate(
5558       LHSVD,
5559       // Pull out the pointer to the variable.
5560       CGF.EmitLoadOfPointer(
5561           CGF.Builder.CreateElementBitCast(
5562               CGF.GetAddrOfLocalVar(&ParamInOut),
5563               CGF.ConvertTypeForMem(LHSVD->getType())->getPointerTo()),
5564           C.getPointerType(LHSVD->getType())->castAs<PointerType>()));
5565   PrivateScope.addPrivate(
5566       RHSVD,
5567       // Pull out the pointer to the variable.
5568       CGF.EmitLoadOfPointer(
5569           CGF.Builder.CreateElementBitCast(
5570             CGF.GetAddrOfLocalVar(&ParamIn),
5571             CGF.ConvertTypeForMem(RHSVD->getType())->getPointerTo()),
5572           C.getPointerType(RHSVD->getType())->castAs<PointerType>()));
5573   PrivateScope.Privatize();
5574   // Emit the combiner body:
5575   // %2 = <ReductionOp>(<type> *%lhs, <type> *%rhs)
5576   // store <type> %2, <type>* %lhs
5577   CGM.getOpenMPRuntime().emitSingleReductionCombiner(
5578       CGF, ReductionOp, PrivateRef, cast<DeclRefExpr>(LHS),
5579       cast<DeclRefExpr>(RHS));
5580   CGF.FinishFunction();
5581   return Fn;
5582 }
5583 
5584 /// Emits reduction finalizer function:
5585 /// \code
5586 /// void @.red_fini(void* %arg) {
5587 /// %0 = bitcast void* %arg to <type>*
5588 /// <destroy>(<type>* %0)
5589 /// ret void
5590 /// }
5591 /// \endcode
emitReduceFiniFunction(CodeGenModule & CGM,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N)5592 static llvm::Value *emitReduceFiniFunction(CodeGenModule &CGM,
5593                                            SourceLocation Loc,
5594                                            ReductionCodeGen &RCG, unsigned N) {
5595   if (!RCG.needCleanups(N))
5596     return nullptr;
5597   ASTContext &C = CGM.getContext();
5598   FunctionArgList Args;
5599   ImplicitParamDecl Param(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
5600                           ImplicitParamDecl::Other);
5601   Args.emplace_back(&Param);
5602   const auto &FnInfo =
5603       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
5604   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
5605   std::string Name = CGM.getOpenMPRuntime().getName({"red_fini", ""});
5606   auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
5607                                     Name, &CGM.getModule());
5608   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
5609   Fn->setDoesNotRecurse();
5610   CodeGenFunction CGF(CGM);
5611   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
5612   Address PrivateAddr = CGF.EmitLoadOfPointer(
5613       CGF.GetAddrOfLocalVar(&Param), C.VoidPtrTy.castAs<PointerType>());
5614   llvm::Value *Size = nullptr;
5615   // If the size of the reduction item is non-constant, load it from global
5616   // threadprivate variable.
5617   if (RCG.getSizes(N).second) {
5618     Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
5619         CGF, CGM.getContext().getSizeType(),
5620         generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
5621     Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
5622                                 CGM.getContext().getSizeType(), Loc);
5623   }
5624   RCG.emitAggregateType(CGF, N, Size);
5625   // Emit the finalizer body:
5626   // <destroy>(<type>* %0)
5627   RCG.emitCleanups(CGF, N, PrivateAddr);
5628   CGF.FinishFunction(Loc);
5629   return Fn;
5630 }
5631 
emitTaskReductionInit(CodeGenFunction & CGF,SourceLocation Loc,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,const OMPTaskDataTy & Data)5632 llvm::Value *CGOpenMPRuntime::emitTaskReductionInit(
5633     CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> LHSExprs,
5634     ArrayRef<const Expr *> RHSExprs, const OMPTaskDataTy &Data) {
5635   if (!CGF.HaveInsertPoint() || Data.ReductionVars.empty())
5636     return nullptr;
5637 
5638   // Build typedef struct:
5639   // kmp_taskred_input {
5640   //   void *reduce_shar; // shared reduction item
5641   //   void *reduce_orig; // original reduction item used for initialization
5642   //   size_t reduce_size; // size of data item
5643   //   void *reduce_init; // data initialization routine
5644   //   void *reduce_fini; // data finalization routine
5645   //   void *reduce_comb; // data combiner routine
5646   //   kmp_task_red_flags_t flags; // flags for additional info from compiler
5647   // } kmp_taskred_input_t;
5648   ASTContext &C = CGM.getContext();
5649   RecordDecl *RD = C.buildImplicitRecord("kmp_taskred_input_t");
5650   RD->startDefinition();
5651   const FieldDecl *SharedFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
5652   const FieldDecl *OrigFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
5653   const FieldDecl *SizeFD = addFieldToRecordDecl(C, RD, C.getSizeType());
5654   const FieldDecl *InitFD  = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
5655   const FieldDecl *FiniFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
5656   const FieldDecl *CombFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
5657   const FieldDecl *FlagsFD = addFieldToRecordDecl(
5658       C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false));
5659   RD->completeDefinition();
5660   QualType RDType = C.getRecordType(RD);
5661   unsigned Size = Data.ReductionVars.size();
5662   llvm::APInt ArraySize(/*numBits=*/64, Size);
5663   QualType ArrayRDType = C.getConstantArrayType(
5664       RDType, ArraySize, nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0);
5665   // kmp_task_red_input_t .rd_input.[Size];
5666   Address TaskRedInput = CGF.CreateMemTemp(ArrayRDType, ".rd_input.");
5667   ReductionCodeGen RCG(Data.ReductionVars, Data.ReductionOrigs,
5668                        Data.ReductionCopies, Data.ReductionOps);
5669   for (unsigned Cnt = 0; Cnt < Size; ++Cnt) {
5670     // kmp_task_red_input_t &ElemLVal = .rd_input.[Cnt];
5671     llvm::Value *Idxs[] = {llvm::ConstantInt::get(CGM.SizeTy, /*V=*/0),
5672                            llvm::ConstantInt::get(CGM.SizeTy, Cnt)};
5673     llvm::Value *GEP = CGF.EmitCheckedInBoundsGEP(
5674         TaskRedInput.getElementType(), TaskRedInput.getPointer(), Idxs,
5675         /*SignedIndices=*/false, /*IsSubtraction=*/false, Loc,
5676         ".rd_input.gep.");
5677     LValue ElemLVal = CGF.MakeNaturalAlignAddrLValue(GEP, RDType);
5678     // ElemLVal.reduce_shar = &Shareds[Cnt];
5679     LValue SharedLVal = CGF.EmitLValueForField(ElemLVal, SharedFD);
5680     RCG.emitSharedOrigLValue(CGF, Cnt);
5681     llvm::Value *CastedShared =
5682         CGF.EmitCastToVoidPtr(RCG.getSharedLValue(Cnt).getPointer(CGF));
5683     CGF.EmitStoreOfScalar(CastedShared, SharedLVal);
5684     // ElemLVal.reduce_orig = &Origs[Cnt];
5685     LValue OrigLVal = CGF.EmitLValueForField(ElemLVal, OrigFD);
5686     llvm::Value *CastedOrig =
5687         CGF.EmitCastToVoidPtr(RCG.getOrigLValue(Cnt).getPointer(CGF));
5688     CGF.EmitStoreOfScalar(CastedOrig, OrigLVal);
5689     RCG.emitAggregateType(CGF, Cnt);
5690     llvm::Value *SizeValInChars;
5691     llvm::Value *SizeVal;
5692     std::tie(SizeValInChars, SizeVal) = RCG.getSizes(Cnt);
5693     // We use delayed creation/initialization for VLAs and array sections. It is
5694     // required because runtime does not provide the way to pass the sizes of
5695     // VLAs/array sections to initializer/combiner/finalizer functions. Instead
5696     // threadprivate global variables are used to store these values and use
5697     // them in the functions.
5698     bool DelayedCreation = !!SizeVal;
5699     SizeValInChars = CGF.Builder.CreateIntCast(SizeValInChars, CGM.SizeTy,
5700                                                /*isSigned=*/false);
5701     LValue SizeLVal = CGF.EmitLValueForField(ElemLVal, SizeFD);
5702     CGF.EmitStoreOfScalar(SizeValInChars, SizeLVal);
5703     // ElemLVal.reduce_init = init;
5704     LValue InitLVal = CGF.EmitLValueForField(ElemLVal, InitFD);
5705     llvm::Value *InitAddr =
5706         CGF.EmitCastToVoidPtr(emitReduceInitFunction(CGM, Loc, RCG, Cnt));
5707     CGF.EmitStoreOfScalar(InitAddr, InitLVal);
5708     // ElemLVal.reduce_fini = fini;
5709     LValue FiniLVal = CGF.EmitLValueForField(ElemLVal, FiniFD);
5710     llvm::Value *Fini = emitReduceFiniFunction(CGM, Loc, RCG, Cnt);
5711     llvm::Value *FiniAddr = Fini
5712                                 ? CGF.EmitCastToVoidPtr(Fini)
5713                                 : llvm::ConstantPointerNull::get(CGM.VoidPtrTy);
5714     CGF.EmitStoreOfScalar(FiniAddr, FiniLVal);
5715     // ElemLVal.reduce_comb = comb;
5716     LValue CombLVal = CGF.EmitLValueForField(ElemLVal, CombFD);
5717     llvm::Value *CombAddr = CGF.EmitCastToVoidPtr(emitReduceCombFunction(
5718         CGM, Loc, RCG, Cnt, Data.ReductionOps[Cnt], LHSExprs[Cnt],
5719         RHSExprs[Cnt], Data.ReductionCopies[Cnt]));
5720     CGF.EmitStoreOfScalar(CombAddr, CombLVal);
5721     // ElemLVal.flags = 0;
5722     LValue FlagsLVal = CGF.EmitLValueForField(ElemLVal, FlagsFD);
5723     if (DelayedCreation) {
5724       CGF.EmitStoreOfScalar(
5725           llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1, /*isSigned=*/true),
5726           FlagsLVal);
5727     } else
5728       CGF.EmitNullInitialization(FlagsLVal.getAddress(CGF),
5729                                  FlagsLVal.getType());
5730   }
5731   if (Data.IsReductionWithTaskMod) {
5732     // Build call void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int
5733     // is_ws, int num, void *data);
5734     llvm::Value *IdentTLoc = emitUpdateLocation(CGF, Loc);
5735     llvm::Value *GTid = CGF.Builder.CreateIntCast(getThreadID(CGF, Loc),
5736                                                   CGM.IntTy, /*isSigned=*/true);
5737     llvm::Value *Args[] = {
5738         IdentTLoc, GTid,
5739         llvm::ConstantInt::get(CGM.IntTy, Data.IsWorksharingReduction ? 1 : 0,
5740                                /*isSigned=*/true),
5741         llvm::ConstantInt::get(CGM.IntTy, Size, /*isSigned=*/true),
5742         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5743             TaskRedInput.getPointer(), CGM.VoidPtrTy)};
5744     return CGF.EmitRuntimeCall(
5745         OMPBuilder.getOrCreateRuntimeFunction(
5746             CGM.getModule(), OMPRTL___kmpc_taskred_modifier_init),
5747         Args);
5748   }
5749   // Build call void *__kmpc_taskred_init(int gtid, int num_data, void *data);
5750   llvm::Value *Args[] = {
5751       CGF.Builder.CreateIntCast(getThreadID(CGF, Loc), CGM.IntTy,
5752                                 /*isSigned=*/true),
5753       llvm::ConstantInt::get(CGM.IntTy, Size, /*isSigned=*/true),
5754       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TaskRedInput.getPointer(),
5755                                                       CGM.VoidPtrTy)};
5756   return CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
5757                                  CGM.getModule(), OMPRTL___kmpc_taskred_init),
5758                              Args);
5759 }
5760 
emitTaskReductionFini(CodeGenFunction & CGF,SourceLocation Loc,bool IsWorksharingReduction)5761 void CGOpenMPRuntime::emitTaskReductionFini(CodeGenFunction &CGF,
5762                                             SourceLocation Loc,
5763                                             bool IsWorksharingReduction) {
5764   // Build call void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int
5765   // is_ws, int num, void *data);
5766   llvm::Value *IdentTLoc = emitUpdateLocation(CGF, Loc);
5767   llvm::Value *GTid = CGF.Builder.CreateIntCast(getThreadID(CGF, Loc),
5768                                                 CGM.IntTy, /*isSigned=*/true);
5769   llvm::Value *Args[] = {IdentTLoc, GTid,
5770                          llvm::ConstantInt::get(CGM.IntTy,
5771                                                 IsWorksharingReduction ? 1 : 0,
5772                                                 /*isSigned=*/true)};
5773   (void)CGF.EmitRuntimeCall(
5774       OMPBuilder.getOrCreateRuntimeFunction(
5775           CGM.getModule(), OMPRTL___kmpc_task_reduction_modifier_fini),
5776       Args);
5777 }
5778 
emitTaskReductionFixups(CodeGenFunction & CGF,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N)5779 void CGOpenMPRuntime::emitTaskReductionFixups(CodeGenFunction &CGF,
5780                                               SourceLocation Loc,
5781                                               ReductionCodeGen &RCG,
5782                                               unsigned N) {
5783   auto Sizes = RCG.getSizes(N);
5784   // Emit threadprivate global variable if the type is non-constant
5785   // (Sizes.second = nullptr).
5786   if (Sizes.second) {
5787     llvm::Value *SizeVal = CGF.Builder.CreateIntCast(Sizes.second, CGM.SizeTy,
5788                                                      /*isSigned=*/false);
5789     Address SizeAddr = getAddrOfArtificialThreadPrivate(
5790         CGF, CGM.getContext().getSizeType(),
5791         generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
5792     CGF.Builder.CreateStore(SizeVal, SizeAddr, /*IsVolatile=*/false);
5793   }
5794 }
5795 
getTaskReductionItem(CodeGenFunction & CGF,SourceLocation Loc,llvm::Value * ReductionsPtr,LValue SharedLVal)5796 Address CGOpenMPRuntime::getTaskReductionItem(CodeGenFunction &CGF,
5797                                               SourceLocation Loc,
5798                                               llvm::Value *ReductionsPtr,
5799                                               LValue SharedLVal) {
5800   // Build call void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void
5801   // *d);
5802   llvm::Value *Args[] = {CGF.Builder.CreateIntCast(getThreadID(CGF, Loc),
5803                                                    CGM.IntTy,
5804                                                    /*isSigned=*/true),
5805                          ReductionsPtr,
5806                          CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5807                              SharedLVal.getPointer(CGF), CGM.VoidPtrTy)};
5808   return Address(
5809       CGF.EmitRuntimeCall(
5810           OMPBuilder.getOrCreateRuntimeFunction(
5811               CGM.getModule(), OMPRTL___kmpc_task_reduction_get_th_data),
5812           Args),
5813       CGF.Int8Ty, SharedLVal.getAlignment());
5814 }
5815 
emitTaskwaitCall(CodeGenFunction & CGF,SourceLocation Loc,const OMPTaskDataTy & Data)5816 void CGOpenMPRuntime::emitTaskwaitCall(CodeGenFunction &CGF, SourceLocation Loc,
5817                                        const OMPTaskDataTy &Data) {
5818   if (!CGF.HaveInsertPoint())
5819     return;
5820 
5821   if (CGF.CGM.getLangOpts().OpenMPIRBuilder && Data.Dependences.empty()) {
5822     // TODO: Need to support taskwait with dependences in the OpenMPIRBuilder.
5823     OMPBuilder.createTaskwait(CGF.Builder);
5824   } else {
5825     llvm::Value *ThreadID = getThreadID(CGF, Loc);
5826     llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc);
5827     auto &M = CGM.getModule();
5828     Address DependenciesArray = Address::invalid();
5829     llvm::Value *NumOfElements;
5830     std::tie(NumOfElements, DependenciesArray) =
5831         emitDependClause(CGF, Data.Dependences, Loc);
5832     if (!Data.Dependences.empty()) {
5833       llvm::Value *DepWaitTaskArgs[7];
5834       DepWaitTaskArgs[0] = UpLoc;
5835       DepWaitTaskArgs[1] = ThreadID;
5836       DepWaitTaskArgs[2] = NumOfElements;
5837       DepWaitTaskArgs[3] = DependenciesArray.getPointer();
5838       DepWaitTaskArgs[4] = CGF.Builder.getInt32(0);
5839       DepWaitTaskArgs[5] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
5840       DepWaitTaskArgs[6] =
5841           llvm::ConstantInt::get(CGF.Int32Ty, Data.HasNowaitClause);
5842 
5843       CodeGenFunction::RunCleanupsScope LocalScope(CGF);
5844 
5845       // Build void __kmpc_omp_taskwait_deps_51(ident_t *, kmp_int32 gtid,
5846       // kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32
5847       // ndeps_noalias, kmp_depend_info_t *noalias_dep_list,
5848       // kmp_int32 has_no_wait); if dependence info is specified.
5849       CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
5850                               M, OMPRTL___kmpc_omp_taskwait_deps_51),
5851                           DepWaitTaskArgs);
5852 
5853     } else {
5854 
5855       // Build call kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
5856       // global_tid);
5857       llvm::Value *Args[] = {UpLoc, ThreadID};
5858       // Ignore return result until untied tasks are supported.
5859       CGF.EmitRuntimeCall(
5860           OMPBuilder.getOrCreateRuntimeFunction(M, OMPRTL___kmpc_omp_taskwait),
5861           Args);
5862     }
5863   }
5864 
5865   if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
5866     Region->emitUntiedSwitch(CGF);
5867 }
5868 
emitInlinedDirective(CodeGenFunction & CGF,OpenMPDirectiveKind InnerKind,const RegionCodeGenTy & CodeGen,bool HasCancel)5869 void CGOpenMPRuntime::emitInlinedDirective(CodeGenFunction &CGF,
5870                                            OpenMPDirectiveKind InnerKind,
5871                                            const RegionCodeGenTy &CodeGen,
5872                                            bool HasCancel) {
5873   if (!CGF.HaveInsertPoint())
5874     return;
5875   InlinedOpenMPRegionRAII Region(CGF, CodeGen, InnerKind, HasCancel,
5876                                  InnerKind != OMPD_critical &&
5877                                      InnerKind != OMPD_master &&
5878                                      InnerKind != OMPD_masked);
5879   CGF.CapturedStmtInfo->EmitBody(CGF, /*S=*/nullptr);
5880 }
5881 
5882 namespace {
5883 enum RTCancelKind {
5884   CancelNoreq = 0,
5885   CancelParallel = 1,
5886   CancelLoop = 2,
5887   CancelSections = 3,
5888   CancelTaskgroup = 4
5889 };
5890 } // anonymous namespace
5891 
getCancellationKind(OpenMPDirectiveKind CancelRegion)5892 static RTCancelKind getCancellationKind(OpenMPDirectiveKind CancelRegion) {
5893   RTCancelKind CancelKind = CancelNoreq;
5894   if (CancelRegion == OMPD_parallel)
5895     CancelKind = CancelParallel;
5896   else if (CancelRegion == OMPD_for)
5897     CancelKind = CancelLoop;
5898   else if (CancelRegion == OMPD_sections)
5899     CancelKind = CancelSections;
5900   else {
5901     assert(CancelRegion == OMPD_taskgroup);
5902     CancelKind = CancelTaskgroup;
5903   }
5904   return CancelKind;
5905 }
5906 
emitCancellationPointCall(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind CancelRegion)5907 void CGOpenMPRuntime::emitCancellationPointCall(
5908     CodeGenFunction &CGF, SourceLocation Loc,
5909     OpenMPDirectiveKind CancelRegion) {
5910   if (!CGF.HaveInsertPoint())
5911     return;
5912   // Build call kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
5913   // global_tid, kmp_int32 cncl_kind);
5914   if (auto *OMPRegionInfo =
5915           dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
5916     // For 'cancellation point taskgroup', the task region info may not have a
5917     // cancel. This may instead happen in another adjacent task.
5918     if (CancelRegion == OMPD_taskgroup || OMPRegionInfo->hasCancel()) {
5919       llvm::Value *Args[] = {
5920           emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
5921           CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
5922       // Ignore return result until untied tasks are supported.
5923       llvm::Value *Result = CGF.EmitRuntimeCall(
5924           OMPBuilder.getOrCreateRuntimeFunction(
5925               CGM.getModule(), OMPRTL___kmpc_cancellationpoint),
5926           Args);
5927       // if (__kmpc_cancellationpoint()) {
5928       //   call i32 @__kmpc_cancel_barrier( // for parallel cancellation only
5929       //   exit from construct;
5930       // }
5931       llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
5932       llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
5933       llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
5934       CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
5935       CGF.EmitBlock(ExitBB);
5936       if (CancelRegion == OMPD_parallel)
5937         emitBarrierCall(CGF, Loc, OMPD_unknown, /*EmitChecks=*/false);
5938       // exit from construct;
5939       CodeGenFunction::JumpDest CancelDest =
5940           CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
5941       CGF.EmitBranchThroughCleanup(CancelDest);
5942       CGF.EmitBlock(ContBB, /*IsFinished=*/true);
5943     }
5944   }
5945 }
5946 
emitCancelCall(CodeGenFunction & CGF,SourceLocation Loc,const Expr * IfCond,OpenMPDirectiveKind CancelRegion)5947 void CGOpenMPRuntime::emitCancelCall(CodeGenFunction &CGF, SourceLocation Loc,
5948                                      const Expr *IfCond,
5949                                      OpenMPDirectiveKind CancelRegion) {
5950   if (!CGF.HaveInsertPoint())
5951     return;
5952   // Build call kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
5953   // kmp_int32 cncl_kind);
5954   auto &M = CGM.getModule();
5955   if (auto *OMPRegionInfo =
5956           dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
5957     auto &&ThenGen = [this, &M, Loc, CancelRegion,
5958                       OMPRegionInfo](CodeGenFunction &CGF, PrePostActionTy &) {
5959       CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
5960       llvm::Value *Args[] = {
5961           RT.emitUpdateLocation(CGF, Loc), RT.getThreadID(CGF, Loc),
5962           CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
5963       // Ignore return result until untied tasks are supported.
5964       llvm::Value *Result = CGF.EmitRuntimeCall(
5965           OMPBuilder.getOrCreateRuntimeFunction(M, OMPRTL___kmpc_cancel), Args);
5966       // if (__kmpc_cancel()) {
5967       //   call i32 @__kmpc_cancel_barrier( // for parallel cancellation only
5968       //   exit from construct;
5969       // }
5970       llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
5971       llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
5972       llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
5973       CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
5974       CGF.EmitBlock(ExitBB);
5975       if (CancelRegion == OMPD_parallel)
5976         RT.emitBarrierCall(CGF, Loc, OMPD_unknown, /*EmitChecks=*/false);
5977       // exit from construct;
5978       CodeGenFunction::JumpDest CancelDest =
5979           CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
5980       CGF.EmitBranchThroughCleanup(CancelDest);
5981       CGF.EmitBlock(ContBB, /*IsFinished=*/true);
5982     };
5983     if (IfCond) {
5984       emitIfClause(CGF, IfCond, ThenGen,
5985                    [](CodeGenFunction &, PrePostActionTy &) {});
5986     } else {
5987       RegionCodeGenTy ThenRCG(ThenGen);
5988       ThenRCG(CGF);
5989     }
5990   }
5991 }
5992 
5993 namespace {
5994 /// Cleanup action for uses_allocators support.
5995 class OMPUsesAllocatorsActionTy final : public PrePostActionTy {
5996   ArrayRef<std::pair<const Expr *, const Expr *>> Allocators;
5997 
5998 public:
OMPUsesAllocatorsActionTy(ArrayRef<std::pair<const Expr *,const Expr * >> Allocators)5999   OMPUsesAllocatorsActionTy(
6000       ArrayRef<std::pair<const Expr *, const Expr *>> Allocators)
6001       : Allocators(Allocators) {}
Enter(CodeGenFunction & CGF)6002   void Enter(CodeGenFunction &CGF) override {
6003     if (!CGF.HaveInsertPoint())
6004       return;
6005     for (const auto &AllocatorData : Allocators) {
6006       CGF.CGM.getOpenMPRuntime().emitUsesAllocatorsInit(
6007           CGF, AllocatorData.first, AllocatorData.second);
6008     }
6009   }
Exit(CodeGenFunction & CGF)6010   void Exit(CodeGenFunction &CGF) override {
6011     if (!CGF.HaveInsertPoint())
6012       return;
6013     for (const auto &AllocatorData : Allocators) {
6014       CGF.CGM.getOpenMPRuntime().emitUsesAllocatorsFini(CGF,
6015                                                         AllocatorData.first);
6016     }
6017   }
6018 };
6019 } // namespace
6020 
emitTargetOutlinedFunction(const OMPExecutableDirective & D,StringRef ParentName,llvm::Function * & OutlinedFn,llvm::Constant * & OutlinedFnID,bool IsOffloadEntry,const RegionCodeGenTy & CodeGen)6021 void CGOpenMPRuntime::emitTargetOutlinedFunction(
6022     const OMPExecutableDirective &D, StringRef ParentName,
6023     llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
6024     bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
6025   assert(!ParentName.empty() && "Invalid target entry parent name!");
6026   HasEmittedTargetRegion = true;
6027   SmallVector<std::pair<const Expr *, const Expr *>, 4> Allocators;
6028   for (const auto *C : D.getClausesOfKind<OMPUsesAllocatorsClause>()) {
6029     for (unsigned I = 0, E = C->getNumberOfAllocators(); I < E; ++I) {
6030       const OMPUsesAllocatorsClause::Data D = C->getAllocatorData(I);
6031       if (!D.AllocatorTraits)
6032         continue;
6033       Allocators.emplace_back(D.Allocator, D.AllocatorTraits);
6034     }
6035   }
6036   OMPUsesAllocatorsActionTy UsesAllocatorAction(Allocators);
6037   CodeGen.setAction(UsesAllocatorAction);
6038   emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
6039                                    IsOffloadEntry, CodeGen);
6040 }
6041 
emitUsesAllocatorsInit(CodeGenFunction & CGF,const Expr * Allocator,const Expr * AllocatorTraits)6042 void CGOpenMPRuntime::emitUsesAllocatorsInit(CodeGenFunction &CGF,
6043                                              const Expr *Allocator,
6044                                              const Expr *AllocatorTraits) {
6045   llvm::Value *ThreadId = getThreadID(CGF, Allocator->getExprLoc());
6046   ThreadId = CGF.Builder.CreateIntCast(ThreadId, CGF.IntTy, /*isSigned=*/true);
6047   // Use default memspace handle.
6048   llvm::Value *MemSpaceHandle = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
6049   llvm::Value *NumTraits = llvm::ConstantInt::get(
6050       CGF.IntTy, cast<ConstantArrayType>(
6051                      AllocatorTraits->getType()->getAsArrayTypeUnsafe())
6052                      ->getSize()
6053                      .getLimitedValue());
6054   LValue AllocatorTraitsLVal = CGF.EmitLValue(AllocatorTraits);
6055   Address Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
6056       AllocatorTraitsLVal.getAddress(CGF), CGF.VoidPtrPtrTy, CGF.VoidPtrTy);
6057   AllocatorTraitsLVal = CGF.MakeAddrLValue(Addr, CGF.getContext().VoidPtrTy,
6058                                            AllocatorTraitsLVal.getBaseInfo(),
6059                                            AllocatorTraitsLVal.getTBAAInfo());
6060   llvm::Value *Traits =
6061       CGF.EmitLoadOfScalar(AllocatorTraitsLVal, AllocatorTraits->getExprLoc());
6062 
6063   llvm::Value *AllocatorVal =
6064       CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
6065                               CGM.getModule(), OMPRTL___kmpc_init_allocator),
6066                           {ThreadId, MemSpaceHandle, NumTraits, Traits});
6067   // Store to allocator.
6068   CGF.EmitVarDecl(*cast<VarDecl>(
6069       cast<DeclRefExpr>(Allocator->IgnoreParenImpCasts())->getDecl()));
6070   LValue AllocatorLVal = CGF.EmitLValue(Allocator->IgnoreParenImpCasts());
6071   AllocatorVal =
6072       CGF.EmitScalarConversion(AllocatorVal, CGF.getContext().VoidPtrTy,
6073                                Allocator->getType(), Allocator->getExprLoc());
6074   CGF.EmitStoreOfScalar(AllocatorVal, AllocatorLVal);
6075 }
6076 
emitUsesAllocatorsFini(CodeGenFunction & CGF,const Expr * Allocator)6077 void CGOpenMPRuntime::emitUsesAllocatorsFini(CodeGenFunction &CGF,
6078                                              const Expr *Allocator) {
6079   llvm::Value *ThreadId = getThreadID(CGF, Allocator->getExprLoc());
6080   ThreadId = CGF.Builder.CreateIntCast(ThreadId, CGF.IntTy, /*isSigned=*/true);
6081   LValue AllocatorLVal = CGF.EmitLValue(Allocator->IgnoreParenImpCasts());
6082   llvm::Value *AllocatorVal =
6083       CGF.EmitLoadOfScalar(AllocatorLVal, Allocator->getExprLoc());
6084   AllocatorVal = CGF.EmitScalarConversion(AllocatorVal, Allocator->getType(),
6085                                           CGF.getContext().VoidPtrTy,
6086                                           Allocator->getExprLoc());
6087   (void)CGF.EmitRuntimeCall(
6088       OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
6089                                             OMPRTL___kmpc_destroy_allocator),
6090       {ThreadId, AllocatorVal});
6091 }
6092 
emitTargetOutlinedFunctionHelper(const OMPExecutableDirective & D,StringRef ParentName,llvm::Function * & OutlinedFn,llvm::Constant * & OutlinedFnID,bool IsOffloadEntry,const RegionCodeGenTy & CodeGen)6093 void CGOpenMPRuntime::emitTargetOutlinedFunctionHelper(
6094     const OMPExecutableDirective &D, StringRef ParentName,
6095     llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
6096     bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
6097 
6098   auto EntryInfo =
6099       getTargetEntryUniqueInfo(CGM.getContext(), D.getBeginLoc(), ParentName);
6100 
6101   CodeGenFunction CGF(CGM, true);
6102   llvm::OpenMPIRBuilder::FunctionGenCallback &&GenerateOutlinedFunction =
6103       [&CGF, &D, &CodeGen](StringRef EntryFnName) {
6104         const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target);
6105 
6106         CGOpenMPTargetRegionInfo CGInfo(CS, CodeGen, EntryFnName);
6107         CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6108         return CGF.GenerateOpenMPCapturedStmtFunction(CS, D.getBeginLoc());
6109       };
6110 
6111   // Get NumTeams and ThreadLimit attributes
6112   int32_t DefaultValTeams = -1;
6113   int32_t DefaultValThreads = -1;
6114   getNumTeamsExprForTargetDirective(CGF, D, DefaultValTeams);
6115   getNumThreadsExprForTargetDirective(CGF, D, DefaultValThreads);
6116 
6117   OMPBuilder.emitTargetRegionFunction(OffloadEntriesInfoManager, EntryInfo,
6118                                       GenerateOutlinedFunction, DefaultValTeams,
6119                                       DefaultValThreads, IsOffloadEntry,
6120                                       OutlinedFn, OutlinedFnID);
6121 
6122   if (OutlinedFn != nullptr)
6123     CGM.getTargetCodeGenInfo().setTargetAttributes(nullptr, OutlinedFn, CGM);
6124 }
6125 
6126 /// Checks if the expression is constant or does not have non-trivial function
6127 /// calls.
isTrivial(ASTContext & Ctx,const Expr * E)6128 static bool isTrivial(ASTContext &Ctx, const Expr * E) {
6129   // We can skip constant expressions.
6130   // We can skip expressions with trivial calls or simple expressions.
6131   return (E->isEvaluatable(Ctx, Expr::SE_AllowUndefinedBehavior) ||
6132           !E->hasNonTrivialCall(Ctx)) &&
6133          !E->HasSideEffects(Ctx, /*IncludePossibleEffects=*/true);
6134 }
6135 
getSingleCompoundChild(ASTContext & Ctx,const Stmt * Body)6136 const Stmt *CGOpenMPRuntime::getSingleCompoundChild(ASTContext &Ctx,
6137                                                     const Stmt *Body) {
6138   const Stmt *Child = Body->IgnoreContainers();
6139   while (const auto *C = dyn_cast_or_null<CompoundStmt>(Child)) {
6140     Child = nullptr;
6141     for (const Stmt *S : C->body()) {
6142       if (const auto *E = dyn_cast<Expr>(S)) {
6143         if (isTrivial(Ctx, E))
6144           continue;
6145       }
6146       // Some of the statements can be ignored.
6147       if (isa<AsmStmt>(S) || isa<NullStmt>(S) || isa<OMPFlushDirective>(S) ||
6148           isa<OMPBarrierDirective>(S) || isa<OMPTaskyieldDirective>(S))
6149         continue;
6150       // Analyze declarations.
6151       if (const auto *DS = dyn_cast<DeclStmt>(S)) {
6152         if (llvm::all_of(DS->decls(), [](const Decl *D) {
6153               if (isa<EmptyDecl>(D) || isa<DeclContext>(D) ||
6154                   isa<TypeDecl>(D) || isa<PragmaCommentDecl>(D) ||
6155                   isa<PragmaDetectMismatchDecl>(D) || isa<UsingDecl>(D) ||
6156                   isa<UsingDirectiveDecl>(D) ||
6157                   isa<OMPDeclareReductionDecl>(D) ||
6158                   isa<OMPThreadPrivateDecl>(D) || isa<OMPAllocateDecl>(D))
6159                 return true;
6160               const auto *VD = dyn_cast<VarDecl>(D);
6161               if (!VD)
6162                 return false;
6163               return VD->hasGlobalStorage() || !VD->isUsed();
6164             }))
6165           continue;
6166       }
6167       // Found multiple children - cannot get the one child only.
6168       if (Child)
6169         return nullptr;
6170       Child = S;
6171     }
6172     if (Child)
6173       Child = Child->IgnoreContainers();
6174   }
6175   return Child;
6176 }
6177 
getNumTeamsExprForTargetDirective(CodeGenFunction & CGF,const OMPExecutableDirective & D,int32_t & DefaultVal)6178 const Expr *CGOpenMPRuntime::getNumTeamsExprForTargetDirective(
6179     CodeGenFunction &CGF, const OMPExecutableDirective &D,
6180     int32_t &DefaultVal) {
6181 
6182   OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
6183   assert(isOpenMPTargetExecutionDirective(DirectiveKind) &&
6184          "Expected target-based executable directive.");
6185   switch (DirectiveKind) {
6186   case OMPD_target: {
6187     const auto *CS = D.getInnermostCapturedStmt();
6188     const auto *Body =
6189         CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
6190     const Stmt *ChildStmt =
6191         CGOpenMPRuntime::getSingleCompoundChild(CGF.getContext(), Body);
6192     if (const auto *NestedDir =
6193             dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
6194       if (isOpenMPTeamsDirective(NestedDir->getDirectiveKind())) {
6195         if (NestedDir->hasClausesOfKind<OMPNumTeamsClause>()) {
6196           const Expr *NumTeams =
6197               NestedDir->getSingleClause<OMPNumTeamsClause>()->getNumTeams();
6198           if (NumTeams->isIntegerConstantExpr(CGF.getContext()))
6199             if (auto Constant =
6200                     NumTeams->getIntegerConstantExpr(CGF.getContext()))
6201               DefaultVal = Constant->getExtValue();
6202           return NumTeams;
6203         }
6204         DefaultVal = 0;
6205         return nullptr;
6206       }
6207       if (isOpenMPParallelDirective(NestedDir->getDirectiveKind()) ||
6208           isOpenMPSimdDirective(NestedDir->getDirectiveKind())) {
6209         DefaultVal = 1;
6210         return nullptr;
6211       }
6212       DefaultVal = 1;
6213       return nullptr;
6214     }
6215     // A value of -1 is used to check if we need to emit no teams region
6216     DefaultVal = -1;
6217     return nullptr;
6218   }
6219   case OMPD_target_teams:
6220   case OMPD_target_teams_distribute:
6221   case OMPD_target_teams_distribute_simd:
6222   case OMPD_target_teams_distribute_parallel_for:
6223   case OMPD_target_teams_distribute_parallel_for_simd: {
6224     if (D.hasClausesOfKind<OMPNumTeamsClause>()) {
6225       const Expr *NumTeams =
6226           D.getSingleClause<OMPNumTeamsClause>()->getNumTeams();
6227       if (NumTeams->isIntegerConstantExpr(CGF.getContext()))
6228         if (auto Constant = NumTeams->getIntegerConstantExpr(CGF.getContext()))
6229           DefaultVal = Constant->getExtValue();
6230       return NumTeams;
6231     }
6232     DefaultVal = 0;
6233     return nullptr;
6234   }
6235   case OMPD_target_parallel:
6236   case OMPD_target_parallel_for:
6237   case OMPD_target_parallel_for_simd:
6238   case OMPD_target_simd:
6239     DefaultVal = 1;
6240     return nullptr;
6241   case OMPD_parallel:
6242   case OMPD_for:
6243   case OMPD_parallel_for:
6244   case OMPD_parallel_master:
6245   case OMPD_parallel_sections:
6246   case OMPD_for_simd:
6247   case OMPD_parallel_for_simd:
6248   case OMPD_cancel:
6249   case OMPD_cancellation_point:
6250   case OMPD_ordered:
6251   case OMPD_threadprivate:
6252   case OMPD_allocate:
6253   case OMPD_task:
6254   case OMPD_simd:
6255   case OMPD_tile:
6256   case OMPD_unroll:
6257   case OMPD_sections:
6258   case OMPD_section:
6259   case OMPD_single:
6260   case OMPD_master:
6261   case OMPD_critical:
6262   case OMPD_taskyield:
6263   case OMPD_barrier:
6264   case OMPD_taskwait:
6265   case OMPD_taskgroup:
6266   case OMPD_atomic:
6267   case OMPD_flush:
6268   case OMPD_depobj:
6269   case OMPD_scan:
6270   case OMPD_teams:
6271   case OMPD_target_data:
6272   case OMPD_target_exit_data:
6273   case OMPD_target_enter_data:
6274   case OMPD_distribute:
6275   case OMPD_distribute_simd:
6276   case OMPD_distribute_parallel_for:
6277   case OMPD_distribute_parallel_for_simd:
6278   case OMPD_teams_distribute:
6279   case OMPD_teams_distribute_simd:
6280   case OMPD_teams_distribute_parallel_for:
6281   case OMPD_teams_distribute_parallel_for_simd:
6282   case OMPD_target_update:
6283   case OMPD_declare_simd:
6284   case OMPD_declare_variant:
6285   case OMPD_begin_declare_variant:
6286   case OMPD_end_declare_variant:
6287   case OMPD_declare_target:
6288   case OMPD_end_declare_target:
6289   case OMPD_declare_reduction:
6290   case OMPD_declare_mapper:
6291   case OMPD_taskloop:
6292   case OMPD_taskloop_simd:
6293   case OMPD_master_taskloop:
6294   case OMPD_master_taskloop_simd:
6295   case OMPD_parallel_master_taskloop:
6296   case OMPD_parallel_master_taskloop_simd:
6297   case OMPD_requires:
6298   case OMPD_metadirective:
6299   case OMPD_unknown:
6300     break;
6301   default:
6302     break;
6303   }
6304   llvm_unreachable("Unexpected directive kind.");
6305 }
6306 
emitNumTeamsForTargetDirective(CodeGenFunction & CGF,const OMPExecutableDirective & D)6307 llvm::Value *CGOpenMPRuntime::emitNumTeamsForTargetDirective(
6308     CodeGenFunction &CGF, const OMPExecutableDirective &D) {
6309   assert(!CGF.getLangOpts().OpenMPIsDevice &&
6310          "Clauses associated with the teams directive expected to be emitted "
6311          "only for the host!");
6312   CGBuilderTy &Bld = CGF.Builder;
6313   int32_t DefaultNT = -1;
6314   const Expr *NumTeams = getNumTeamsExprForTargetDirective(CGF, D, DefaultNT);
6315   if (NumTeams != nullptr) {
6316     OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
6317 
6318     switch (DirectiveKind) {
6319     case OMPD_target: {
6320       const auto *CS = D.getInnermostCapturedStmt();
6321       CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
6322       CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6323       llvm::Value *NumTeamsVal = CGF.EmitScalarExpr(NumTeams,
6324                                                   /*IgnoreResultAssign*/ true);
6325       return Bld.CreateIntCast(NumTeamsVal, CGF.Int32Ty,
6326                              /*isSigned=*/true);
6327     }
6328     case OMPD_target_teams:
6329     case OMPD_target_teams_distribute:
6330     case OMPD_target_teams_distribute_simd:
6331     case OMPD_target_teams_distribute_parallel_for:
6332     case OMPD_target_teams_distribute_parallel_for_simd: {
6333       CodeGenFunction::RunCleanupsScope NumTeamsScope(CGF);
6334       llvm::Value *NumTeamsVal = CGF.EmitScalarExpr(NumTeams,
6335                                                   /*IgnoreResultAssign*/ true);
6336       return Bld.CreateIntCast(NumTeamsVal, CGF.Int32Ty,
6337                              /*isSigned=*/true);
6338     }
6339     default:
6340       break;
6341     }
6342   }
6343 
6344   return llvm::ConstantInt::get(CGF.Int32Ty, DefaultNT);
6345 }
6346 
getNumThreads(CodeGenFunction & CGF,const CapturedStmt * CS,llvm::Value * DefaultThreadLimitVal)6347 static llvm::Value *getNumThreads(CodeGenFunction &CGF, const CapturedStmt *CS,
6348                                   llvm::Value *DefaultThreadLimitVal) {
6349   const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
6350       CGF.getContext(), CS->getCapturedStmt());
6351   if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
6352     if (isOpenMPParallelDirective(Dir->getDirectiveKind())) {
6353       llvm::Value *NumThreads = nullptr;
6354       llvm::Value *CondVal = nullptr;
6355       // Handle if clause. If if clause present, the number of threads is
6356       // calculated as <cond> ? (<numthreads> ? <numthreads> : 0 ) : 1.
6357       if (Dir->hasClausesOfKind<OMPIfClause>()) {
6358         CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
6359         CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6360         const OMPIfClause *IfClause = nullptr;
6361         for (const auto *C : Dir->getClausesOfKind<OMPIfClause>()) {
6362           if (C->getNameModifier() == OMPD_unknown ||
6363               C->getNameModifier() == OMPD_parallel) {
6364             IfClause = C;
6365             break;
6366           }
6367         }
6368         if (IfClause) {
6369           const Expr *Cond = IfClause->getCondition();
6370           bool Result;
6371           if (Cond->EvaluateAsBooleanCondition(Result, CGF.getContext())) {
6372             if (!Result)
6373               return CGF.Builder.getInt32(1);
6374           } else {
6375             CodeGenFunction::LexicalScope Scope(CGF, Cond->getSourceRange());
6376             if (const auto *PreInit =
6377                     cast_or_null<DeclStmt>(IfClause->getPreInitStmt())) {
6378               for (const auto *I : PreInit->decls()) {
6379                 if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
6380                   CGF.EmitVarDecl(cast<VarDecl>(*I));
6381                 } else {
6382                   CodeGenFunction::AutoVarEmission Emission =
6383                       CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
6384                   CGF.EmitAutoVarCleanups(Emission);
6385                 }
6386               }
6387             }
6388             CondVal = CGF.EvaluateExprAsBool(Cond);
6389           }
6390         }
6391       }
6392       // Check the value of num_threads clause iff if clause was not specified
6393       // or is not evaluated to false.
6394       if (Dir->hasClausesOfKind<OMPNumThreadsClause>()) {
6395         CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
6396         CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6397         const auto *NumThreadsClause =
6398             Dir->getSingleClause<OMPNumThreadsClause>();
6399         CodeGenFunction::LexicalScope Scope(
6400             CGF, NumThreadsClause->getNumThreads()->getSourceRange());
6401         if (const auto *PreInit =
6402                 cast_or_null<DeclStmt>(NumThreadsClause->getPreInitStmt())) {
6403           for (const auto *I : PreInit->decls()) {
6404             if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
6405               CGF.EmitVarDecl(cast<VarDecl>(*I));
6406             } else {
6407               CodeGenFunction::AutoVarEmission Emission =
6408                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
6409               CGF.EmitAutoVarCleanups(Emission);
6410             }
6411           }
6412         }
6413         NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads());
6414         NumThreads = CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty,
6415                                                /*isSigned=*/false);
6416         if (DefaultThreadLimitVal)
6417           NumThreads = CGF.Builder.CreateSelect(
6418               CGF.Builder.CreateICmpULT(DefaultThreadLimitVal, NumThreads),
6419               DefaultThreadLimitVal, NumThreads);
6420       } else {
6421         NumThreads = DefaultThreadLimitVal ? DefaultThreadLimitVal
6422                                            : CGF.Builder.getInt32(0);
6423       }
6424       // Process condition of the if clause.
6425       if (CondVal) {
6426         NumThreads = CGF.Builder.CreateSelect(CondVal, NumThreads,
6427                                               CGF.Builder.getInt32(1));
6428       }
6429       return NumThreads;
6430     }
6431     if (isOpenMPSimdDirective(Dir->getDirectiveKind()))
6432       return CGF.Builder.getInt32(1);
6433   }
6434   return DefaultThreadLimitVal;
6435 }
6436 
getNumThreadsExprForTargetDirective(CodeGenFunction & CGF,const OMPExecutableDirective & D,int32_t & DefaultVal)6437 const Expr *CGOpenMPRuntime::getNumThreadsExprForTargetDirective(
6438     CodeGenFunction &CGF, const OMPExecutableDirective &D,
6439     int32_t &DefaultVal) {
6440   OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
6441   assert(isOpenMPTargetExecutionDirective(DirectiveKind) &&
6442          "Expected target-based executable directive.");
6443 
6444   switch (DirectiveKind) {
6445   case OMPD_target:
6446     // Teams have no clause thread_limit
6447     return nullptr;
6448   case OMPD_target_teams:
6449   case OMPD_target_teams_distribute:
6450     if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
6451       const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
6452       const Expr *ThreadLimit = ThreadLimitClause->getThreadLimit();
6453       if (ThreadLimit->isIntegerConstantExpr(CGF.getContext()))
6454         if (auto Constant =
6455                 ThreadLimit->getIntegerConstantExpr(CGF.getContext()))
6456           DefaultVal = Constant->getExtValue();
6457       return ThreadLimit;
6458     }
6459     return nullptr;
6460   case OMPD_target_parallel:
6461   case OMPD_target_parallel_for:
6462   case OMPD_target_parallel_for_simd:
6463   case OMPD_target_teams_distribute_parallel_for:
6464   case OMPD_target_teams_distribute_parallel_for_simd: {
6465     Expr *ThreadLimit = nullptr;
6466     Expr *NumThreads = nullptr;
6467     if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
6468       const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
6469       ThreadLimit = ThreadLimitClause->getThreadLimit();
6470       if (ThreadLimit->isIntegerConstantExpr(CGF.getContext()))
6471         if (auto Constant =
6472                 ThreadLimit->getIntegerConstantExpr(CGF.getContext()))
6473           DefaultVal = Constant->getExtValue();
6474     }
6475     if (D.hasClausesOfKind<OMPNumThreadsClause>()) {
6476       const auto *NumThreadsClause = D.getSingleClause<OMPNumThreadsClause>();
6477       NumThreads = NumThreadsClause->getNumThreads();
6478       if (NumThreads->isIntegerConstantExpr(CGF.getContext())) {
6479         if (auto Constant =
6480                 NumThreads->getIntegerConstantExpr(CGF.getContext())) {
6481           if (Constant->getExtValue() < DefaultVal) {
6482             DefaultVal = Constant->getExtValue();
6483             ThreadLimit = NumThreads;
6484           }
6485         }
6486       }
6487     }
6488     return ThreadLimit;
6489   }
6490   case OMPD_target_teams_distribute_simd:
6491   case OMPD_target_simd:
6492     DefaultVal = 1;
6493     return nullptr;
6494   case OMPD_parallel:
6495   case OMPD_for:
6496   case OMPD_parallel_for:
6497   case OMPD_parallel_master:
6498   case OMPD_parallel_sections:
6499   case OMPD_for_simd:
6500   case OMPD_parallel_for_simd:
6501   case OMPD_cancel:
6502   case OMPD_cancellation_point:
6503   case OMPD_ordered:
6504   case OMPD_threadprivate:
6505   case OMPD_allocate:
6506   case OMPD_task:
6507   case OMPD_simd:
6508   case OMPD_tile:
6509   case OMPD_unroll:
6510   case OMPD_sections:
6511   case OMPD_section:
6512   case OMPD_single:
6513   case OMPD_master:
6514   case OMPD_critical:
6515   case OMPD_taskyield:
6516   case OMPD_barrier:
6517   case OMPD_taskwait:
6518   case OMPD_taskgroup:
6519   case OMPD_atomic:
6520   case OMPD_flush:
6521   case OMPD_depobj:
6522   case OMPD_scan:
6523   case OMPD_teams:
6524   case OMPD_target_data:
6525   case OMPD_target_exit_data:
6526   case OMPD_target_enter_data:
6527   case OMPD_distribute:
6528   case OMPD_distribute_simd:
6529   case OMPD_distribute_parallel_for:
6530   case OMPD_distribute_parallel_for_simd:
6531   case OMPD_teams_distribute:
6532   case OMPD_teams_distribute_simd:
6533   case OMPD_teams_distribute_parallel_for:
6534   case OMPD_teams_distribute_parallel_for_simd:
6535   case OMPD_target_update:
6536   case OMPD_declare_simd:
6537   case OMPD_declare_variant:
6538   case OMPD_begin_declare_variant:
6539   case OMPD_end_declare_variant:
6540   case OMPD_declare_target:
6541   case OMPD_end_declare_target:
6542   case OMPD_declare_reduction:
6543   case OMPD_declare_mapper:
6544   case OMPD_taskloop:
6545   case OMPD_taskloop_simd:
6546   case OMPD_master_taskloop:
6547   case OMPD_master_taskloop_simd:
6548   case OMPD_parallel_master_taskloop:
6549   case OMPD_parallel_master_taskloop_simd:
6550   case OMPD_requires:
6551   case OMPD_unknown:
6552     break;
6553   default:
6554     break;
6555   }
6556   llvm_unreachable("Unsupported directive kind.");
6557 }
6558 
emitNumThreadsForTargetDirective(CodeGenFunction & CGF,const OMPExecutableDirective & D)6559 llvm::Value *CGOpenMPRuntime::emitNumThreadsForTargetDirective(
6560     CodeGenFunction &CGF, const OMPExecutableDirective &D) {
6561   assert(!CGF.getLangOpts().OpenMPIsDevice &&
6562          "Clauses associated with the teams directive expected to be emitted "
6563          "only for the host!");
6564   OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
6565   assert(isOpenMPTargetExecutionDirective(DirectiveKind) &&
6566          "Expected target-based executable directive.");
6567   CGBuilderTy &Bld = CGF.Builder;
6568   llvm::Value *ThreadLimitVal = nullptr;
6569   llvm::Value *NumThreadsVal = nullptr;
6570   switch (DirectiveKind) {
6571   case OMPD_target: {
6572     const CapturedStmt *CS = D.getInnermostCapturedStmt();
6573     if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
6574       return NumThreads;
6575     const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
6576         CGF.getContext(), CS->getCapturedStmt());
6577     // TODO: The standard is not clear how to resolve two thread limit clauses,
6578     //       let's pick the teams one if it's present, otherwise the target one.
6579     const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
6580     if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
6581       if (const auto *TLC = Dir->getSingleClause<OMPThreadLimitClause>()) {
6582         ThreadLimitClause = TLC;
6583         CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
6584         CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6585         CodeGenFunction::LexicalScope Scope(
6586             CGF, ThreadLimitClause->getThreadLimit()->getSourceRange());
6587         if (const auto *PreInit =
6588                 cast_or_null<DeclStmt>(ThreadLimitClause->getPreInitStmt())) {
6589           for (const auto *I : PreInit->decls()) {
6590             if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
6591               CGF.EmitVarDecl(cast<VarDecl>(*I));
6592             } else {
6593               CodeGenFunction::AutoVarEmission Emission =
6594                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
6595               CGF.EmitAutoVarCleanups(Emission);
6596             }
6597           }
6598         }
6599       }
6600     }
6601     if (ThreadLimitClause) {
6602       llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
6603           ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
6604       ThreadLimitVal =
6605           Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
6606     }
6607     if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
6608       if (isOpenMPTeamsDirective(Dir->getDirectiveKind()) &&
6609           !isOpenMPDistributeDirective(Dir->getDirectiveKind())) {
6610         CS = Dir->getInnermostCapturedStmt();
6611         const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
6612             CGF.getContext(), CS->getCapturedStmt());
6613         Dir = dyn_cast_or_null<OMPExecutableDirective>(Child);
6614       }
6615       if (Dir && isOpenMPDistributeDirective(Dir->getDirectiveKind()) &&
6616           !isOpenMPSimdDirective(Dir->getDirectiveKind())) {
6617         CS = Dir->getInnermostCapturedStmt();
6618         if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
6619           return NumThreads;
6620       }
6621       if (Dir && isOpenMPSimdDirective(Dir->getDirectiveKind()))
6622         return Bld.getInt32(1);
6623     }
6624     return ThreadLimitVal ? ThreadLimitVal : Bld.getInt32(0);
6625   }
6626   case OMPD_target_teams: {
6627     if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
6628       CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
6629       const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
6630       llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
6631           ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
6632       ThreadLimitVal =
6633           Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
6634     }
6635     const CapturedStmt *CS = D.getInnermostCapturedStmt();
6636     if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
6637       return NumThreads;
6638     const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
6639         CGF.getContext(), CS->getCapturedStmt());
6640     if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
6641       if (Dir->getDirectiveKind() == OMPD_distribute) {
6642         CS = Dir->getInnermostCapturedStmt();
6643         if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
6644           return NumThreads;
6645       }
6646     }
6647     return ThreadLimitVal ? ThreadLimitVal : Bld.getInt32(0);
6648   }
6649   case OMPD_target_teams_distribute:
6650     if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
6651       CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
6652       const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
6653       llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
6654           ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
6655       ThreadLimitVal =
6656           Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
6657     }
6658     if (llvm::Value *NumThreads =
6659             getNumThreads(CGF, D.getInnermostCapturedStmt(), ThreadLimitVal))
6660       return NumThreads;
6661     return Bld.getInt32(0);
6662   case OMPD_target_parallel:
6663   case OMPD_target_parallel_for:
6664   case OMPD_target_parallel_for_simd:
6665   case OMPD_target_teams_distribute_parallel_for:
6666   case OMPD_target_teams_distribute_parallel_for_simd: {
6667     llvm::Value *CondVal = nullptr;
6668     // Handle if clause. If if clause present, the number of threads is
6669     // calculated as <cond> ? (<numthreads> ? <numthreads> : 0 ) : 1.
6670     if (D.hasClausesOfKind<OMPIfClause>()) {
6671       const OMPIfClause *IfClause = nullptr;
6672       for (const auto *C : D.getClausesOfKind<OMPIfClause>()) {
6673         if (C->getNameModifier() == OMPD_unknown ||
6674             C->getNameModifier() == OMPD_parallel) {
6675           IfClause = C;
6676           break;
6677         }
6678       }
6679       if (IfClause) {
6680         const Expr *Cond = IfClause->getCondition();
6681         bool Result;
6682         if (Cond->EvaluateAsBooleanCondition(Result, CGF.getContext())) {
6683           if (!Result)
6684             return Bld.getInt32(1);
6685         } else {
6686           CodeGenFunction::RunCleanupsScope Scope(CGF);
6687           CondVal = CGF.EvaluateExprAsBool(Cond);
6688         }
6689       }
6690     }
6691     if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
6692       CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
6693       const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
6694       llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
6695           ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
6696       ThreadLimitVal =
6697           Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
6698     }
6699     if (D.hasClausesOfKind<OMPNumThreadsClause>()) {
6700       CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
6701       const auto *NumThreadsClause = D.getSingleClause<OMPNumThreadsClause>();
6702       llvm::Value *NumThreads = CGF.EmitScalarExpr(
6703           NumThreadsClause->getNumThreads(), /*IgnoreResultAssign=*/true);
6704       NumThreadsVal =
6705           Bld.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned=*/false);
6706       ThreadLimitVal = ThreadLimitVal
6707                            ? Bld.CreateSelect(Bld.CreateICmpULT(NumThreadsVal,
6708                                                                 ThreadLimitVal),
6709                                               NumThreadsVal, ThreadLimitVal)
6710                            : NumThreadsVal;
6711     }
6712     if (!ThreadLimitVal)
6713       ThreadLimitVal = Bld.getInt32(0);
6714     if (CondVal)
6715       return Bld.CreateSelect(CondVal, ThreadLimitVal, Bld.getInt32(1));
6716     return ThreadLimitVal;
6717   }
6718   case OMPD_target_teams_distribute_simd:
6719   case OMPD_target_simd:
6720     return Bld.getInt32(1);
6721   case OMPD_parallel:
6722   case OMPD_for:
6723   case OMPD_parallel_for:
6724   case OMPD_parallel_master:
6725   case OMPD_parallel_sections:
6726   case OMPD_for_simd:
6727   case OMPD_parallel_for_simd:
6728   case OMPD_cancel:
6729   case OMPD_cancellation_point:
6730   case OMPD_ordered:
6731   case OMPD_threadprivate:
6732   case OMPD_allocate:
6733   case OMPD_task:
6734   case OMPD_simd:
6735   case OMPD_tile:
6736   case OMPD_unroll:
6737   case OMPD_sections:
6738   case OMPD_section:
6739   case OMPD_single:
6740   case OMPD_master:
6741   case OMPD_critical:
6742   case OMPD_taskyield:
6743   case OMPD_barrier:
6744   case OMPD_taskwait:
6745   case OMPD_taskgroup:
6746   case OMPD_atomic:
6747   case OMPD_flush:
6748   case OMPD_depobj:
6749   case OMPD_scan:
6750   case OMPD_teams:
6751   case OMPD_target_data:
6752   case OMPD_target_exit_data:
6753   case OMPD_target_enter_data:
6754   case OMPD_distribute:
6755   case OMPD_distribute_simd:
6756   case OMPD_distribute_parallel_for:
6757   case OMPD_distribute_parallel_for_simd:
6758   case OMPD_teams_distribute:
6759   case OMPD_teams_distribute_simd:
6760   case OMPD_teams_distribute_parallel_for:
6761   case OMPD_teams_distribute_parallel_for_simd:
6762   case OMPD_target_update:
6763   case OMPD_declare_simd:
6764   case OMPD_declare_variant:
6765   case OMPD_begin_declare_variant:
6766   case OMPD_end_declare_variant:
6767   case OMPD_declare_target:
6768   case OMPD_end_declare_target:
6769   case OMPD_declare_reduction:
6770   case OMPD_declare_mapper:
6771   case OMPD_taskloop:
6772   case OMPD_taskloop_simd:
6773   case OMPD_master_taskloop:
6774   case OMPD_master_taskloop_simd:
6775   case OMPD_parallel_master_taskloop:
6776   case OMPD_parallel_master_taskloop_simd:
6777   case OMPD_requires:
6778   case OMPD_metadirective:
6779   case OMPD_unknown:
6780     break;
6781   default:
6782     break;
6783   }
6784   llvm_unreachable("Unsupported directive kind.");
6785 }
6786 
6787 namespace {
6788 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
6789 
6790 // Utility to handle information from clauses associated with a given
6791 // construct that use mappable expressions (e.g. 'map' clause, 'to' clause).
6792 // It provides a convenient interface to obtain the information and generate
6793 // code for that information.
6794 class MappableExprsHandler {
6795 public:
6796   /// Get the offset of the OMP_MAP_MEMBER_OF field.
getFlagMemberOffset()6797   static unsigned getFlagMemberOffset() {
6798     unsigned Offset = 0;
6799     for (uint64_t Remain =
6800              static_cast<std::underlying_type_t<OpenMPOffloadMappingFlags>>(
6801                  OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF);
6802          !(Remain & 1); Remain = Remain >> 1)
6803       Offset++;
6804     return Offset;
6805   }
6806 
6807   /// Class that holds debugging information for a data mapping to be passed to
6808   /// the runtime library.
6809   class MappingExprInfo {
6810     /// The variable declaration used for the data mapping.
6811     const ValueDecl *MapDecl = nullptr;
6812     /// The original expression used in the map clause, or null if there is
6813     /// none.
6814     const Expr *MapExpr = nullptr;
6815 
6816   public:
MappingExprInfo(const ValueDecl * MapDecl,const Expr * MapExpr=nullptr)6817     MappingExprInfo(const ValueDecl *MapDecl, const Expr *MapExpr = nullptr)
6818         : MapDecl(MapDecl), MapExpr(MapExpr) {}
6819 
getMapDecl() const6820     const ValueDecl *getMapDecl() const { return MapDecl; }
getMapExpr() const6821     const Expr *getMapExpr() const { return MapExpr; }
6822   };
6823 
6824   /// Class that associates information with a base pointer to be passed to the
6825   /// runtime library.
6826   class BasePointerInfo {
6827     /// The base pointer.
6828     llvm::Value *Ptr = nullptr;
6829     /// The base declaration that refers to this device pointer, or null if
6830     /// there is none.
6831     const ValueDecl *DevPtrDecl = nullptr;
6832 
6833   public:
BasePointerInfo(llvm::Value * Ptr,const ValueDecl * DevPtrDecl=nullptr)6834     BasePointerInfo(llvm::Value *Ptr, const ValueDecl *DevPtrDecl = nullptr)
6835         : Ptr(Ptr), DevPtrDecl(DevPtrDecl) {}
operator *() const6836     llvm::Value *operator*() const { return Ptr; }
getDevicePtrDecl() const6837     const ValueDecl *getDevicePtrDecl() const { return DevPtrDecl; }
setDevicePtrDecl(const ValueDecl * D)6838     void setDevicePtrDecl(const ValueDecl *D) { DevPtrDecl = D; }
6839   };
6840 
6841   using MapExprsArrayTy = SmallVector<MappingExprInfo, 4>;
6842   using MapBaseValuesArrayTy = SmallVector<BasePointerInfo, 4>;
6843   using MapValuesArrayTy = SmallVector<llvm::Value *, 4>;
6844   using MapFlagsArrayTy = SmallVector<OpenMPOffloadMappingFlags, 4>;
6845   using MapMappersArrayTy = SmallVector<const ValueDecl *, 4>;
6846   using MapDimArrayTy = SmallVector<uint64_t, 4>;
6847   using MapNonContiguousArrayTy = SmallVector<MapValuesArrayTy, 4>;
6848 
6849   /// This structure contains combined information generated for mappable
6850   /// clauses, including base pointers, pointers, sizes, map types, user-defined
6851   /// mappers, and non-contiguous information.
6852   struct MapCombinedInfoTy {
6853     struct StructNonContiguousInfo {
6854       bool IsNonContiguous = false;
6855       MapDimArrayTy Dims;
6856       MapNonContiguousArrayTy Offsets;
6857       MapNonContiguousArrayTy Counts;
6858       MapNonContiguousArrayTy Strides;
6859     };
6860     MapExprsArrayTy Exprs;
6861     MapBaseValuesArrayTy BasePointers;
6862     MapValuesArrayTy Pointers;
6863     MapValuesArrayTy Sizes;
6864     MapFlagsArrayTy Types;
6865     MapMappersArrayTy Mappers;
6866     StructNonContiguousInfo NonContigInfo;
6867 
6868     /// Append arrays in \a CurInfo.
append__anon7bb087082811::MappableExprsHandler::MapCombinedInfoTy6869     void append(MapCombinedInfoTy &CurInfo) {
6870       Exprs.append(CurInfo.Exprs.begin(), CurInfo.Exprs.end());
6871       BasePointers.append(CurInfo.BasePointers.begin(),
6872                           CurInfo.BasePointers.end());
6873       Pointers.append(CurInfo.Pointers.begin(), CurInfo.Pointers.end());
6874       Sizes.append(CurInfo.Sizes.begin(), CurInfo.Sizes.end());
6875       Types.append(CurInfo.Types.begin(), CurInfo.Types.end());
6876       Mappers.append(CurInfo.Mappers.begin(), CurInfo.Mappers.end());
6877       NonContigInfo.Dims.append(CurInfo.NonContigInfo.Dims.begin(),
6878                                  CurInfo.NonContigInfo.Dims.end());
6879       NonContigInfo.Offsets.append(CurInfo.NonContigInfo.Offsets.begin(),
6880                                     CurInfo.NonContigInfo.Offsets.end());
6881       NonContigInfo.Counts.append(CurInfo.NonContigInfo.Counts.begin(),
6882                                    CurInfo.NonContigInfo.Counts.end());
6883       NonContigInfo.Strides.append(CurInfo.NonContigInfo.Strides.begin(),
6884                                     CurInfo.NonContigInfo.Strides.end());
6885     }
6886   };
6887 
6888   /// Map between a struct and the its lowest & highest elements which have been
6889   /// mapped.
6890   /// [ValueDecl *] --> {LE(FieldIndex, Pointer),
6891   ///                    HE(FieldIndex, Pointer)}
6892   struct StructRangeInfoTy {
6893     MapCombinedInfoTy PreliminaryMapData;
6894     std::pair<unsigned /*FieldIndex*/, Address /*Pointer*/> LowestElem = {
6895         0, Address::invalid()};
6896     std::pair<unsigned /*FieldIndex*/, Address /*Pointer*/> HighestElem = {
6897         0, Address::invalid()};
6898     Address Base = Address::invalid();
6899     Address LB = Address::invalid();
6900     bool IsArraySection = false;
6901     bool HasCompleteRecord = false;
6902   };
6903 
6904 private:
6905   /// Kind that defines how a device pointer has to be returned.
6906   struct MapInfo {
6907     OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
6908     OpenMPMapClauseKind MapType = OMPC_MAP_unknown;
6909     ArrayRef<OpenMPMapModifierKind> MapModifiers;
6910     ArrayRef<OpenMPMotionModifierKind> MotionModifiers;
6911     bool ReturnDevicePointer = false;
6912     bool IsImplicit = false;
6913     const ValueDecl *Mapper = nullptr;
6914     const Expr *VarRef = nullptr;
6915     bool ForDeviceAddr = false;
6916 
6917     MapInfo() = default;
MapInfo__anon7bb087082811::MappableExprsHandler::MapInfo6918     MapInfo(
6919         OMPClauseMappableExprCommon::MappableExprComponentListRef Components,
6920         OpenMPMapClauseKind MapType,
6921         ArrayRef<OpenMPMapModifierKind> MapModifiers,
6922         ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
6923         bool ReturnDevicePointer, bool IsImplicit,
6924         const ValueDecl *Mapper = nullptr, const Expr *VarRef = nullptr,
6925         bool ForDeviceAddr = false)
6926         : Components(Components), MapType(MapType), MapModifiers(MapModifiers),
6927           MotionModifiers(MotionModifiers),
6928           ReturnDevicePointer(ReturnDevicePointer), IsImplicit(IsImplicit),
6929           Mapper(Mapper), VarRef(VarRef), ForDeviceAddr(ForDeviceAddr) {}
6930   };
6931 
6932   /// If use_device_ptr or use_device_addr is used on a decl which is a struct
6933   /// member and there is no map information about it, then emission of that
6934   /// entry is deferred until the whole struct has been processed.
6935   struct DeferredDevicePtrEntryTy {
6936     const Expr *IE = nullptr;
6937     const ValueDecl *VD = nullptr;
6938     bool ForDeviceAddr = false;
6939 
DeferredDevicePtrEntryTy__anon7bb087082811::MappableExprsHandler::DeferredDevicePtrEntryTy6940     DeferredDevicePtrEntryTy(const Expr *IE, const ValueDecl *VD,
6941                              bool ForDeviceAddr)
6942         : IE(IE), VD(VD), ForDeviceAddr(ForDeviceAddr) {}
6943   };
6944 
6945   /// The target directive from where the mappable clauses were extracted. It
6946   /// is either a executable directive or a user-defined mapper directive.
6947   llvm::PointerUnion<const OMPExecutableDirective *,
6948                      const OMPDeclareMapperDecl *>
6949       CurDir;
6950 
6951   /// Function the directive is being generated for.
6952   CodeGenFunction &CGF;
6953 
6954   /// Set of all first private variables in the current directive.
6955   /// bool data is set to true if the variable is implicitly marked as
6956   /// firstprivate, false otherwise.
6957   llvm::DenseMap<CanonicalDeclPtr<const VarDecl>, bool> FirstPrivateDecls;
6958 
6959   /// Map between device pointer declarations and their expression components.
6960   /// The key value for declarations in 'this' is null.
6961   llvm::DenseMap<
6962       const ValueDecl *,
6963       SmallVector<OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>>
6964       DevPointersMap;
6965 
6966   /// Map between device addr declarations and their expression components.
6967   /// The key value for declarations in 'this' is null.
6968   llvm::DenseMap<
6969       const ValueDecl *,
6970       SmallVector<OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>>
6971       HasDevAddrsMap;
6972 
6973   /// Map between lambda declarations and their map type.
6974   llvm::DenseMap<const ValueDecl *, const OMPMapClause *> LambdasMap;
6975 
getExprTypeSize(const Expr * E) const6976   llvm::Value *getExprTypeSize(const Expr *E) const {
6977     QualType ExprTy = E->getType().getCanonicalType();
6978 
6979     // Calculate the size for array shaping expression.
6980     if (const auto *OAE = dyn_cast<OMPArrayShapingExpr>(E)) {
6981       llvm::Value *Size =
6982           CGF.getTypeSize(OAE->getBase()->getType()->getPointeeType());
6983       for (const Expr *SE : OAE->getDimensions()) {
6984         llvm::Value *Sz = CGF.EmitScalarExpr(SE);
6985         Sz = CGF.EmitScalarConversion(Sz, SE->getType(),
6986                                       CGF.getContext().getSizeType(),
6987                                       SE->getExprLoc());
6988         Size = CGF.Builder.CreateNUWMul(Size, Sz);
6989       }
6990       return Size;
6991     }
6992 
6993     // Reference types are ignored for mapping purposes.
6994     if (const auto *RefTy = ExprTy->getAs<ReferenceType>())
6995       ExprTy = RefTy->getPointeeType().getCanonicalType();
6996 
6997     // Given that an array section is considered a built-in type, we need to
6998     // do the calculation based on the length of the section instead of relying
6999     // on CGF.getTypeSize(E->getType()).
7000     if (const auto *OAE = dyn_cast<OMPArraySectionExpr>(E)) {
7001       QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(
7002                             OAE->getBase()->IgnoreParenImpCasts())
7003                             .getCanonicalType();
7004 
7005       // If there is no length associated with the expression and lower bound is
7006       // not specified too, that means we are using the whole length of the
7007       // base.
7008       if (!OAE->getLength() && OAE->getColonLocFirst().isValid() &&
7009           !OAE->getLowerBound())
7010         return CGF.getTypeSize(BaseTy);
7011 
7012       llvm::Value *ElemSize;
7013       if (const auto *PTy = BaseTy->getAs<PointerType>()) {
7014         ElemSize = CGF.getTypeSize(PTy->getPointeeType().getCanonicalType());
7015       } else {
7016         const auto *ATy = cast<ArrayType>(BaseTy.getTypePtr());
7017         assert(ATy && "Expecting array type if not a pointer type.");
7018         ElemSize = CGF.getTypeSize(ATy->getElementType().getCanonicalType());
7019       }
7020 
7021       // If we don't have a length at this point, that is because we have an
7022       // array section with a single element.
7023       if (!OAE->getLength() && OAE->getColonLocFirst().isInvalid())
7024         return ElemSize;
7025 
7026       if (const Expr *LenExpr = OAE->getLength()) {
7027         llvm::Value *LengthVal = CGF.EmitScalarExpr(LenExpr);
7028         LengthVal = CGF.EmitScalarConversion(LengthVal, LenExpr->getType(),
7029                                              CGF.getContext().getSizeType(),
7030                                              LenExpr->getExprLoc());
7031         return CGF.Builder.CreateNUWMul(LengthVal, ElemSize);
7032       }
7033       assert(!OAE->getLength() && OAE->getColonLocFirst().isValid() &&
7034              OAE->getLowerBound() && "expected array_section[lb:].");
7035       // Size = sizetype - lb * elemtype;
7036       llvm::Value *LengthVal = CGF.getTypeSize(BaseTy);
7037       llvm::Value *LBVal = CGF.EmitScalarExpr(OAE->getLowerBound());
7038       LBVal = CGF.EmitScalarConversion(LBVal, OAE->getLowerBound()->getType(),
7039                                        CGF.getContext().getSizeType(),
7040                                        OAE->getLowerBound()->getExprLoc());
7041       LBVal = CGF.Builder.CreateNUWMul(LBVal, ElemSize);
7042       llvm::Value *Cmp = CGF.Builder.CreateICmpUGT(LengthVal, LBVal);
7043       llvm::Value *TrueVal = CGF.Builder.CreateNUWSub(LengthVal, LBVal);
7044       LengthVal = CGF.Builder.CreateSelect(
7045           Cmp, TrueVal, llvm::ConstantInt::get(CGF.SizeTy, 0));
7046       return LengthVal;
7047     }
7048     return CGF.getTypeSize(ExprTy);
7049   }
7050 
7051   /// Return the corresponding bits for a given map clause modifier. Add
7052   /// a flag marking the map as a pointer if requested. Add a flag marking the
7053   /// map as the first one of a series of maps that relate to the same map
7054   /// expression.
getMapTypeBits(OpenMPMapClauseKind MapType,ArrayRef<OpenMPMapModifierKind> MapModifiers,ArrayRef<OpenMPMotionModifierKind> MotionModifiers,bool IsImplicit,bool AddPtrFlag,bool AddIsTargetParamFlag,bool IsNonContiguous) const7055   OpenMPOffloadMappingFlags getMapTypeBits(
7056       OpenMPMapClauseKind MapType, ArrayRef<OpenMPMapModifierKind> MapModifiers,
7057       ArrayRef<OpenMPMotionModifierKind> MotionModifiers, bool IsImplicit,
7058       bool AddPtrFlag, bool AddIsTargetParamFlag, bool IsNonContiguous) const {
7059     OpenMPOffloadMappingFlags Bits =
7060         IsImplicit ? OpenMPOffloadMappingFlags::OMP_MAP_IMPLICIT
7061                    : OpenMPOffloadMappingFlags::OMP_MAP_NONE;
7062     switch (MapType) {
7063     case OMPC_MAP_alloc:
7064     case OMPC_MAP_release:
7065       // alloc and release is the default behavior in the runtime library,  i.e.
7066       // if we don't pass any bits alloc/release that is what the runtime is
7067       // going to do. Therefore, we don't need to signal anything for these two
7068       // type modifiers.
7069       break;
7070     case OMPC_MAP_to:
7071       Bits |= OpenMPOffloadMappingFlags::OMP_MAP_TO;
7072       break;
7073     case OMPC_MAP_from:
7074       Bits |= OpenMPOffloadMappingFlags::OMP_MAP_FROM;
7075       break;
7076     case OMPC_MAP_tofrom:
7077       Bits |= OpenMPOffloadMappingFlags::OMP_MAP_TO |
7078               OpenMPOffloadMappingFlags::OMP_MAP_FROM;
7079       break;
7080     case OMPC_MAP_delete:
7081       Bits |= OpenMPOffloadMappingFlags::OMP_MAP_DELETE;
7082       break;
7083     case OMPC_MAP_unknown:
7084       llvm_unreachable("Unexpected map type!");
7085     }
7086     if (AddPtrFlag)
7087       Bits |= OpenMPOffloadMappingFlags::OMP_MAP_PTR_AND_OBJ;
7088     if (AddIsTargetParamFlag)
7089       Bits |= OpenMPOffloadMappingFlags::OMP_MAP_TARGET_PARAM;
7090     if (llvm::is_contained(MapModifiers, OMPC_MAP_MODIFIER_always))
7091       Bits |= OpenMPOffloadMappingFlags::OMP_MAP_ALWAYS;
7092     if (llvm::is_contained(MapModifiers, OMPC_MAP_MODIFIER_close))
7093       Bits |= OpenMPOffloadMappingFlags::OMP_MAP_CLOSE;
7094     if (llvm::is_contained(MapModifiers, OMPC_MAP_MODIFIER_present) ||
7095         llvm::is_contained(MotionModifiers, OMPC_MOTION_MODIFIER_present))
7096       Bits |= OpenMPOffloadMappingFlags::OMP_MAP_PRESENT;
7097     if (llvm::is_contained(MapModifiers, OMPC_MAP_MODIFIER_ompx_hold))
7098       Bits |= OpenMPOffloadMappingFlags::OMP_MAP_OMPX_HOLD;
7099     if (IsNonContiguous)
7100       Bits |= OpenMPOffloadMappingFlags::OMP_MAP_NON_CONTIG;
7101     return Bits;
7102   }
7103 
7104   /// Return true if the provided expression is a final array section. A
7105   /// final array section, is one whose length can't be proved to be one.
isFinalArraySectionExpression(const Expr * E) const7106   bool isFinalArraySectionExpression(const Expr *E) const {
7107     const auto *OASE = dyn_cast<OMPArraySectionExpr>(E);
7108 
7109     // It is not an array section and therefore not a unity-size one.
7110     if (!OASE)
7111       return false;
7112 
7113     // An array section with no colon always refer to a single element.
7114     if (OASE->getColonLocFirst().isInvalid())
7115       return false;
7116 
7117     const Expr *Length = OASE->getLength();
7118 
7119     // If we don't have a length we have to check if the array has size 1
7120     // for this dimension. Also, we should always expect a length if the
7121     // base type is pointer.
7122     if (!Length) {
7123       QualType BaseQTy = OMPArraySectionExpr::getBaseOriginalType(
7124                              OASE->getBase()->IgnoreParenImpCasts())
7125                              .getCanonicalType();
7126       if (const auto *ATy = dyn_cast<ConstantArrayType>(BaseQTy.getTypePtr()))
7127         return ATy->getSize().getSExtValue() != 1;
7128       // If we don't have a constant dimension length, we have to consider
7129       // the current section as having any size, so it is not necessarily
7130       // unitary. If it happen to be unity size, that's user fault.
7131       return true;
7132     }
7133 
7134     // Check if the length evaluates to 1.
7135     Expr::EvalResult Result;
7136     if (!Length->EvaluateAsInt(Result, CGF.getContext()))
7137       return true; // Can have more that size 1.
7138 
7139     llvm::APSInt ConstLength = Result.Val.getInt();
7140     return ConstLength.getSExtValue() != 1;
7141   }
7142 
7143   /// Generate the base pointers, section pointers, sizes, map type bits, and
7144   /// user-defined mappers (all included in \a CombinedInfo) for the provided
7145   /// map type, map or motion modifiers, and expression components.
7146   /// \a IsFirstComponent should be set to true if the provided set of
7147   /// components is the first associated with a capture.
generateInfoForComponentList(OpenMPMapClauseKind MapType,ArrayRef<OpenMPMapModifierKind> MapModifiers,ArrayRef<OpenMPMotionModifierKind> MotionModifiers,OMPClauseMappableExprCommon::MappableExprComponentListRef Components,MapCombinedInfoTy & CombinedInfo,StructRangeInfoTy & PartialStruct,bool IsFirstComponentList,bool IsImplicit,const ValueDecl * Mapper=nullptr,bool ForDeviceAddr=false,const ValueDecl * BaseDecl=nullptr,const Expr * MapExpr=nullptr,ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef> OverlappedElements=std::nullopt) const7148   void generateInfoForComponentList(
7149       OpenMPMapClauseKind MapType, ArrayRef<OpenMPMapModifierKind> MapModifiers,
7150       ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
7151       OMPClauseMappableExprCommon::MappableExprComponentListRef Components,
7152       MapCombinedInfoTy &CombinedInfo, StructRangeInfoTy &PartialStruct,
7153       bool IsFirstComponentList, bool IsImplicit,
7154       const ValueDecl *Mapper = nullptr, bool ForDeviceAddr = false,
7155       const ValueDecl *BaseDecl = nullptr, const Expr *MapExpr = nullptr,
7156       ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef>
7157           OverlappedElements = std::nullopt) const {
7158     // The following summarizes what has to be generated for each map and the
7159     // types below. The generated information is expressed in this order:
7160     // base pointer, section pointer, size, flags
7161     // (to add to the ones that come from the map type and modifier).
7162     //
7163     // double d;
7164     // int i[100];
7165     // float *p;
7166     //
7167     // struct S1 {
7168     //   int i;
7169     //   float f[50];
7170     // }
7171     // struct S2 {
7172     //   int i;
7173     //   float f[50];
7174     //   S1 s;
7175     //   double *p;
7176     //   struct S2 *ps;
7177     //   int &ref;
7178     // }
7179     // S2 s;
7180     // S2 *ps;
7181     //
7182     // map(d)
7183     // &d, &d, sizeof(double), TARGET_PARAM | TO | FROM
7184     //
7185     // map(i)
7186     // &i, &i, 100*sizeof(int), TARGET_PARAM | TO | FROM
7187     //
7188     // map(i[1:23])
7189     // &i(=&i[0]), &i[1], 23*sizeof(int), TARGET_PARAM | TO | FROM
7190     //
7191     // map(p)
7192     // &p, &p, sizeof(float*), TARGET_PARAM | TO | FROM
7193     //
7194     // map(p[1:24])
7195     // &p, &p[1], 24*sizeof(float), TARGET_PARAM | TO | FROM | PTR_AND_OBJ
7196     // in unified shared memory mode or for local pointers
7197     // p, &p[1], 24*sizeof(float), TARGET_PARAM | TO | FROM
7198     //
7199     // map(s)
7200     // &s, &s, sizeof(S2), TARGET_PARAM | TO | FROM
7201     //
7202     // map(s.i)
7203     // &s, &(s.i), sizeof(int), TARGET_PARAM | TO | FROM
7204     //
7205     // map(s.s.f)
7206     // &s, &(s.s.f[0]), 50*sizeof(float), TARGET_PARAM | TO | FROM
7207     //
7208     // map(s.p)
7209     // &s, &(s.p), sizeof(double*), TARGET_PARAM | TO | FROM
7210     //
7211     // map(to: s.p[:22])
7212     // &s, &(s.p), sizeof(double*), TARGET_PARAM (*)
7213     // &s, &(s.p), sizeof(double*), MEMBER_OF(1) (**)
7214     // &(s.p), &(s.p[0]), 22*sizeof(double),
7215     //   MEMBER_OF(1) | PTR_AND_OBJ | TO (***)
7216     // (*) alloc space for struct members, only this is a target parameter
7217     // (**) map the pointer (nothing to be mapped in this example) (the compiler
7218     //      optimizes this entry out, same in the examples below)
7219     // (***) map the pointee (map: to)
7220     //
7221     // map(to: s.ref)
7222     // &s, &(s.ref), sizeof(int*), TARGET_PARAM (*)
7223     // &s, &(s.ref), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ | TO (***)
7224     // (*) alloc space for struct members, only this is a target parameter
7225     // (**) map the pointer (nothing to be mapped in this example) (the compiler
7226     //      optimizes this entry out, same in the examples below)
7227     // (***) map the pointee (map: to)
7228     //
7229     // map(s.ps)
7230     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM | TO | FROM
7231     //
7232     // map(from: s.ps->s.i)
7233     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
7234     // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
7235     // &(s.ps), &(s.ps->s.i), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ  | FROM
7236     //
7237     // map(to: s.ps->ps)
7238     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
7239     // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
7240     // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ  | TO
7241     //
7242     // map(s.ps->ps->ps)
7243     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
7244     // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
7245     // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
7246     // &(s.ps->ps), &(s.ps->ps->ps), sizeof(S2*), PTR_AND_OBJ | TO | FROM
7247     //
7248     // map(to: s.ps->ps->s.f[:22])
7249     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
7250     // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
7251     // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
7252     // &(s.ps->ps), &(s.ps->ps->s.f[0]), 22*sizeof(float), PTR_AND_OBJ | TO
7253     //
7254     // map(ps)
7255     // &ps, &ps, sizeof(S2*), TARGET_PARAM | TO | FROM
7256     //
7257     // map(ps->i)
7258     // ps, &(ps->i), sizeof(int), TARGET_PARAM | TO | FROM
7259     //
7260     // map(ps->s.f)
7261     // ps, &(ps->s.f[0]), 50*sizeof(float), TARGET_PARAM | TO | FROM
7262     //
7263     // map(from: ps->p)
7264     // ps, &(ps->p), sizeof(double*), TARGET_PARAM | FROM
7265     //
7266     // map(to: ps->p[:22])
7267     // ps, &(ps->p), sizeof(double*), TARGET_PARAM
7268     // ps, &(ps->p), sizeof(double*), MEMBER_OF(1)
7269     // &(ps->p), &(ps->p[0]), 22*sizeof(double), MEMBER_OF(1) | PTR_AND_OBJ | TO
7270     //
7271     // map(ps->ps)
7272     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM | TO | FROM
7273     //
7274     // map(from: ps->ps->s.i)
7275     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
7276     // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
7277     // &(ps->ps), &(ps->ps->s.i), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ | FROM
7278     //
7279     // map(from: ps->ps->ps)
7280     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
7281     // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
7282     // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ | FROM
7283     //
7284     // map(ps->ps->ps->ps)
7285     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
7286     // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
7287     // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
7288     // &(ps->ps->ps), &(ps->ps->ps->ps), sizeof(S2*), PTR_AND_OBJ | TO | FROM
7289     //
7290     // map(to: ps->ps->ps->s.f[:22])
7291     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
7292     // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
7293     // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
7294     // &(ps->ps->ps), &(ps->ps->ps->s.f[0]), 22*sizeof(float), PTR_AND_OBJ | TO
7295     //
7296     // map(to: s.f[:22]) map(from: s.p[:33])
7297     // &s, &(s.f[0]), 50*sizeof(float) + sizeof(struct S1) +
7298     //     sizeof(double*) (**), TARGET_PARAM
7299     // &s, &(s.f[0]), 22*sizeof(float), MEMBER_OF(1) | TO
7300     // &s, &(s.p), sizeof(double*), MEMBER_OF(1)
7301     // &(s.p), &(s.p[0]), 33*sizeof(double), MEMBER_OF(1) | PTR_AND_OBJ | FROM
7302     // (*) allocate contiguous space needed to fit all mapped members even if
7303     //     we allocate space for members not mapped (in this example,
7304     //     s.f[22..49] and s.s are not mapped, yet we must allocate space for
7305     //     them as well because they fall between &s.f[0] and &s.p)
7306     //
7307     // map(from: s.f[:22]) map(to: ps->p[:33])
7308     // &s, &(s.f[0]), 22*sizeof(float), TARGET_PARAM | FROM
7309     // ps, &(ps->p), sizeof(S2*), TARGET_PARAM
7310     // ps, &(ps->p), sizeof(double*), MEMBER_OF(2) (*)
7311     // &(ps->p), &(ps->p[0]), 33*sizeof(double), MEMBER_OF(2) | PTR_AND_OBJ | TO
7312     // (*) the struct this entry pertains to is the 2nd element in the list of
7313     //     arguments, hence MEMBER_OF(2)
7314     //
7315     // map(from: s.f[:22], s.s) map(to: ps->p[:33])
7316     // &s, &(s.f[0]), 50*sizeof(float) + sizeof(struct S1), TARGET_PARAM
7317     // &s, &(s.f[0]), 22*sizeof(float), MEMBER_OF(1) | FROM
7318     // &s, &(s.s), sizeof(struct S1), MEMBER_OF(1) | FROM
7319     // ps, &(ps->p), sizeof(S2*), TARGET_PARAM
7320     // ps, &(ps->p), sizeof(double*), MEMBER_OF(4) (*)
7321     // &(ps->p), &(ps->p[0]), 33*sizeof(double), MEMBER_OF(4) | PTR_AND_OBJ | TO
7322     // (*) the struct this entry pertains to is the 4th element in the list
7323     //     of arguments, hence MEMBER_OF(4)
7324 
7325     // Track if the map information being generated is the first for a capture.
7326     bool IsCaptureFirstInfo = IsFirstComponentList;
7327     // When the variable is on a declare target link or in a to clause with
7328     // unified memory, a reference is needed to hold the host/device address
7329     // of the variable.
7330     bool RequiresReference = false;
7331 
7332     // Scan the components from the base to the complete expression.
7333     auto CI = Components.rbegin();
7334     auto CE = Components.rend();
7335     auto I = CI;
7336 
7337     // Track if the map information being generated is the first for a list of
7338     // components.
7339     bool IsExpressionFirstInfo = true;
7340     bool FirstPointerInComplexData = false;
7341     Address BP = Address::invalid();
7342     const Expr *AssocExpr = I->getAssociatedExpression();
7343     const auto *AE = dyn_cast<ArraySubscriptExpr>(AssocExpr);
7344     const auto *OASE = dyn_cast<OMPArraySectionExpr>(AssocExpr);
7345     const auto *OAShE = dyn_cast<OMPArrayShapingExpr>(AssocExpr);
7346 
7347     if (isa<MemberExpr>(AssocExpr)) {
7348       // The base is the 'this' pointer. The content of the pointer is going
7349       // to be the base of the field being mapped.
7350       BP = CGF.LoadCXXThisAddress();
7351     } else if ((AE && isa<CXXThisExpr>(AE->getBase()->IgnoreParenImpCasts())) ||
7352                (OASE &&
7353                 isa<CXXThisExpr>(OASE->getBase()->IgnoreParenImpCasts()))) {
7354       BP = CGF.EmitOMPSharedLValue(AssocExpr).getAddress(CGF);
7355     } else if (OAShE &&
7356                isa<CXXThisExpr>(OAShE->getBase()->IgnoreParenCasts())) {
7357       BP = Address(
7358           CGF.EmitScalarExpr(OAShE->getBase()),
7359           CGF.ConvertTypeForMem(OAShE->getBase()->getType()->getPointeeType()),
7360           CGF.getContext().getTypeAlignInChars(OAShE->getBase()->getType()));
7361     } else {
7362       // The base is the reference to the variable.
7363       // BP = &Var.
7364       BP = CGF.EmitOMPSharedLValue(AssocExpr).getAddress(CGF);
7365       if (const auto *VD =
7366               dyn_cast_or_null<VarDecl>(I->getAssociatedDeclaration())) {
7367         if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
7368                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
7369           if ((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
7370               ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
7371                 *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
7372                CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) {
7373             RequiresReference = true;
7374             BP = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
7375           }
7376         }
7377       }
7378 
7379       // If the variable is a pointer and is being dereferenced (i.e. is not
7380       // the last component), the base has to be the pointer itself, not its
7381       // reference. References are ignored for mapping purposes.
7382       QualType Ty =
7383           I->getAssociatedDeclaration()->getType().getNonReferenceType();
7384       if (Ty->isAnyPointerType() && std::next(I) != CE) {
7385         // No need to generate individual map information for the pointer, it
7386         // can be associated with the combined storage if shared memory mode is
7387         // active or the base declaration is not global variable.
7388         const auto *VD = dyn_cast<VarDecl>(I->getAssociatedDeclaration());
7389         if (CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory() ||
7390             !VD || VD->hasLocalStorage())
7391           BP = CGF.EmitLoadOfPointer(BP, Ty->castAs<PointerType>());
7392         else
7393           FirstPointerInComplexData = true;
7394         ++I;
7395       }
7396     }
7397 
7398     // Track whether a component of the list should be marked as MEMBER_OF some
7399     // combined entry (for partial structs). Only the first PTR_AND_OBJ entry
7400     // in a component list should be marked as MEMBER_OF, all subsequent entries
7401     // do not belong to the base struct. E.g.
7402     // struct S2 s;
7403     // s.ps->ps->ps->f[:]
7404     //   (1) (2) (3) (4)
7405     // ps(1) is a member pointer, ps(2) is a pointee of ps(1), so it is a
7406     // PTR_AND_OBJ entry; the PTR is ps(1), so MEMBER_OF the base struct. ps(3)
7407     // is the pointee of ps(2) which is not member of struct s, so it should not
7408     // be marked as such (it is still PTR_AND_OBJ).
7409     // The variable is initialized to false so that PTR_AND_OBJ entries which
7410     // are not struct members are not considered (e.g. array of pointers to
7411     // data).
7412     bool ShouldBeMemberOf = false;
7413 
7414     // Variable keeping track of whether or not we have encountered a component
7415     // in the component list which is a member expression. Useful when we have a
7416     // pointer or a final array section, in which case it is the previous
7417     // component in the list which tells us whether we have a member expression.
7418     // E.g. X.f[:]
7419     // While processing the final array section "[:]" it is "f" which tells us
7420     // whether we are dealing with a member of a declared struct.
7421     const MemberExpr *EncounteredME = nullptr;
7422 
7423     // Track for the total number of dimension. Start from one for the dummy
7424     // dimension.
7425     uint64_t DimSize = 1;
7426 
7427     bool IsNonContiguous = CombinedInfo.NonContigInfo.IsNonContiguous;
7428     bool IsPrevMemberReference = false;
7429 
7430     for (; I != CE; ++I) {
7431       // If the current component is member of a struct (parent struct) mark it.
7432       if (!EncounteredME) {
7433         EncounteredME = dyn_cast<MemberExpr>(I->getAssociatedExpression());
7434         // If we encounter a PTR_AND_OBJ entry from now on it should be marked
7435         // as MEMBER_OF the parent struct.
7436         if (EncounteredME) {
7437           ShouldBeMemberOf = true;
7438           // Do not emit as complex pointer if this is actually not array-like
7439           // expression.
7440           if (FirstPointerInComplexData) {
7441             QualType Ty = std::prev(I)
7442                               ->getAssociatedDeclaration()
7443                               ->getType()
7444                               .getNonReferenceType();
7445             BP = CGF.EmitLoadOfPointer(BP, Ty->castAs<PointerType>());
7446             FirstPointerInComplexData = false;
7447           }
7448         }
7449       }
7450 
7451       auto Next = std::next(I);
7452 
7453       // We need to generate the addresses and sizes if this is the last
7454       // component, if the component is a pointer or if it is an array section
7455       // whose length can't be proved to be one. If this is a pointer, it
7456       // becomes the base address for the following components.
7457 
7458       // A final array section, is one whose length can't be proved to be one.
7459       // If the map item is non-contiguous then we don't treat any array section
7460       // as final array section.
7461       bool IsFinalArraySection =
7462           !IsNonContiguous &&
7463           isFinalArraySectionExpression(I->getAssociatedExpression());
7464 
7465       // If we have a declaration for the mapping use that, otherwise use
7466       // the base declaration of the map clause.
7467       const ValueDecl *MapDecl = (I->getAssociatedDeclaration())
7468                                      ? I->getAssociatedDeclaration()
7469                                      : BaseDecl;
7470       MapExpr = (I->getAssociatedExpression()) ? I->getAssociatedExpression()
7471                                                : MapExpr;
7472 
7473       // Get information on whether the element is a pointer. Have to do a
7474       // special treatment for array sections given that they are built-in
7475       // types.
7476       const auto *OASE =
7477           dyn_cast<OMPArraySectionExpr>(I->getAssociatedExpression());
7478       const auto *OAShE =
7479           dyn_cast<OMPArrayShapingExpr>(I->getAssociatedExpression());
7480       const auto *UO = dyn_cast<UnaryOperator>(I->getAssociatedExpression());
7481       const auto *BO = dyn_cast<BinaryOperator>(I->getAssociatedExpression());
7482       bool IsPointer =
7483           OAShE ||
7484           (OASE && OMPArraySectionExpr::getBaseOriginalType(OASE)
7485                        .getCanonicalType()
7486                        ->isAnyPointerType()) ||
7487           I->getAssociatedExpression()->getType()->isAnyPointerType();
7488       bool IsMemberReference = isa<MemberExpr>(I->getAssociatedExpression()) &&
7489                                MapDecl &&
7490                                MapDecl->getType()->isLValueReferenceType();
7491       bool IsNonDerefPointer = IsPointer && !UO && !BO && !IsNonContiguous;
7492 
7493       if (OASE)
7494         ++DimSize;
7495 
7496       if (Next == CE || IsMemberReference || IsNonDerefPointer ||
7497           IsFinalArraySection) {
7498         // If this is not the last component, we expect the pointer to be
7499         // associated with an array expression or member expression.
7500         assert((Next == CE ||
7501                 isa<MemberExpr>(Next->getAssociatedExpression()) ||
7502                 isa<ArraySubscriptExpr>(Next->getAssociatedExpression()) ||
7503                 isa<OMPArraySectionExpr>(Next->getAssociatedExpression()) ||
7504                 isa<OMPArrayShapingExpr>(Next->getAssociatedExpression()) ||
7505                 isa<UnaryOperator>(Next->getAssociatedExpression()) ||
7506                 isa<BinaryOperator>(Next->getAssociatedExpression())) &&
7507                "Unexpected expression");
7508 
7509         Address LB = Address::invalid();
7510         Address LowestElem = Address::invalid();
7511         auto &&EmitMemberExprBase = [](CodeGenFunction &CGF,
7512                                        const MemberExpr *E) {
7513           const Expr *BaseExpr = E->getBase();
7514           // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a
7515           // scalar.
7516           LValue BaseLV;
7517           if (E->isArrow()) {
7518             LValueBaseInfo BaseInfo;
7519             TBAAAccessInfo TBAAInfo;
7520             Address Addr =
7521                 CGF.EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
7522             QualType PtrTy = BaseExpr->getType()->getPointeeType();
7523             BaseLV = CGF.MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
7524           } else {
7525             BaseLV = CGF.EmitOMPSharedLValue(BaseExpr);
7526           }
7527           return BaseLV;
7528         };
7529         if (OAShE) {
7530           LowestElem = LB =
7531               Address(CGF.EmitScalarExpr(OAShE->getBase()),
7532                       CGF.ConvertTypeForMem(
7533                           OAShE->getBase()->getType()->getPointeeType()),
7534                       CGF.getContext().getTypeAlignInChars(
7535                           OAShE->getBase()->getType()));
7536         } else if (IsMemberReference) {
7537           const auto *ME = cast<MemberExpr>(I->getAssociatedExpression());
7538           LValue BaseLVal = EmitMemberExprBase(CGF, ME);
7539           LowestElem = CGF.EmitLValueForFieldInitialization(
7540                               BaseLVal, cast<FieldDecl>(MapDecl))
7541                            .getAddress(CGF);
7542           LB = CGF.EmitLoadOfReferenceLValue(LowestElem, MapDecl->getType())
7543                    .getAddress(CGF);
7544         } else {
7545           LowestElem = LB =
7546               CGF.EmitOMPSharedLValue(I->getAssociatedExpression())
7547                   .getAddress(CGF);
7548         }
7549 
7550         // If this component is a pointer inside the base struct then we don't
7551         // need to create any entry for it - it will be combined with the object
7552         // it is pointing to into a single PTR_AND_OBJ entry.
7553         bool IsMemberPointerOrAddr =
7554             EncounteredME &&
7555             (((IsPointer || ForDeviceAddr) &&
7556               I->getAssociatedExpression() == EncounteredME) ||
7557              (IsPrevMemberReference && !IsPointer) ||
7558              (IsMemberReference && Next != CE &&
7559               !Next->getAssociatedExpression()->getType()->isPointerType()));
7560         if (!OverlappedElements.empty() && Next == CE) {
7561           // Handle base element with the info for overlapped elements.
7562           assert(!PartialStruct.Base.isValid() && "The base element is set.");
7563           assert(!IsPointer &&
7564                  "Unexpected base element with the pointer type.");
7565           // Mark the whole struct as the struct that requires allocation on the
7566           // device.
7567           PartialStruct.LowestElem = {0, LowestElem};
7568           CharUnits TypeSize = CGF.getContext().getTypeSizeInChars(
7569               I->getAssociatedExpression()->getType());
7570           Address HB = CGF.Builder.CreateConstGEP(
7571               CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
7572                   LowestElem, CGF.VoidPtrTy, CGF.Int8Ty),
7573               TypeSize.getQuantity() - 1);
7574           PartialStruct.HighestElem = {
7575               std::numeric_limits<decltype(
7576                   PartialStruct.HighestElem.first)>::max(),
7577               HB};
7578           PartialStruct.Base = BP;
7579           PartialStruct.LB = LB;
7580           assert(
7581               PartialStruct.PreliminaryMapData.BasePointers.empty() &&
7582               "Overlapped elements must be used only once for the variable.");
7583           std::swap(PartialStruct.PreliminaryMapData, CombinedInfo);
7584           // Emit data for non-overlapped data.
7585           OpenMPOffloadMappingFlags Flags =
7586               OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF |
7587               getMapTypeBits(MapType, MapModifiers, MotionModifiers, IsImplicit,
7588                              /*AddPtrFlag=*/false,
7589                              /*AddIsTargetParamFlag=*/false, IsNonContiguous);
7590           llvm::Value *Size = nullptr;
7591           // Do bitcopy of all non-overlapped structure elements.
7592           for (OMPClauseMappableExprCommon::MappableExprComponentListRef
7593                    Component : OverlappedElements) {
7594             Address ComponentLB = Address::invalid();
7595             for (const OMPClauseMappableExprCommon::MappableComponent &MC :
7596                  Component) {
7597               if (const ValueDecl *VD = MC.getAssociatedDeclaration()) {
7598                 const auto *FD = dyn_cast<FieldDecl>(VD);
7599                 if (FD && FD->getType()->isLValueReferenceType()) {
7600                   const auto *ME =
7601                       cast<MemberExpr>(MC.getAssociatedExpression());
7602                   LValue BaseLVal = EmitMemberExprBase(CGF, ME);
7603                   ComponentLB =
7604                       CGF.EmitLValueForFieldInitialization(BaseLVal, FD)
7605                           .getAddress(CGF);
7606                 } else {
7607                   ComponentLB =
7608                       CGF.EmitOMPSharedLValue(MC.getAssociatedExpression())
7609                           .getAddress(CGF);
7610                 }
7611                 Size = CGF.Builder.CreatePtrDiff(
7612                     CGF.Int8Ty, CGF.EmitCastToVoidPtr(ComponentLB.getPointer()),
7613                     CGF.EmitCastToVoidPtr(LB.getPointer()));
7614                 break;
7615               }
7616             }
7617             assert(Size && "Failed to determine structure size");
7618             CombinedInfo.Exprs.emplace_back(MapDecl, MapExpr);
7619             CombinedInfo.BasePointers.push_back(BP.getPointer());
7620             CombinedInfo.Pointers.push_back(LB.getPointer());
7621             CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast(
7622                 Size, CGF.Int64Ty, /*isSigned=*/true));
7623             CombinedInfo.Types.push_back(Flags);
7624             CombinedInfo.Mappers.push_back(nullptr);
7625             CombinedInfo.NonContigInfo.Dims.push_back(IsNonContiguous ? DimSize
7626                                                                       : 1);
7627             LB = CGF.Builder.CreateConstGEP(ComponentLB, 1);
7628           }
7629           CombinedInfo.Exprs.emplace_back(MapDecl, MapExpr);
7630           CombinedInfo.BasePointers.push_back(BP.getPointer());
7631           CombinedInfo.Pointers.push_back(LB.getPointer());
7632           Size = CGF.Builder.CreatePtrDiff(
7633               CGF.Int8Ty, CGF.Builder.CreateConstGEP(HB, 1).getPointer(),
7634               CGF.EmitCastToVoidPtr(LB.getPointer()));
7635           CombinedInfo.Sizes.push_back(
7636               CGF.Builder.CreateIntCast(Size, CGF.Int64Ty, /*isSigned=*/true));
7637           CombinedInfo.Types.push_back(Flags);
7638           CombinedInfo.Mappers.push_back(nullptr);
7639           CombinedInfo.NonContigInfo.Dims.push_back(IsNonContiguous ? DimSize
7640                                                                     : 1);
7641           break;
7642         }
7643         llvm::Value *Size = getExprTypeSize(I->getAssociatedExpression());
7644         if (!IsMemberPointerOrAddr ||
7645             (Next == CE && MapType != OMPC_MAP_unknown)) {
7646           CombinedInfo.Exprs.emplace_back(MapDecl, MapExpr);
7647           CombinedInfo.BasePointers.push_back(BP.getPointer());
7648           CombinedInfo.Pointers.push_back(LB.getPointer());
7649           CombinedInfo.Sizes.push_back(
7650               CGF.Builder.CreateIntCast(Size, CGF.Int64Ty, /*isSigned=*/true));
7651           CombinedInfo.NonContigInfo.Dims.push_back(IsNonContiguous ? DimSize
7652                                                                     : 1);
7653 
7654           // If Mapper is valid, the last component inherits the mapper.
7655           bool HasMapper = Mapper && Next == CE;
7656           CombinedInfo.Mappers.push_back(HasMapper ? Mapper : nullptr);
7657 
7658           // We need to add a pointer flag for each map that comes from the
7659           // same expression except for the first one. We also need to signal
7660           // this map is the first one that relates with the current capture
7661           // (there is a set of entries for each capture).
7662           OpenMPOffloadMappingFlags Flags = getMapTypeBits(
7663               MapType, MapModifiers, MotionModifiers, IsImplicit,
7664               !IsExpressionFirstInfo || RequiresReference ||
7665                   FirstPointerInComplexData || IsMemberReference,
7666               IsCaptureFirstInfo && !RequiresReference, IsNonContiguous);
7667 
7668           if (!IsExpressionFirstInfo || IsMemberReference) {
7669             // If we have a PTR_AND_OBJ pair where the OBJ is a pointer as well,
7670             // then we reset the TO/FROM/ALWAYS/DELETE/CLOSE flags.
7671             if (IsPointer || (IsMemberReference && Next != CE))
7672               Flags &= ~(OpenMPOffloadMappingFlags::OMP_MAP_TO |
7673                          OpenMPOffloadMappingFlags::OMP_MAP_FROM |
7674                          OpenMPOffloadMappingFlags::OMP_MAP_ALWAYS |
7675                          OpenMPOffloadMappingFlags::OMP_MAP_DELETE |
7676                          OpenMPOffloadMappingFlags::OMP_MAP_CLOSE);
7677 
7678             if (ShouldBeMemberOf) {
7679               // Set placeholder value MEMBER_OF=FFFF to indicate that the flag
7680               // should be later updated with the correct value of MEMBER_OF.
7681               Flags |= OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF;
7682               // From now on, all subsequent PTR_AND_OBJ entries should not be
7683               // marked as MEMBER_OF.
7684               ShouldBeMemberOf = false;
7685             }
7686           }
7687 
7688           CombinedInfo.Types.push_back(Flags);
7689         }
7690 
7691         // If we have encountered a member expression so far, keep track of the
7692         // mapped member. If the parent is "*this", then the value declaration
7693         // is nullptr.
7694         if (EncounteredME) {
7695           const auto *FD = cast<FieldDecl>(EncounteredME->getMemberDecl());
7696           unsigned FieldIndex = FD->getFieldIndex();
7697 
7698           // Update info about the lowest and highest elements for this struct
7699           if (!PartialStruct.Base.isValid()) {
7700             PartialStruct.LowestElem = {FieldIndex, LowestElem};
7701             if (IsFinalArraySection) {
7702               Address HB =
7703                   CGF.EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false)
7704                       .getAddress(CGF);
7705               PartialStruct.HighestElem = {FieldIndex, HB};
7706             } else {
7707               PartialStruct.HighestElem = {FieldIndex, LowestElem};
7708             }
7709             PartialStruct.Base = BP;
7710             PartialStruct.LB = BP;
7711           } else if (FieldIndex < PartialStruct.LowestElem.first) {
7712             PartialStruct.LowestElem = {FieldIndex, LowestElem};
7713           } else if (FieldIndex > PartialStruct.HighestElem.first) {
7714             PartialStruct.HighestElem = {FieldIndex, LowestElem};
7715           }
7716         }
7717 
7718         // Need to emit combined struct for array sections.
7719         if (IsFinalArraySection || IsNonContiguous)
7720           PartialStruct.IsArraySection = true;
7721 
7722         // If we have a final array section, we are done with this expression.
7723         if (IsFinalArraySection)
7724           break;
7725 
7726         // The pointer becomes the base for the next element.
7727         if (Next != CE)
7728           BP = IsMemberReference ? LowestElem : LB;
7729 
7730         IsExpressionFirstInfo = false;
7731         IsCaptureFirstInfo = false;
7732         FirstPointerInComplexData = false;
7733         IsPrevMemberReference = IsMemberReference;
7734       } else if (FirstPointerInComplexData) {
7735         QualType Ty = Components.rbegin()
7736                           ->getAssociatedDeclaration()
7737                           ->getType()
7738                           .getNonReferenceType();
7739         BP = CGF.EmitLoadOfPointer(BP, Ty->castAs<PointerType>());
7740         FirstPointerInComplexData = false;
7741       }
7742     }
7743     // If ran into the whole component - allocate the space for the whole
7744     // record.
7745     if (!EncounteredME)
7746       PartialStruct.HasCompleteRecord = true;
7747 
7748     if (!IsNonContiguous)
7749       return;
7750 
7751     const ASTContext &Context = CGF.getContext();
7752 
7753     // For supporting stride in array section, we need to initialize the first
7754     // dimension size as 1, first offset as 0, and first count as 1
7755     MapValuesArrayTy CurOffsets = {llvm::ConstantInt::get(CGF.CGM.Int64Ty, 0)};
7756     MapValuesArrayTy CurCounts = {llvm::ConstantInt::get(CGF.CGM.Int64Ty, 1)};
7757     MapValuesArrayTy CurStrides;
7758     MapValuesArrayTy DimSizes{llvm::ConstantInt::get(CGF.CGM.Int64Ty, 1)};
7759     uint64_t ElementTypeSize;
7760 
7761     // Collect Size information for each dimension and get the element size as
7762     // the first Stride. For example, for `int arr[10][10]`, the DimSizes
7763     // should be [10, 10] and the first stride is 4 btyes.
7764     for (const OMPClauseMappableExprCommon::MappableComponent &Component :
7765          Components) {
7766       const Expr *AssocExpr = Component.getAssociatedExpression();
7767       const auto *OASE = dyn_cast<OMPArraySectionExpr>(AssocExpr);
7768 
7769       if (!OASE)
7770         continue;
7771 
7772       QualType Ty = OMPArraySectionExpr::getBaseOriginalType(OASE->getBase());
7773       auto *CAT = Context.getAsConstantArrayType(Ty);
7774       auto *VAT = Context.getAsVariableArrayType(Ty);
7775 
7776       // We need all the dimension size except for the last dimension.
7777       assert((VAT || CAT || &Component == &*Components.begin()) &&
7778              "Should be either ConstantArray or VariableArray if not the "
7779              "first Component");
7780 
7781       // Get element size if CurStrides is empty.
7782       if (CurStrides.empty()) {
7783         const Type *ElementType = nullptr;
7784         if (CAT)
7785           ElementType = CAT->getElementType().getTypePtr();
7786         else if (VAT)
7787           ElementType = VAT->getElementType().getTypePtr();
7788         else
7789           assert(&Component == &*Components.begin() &&
7790                  "Only expect pointer (non CAT or VAT) when this is the "
7791                  "first Component");
7792         // If ElementType is null, then it means the base is a pointer
7793         // (neither CAT nor VAT) and we'll attempt to get ElementType again
7794         // for next iteration.
7795         if (ElementType) {
7796           // For the case that having pointer as base, we need to remove one
7797           // level of indirection.
7798           if (&Component != &*Components.begin())
7799             ElementType = ElementType->getPointeeOrArrayElementType();
7800           ElementTypeSize =
7801               Context.getTypeSizeInChars(ElementType).getQuantity();
7802           CurStrides.push_back(
7803               llvm::ConstantInt::get(CGF.Int64Ty, ElementTypeSize));
7804         }
7805       }
7806       // Get dimension value except for the last dimension since we don't need
7807       // it.
7808       if (DimSizes.size() < Components.size() - 1) {
7809         if (CAT)
7810           DimSizes.push_back(llvm::ConstantInt::get(
7811               CGF.Int64Ty, CAT->getSize().getZExtValue()));
7812         else if (VAT)
7813           DimSizes.push_back(CGF.Builder.CreateIntCast(
7814               CGF.EmitScalarExpr(VAT->getSizeExpr()), CGF.Int64Ty,
7815               /*IsSigned=*/false));
7816       }
7817     }
7818 
7819     // Skip the dummy dimension since we have already have its information.
7820     auto *DI = DimSizes.begin() + 1;
7821     // Product of dimension.
7822     llvm::Value *DimProd =
7823         llvm::ConstantInt::get(CGF.CGM.Int64Ty, ElementTypeSize);
7824 
7825     // Collect info for non-contiguous. Notice that offset, count, and stride
7826     // are only meaningful for array-section, so we insert a null for anything
7827     // other than array-section.
7828     // Also, the size of offset, count, and stride are not the same as
7829     // pointers, base_pointers, sizes, or dims. Instead, the size of offset,
7830     // count, and stride are the same as the number of non-contiguous
7831     // declaration in target update to/from clause.
7832     for (const OMPClauseMappableExprCommon::MappableComponent &Component :
7833          Components) {
7834       const Expr *AssocExpr = Component.getAssociatedExpression();
7835 
7836       if (const auto *AE = dyn_cast<ArraySubscriptExpr>(AssocExpr)) {
7837         llvm::Value *Offset = CGF.Builder.CreateIntCast(
7838             CGF.EmitScalarExpr(AE->getIdx()), CGF.Int64Ty,
7839             /*isSigned=*/false);
7840         CurOffsets.push_back(Offset);
7841         CurCounts.push_back(llvm::ConstantInt::get(CGF.Int64Ty, /*V=*/1));
7842         CurStrides.push_back(CurStrides.back());
7843         continue;
7844       }
7845 
7846       const auto *OASE = dyn_cast<OMPArraySectionExpr>(AssocExpr);
7847 
7848       if (!OASE)
7849         continue;
7850 
7851       // Offset
7852       const Expr *OffsetExpr = OASE->getLowerBound();
7853       llvm::Value *Offset = nullptr;
7854       if (!OffsetExpr) {
7855         // If offset is absent, then we just set it to zero.
7856         Offset = llvm::ConstantInt::get(CGF.Int64Ty, 0);
7857       } else {
7858         Offset = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(OffsetExpr),
7859                                            CGF.Int64Ty,
7860                                            /*isSigned=*/false);
7861       }
7862       CurOffsets.push_back(Offset);
7863 
7864       // Count
7865       const Expr *CountExpr = OASE->getLength();
7866       llvm::Value *Count = nullptr;
7867       if (!CountExpr) {
7868         // In Clang, once a high dimension is an array section, we construct all
7869         // the lower dimension as array section, however, for case like
7870         // arr[0:2][2], Clang construct the inner dimension as an array section
7871         // but it actually is not in an array section form according to spec.
7872         if (!OASE->getColonLocFirst().isValid() &&
7873             !OASE->getColonLocSecond().isValid()) {
7874           Count = llvm::ConstantInt::get(CGF.Int64Ty, 1);
7875         } else {
7876           // OpenMP 5.0, 2.1.5 Array Sections, Description.
7877           // When the length is absent it defaults to ⌈(size −
7878           // lower-bound)/stride⌉, where size is the size of the array
7879           // dimension.
7880           const Expr *StrideExpr = OASE->getStride();
7881           llvm::Value *Stride =
7882               StrideExpr
7883                   ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(StrideExpr),
7884                                               CGF.Int64Ty, /*isSigned=*/false)
7885                   : nullptr;
7886           if (Stride)
7887             Count = CGF.Builder.CreateUDiv(
7888                 CGF.Builder.CreateNUWSub(*DI, Offset), Stride);
7889           else
7890             Count = CGF.Builder.CreateNUWSub(*DI, Offset);
7891         }
7892       } else {
7893         Count = CGF.EmitScalarExpr(CountExpr);
7894       }
7895       Count = CGF.Builder.CreateIntCast(Count, CGF.Int64Ty, /*isSigned=*/false);
7896       CurCounts.push_back(Count);
7897 
7898       // Stride_n' = Stride_n * (D_0 * D_1 ... * D_n-1) * Unit size
7899       // Take `int arr[5][5][5]` and `arr[0:2:2][1:2:1][0:2:2]` as an example:
7900       //              Offset      Count     Stride
7901       //    D0          0           1         4    (int)    <- dummy dimension
7902       //    D1          0           2         8    (2 * (1) * 4)
7903       //    D2          1           2         20   (1 * (1 * 5) * 4)
7904       //    D3          0           2         200  (2 * (1 * 5 * 4) * 4)
7905       const Expr *StrideExpr = OASE->getStride();
7906       llvm::Value *Stride =
7907           StrideExpr
7908               ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(StrideExpr),
7909                                           CGF.Int64Ty, /*isSigned=*/false)
7910               : nullptr;
7911       DimProd = CGF.Builder.CreateNUWMul(DimProd, *(DI - 1));
7912       if (Stride)
7913         CurStrides.push_back(CGF.Builder.CreateNUWMul(DimProd, Stride));
7914       else
7915         CurStrides.push_back(DimProd);
7916       if (DI != DimSizes.end())
7917         ++DI;
7918     }
7919 
7920     CombinedInfo.NonContigInfo.Offsets.push_back(CurOffsets);
7921     CombinedInfo.NonContigInfo.Counts.push_back(CurCounts);
7922     CombinedInfo.NonContigInfo.Strides.push_back(CurStrides);
7923   }
7924 
7925   /// Return the adjusted map modifiers if the declaration a capture refers to
7926   /// appears in a first-private clause. This is expected to be used only with
7927   /// directives that start with 'target'.
7928   OpenMPOffloadMappingFlags
getMapModifiersForPrivateClauses(const CapturedStmt::Capture & Cap) const7929   getMapModifiersForPrivateClauses(const CapturedStmt::Capture &Cap) const {
7930     assert(Cap.capturesVariable() && "Expected capture by reference only!");
7931 
7932     // A first private variable captured by reference will use only the
7933     // 'private ptr' and 'map to' flag. Return the right flags if the captured
7934     // declaration is known as first-private in this handler.
7935     if (FirstPrivateDecls.count(Cap.getCapturedVar())) {
7936       if (Cap.getCapturedVar()->getType()->isAnyPointerType())
7937         return OpenMPOffloadMappingFlags::OMP_MAP_TO |
7938                OpenMPOffloadMappingFlags::OMP_MAP_PTR_AND_OBJ;
7939       return OpenMPOffloadMappingFlags::OMP_MAP_PRIVATE |
7940              OpenMPOffloadMappingFlags::OMP_MAP_TO;
7941     }
7942     auto I = LambdasMap.find(Cap.getCapturedVar()->getCanonicalDecl());
7943     if (I != LambdasMap.end())
7944       // for map(to: lambda): using user specified map type.
7945       return getMapTypeBits(
7946           I->getSecond()->getMapType(), I->getSecond()->getMapTypeModifiers(),
7947           /*MotionModifiers=*/std::nullopt, I->getSecond()->isImplicit(),
7948           /*AddPtrFlag=*/false,
7949           /*AddIsTargetParamFlag=*/false,
7950           /*isNonContiguous=*/false);
7951     return OpenMPOffloadMappingFlags::OMP_MAP_TO |
7952            OpenMPOffloadMappingFlags::OMP_MAP_FROM;
7953   }
7954 
getMemberOfFlag(unsigned Position)7955   static OpenMPOffloadMappingFlags getMemberOfFlag(unsigned Position) {
7956     // Rotate by getFlagMemberOffset() bits.
7957     return static_cast<OpenMPOffloadMappingFlags>(((uint64_t)Position + 1)
7958                                                   << getFlagMemberOffset());
7959   }
7960 
setCorrectMemberOfFlag(OpenMPOffloadMappingFlags & Flags,OpenMPOffloadMappingFlags MemberOfFlag)7961   static void setCorrectMemberOfFlag(OpenMPOffloadMappingFlags &Flags,
7962                                      OpenMPOffloadMappingFlags MemberOfFlag) {
7963     // If the entry is PTR_AND_OBJ but has not been marked with the special
7964     // placeholder value 0xFFFF in the MEMBER_OF field, then it should not be
7965     // marked as MEMBER_OF.
7966     if (static_cast<std::underlying_type_t<OpenMPOffloadMappingFlags>>(
7967             Flags & OpenMPOffloadMappingFlags::OMP_MAP_PTR_AND_OBJ) &&
7968         static_cast<std::underlying_type_t<OpenMPOffloadMappingFlags>>(
7969             (Flags & OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF) !=
7970             OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF))
7971       return;
7972 
7973     // Reset the placeholder value to prepare the flag for the assignment of the
7974     // proper MEMBER_OF value.
7975     Flags &= ~OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF;
7976     Flags |= MemberOfFlag;
7977   }
7978 
getPlainLayout(const CXXRecordDecl * RD,llvm::SmallVectorImpl<const FieldDecl * > & Layout,bool AsBase) const7979   void getPlainLayout(const CXXRecordDecl *RD,
7980                       llvm::SmallVectorImpl<const FieldDecl *> &Layout,
7981                       bool AsBase) const {
7982     const CGRecordLayout &RL = CGF.getTypes().getCGRecordLayout(RD);
7983 
7984     llvm::StructType *St =
7985         AsBase ? RL.getBaseSubobjectLLVMType() : RL.getLLVMType();
7986 
7987     unsigned NumElements = St->getNumElements();
7988     llvm::SmallVector<
7989         llvm::PointerUnion<const CXXRecordDecl *, const FieldDecl *>, 4>
7990         RecordLayout(NumElements);
7991 
7992     // Fill bases.
7993     for (const auto &I : RD->bases()) {
7994       if (I.isVirtual())
7995         continue;
7996       const auto *Base = I.getType()->getAsCXXRecordDecl();
7997       // Ignore empty bases.
7998       if (Base->isEmpty() || CGF.getContext()
7999                                  .getASTRecordLayout(Base)
8000                                  .getNonVirtualSize()
8001                                  .isZero())
8002         continue;
8003 
8004       unsigned FieldIndex = RL.getNonVirtualBaseLLVMFieldNo(Base);
8005       RecordLayout[FieldIndex] = Base;
8006     }
8007     // Fill in virtual bases.
8008     for (const auto &I : RD->vbases()) {
8009       const auto *Base = I.getType()->getAsCXXRecordDecl();
8010       // Ignore empty bases.
8011       if (Base->isEmpty())
8012         continue;
8013       unsigned FieldIndex = RL.getVirtualBaseIndex(Base);
8014       if (RecordLayout[FieldIndex])
8015         continue;
8016       RecordLayout[FieldIndex] = Base;
8017     }
8018     // Fill in all the fields.
8019     assert(!RD->isUnion() && "Unexpected union.");
8020     for (const auto *Field : RD->fields()) {
8021       // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
8022       // will fill in later.)
8023       if (!Field->isBitField() && !Field->isZeroSize(CGF.getContext())) {
8024         unsigned FieldIndex = RL.getLLVMFieldNo(Field);
8025         RecordLayout[FieldIndex] = Field;
8026       }
8027     }
8028     for (const llvm::PointerUnion<const CXXRecordDecl *, const FieldDecl *>
8029              &Data : RecordLayout) {
8030       if (Data.isNull())
8031         continue;
8032       if (const auto *Base = Data.dyn_cast<const CXXRecordDecl *>())
8033         getPlainLayout(Base, Layout, /*AsBase=*/true);
8034       else
8035         Layout.push_back(Data.get<const FieldDecl *>());
8036     }
8037   }
8038 
8039   /// Generate all the base pointers, section pointers, sizes, map types, and
8040   /// mappers for the extracted mappable expressions (all included in \a
8041   /// CombinedInfo). Also, for each item that relates with a device pointer, a
8042   /// pair of the relevant declaration and index where it occurs is appended to
8043   /// the device pointers info array.
generateAllInfoForClauses(ArrayRef<const OMPClause * > Clauses,MapCombinedInfoTy & CombinedInfo,const llvm::DenseSet<CanonicalDeclPtr<const Decl>> & SkipVarSet=llvm::DenseSet<CanonicalDeclPtr<const Decl>> ()) const8044   void generateAllInfoForClauses(
8045       ArrayRef<const OMPClause *> Clauses, MapCombinedInfoTy &CombinedInfo,
8046       const llvm::DenseSet<CanonicalDeclPtr<const Decl>> &SkipVarSet =
8047           llvm::DenseSet<CanonicalDeclPtr<const Decl>>()) const {
8048     // We have to process the component lists that relate with the same
8049     // declaration in a single chunk so that we can generate the map flags
8050     // correctly. Therefore, we organize all lists in a map.
8051     enum MapKind { Present, Allocs, Other, Total };
8052     llvm::MapVector<CanonicalDeclPtr<const Decl>,
8053                     SmallVector<SmallVector<MapInfo, 8>, 4>>
8054         Info;
8055 
8056     // Helper function to fill the information map for the different supported
8057     // clauses.
8058     auto &&InfoGen =
8059         [&Info, &SkipVarSet](
8060             const ValueDecl *D, MapKind Kind,
8061             OMPClauseMappableExprCommon::MappableExprComponentListRef L,
8062             OpenMPMapClauseKind MapType,
8063             ArrayRef<OpenMPMapModifierKind> MapModifiers,
8064             ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
8065             bool ReturnDevicePointer, bool IsImplicit, const ValueDecl *Mapper,
8066             const Expr *VarRef = nullptr, bool ForDeviceAddr = false) {
8067           if (SkipVarSet.contains(D))
8068             return;
8069           auto It = Info.find(D);
8070           if (It == Info.end())
8071             It = Info
8072                      .insert(std::make_pair(
8073                          D, SmallVector<SmallVector<MapInfo, 8>, 4>(Total)))
8074                      .first;
8075           It->second[Kind].emplace_back(
8076               L, MapType, MapModifiers, MotionModifiers, ReturnDevicePointer,
8077               IsImplicit, Mapper, VarRef, ForDeviceAddr);
8078         };
8079 
8080     for (const auto *Cl : Clauses) {
8081       const auto *C = dyn_cast<OMPMapClause>(Cl);
8082       if (!C)
8083         continue;
8084       MapKind Kind = Other;
8085       if (llvm::is_contained(C->getMapTypeModifiers(),
8086                              OMPC_MAP_MODIFIER_present))
8087         Kind = Present;
8088       else if (C->getMapType() == OMPC_MAP_alloc)
8089         Kind = Allocs;
8090       const auto *EI = C->getVarRefs().begin();
8091       for (const auto L : C->component_lists()) {
8092         const Expr *E = (C->getMapLoc().isValid()) ? *EI : nullptr;
8093         InfoGen(std::get<0>(L), Kind, std::get<1>(L), C->getMapType(),
8094                 C->getMapTypeModifiers(), std::nullopt,
8095                 /*ReturnDevicePointer=*/false, C->isImplicit(), std::get<2>(L),
8096                 E);
8097         ++EI;
8098       }
8099     }
8100     for (const auto *Cl : Clauses) {
8101       const auto *C = dyn_cast<OMPToClause>(Cl);
8102       if (!C)
8103         continue;
8104       MapKind Kind = Other;
8105       if (llvm::is_contained(C->getMotionModifiers(),
8106                              OMPC_MOTION_MODIFIER_present))
8107         Kind = Present;
8108       const auto *EI = C->getVarRefs().begin();
8109       for (const auto L : C->component_lists()) {
8110         InfoGen(std::get<0>(L), Kind, std::get<1>(L), OMPC_MAP_to, std::nullopt,
8111                 C->getMotionModifiers(), /*ReturnDevicePointer=*/false,
8112                 C->isImplicit(), std::get<2>(L), *EI);
8113         ++EI;
8114       }
8115     }
8116     for (const auto *Cl : Clauses) {
8117       const auto *C = dyn_cast<OMPFromClause>(Cl);
8118       if (!C)
8119         continue;
8120       MapKind Kind = Other;
8121       if (llvm::is_contained(C->getMotionModifiers(),
8122                              OMPC_MOTION_MODIFIER_present))
8123         Kind = Present;
8124       const auto *EI = C->getVarRefs().begin();
8125       for (const auto L : C->component_lists()) {
8126         InfoGen(std::get<0>(L), Kind, std::get<1>(L), OMPC_MAP_from,
8127                 std::nullopt, C->getMotionModifiers(),
8128                 /*ReturnDevicePointer=*/false, C->isImplicit(), std::get<2>(L),
8129                 *EI);
8130         ++EI;
8131       }
8132     }
8133 
8134     // Look at the use_device_ptr and use_device_addr clauses information and
8135     // mark the existing map entries as such. If there is no map information for
8136     // an entry in the use_device_ptr and use_device_addr list, we create one
8137     // with map type 'alloc' and zero size section. It is the user fault if that
8138     // was not mapped before. If there is no map information and the pointer is
8139     // a struct member, then we defer the emission of that entry until the whole
8140     // struct has been processed.
8141     llvm::MapVector<CanonicalDeclPtr<const Decl>,
8142                     SmallVector<DeferredDevicePtrEntryTy, 4>>
8143         DeferredInfo;
8144     MapCombinedInfoTy UseDeviceDataCombinedInfo;
8145 
8146     auto &&UseDeviceDataCombinedInfoGen =
8147         [&UseDeviceDataCombinedInfo](const ValueDecl *VD, llvm::Value *Ptr,
8148                                      CodeGenFunction &CGF) {
8149           UseDeviceDataCombinedInfo.Exprs.push_back(VD);
8150           UseDeviceDataCombinedInfo.BasePointers.emplace_back(Ptr, VD);
8151           UseDeviceDataCombinedInfo.Pointers.push_back(Ptr);
8152           UseDeviceDataCombinedInfo.Sizes.push_back(
8153               llvm::Constant::getNullValue(CGF.Int64Ty));
8154           UseDeviceDataCombinedInfo.Types.push_back(
8155               OpenMPOffloadMappingFlags::OMP_MAP_RETURN_PARAM);
8156           UseDeviceDataCombinedInfo.Mappers.push_back(nullptr);
8157         };
8158 
8159     auto &&MapInfoGen =
8160         [&DeferredInfo, &UseDeviceDataCombinedInfoGen,
8161          &InfoGen](CodeGenFunction &CGF, const Expr *IE, const ValueDecl *VD,
8162                    OMPClauseMappableExprCommon::MappableExprComponentListRef
8163                        Components,
8164                    bool IsImplicit, bool IsDevAddr) {
8165           // We didn't find any match in our map information - generate a zero
8166           // size array section - if the pointer is a struct member we defer
8167           // this action until the whole struct has been processed.
8168           if (isa<MemberExpr>(IE)) {
8169             // Insert the pointer into Info to be processed by
8170             // generateInfoForComponentList. Because it is a member pointer
8171             // without a pointee, no entry will be generated for it, therefore
8172             // we need to generate one after the whole struct has been
8173             // processed. Nonetheless, generateInfoForComponentList must be
8174             // called to take the pointer into account for the calculation of
8175             // the range of the partial struct.
8176             InfoGen(nullptr, Other, Components, OMPC_MAP_unknown, std::nullopt,
8177                     std::nullopt, /*ReturnDevicePointer=*/false, IsImplicit,
8178                     nullptr, nullptr, IsDevAddr);
8179             DeferredInfo[nullptr].emplace_back(IE, VD, IsDevAddr);
8180           } else {
8181             llvm::Value *Ptr;
8182             if (IsDevAddr) {
8183               if (IE->isGLValue())
8184                 Ptr = CGF.EmitLValue(IE).getPointer(CGF);
8185               else
8186                 Ptr = CGF.EmitScalarExpr(IE);
8187             } else {
8188               Ptr = CGF.EmitLoadOfScalar(CGF.EmitLValue(IE), IE->getExprLoc());
8189             }
8190             UseDeviceDataCombinedInfoGen(VD, Ptr, CGF);
8191           }
8192         };
8193 
8194     auto &&IsMapInfoExist = [&Info](CodeGenFunction &CGF, const ValueDecl *VD,
8195                                     const Expr *IE, bool IsDevAddr) -> bool {
8196       // We potentially have map information for this declaration already.
8197       // Look for the first set of components that refer to it. If found,
8198       // return true.
8199       // If the first component is a member expression, we have to look into
8200       // 'this', which maps to null in the map of map information. Otherwise
8201       // look directly for the information.
8202       auto It = Info.find(isa<MemberExpr>(IE) ? nullptr : VD);
8203       if (It != Info.end()) {
8204         bool Found = false;
8205         for (auto &Data : It->second) {
8206           auto *CI = llvm::find_if(Data, [VD](const MapInfo &MI) {
8207             return MI.Components.back().getAssociatedDeclaration() == VD;
8208           });
8209           // If we found a map entry, signal that the pointer has to be
8210           // returned and move on to the next declaration. Exclude cases where
8211           // the base pointer is mapped as array subscript, array section or
8212           // array shaping. The base address is passed as a pointer to base in
8213           // this case and cannot be used as a base for use_device_ptr list
8214           // item.
8215           if (CI != Data.end()) {
8216             if (IsDevAddr) {
8217               CI->ReturnDevicePointer = true;
8218               Found = true;
8219               break;
8220             } else {
8221               auto PrevCI = std::next(CI->Components.rbegin());
8222               const auto *VarD = dyn_cast<VarDecl>(VD);
8223               if (CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory() ||
8224                   isa<MemberExpr>(IE) ||
8225                   !VD->getType().getNonReferenceType()->isPointerType() ||
8226                   PrevCI == CI->Components.rend() ||
8227                   isa<MemberExpr>(PrevCI->getAssociatedExpression()) || !VarD ||
8228                   VarD->hasLocalStorage()) {
8229                 CI->ReturnDevicePointer = true;
8230                 Found = true;
8231                 break;
8232               }
8233             }
8234           }
8235         }
8236         return Found;
8237       }
8238       return false;
8239     };
8240 
8241     // Look at the use_device_ptr clause information and mark the existing map
8242     // entries as such. If there is no map information for an entry in the
8243     // use_device_ptr list, we create one with map type 'alloc' and zero size
8244     // section. It is the user fault if that was not mapped before. If there is
8245     // no map information and the pointer is a struct member, then we defer the
8246     // emission of that entry until the whole struct has been processed.
8247     for (const auto *Cl : Clauses) {
8248       const auto *C = dyn_cast<OMPUseDevicePtrClause>(Cl);
8249       if (!C)
8250         continue;
8251       for (const auto L : C->component_lists()) {
8252         OMPClauseMappableExprCommon::MappableExprComponentListRef Components =
8253             std::get<1>(L);
8254         assert(!Components.empty() &&
8255                "Not expecting empty list of components!");
8256         const ValueDecl *VD = Components.back().getAssociatedDeclaration();
8257         VD = cast<ValueDecl>(VD->getCanonicalDecl());
8258         const Expr *IE = Components.back().getAssociatedExpression();
8259         if (IsMapInfoExist(CGF, VD, IE, /*IsDevAddr=*/false))
8260           continue;
8261         MapInfoGen(CGF, IE, VD, Components, C->isImplicit(),
8262                    /*IsDevAddr=*/false);
8263       }
8264     }
8265 
8266     llvm::SmallDenseSet<CanonicalDeclPtr<const Decl>, 4> Processed;
8267     for (const auto *Cl : Clauses) {
8268       const auto *C = dyn_cast<OMPUseDeviceAddrClause>(Cl);
8269       if (!C)
8270         continue;
8271       for (const auto L : C->component_lists()) {
8272         OMPClauseMappableExprCommon::MappableExprComponentListRef Components =
8273             std::get<1>(L);
8274         assert(!std::get<1>(L).empty() &&
8275                "Not expecting empty list of components!");
8276         const ValueDecl *VD = std::get<1>(L).back().getAssociatedDeclaration();
8277         if (!Processed.insert(VD).second)
8278           continue;
8279         VD = cast<ValueDecl>(VD->getCanonicalDecl());
8280         const Expr *IE = std::get<1>(L).back().getAssociatedExpression();
8281         if (IsMapInfoExist(CGF, VD, IE, /*IsDevAddr=*/true))
8282           continue;
8283         MapInfoGen(CGF, IE, VD, Components, C->isImplicit(),
8284                    /*IsDevAddr=*/true);
8285       }
8286     }
8287 
8288     for (const auto &Data : Info) {
8289       StructRangeInfoTy PartialStruct;
8290       // Temporary generated information.
8291       MapCombinedInfoTy CurInfo;
8292       const Decl *D = Data.first;
8293       const ValueDecl *VD = cast_or_null<ValueDecl>(D);
8294       for (const auto &M : Data.second) {
8295         for (const MapInfo &L : M) {
8296           assert(!L.Components.empty() &&
8297                  "Not expecting declaration with no component lists.");
8298 
8299           // Remember the current base pointer index.
8300           unsigned CurrentBasePointersIdx = CurInfo.BasePointers.size();
8301           CurInfo.NonContigInfo.IsNonContiguous =
8302               L.Components.back().isNonContiguous();
8303           generateInfoForComponentList(
8304               L.MapType, L.MapModifiers, L.MotionModifiers, L.Components,
8305               CurInfo, PartialStruct, /*IsFirstComponentList=*/false,
8306               L.IsImplicit, L.Mapper, L.ForDeviceAddr, VD, L.VarRef);
8307 
8308           // If this entry relates with a device pointer, set the relevant
8309           // declaration and add the 'return pointer' flag.
8310           if (L.ReturnDevicePointer) {
8311             assert(CurInfo.BasePointers.size() > CurrentBasePointersIdx &&
8312                    "Unexpected number of mapped base pointers.");
8313 
8314             const ValueDecl *RelevantVD =
8315                 L.Components.back().getAssociatedDeclaration();
8316             assert(RelevantVD &&
8317                    "No relevant declaration related with device pointer??");
8318 
8319             CurInfo.BasePointers[CurrentBasePointersIdx].setDevicePtrDecl(
8320                 RelevantVD);
8321             CurInfo.Types[CurrentBasePointersIdx] |=
8322                 OpenMPOffloadMappingFlags::OMP_MAP_RETURN_PARAM;
8323           }
8324         }
8325       }
8326 
8327       // Append any pending zero-length pointers which are struct members and
8328       // used with use_device_ptr or use_device_addr.
8329       auto CI = DeferredInfo.find(Data.first);
8330       if (CI != DeferredInfo.end()) {
8331         for (const DeferredDevicePtrEntryTy &L : CI->second) {
8332           llvm::Value *BasePtr;
8333           llvm::Value *Ptr;
8334           if (L.ForDeviceAddr) {
8335             if (L.IE->isGLValue())
8336               Ptr = this->CGF.EmitLValue(L.IE).getPointer(CGF);
8337             else
8338               Ptr = this->CGF.EmitScalarExpr(L.IE);
8339             BasePtr = Ptr;
8340             // Entry is RETURN_PARAM. Also, set the placeholder value
8341             // MEMBER_OF=FFFF so that the entry is later updated with the
8342             // correct value of MEMBER_OF.
8343             CurInfo.Types.push_back(
8344                 OpenMPOffloadMappingFlags::OMP_MAP_RETURN_PARAM |
8345                 OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF);
8346           } else {
8347             BasePtr = this->CGF.EmitLValue(L.IE).getPointer(CGF);
8348             Ptr = this->CGF.EmitLoadOfScalar(this->CGF.EmitLValue(L.IE),
8349                                              L.IE->getExprLoc());
8350             // Entry is PTR_AND_OBJ and RETURN_PARAM. Also, set the
8351             // placeholder value MEMBER_OF=FFFF so that the entry is later
8352             // updated with the correct value of MEMBER_OF.
8353             CurInfo.Types.push_back(
8354                 OpenMPOffloadMappingFlags::OMP_MAP_PTR_AND_OBJ |
8355                 OpenMPOffloadMappingFlags::OMP_MAP_RETURN_PARAM |
8356                 OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF);
8357           }
8358           CurInfo.Exprs.push_back(L.VD);
8359           CurInfo.BasePointers.emplace_back(BasePtr, L.VD);
8360           CurInfo.Pointers.push_back(Ptr);
8361           CurInfo.Sizes.push_back(
8362               llvm::Constant::getNullValue(this->CGF.Int64Ty));
8363           CurInfo.Mappers.push_back(nullptr);
8364         }
8365       }
8366       // If there is an entry in PartialStruct it means we have a struct with
8367       // individual members mapped. Emit an extra combined entry.
8368       if (PartialStruct.Base.isValid()) {
8369         CurInfo.NonContigInfo.Dims.push_back(0);
8370         emitCombinedEntry(CombinedInfo, CurInfo.Types, PartialStruct, VD);
8371       }
8372 
8373       // We need to append the results of this capture to what we already
8374       // have.
8375       CombinedInfo.append(CurInfo);
8376     }
8377     // Append data for use_device_ptr clauses.
8378     CombinedInfo.append(UseDeviceDataCombinedInfo);
8379   }
8380 
8381 public:
MappableExprsHandler(const OMPExecutableDirective & Dir,CodeGenFunction & CGF)8382   MappableExprsHandler(const OMPExecutableDirective &Dir, CodeGenFunction &CGF)
8383       : CurDir(&Dir), CGF(CGF) {
8384     // Extract firstprivate clause information.
8385     for (const auto *C : Dir.getClausesOfKind<OMPFirstprivateClause>())
8386       for (const auto *D : C->varlists())
8387         FirstPrivateDecls.try_emplace(
8388             cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl()), C->isImplicit());
8389     // Extract implicit firstprivates from uses_allocators clauses.
8390     for (const auto *C : Dir.getClausesOfKind<OMPUsesAllocatorsClause>()) {
8391       for (unsigned I = 0, E = C->getNumberOfAllocators(); I < E; ++I) {
8392         OMPUsesAllocatorsClause::Data D = C->getAllocatorData(I);
8393         if (const auto *DRE = dyn_cast_or_null<DeclRefExpr>(D.AllocatorTraits))
8394           FirstPrivateDecls.try_emplace(cast<VarDecl>(DRE->getDecl()),
8395                                         /*Implicit=*/true);
8396         else if (const auto *VD = dyn_cast<VarDecl>(
8397                      cast<DeclRefExpr>(D.Allocator->IgnoreParenImpCasts())
8398                          ->getDecl()))
8399           FirstPrivateDecls.try_emplace(VD, /*Implicit=*/true);
8400       }
8401     }
8402     // Extract device pointer clause information.
8403     for (const auto *C : Dir.getClausesOfKind<OMPIsDevicePtrClause>())
8404       for (auto L : C->component_lists())
8405         DevPointersMap[std::get<0>(L)].push_back(std::get<1>(L));
8406     // Extract device addr clause information.
8407     for (const auto *C : Dir.getClausesOfKind<OMPHasDeviceAddrClause>())
8408       for (auto L : C->component_lists())
8409         HasDevAddrsMap[std::get<0>(L)].push_back(std::get<1>(L));
8410     // Extract map information.
8411     for (const auto *C : Dir.getClausesOfKind<OMPMapClause>()) {
8412       if (C->getMapType() != OMPC_MAP_to)
8413         continue;
8414       for (auto L : C->component_lists()) {
8415         const ValueDecl *VD = std::get<0>(L);
8416         const auto *RD = VD ? VD->getType()
8417                                   .getCanonicalType()
8418                                   .getNonReferenceType()
8419                                   ->getAsCXXRecordDecl()
8420                             : nullptr;
8421         if (RD && RD->isLambda())
8422           LambdasMap.try_emplace(std::get<0>(L), C);
8423       }
8424     }
8425   }
8426 
8427   /// Constructor for the declare mapper directive.
MappableExprsHandler(const OMPDeclareMapperDecl & Dir,CodeGenFunction & CGF)8428   MappableExprsHandler(const OMPDeclareMapperDecl &Dir, CodeGenFunction &CGF)
8429       : CurDir(&Dir), CGF(CGF) {}
8430 
8431   /// Generate code for the combined entry if we have a partially mapped struct
8432   /// and take care of the mapping flags of the arguments corresponding to
8433   /// individual struct members.
emitCombinedEntry(MapCombinedInfoTy & CombinedInfo,MapFlagsArrayTy & CurTypes,const StructRangeInfoTy & PartialStruct,const ValueDecl * VD=nullptr,bool NotTargetParams=true) const8434   void emitCombinedEntry(MapCombinedInfoTy &CombinedInfo,
8435                          MapFlagsArrayTy &CurTypes,
8436                          const StructRangeInfoTy &PartialStruct,
8437                          const ValueDecl *VD = nullptr,
8438                          bool NotTargetParams = true) const {
8439     if (CurTypes.size() == 1 &&
8440         ((CurTypes.back() & OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF) !=
8441          OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF) &&
8442         !PartialStruct.IsArraySection)
8443       return;
8444     Address LBAddr = PartialStruct.LowestElem.second;
8445     Address HBAddr = PartialStruct.HighestElem.second;
8446     if (PartialStruct.HasCompleteRecord) {
8447       LBAddr = PartialStruct.LB;
8448       HBAddr = PartialStruct.LB;
8449     }
8450     CombinedInfo.Exprs.push_back(VD);
8451     // Base is the base of the struct
8452     CombinedInfo.BasePointers.push_back(PartialStruct.Base.getPointer());
8453     // Pointer is the address of the lowest element
8454     llvm::Value *LB = LBAddr.getPointer();
8455     const CXXMethodDecl *MD =
8456         CGF.CurFuncDecl ? dyn_cast<CXXMethodDecl>(CGF.CurFuncDecl) : nullptr;
8457     const CXXRecordDecl *RD = MD ? MD->getParent() : nullptr;
8458     bool HasBaseClass = RD ? RD->getNumBases() > 0 : false;
8459     // There should not be a mapper for a combined entry.
8460     if (HasBaseClass) {
8461       // OpenMP 5.2 148:21:
8462       // If the target construct is within a class non-static member function,
8463       // and a variable is an accessible data member of the object for which the
8464       // non-static data member function is invoked, the variable is treated as
8465       // if the this[:1] expression had appeared in a map clause with a map-type
8466       // of tofrom.
8467       // Emit this[:1]
8468       CombinedInfo.Pointers.push_back(PartialStruct.Base.getPointer());
8469       QualType Ty = MD->getThisType()->getPointeeType();
8470       llvm::Value *Size =
8471           CGF.Builder.CreateIntCast(CGF.getTypeSize(Ty), CGF.Int64Ty,
8472                                     /*isSigned=*/true);
8473       CombinedInfo.Sizes.push_back(Size);
8474     } else {
8475       CombinedInfo.Pointers.push_back(LB);
8476       // Size is (addr of {highest+1} element) - (addr of lowest element)
8477       llvm::Value *HB = HBAddr.getPointer();
8478       llvm::Value *HAddr = CGF.Builder.CreateConstGEP1_32(
8479           HBAddr.getElementType(), HB, /*Idx0=*/1);
8480       llvm::Value *CLAddr = CGF.Builder.CreatePointerCast(LB, CGF.VoidPtrTy);
8481       llvm::Value *CHAddr = CGF.Builder.CreatePointerCast(HAddr, CGF.VoidPtrTy);
8482       llvm::Value *Diff = CGF.Builder.CreatePtrDiff(CGF.Int8Ty, CHAddr, CLAddr);
8483       llvm::Value *Size = CGF.Builder.CreateIntCast(Diff, CGF.Int64Ty,
8484                                                     /*isSigned=*/false);
8485       CombinedInfo.Sizes.push_back(Size);
8486     }
8487     CombinedInfo.Mappers.push_back(nullptr);
8488     // Map type is always TARGET_PARAM, if generate info for captures.
8489     CombinedInfo.Types.push_back(
8490         NotTargetParams ? OpenMPOffloadMappingFlags::OMP_MAP_NONE
8491                         : OpenMPOffloadMappingFlags::OMP_MAP_TARGET_PARAM);
8492     // If any element has the present modifier, then make sure the runtime
8493     // doesn't attempt to allocate the struct.
8494     if (CurTypes.end() !=
8495         llvm::find_if(CurTypes, [](OpenMPOffloadMappingFlags Type) {
8496           return static_cast<std::underlying_type_t<OpenMPOffloadMappingFlags>>(
8497               Type & OpenMPOffloadMappingFlags::OMP_MAP_PRESENT);
8498         }))
8499       CombinedInfo.Types.back() |= OpenMPOffloadMappingFlags::OMP_MAP_PRESENT;
8500     // Remove TARGET_PARAM flag from the first element
8501     (*CurTypes.begin()) &= ~OpenMPOffloadMappingFlags::OMP_MAP_TARGET_PARAM;
8502     // If any element has the ompx_hold modifier, then make sure the runtime
8503     // uses the hold reference count for the struct as a whole so that it won't
8504     // be unmapped by an extra dynamic reference count decrement.  Add it to all
8505     // elements as well so the runtime knows which reference count to check
8506     // when determining whether it's time for device-to-host transfers of
8507     // individual elements.
8508     if (CurTypes.end() !=
8509         llvm::find_if(CurTypes, [](OpenMPOffloadMappingFlags Type) {
8510           return static_cast<std::underlying_type_t<OpenMPOffloadMappingFlags>>(
8511               Type & OpenMPOffloadMappingFlags::OMP_MAP_OMPX_HOLD);
8512         })) {
8513       CombinedInfo.Types.back() |= OpenMPOffloadMappingFlags::OMP_MAP_OMPX_HOLD;
8514       for (auto &M : CurTypes)
8515         M |= OpenMPOffloadMappingFlags::OMP_MAP_OMPX_HOLD;
8516     }
8517 
8518     // All other current entries will be MEMBER_OF the combined entry
8519     // (except for PTR_AND_OBJ entries which do not have a placeholder value
8520     // 0xFFFF in the MEMBER_OF field).
8521     OpenMPOffloadMappingFlags MemberOfFlag =
8522         getMemberOfFlag(CombinedInfo.BasePointers.size() - 1);
8523     for (auto &M : CurTypes)
8524       setCorrectMemberOfFlag(M, MemberOfFlag);
8525   }
8526 
8527   /// Generate all the base pointers, section pointers, sizes, map types, and
8528   /// mappers for the extracted mappable expressions (all included in \a
8529   /// CombinedInfo). Also, for each item that relates with a device pointer, a
8530   /// pair of the relevant declaration and index where it occurs is appended to
8531   /// the device pointers info array.
generateAllInfo(MapCombinedInfoTy & CombinedInfo,const llvm::DenseSet<CanonicalDeclPtr<const Decl>> & SkipVarSet=llvm::DenseSet<CanonicalDeclPtr<const Decl>> ()) const8532   void generateAllInfo(
8533       MapCombinedInfoTy &CombinedInfo,
8534       const llvm::DenseSet<CanonicalDeclPtr<const Decl>> &SkipVarSet =
8535           llvm::DenseSet<CanonicalDeclPtr<const Decl>>()) const {
8536     assert(CurDir.is<const OMPExecutableDirective *>() &&
8537            "Expect a executable directive");
8538     const auto *CurExecDir = CurDir.get<const OMPExecutableDirective *>();
8539     generateAllInfoForClauses(CurExecDir->clauses(), CombinedInfo, SkipVarSet);
8540   }
8541 
8542   /// Generate all the base pointers, section pointers, sizes, map types, and
8543   /// mappers for the extracted map clauses of user-defined mapper (all included
8544   /// in \a CombinedInfo).
generateAllInfoForMapper(MapCombinedInfoTy & CombinedInfo) const8545   void generateAllInfoForMapper(MapCombinedInfoTy &CombinedInfo) const {
8546     assert(CurDir.is<const OMPDeclareMapperDecl *>() &&
8547            "Expect a declare mapper directive");
8548     const auto *CurMapperDir = CurDir.get<const OMPDeclareMapperDecl *>();
8549     generateAllInfoForClauses(CurMapperDir->clauses(), CombinedInfo);
8550   }
8551 
8552   /// Emit capture info for lambdas for variables captured by reference.
generateInfoForLambdaCaptures(const ValueDecl * VD,llvm::Value * Arg,MapCombinedInfoTy & CombinedInfo,llvm::DenseMap<llvm::Value *,llvm::Value * > & LambdaPointers) const8553   void generateInfoForLambdaCaptures(
8554       const ValueDecl *VD, llvm::Value *Arg, MapCombinedInfoTy &CombinedInfo,
8555       llvm::DenseMap<llvm::Value *, llvm::Value *> &LambdaPointers) const {
8556     QualType VDType = VD->getType().getCanonicalType().getNonReferenceType();
8557     const auto *RD = VDType->getAsCXXRecordDecl();
8558     if (!RD || !RD->isLambda())
8559       return;
8560     Address VDAddr(Arg, CGF.ConvertTypeForMem(VDType),
8561                    CGF.getContext().getDeclAlign(VD));
8562     LValue VDLVal = CGF.MakeAddrLValue(VDAddr, VDType);
8563     llvm::DenseMap<const ValueDecl *, FieldDecl *> Captures;
8564     FieldDecl *ThisCapture = nullptr;
8565     RD->getCaptureFields(Captures, ThisCapture);
8566     if (ThisCapture) {
8567       LValue ThisLVal =
8568           CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
8569       LValue ThisLValVal = CGF.EmitLValueForField(VDLVal, ThisCapture);
8570       LambdaPointers.try_emplace(ThisLVal.getPointer(CGF),
8571                                  VDLVal.getPointer(CGF));
8572       CombinedInfo.Exprs.push_back(VD);
8573       CombinedInfo.BasePointers.push_back(ThisLVal.getPointer(CGF));
8574       CombinedInfo.Pointers.push_back(ThisLValVal.getPointer(CGF));
8575       CombinedInfo.Sizes.push_back(
8576           CGF.Builder.CreateIntCast(CGF.getTypeSize(CGF.getContext().VoidPtrTy),
8577                                     CGF.Int64Ty, /*isSigned=*/true));
8578       CombinedInfo.Types.push_back(
8579           OpenMPOffloadMappingFlags::OMP_MAP_PTR_AND_OBJ |
8580           OpenMPOffloadMappingFlags::OMP_MAP_LITERAL |
8581           OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF |
8582           OpenMPOffloadMappingFlags::OMP_MAP_IMPLICIT);
8583       CombinedInfo.Mappers.push_back(nullptr);
8584     }
8585     for (const LambdaCapture &LC : RD->captures()) {
8586       if (!LC.capturesVariable())
8587         continue;
8588       const VarDecl *VD = cast<VarDecl>(LC.getCapturedVar());
8589       if (LC.getCaptureKind() != LCK_ByRef && !VD->getType()->isPointerType())
8590         continue;
8591       auto It = Captures.find(VD);
8592       assert(It != Captures.end() && "Found lambda capture without field.");
8593       LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
8594       if (LC.getCaptureKind() == LCK_ByRef) {
8595         LValue VarLValVal = CGF.EmitLValueForField(VDLVal, It->second);
8596         LambdaPointers.try_emplace(VarLVal.getPointer(CGF),
8597                                    VDLVal.getPointer(CGF));
8598         CombinedInfo.Exprs.push_back(VD);
8599         CombinedInfo.BasePointers.push_back(VarLVal.getPointer(CGF));
8600         CombinedInfo.Pointers.push_back(VarLValVal.getPointer(CGF));
8601         CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast(
8602             CGF.getTypeSize(
8603                 VD->getType().getCanonicalType().getNonReferenceType()),
8604             CGF.Int64Ty, /*isSigned=*/true));
8605       } else {
8606         RValue VarRVal = CGF.EmitLoadOfLValue(VarLVal, RD->getLocation());
8607         LambdaPointers.try_emplace(VarLVal.getPointer(CGF),
8608                                    VDLVal.getPointer(CGF));
8609         CombinedInfo.Exprs.push_back(VD);
8610         CombinedInfo.BasePointers.push_back(VarLVal.getPointer(CGF));
8611         CombinedInfo.Pointers.push_back(VarRVal.getScalarVal());
8612         CombinedInfo.Sizes.push_back(llvm::ConstantInt::get(CGF.Int64Ty, 0));
8613       }
8614       CombinedInfo.Types.push_back(
8615           OpenMPOffloadMappingFlags::OMP_MAP_PTR_AND_OBJ |
8616           OpenMPOffloadMappingFlags::OMP_MAP_LITERAL |
8617           OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF |
8618           OpenMPOffloadMappingFlags::OMP_MAP_IMPLICIT);
8619       CombinedInfo.Mappers.push_back(nullptr);
8620     }
8621   }
8622 
8623   /// Set correct indices for lambdas captures.
adjustMemberOfForLambdaCaptures(const llvm::DenseMap<llvm::Value *,llvm::Value * > & LambdaPointers,MapBaseValuesArrayTy & BasePointers,MapValuesArrayTy & Pointers,MapFlagsArrayTy & Types) const8624   void adjustMemberOfForLambdaCaptures(
8625       const llvm::DenseMap<llvm::Value *, llvm::Value *> &LambdaPointers,
8626       MapBaseValuesArrayTy &BasePointers, MapValuesArrayTy &Pointers,
8627       MapFlagsArrayTy &Types) const {
8628     for (unsigned I = 0, E = Types.size(); I < E; ++I) {
8629       // Set correct member_of idx for all implicit lambda captures.
8630       if (Types[I] != (OpenMPOffloadMappingFlags::OMP_MAP_PTR_AND_OBJ |
8631                        OpenMPOffloadMappingFlags::OMP_MAP_LITERAL |
8632                        OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF |
8633                        OpenMPOffloadMappingFlags::OMP_MAP_IMPLICIT))
8634         continue;
8635       llvm::Value *BasePtr = LambdaPointers.lookup(*BasePointers[I]);
8636       assert(BasePtr && "Unable to find base lambda address.");
8637       int TgtIdx = -1;
8638       for (unsigned J = I; J > 0; --J) {
8639         unsigned Idx = J - 1;
8640         if (Pointers[Idx] != BasePtr)
8641           continue;
8642         TgtIdx = Idx;
8643         break;
8644       }
8645       assert(TgtIdx != -1 && "Unable to find parent lambda.");
8646       // All other current entries will be MEMBER_OF the combined entry
8647       // (except for PTR_AND_OBJ entries which do not have a placeholder value
8648       // 0xFFFF in the MEMBER_OF field).
8649       OpenMPOffloadMappingFlags MemberOfFlag = getMemberOfFlag(TgtIdx);
8650       setCorrectMemberOfFlag(Types[I], MemberOfFlag);
8651     }
8652   }
8653 
8654   /// Generate the base pointers, section pointers, sizes, map types, and
8655   /// mappers associated to a given capture (all included in \a CombinedInfo).
generateInfoForCapture(const CapturedStmt::Capture * Cap,llvm::Value * Arg,MapCombinedInfoTy & CombinedInfo,StructRangeInfoTy & PartialStruct) const8656   void generateInfoForCapture(const CapturedStmt::Capture *Cap,
8657                               llvm::Value *Arg, MapCombinedInfoTy &CombinedInfo,
8658                               StructRangeInfoTy &PartialStruct) const {
8659     assert(!Cap->capturesVariableArrayType() &&
8660            "Not expecting to generate map info for a variable array type!");
8661 
8662     // We need to know when we generating information for the first component
8663     const ValueDecl *VD = Cap->capturesThis()
8664                               ? nullptr
8665                               : Cap->getCapturedVar()->getCanonicalDecl();
8666 
8667     // for map(to: lambda): skip here, processing it in
8668     // generateDefaultMapInfo
8669     if (LambdasMap.count(VD))
8670       return;
8671 
8672     // If this declaration appears in a is_device_ptr clause we just have to
8673     // pass the pointer by value. If it is a reference to a declaration, we just
8674     // pass its value.
8675     if (VD && (DevPointersMap.count(VD) || HasDevAddrsMap.count(VD))) {
8676       CombinedInfo.Exprs.push_back(VD);
8677       CombinedInfo.BasePointers.emplace_back(Arg, VD);
8678       CombinedInfo.Pointers.push_back(Arg);
8679       CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast(
8680           CGF.getTypeSize(CGF.getContext().VoidPtrTy), CGF.Int64Ty,
8681           /*isSigned=*/true));
8682       CombinedInfo.Types.push_back(
8683           (Cap->capturesVariable()
8684                ? OpenMPOffloadMappingFlags::OMP_MAP_TO
8685                : OpenMPOffloadMappingFlags::OMP_MAP_LITERAL) |
8686           OpenMPOffloadMappingFlags::OMP_MAP_TARGET_PARAM);
8687       CombinedInfo.Mappers.push_back(nullptr);
8688       return;
8689     }
8690 
8691     using MapData =
8692         std::tuple<OMPClauseMappableExprCommon::MappableExprComponentListRef,
8693                    OpenMPMapClauseKind, ArrayRef<OpenMPMapModifierKind>, bool,
8694                    const ValueDecl *, const Expr *>;
8695     SmallVector<MapData, 4> DeclComponentLists;
8696     // For member fields list in is_device_ptr, store it in
8697     // DeclComponentLists for generating components info.
8698     static const OpenMPMapModifierKind Unknown = OMPC_MAP_MODIFIER_unknown;
8699     auto It = DevPointersMap.find(VD);
8700     if (It != DevPointersMap.end())
8701       for (const auto &MCL : It->second)
8702         DeclComponentLists.emplace_back(MCL, OMPC_MAP_to, Unknown,
8703                                         /*IsImpicit = */ true, nullptr,
8704                                         nullptr);
8705     auto I = HasDevAddrsMap.find(VD);
8706     if (I != HasDevAddrsMap.end())
8707       for (const auto &MCL : I->second)
8708         DeclComponentLists.emplace_back(MCL, OMPC_MAP_tofrom, Unknown,
8709                                         /*IsImpicit = */ true, nullptr,
8710                                         nullptr);
8711     assert(CurDir.is<const OMPExecutableDirective *>() &&
8712            "Expect a executable directive");
8713     const auto *CurExecDir = CurDir.get<const OMPExecutableDirective *>();
8714     for (const auto *C : CurExecDir->getClausesOfKind<OMPMapClause>()) {
8715       const auto *EI = C->getVarRefs().begin();
8716       for (const auto L : C->decl_component_lists(VD)) {
8717         const ValueDecl *VDecl, *Mapper;
8718         // The Expression is not correct if the mapping is implicit
8719         const Expr *E = (C->getMapLoc().isValid()) ? *EI : nullptr;
8720         OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
8721         std::tie(VDecl, Components, Mapper) = L;
8722         assert(VDecl == VD && "We got information for the wrong declaration??");
8723         assert(!Components.empty() &&
8724                "Not expecting declaration with no component lists.");
8725         DeclComponentLists.emplace_back(Components, C->getMapType(),
8726                                         C->getMapTypeModifiers(),
8727                                         C->isImplicit(), Mapper, E);
8728         ++EI;
8729       }
8730     }
8731     llvm::stable_sort(DeclComponentLists, [](const MapData &LHS,
8732                                              const MapData &RHS) {
8733       ArrayRef<OpenMPMapModifierKind> MapModifiers = std::get<2>(LHS);
8734       OpenMPMapClauseKind MapType = std::get<1>(RHS);
8735       bool HasPresent =
8736           llvm::is_contained(MapModifiers, clang::OMPC_MAP_MODIFIER_present);
8737       bool HasAllocs = MapType == OMPC_MAP_alloc;
8738       MapModifiers = std::get<2>(RHS);
8739       MapType = std::get<1>(LHS);
8740       bool HasPresentR =
8741           llvm::is_contained(MapModifiers, clang::OMPC_MAP_MODIFIER_present);
8742       bool HasAllocsR = MapType == OMPC_MAP_alloc;
8743       return (HasPresent && !HasPresentR) || (HasAllocs && !HasAllocsR);
8744     });
8745 
8746     // Find overlapping elements (including the offset from the base element).
8747     llvm::SmallDenseMap<
8748         const MapData *,
8749         llvm::SmallVector<
8750             OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>,
8751         4>
8752         OverlappedData;
8753     size_t Count = 0;
8754     for (const MapData &L : DeclComponentLists) {
8755       OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
8756       OpenMPMapClauseKind MapType;
8757       ArrayRef<OpenMPMapModifierKind> MapModifiers;
8758       bool IsImplicit;
8759       const ValueDecl *Mapper;
8760       const Expr *VarRef;
8761       std::tie(Components, MapType, MapModifiers, IsImplicit, Mapper, VarRef) =
8762           L;
8763       ++Count;
8764       for (const MapData &L1 : ArrayRef(DeclComponentLists).slice(Count)) {
8765         OMPClauseMappableExprCommon::MappableExprComponentListRef Components1;
8766         std::tie(Components1, MapType, MapModifiers, IsImplicit, Mapper,
8767                  VarRef) = L1;
8768         auto CI = Components.rbegin();
8769         auto CE = Components.rend();
8770         auto SI = Components1.rbegin();
8771         auto SE = Components1.rend();
8772         for (; CI != CE && SI != SE; ++CI, ++SI) {
8773           if (CI->getAssociatedExpression()->getStmtClass() !=
8774               SI->getAssociatedExpression()->getStmtClass())
8775             break;
8776           // Are we dealing with different variables/fields?
8777           if (CI->getAssociatedDeclaration() != SI->getAssociatedDeclaration())
8778             break;
8779         }
8780         // Found overlapping if, at least for one component, reached the head
8781         // of the components list.
8782         if (CI == CE || SI == SE) {
8783           // Ignore it if it is the same component.
8784           if (CI == CE && SI == SE)
8785             continue;
8786           const auto It = (SI == SE) ? CI : SI;
8787           // If one component is a pointer and another one is a kind of
8788           // dereference of this pointer (array subscript, section, dereference,
8789           // etc.), it is not an overlapping.
8790           // Same, if one component is a base and another component is a
8791           // dereferenced pointer memberexpr with the same base.
8792           if (!isa<MemberExpr>(It->getAssociatedExpression()) ||
8793               (std::prev(It)->getAssociatedDeclaration() &&
8794                std::prev(It)
8795                    ->getAssociatedDeclaration()
8796                    ->getType()
8797                    ->isPointerType()) ||
8798               (It->getAssociatedDeclaration() &&
8799                It->getAssociatedDeclaration()->getType()->isPointerType() &&
8800                std::next(It) != CE && std::next(It) != SE))
8801             continue;
8802           const MapData &BaseData = CI == CE ? L : L1;
8803           OMPClauseMappableExprCommon::MappableExprComponentListRef SubData =
8804               SI == SE ? Components : Components1;
8805           auto &OverlappedElements = OverlappedData.FindAndConstruct(&BaseData);
8806           OverlappedElements.getSecond().push_back(SubData);
8807         }
8808       }
8809     }
8810     // Sort the overlapped elements for each item.
8811     llvm::SmallVector<const FieldDecl *, 4> Layout;
8812     if (!OverlappedData.empty()) {
8813       const Type *BaseType = VD->getType().getCanonicalType().getTypePtr();
8814       const Type *OrigType = BaseType->getPointeeOrArrayElementType();
8815       while (BaseType != OrigType) {
8816         BaseType = OrigType->getCanonicalTypeInternal().getTypePtr();
8817         OrigType = BaseType->getPointeeOrArrayElementType();
8818       }
8819 
8820       if (const auto *CRD = BaseType->getAsCXXRecordDecl())
8821         getPlainLayout(CRD, Layout, /*AsBase=*/false);
8822       else {
8823         const auto *RD = BaseType->getAsRecordDecl();
8824         Layout.append(RD->field_begin(), RD->field_end());
8825       }
8826     }
8827     for (auto &Pair : OverlappedData) {
8828       llvm::stable_sort(
8829           Pair.getSecond(),
8830           [&Layout](
8831               OMPClauseMappableExprCommon::MappableExprComponentListRef First,
8832               OMPClauseMappableExprCommon::MappableExprComponentListRef
8833                   Second) {
8834             auto CI = First.rbegin();
8835             auto CE = First.rend();
8836             auto SI = Second.rbegin();
8837             auto SE = Second.rend();
8838             for (; CI != CE && SI != SE; ++CI, ++SI) {
8839               if (CI->getAssociatedExpression()->getStmtClass() !=
8840                   SI->getAssociatedExpression()->getStmtClass())
8841                 break;
8842               // Are we dealing with different variables/fields?
8843               if (CI->getAssociatedDeclaration() !=
8844                   SI->getAssociatedDeclaration())
8845                 break;
8846             }
8847 
8848             // Lists contain the same elements.
8849             if (CI == CE && SI == SE)
8850               return false;
8851 
8852             // List with less elements is less than list with more elements.
8853             if (CI == CE || SI == SE)
8854               return CI == CE;
8855 
8856             const auto *FD1 = cast<FieldDecl>(CI->getAssociatedDeclaration());
8857             const auto *FD2 = cast<FieldDecl>(SI->getAssociatedDeclaration());
8858             if (FD1->getParent() == FD2->getParent())
8859               return FD1->getFieldIndex() < FD2->getFieldIndex();
8860             const auto *It =
8861                 llvm::find_if(Layout, [FD1, FD2](const FieldDecl *FD) {
8862                   return FD == FD1 || FD == FD2;
8863                 });
8864             return *It == FD1;
8865           });
8866     }
8867 
8868     // Associated with a capture, because the mapping flags depend on it.
8869     // Go through all of the elements with the overlapped elements.
8870     bool IsFirstComponentList = true;
8871     for (const auto &Pair : OverlappedData) {
8872       const MapData &L = *Pair.getFirst();
8873       OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
8874       OpenMPMapClauseKind MapType;
8875       ArrayRef<OpenMPMapModifierKind> MapModifiers;
8876       bool IsImplicit;
8877       const ValueDecl *Mapper;
8878       const Expr *VarRef;
8879       std::tie(Components, MapType, MapModifiers, IsImplicit, Mapper, VarRef) =
8880           L;
8881       ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef>
8882           OverlappedComponents = Pair.getSecond();
8883       generateInfoForComponentList(
8884           MapType, MapModifiers, std::nullopt, Components, CombinedInfo,
8885           PartialStruct, IsFirstComponentList, IsImplicit, Mapper,
8886           /*ForDeviceAddr=*/false, VD, VarRef, OverlappedComponents);
8887       IsFirstComponentList = false;
8888     }
8889     // Go through other elements without overlapped elements.
8890     for (const MapData &L : DeclComponentLists) {
8891       OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
8892       OpenMPMapClauseKind MapType;
8893       ArrayRef<OpenMPMapModifierKind> MapModifiers;
8894       bool IsImplicit;
8895       const ValueDecl *Mapper;
8896       const Expr *VarRef;
8897       std::tie(Components, MapType, MapModifiers, IsImplicit, Mapper, VarRef) =
8898           L;
8899       auto It = OverlappedData.find(&L);
8900       if (It == OverlappedData.end())
8901         generateInfoForComponentList(MapType, MapModifiers, std::nullopt,
8902                                      Components, CombinedInfo, PartialStruct,
8903                                      IsFirstComponentList, IsImplicit, Mapper,
8904                                      /*ForDeviceAddr=*/false, VD, VarRef);
8905       IsFirstComponentList = false;
8906     }
8907   }
8908 
8909   /// Generate the default map information for a given capture \a CI,
8910   /// record field declaration \a RI and captured value \a CV.
generateDefaultMapInfo(const CapturedStmt::Capture & CI,const FieldDecl & RI,llvm::Value * CV,MapCombinedInfoTy & CombinedInfo) const8911   void generateDefaultMapInfo(const CapturedStmt::Capture &CI,
8912                               const FieldDecl &RI, llvm::Value *CV,
8913                               MapCombinedInfoTy &CombinedInfo) const {
8914     bool IsImplicit = true;
8915     // Do the default mapping.
8916     if (CI.capturesThis()) {
8917       CombinedInfo.Exprs.push_back(nullptr);
8918       CombinedInfo.BasePointers.push_back(CV);
8919       CombinedInfo.Pointers.push_back(CV);
8920       const auto *PtrTy = cast<PointerType>(RI.getType().getTypePtr());
8921       CombinedInfo.Sizes.push_back(
8922           CGF.Builder.CreateIntCast(CGF.getTypeSize(PtrTy->getPointeeType()),
8923                                     CGF.Int64Ty, /*isSigned=*/true));
8924       // Default map type.
8925       CombinedInfo.Types.push_back(OpenMPOffloadMappingFlags::OMP_MAP_TO |
8926                                    OpenMPOffloadMappingFlags::OMP_MAP_FROM);
8927     } else if (CI.capturesVariableByCopy()) {
8928       const VarDecl *VD = CI.getCapturedVar();
8929       CombinedInfo.Exprs.push_back(VD->getCanonicalDecl());
8930       CombinedInfo.BasePointers.push_back(CV);
8931       CombinedInfo.Pointers.push_back(CV);
8932       if (!RI.getType()->isAnyPointerType()) {
8933         // We have to signal to the runtime captures passed by value that are
8934         // not pointers.
8935         CombinedInfo.Types.push_back(
8936             OpenMPOffloadMappingFlags::OMP_MAP_LITERAL);
8937         CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast(
8938             CGF.getTypeSize(RI.getType()), CGF.Int64Ty, /*isSigned=*/true));
8939       } else {
8940         // Pointers are implicitly mapped with a zero size and no flags
8941         // (other than first map that is added for all implicit maps).
8942         CombinedInfo.Types.push_back(OpenMPOffloadMappingFlags::OMP_MAP_NONE);
8943         CombinedInfo.Sizes.push_back(llvm::Constant::getNullValue(CGF.Int64Ty));
8944       }
8945       auto I = FirstPrivateDecls.find(VD);
8946       if (I != FirstPrivateDecls.end())
8947         IsImplicit = I->getSecond();
8948     } else {
8949       assert(CI.capturesVariable() && "Expected captured reference.");
8950       const auto *PtrTy = cast<ReferenceType>(RI.getType().getTypePtr());
8951       QualType ElementType = PtrTy->getPointeeType();
8952       CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast(
8953           CGF.getTypeSize(ElementType), CGF.Int64Ty, /*isSigned=*/true));
8954       // The default map type for a scalar/complex type is 'to' because by
8955       // default the value doesn't have to be retrieved. For an aggregate
8956       // type, the default is 'tofrom'.
8957       CombinedInfo.Types.push_back(getMapModifiersForPrivateClauses(CI));
8958       const VarDecl *VD = CI.getCapturedVar();
8959       auto I = FirstPrivateDecls.find(VD);
8960       CombinedInfo.Exprs.push_back(VD->getCanonicalDecl());
8961       CombinedInfo.BasePointers.push_back(CV);
8962       if (I != FirstPrivateDecls.end() && ElementType->isAnyPointerType()) {
8963         Address PtrAddr = CGF.EmitLoadOfReference(CGF.MakeAddrLValue(
8964             CV, ElementType, CGF.getContext().getDeclAlign(VD),
8965             AlignmentSource::Decl));
8966         CombinedInfo.Pointers.push_back(PtrAddr.getPointer());
8967       } else {
8968         CombinedInfo.Pointers.push_back(CV);
8969       }
8970       if (I != FirstPrivateDecls.end())
8971         IsImplicit = I->getSecond();
8972     }
8973     // Every default map produces a single argument which is a target parameter.
8974     CombinedInfo.Types.back() |=
8975         OpenMPOffloadMappingFlags::OMP_MAP_TARGET_PARAM;
8976 
8977     // Add flag stating this is an implicit map.
8978     if (IsImplicit)
8979       CombinedInfo.Types.back() |= OpenMPOffloadMappingFlags::OMP_MAP_IMPLICIT;
8980 
8981     // No user-defined mapper for default mapping.
8982     CombinedInfo.Mappers.push_back(nullptr);
8983   }
8984 };
8985 } // anonymous namespace
8986 
emitNonContiguousDescriptor(CodeGenFunction & CGF,MappableExprsHandler::MapCombinedInfoTy & CombinedInfo,CGOpenMPRuntime::TargetDataInfo & Info)8987 static void emitNonContiguousDescriptor(
8988     CodeGenFunction &CGF, MappableExprsHandler::MapCombinedInfoTy &CombinedInfo,
8989     CGOpenMPRuntime::TargetDataInfo &Info) {
8990   CodeGenModule &CGM = CGF.CGM;
8991   MappableExprsHandler::MapCombinedInfoTy::StructNonContiguousInfo
8992       &NonContigInfo = CombinedInfo.NonContigInfo;
8993 
8994   // Build an array of struct descriptor_dim and then assign it to
8995   // offload_args.
8996   //
8997   // struct descriptor_dim {
8998   //  uint64_t offset;
8999   //  uint64_t count;
9000   //  uint64_t stride
9001   // };
9002   ASTContext &C = CGF.getContext();
9003   QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0);
9004   RecordDecl *RD;
9005   RD = C.buildImplicitRecord("descriptor_dim");
9006   RD->startDefinition();
9007   addFieldToRecordDecl(C, RD, Int64Ty);
9008   addFieldToRecordDecl(C, RD, Int64Ty);
9009   addFieldToRecordDecl(C, RD, Int64Ty);
9010   RD->completeDefinition();
9011   QualType DimTy = C.getRecordType(RD);
9012 
9013   enum { OffsetFD = 0, CountFD, StrideFD };
9014   // We need two index variable here since the size of "Dims" is the same as the
9015   // size of Components, however, the size of offset, count, and stride is equal
9016   // to the size of base declaration that is non-contiguous.
9017   for (unsigned I = 0, L = 0, E = NonContigInfo.Dims.size(); I < E; ++I) {
9018     // Skip emitting ir if dimension size is 1 since it cannot be
9019     // non-contiguous.
9020     if (NonContigInfo.Dims[I] == 1)
9021       continue;
9022     llvm::APInt Size(/*numBits=*/32, NonContigInfo.Dims[I]);
9023     QualType ArrayTy =
9024         C.getConstantArrayType(DimTy, Size, nullptr, ArrayType::Normal, 0);
9025     Address DimsAddr = CGF.CreateMemTemp(ArrayTy, "dims");
9026     for (unsigned II = 0, EE = NonContigInfo.Dims[I]; II < EE; ++II) {
9027       unsigned RevIdx = EE - II - 1;
9028       LValue DimsLVal = CGF.MakeAddrLValue(
9029           CGF.Builder.CreateConstArrayGEP(DimsAddr, II), DimTy);
9030       // Offset
9031       LValue OffsetLVal = CGF.EmitLValueForField(
9032           DimsLVal, *std::next(RD->field_begin(), OffsetFD));
9033       CGF.EmitStoreOfScalar(NonContigInfo.Offsets[L][RevIdx], OffsetLVal);
9034       // Count
9035       LValue CountLVal = CGF.EmitLValueForField(
9036           DimsLVal, *std::next(RD->field_begin(), CountFD));
9037       CGF.EmitStoreOfScalar(NonContigInfo.Counts[L][RevIdx], CountLVal);
9038       // Stride
9039       LValue StrideLVal = CGF.EmitLValueForField(
9040           DimsLVal, *std::next(RD->field_begin(), StrideFD));
9041       CGF.EmitStoreOfScalar(NonContigInfo.Strides[L][RevIdx], StrideLVal);
9042     }
9043     // args[I] = &dims
9044     Address DAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
9045         DimsAddr, CGM.Int8PtrTy, CGM.Int8Ty);
9046     llvm::Value *P = CGF.Builder.CreateConstInBoundsGEP2_32(
9047         llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
9048         Info.RTArgs.PointersArray, 0, I);
9049     Address PAddr(P, CGM.VoidPtrTy, CGF.getPointerAlign());
9050     CGF.Builder.CreateStore(DAddr.getPointer(), PAddr);
9051     ++L;
9052   }
9053 }
9054 
9055 // Try to extract the base declaration from a `this->x` expression if possible.
getDeclFromThisExpr(const Expr * E)9056 static ValueDecl *getDeclFromThisExpr(const Expr *E) {
9057   if (!E)
9058     return nullptr;
9059 
9060   if (const auto *OASE = dyn_cast<OMPArraySectionExpr>(E->IgnoreParenCasts()))
9061     if (const MemberExpr *ME =
9062             dyn_cast<MemberExpr>(OASE->getBase()->IgnoreParenImpCasts()))
9063       return ME->getMemberDecl();
9064   return nullptr;
9065 }
9066 
9067 /// Emit a string constant containing the names of the values mapped to the
9068 /// offloading runtime library.
9069 llvm::Constant *
emitMappingInformation(CodeGenFunction & CGF,llvm::OpenMPIRBuilder & OMPBuilder,MappableExprsHandler::MappingExprInfo & MapExprs)9070 emitMappingInformation(CodeGenFunction &CGF, llvm::OpenMPIRBuilder &OMPBuilder,
9071                        MappableExprsHandler::MappingExprInfo &MapExprs) {
9072 
9073   uint32_t SrcLocStrSize;
9074   if (!MapExprs.getMapDecl() && !MapExprs.getMapExpr())
9075     return OMPBuilder.getOrCreateDefaultSrcLocStr(SrcLocStrSize);
9076 
9077   SourceLocation Loc;
9078   if (!MapExprs.getMapDecl() && MapExprs.getMapExpr()) {
9079     if (const ValueDecl *VD = getDeclFromThisExpr(MapExprs.getMapExpr()))
9080       Loc = VD->getLocation();
9081     else
9082       Loc = MapExprs.getMapExpr()->getExprLoc();
9083   } else {
9084     Loc = MapExprs.getMapDecl()->getLocation();
9085   }
9086 
9087   std::string ExprName;
9088   if (MapExprs.getMapExpr()) {
9089     PrintingPolicy P(CGF.getContext().getLangOpts());
9090     llvm::raw_string_ostream OS(ExprName);
9091     MapExprs.getMapExpr()->printPretty(OS, nullptr, P);
9092     OS.flush();
9093   } else {
9094     ExprName = MapExprs.getMapDecl()->getNameAsString();
9095   }
9096 
9097   PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc);
9098   return OMPBuilder.getOrCreateSrcLocStr(PLoc.getFilename(), ExprName,
9099                                          PLoc.getLine(), PLoc.getColumn(),
9100                                          SrcLocStrSize);
9101 }
9102 
9103 /// Emit the arrays used to pass the captures and map information to the
9104 /// offloading runtime library. If there is no map or capture information,
9105 /// return nullptr by reference.
emitOffloadingArrays(CodeGenFunction & CGF,MappableExprsHandler::MapCombinedInfoTy & CombinedInfo,CGOpenMPRuntime::TargetDataInfo & Info,llvm::OpenMPIRBuilder & OMPBuilder,bool IsNonContiguous=false)9106 static void emitOffloadingArrays(
9107     CodeGenFunction &CGF, MappableExprsHandler::MapCombinedInfoTy &CombinedInfo,
9108     CGOpenMPRuntime::TargetDataInfo &Info, llvm::OpenMPIRBuilder &OMPBuilder,
9109     bool IsNonContiguous = false) {
9110   CodeGenModule &CGM = CGF.CGM;
9111   ASTContext &Ctx = CGF.getContext();
9112 
9113   // Reset the array information.
9114   Info.clearArrayInfo();
9115   Info.NumberOfPtrs = CombinedInfo.BasePointers.size();
9116 
9117   if (Info.NumberOfPtrs) {
9118     // Detect if we have any capture size requiring runtime evaluation of the
9119     // size so that a constant array could be eventually used.
9120 
9121     llvm::APInt PointerNumAP(32, Info.NumberOfPtrs, /*isSigned=*/true);
9122     QualType PointerArrayType = Ctx.getConstantArrayType(
9123         Ctx.VoidPtrTy, PointerNumAP, nullptr, ArrayType::Normal,
9124         /*IndexTypeQuals=*/0);
9125 
9126     Info.RTArgs.BasePointersArray =
9127         CGF.CreateMemTemp(PointerArrayType, ".offload_baseptrs").getPointer();
9128     Info.RTArgs.PointersArray =
9129         CGF.CreateMemTemp(PointerArrayType, ".offload_ptrs").getPointer();
9130     Address MappersArray =
9131         CGF.CreateMemTemp(PointerArrayType, ".offload_mappers");
9132     Info.RTArgs.MappersArray = MappersArray.getPointer();
9133 
9134     // If we don't have any VLA types or other types that require runtime
9135     // evaluation, we can use a constant array for the map sizes, otherwise we
9136     // need to fill up the arrays as we do for the pointers.
9137     QualType Int64Ty =
9138         Ctx.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
9139     SmallVector<llvm::Constant *> ConstSizes(
9140         CombinedInfo.Sizes.size(), llvm::ConstantInt::get(CGF.Int64Ty, 0));
9141     llvm::SmallBitVector RuntimeSizes(CombinedInfo.Sizes.size());
9142     for (unsigned I = 0, E = CombinedInfo.Sizes.size(); I < E; ++I) {
9143       if (auto *CI = dyn_cast<llvm::Constant>(CombinedInfo.Sizes[I])) {
9144         if (!isa<llvm::ConstantExpr>(CI) && !isa<llvm::GlobalValue>(CI)) {
9145           if (IsNonContiguous &&
9146               static_cast<std::underlying_type_t<OpenMPOffloadMappingFlags>>(
9147                   CombinedInfo.Types[I] &
9148                   OpenMPOffloadMappingFlags::OMP_MAP_NON_CONTIG))
9149             ConstSizes[I] = llvm::ConstantInt::get(
9150                 CGF.Int64Ty, CombinedInfo.NonContigInfo.Dims[I]);
9151           else
9152             ConstSizes[I] = CI;
9153           continue;
9154         }
9155       }
9156       RuntimeSizes.set(I);
9157     }
9158 
9159     if (RuntimeSizes.all()) {
9160       QualType SizeArrayType = Ctx.getConstantArrayType(
9161           Int64Ty, PointerNumAP, nullptr, ArrayType::Normal,
9162           /*IndexTypeQuals=*/0);
9163       Info.RTArgs.SizesArray =
9164           CGF.CreateMemTemp(SizeArrayType, ".offload_sizes").getPointer();
9165     } else {
9166       auto *SizesArrayInit = llvm::ConstantArray::get(
9167           llvm::ArrayType::get(CGM.Int64Ty, ConstSizes.size()), ConstSizes);
9168       std::string Name = CGM.getOpenMPRuntime().getName({"offload_sizes"});
9169       auto *SizesArrayGbl = new llvm::GlobalVariable(
9170           CGM.getModule(), SizesArrayInit->getType(), /*isConstant=*/true,
9171           llvm::GlobalValue::PrivateLinkage, SizesArrayInit, Name);
9172       SizesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
9173       if (RuntimeSizes.any()) {
9174         QualType SizeArrayType = Ctx.getConstantArrayType(
9175             Int64Ty, PointerNumAP, nullptr, ArrayType::Normal,
9176             /*IndexTypeQuals=*/0);
9177         Address Buffer = CGF.CreateMemTemp(SizeArrayType, ".offload_sizes");
9178         llvm::Value *GblConstPtr =
9179             CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
9180                 SizesArrayGbl, CGM.Int64Ty->getPointerTo());
9181         CGF.Builder.CreateMemCpy(
9182             Buffer,
9183             Address(GblConstPtr, CGM.Int64Ty,
9184                     CGM.getNaturalTypeAlignment(Ctx.getIntTypeForBitwidth(
9185                         /*DestWidth=*/64, /*Signed=*/false))),
9186             CGF.getTypeSize(SizeArrayType));
9187         Info.RTArgs.SizesArray = Buffer.getPointer();
9188       } else {
9189         Info.RTArgs.SizesArray = SizesArrayGbl;
9190       }
9191     }
9192 
9193     // The map types are always constant so we don't need to generate code to
9194     // fill arrays. Instead, we create an array constant.
9195     SmallVector<uint64_t, 4> Mapping;
9196     for (auto mapFlag : CombinedInfo.Types)
9197       Mapping.push_back(
9198           static_cast<std::underlying_type_t<OpenMPOffloadMappingFlags>>(
9199               mapFlag));
9200     std::string MaptypesName =
9201         CGM.getOpenMPRuntime().getName({"offload_maptypes"});
9202     auto *MapTypesArrayGbl =
9203         OMPBuilder.createOffloadMaptypes(Mapping, MaptypesName);
9204     Info.RTArgs.MapTypesArray = MapTypesArrayGbl;
9205 
9206     // The information types are only built if there is debug information
9207     // requested.
9208     if (CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo) {
9209       Info.RTArgs.MapNamesArray = llvm::Constant::getNullValue(
9210           llvm::Type::getInt8Ty(CGF.Builder.getContext())->getPointerTo());
9211     } else {
9212       auto fillInfoMap = [&](MappableExprsHandler::MappingExprInfo &MapExpr) {
9213         return emitMappingInformation(CGF, OMPBuilder, MapExpr);
9214       };
9215       SmallVector<llvm::Constant *, 4> InfoMap(CombinedInfo.Exprs.size());
9216       llvm::transform(CombinedInfo.Exprs, InfoMap.begin(), fillInfoMap);
9217       std::string MapnamesName =
9218           CGM.getOpenMPRuntime().getName({"offload_mapnames"});
9219       auto *MapNamesArrayGbl =
9220           OMPBuilder.createOffloadMapnames(InfoMap, MapnamesName);
9221       Info.RTArgs.MapNamesArray = MapNamesArrayGbl;
9222     }
9223 
9224     // If there's a present map type modifier, it must not be applied to the end
9225     // of a region, so generate a separate map type array in that case.
9226     if (Info.separateBeginEndCalls()) {
9227       bool EndMapTypesDiffer = false;
9228       for (uint64_t &Type : Mapping) {
9229         if (Type &
9230             static_cast<std::underlying_type_t<OpenMPOffloadMappingFlags>>(
9231                 OpenMPOffloadMappingFlags::OMP_MAP_PRESENT)) {
9232           Type &=
9233               ~static_cast<std::underlying_type_t<OpenMPOffloadMappingFlags>>(
9234                   OpenMPOffloadMappingFlags::OMP_MAP_PRESENT);
9235           EndMapTypesDiffer = true;
9236         }
9237       }
9238       if (EndMapTypesDiffer) {
9239         MapTypesArrayGbl =
9240             OMPBuilder.createOffloadMaptypes(Mapping, MaptypesName);
9241         Info.RTArgs.MapTypesArrayEnd = MapTypesArrayGbl;
9242       }
9243     }
9244 
9245     for (unsigned I = 0; I < Info.NumberOfPtrs; ++I) {
9246       llvm::Value *BPVal = *CombinedInfo.BasePointers[I];
9247       llvm::Value *BP = CGF.Builder.CreateConstInBoundsGEP2_32(
9248           llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
9249           Info.RTArgs.BasePointersArray, 0, I);
9250       BP = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
9251           BP, BPVal->getType()->getPointerTo(/*AddrSpace=*/0));
9252       Address BPAddr(BP, BPVal->getType(),
9253                      Ctx.getTypeAlignInChars(Ctx.VoidPtrTy));
9254       CGF.Builder.CreateStore(BPVal, BPAddr);
9255 
9256       if (Info.requiresDevicePointerInfo())
9257         if (const ValueDecl *DevVD =
9258                 CombinedInfo.BasePointers[I].getDevicePtrDecl())
9259           Info.CaptureDeviceAddrMap.try_emplace(DevVD, BPAddr);
9260 
9261       llvm::Value *PVal = CombinedInfo.Pointers[I];
9262       llvm::Value *P = CGF.Builder.CreateConstInBoundsGEP2_32(
9263           llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
9264           Info.RTArgs.PointersArray, 0, I);
9265       P = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
9266           P, PVal->getType()->getPointerTo(/*AddrSpace=*/0));
9267       Address PAddr(P, PVal->getType(), Ctx.getTypeAlignInChars(Ctx.VoidPtrTy));
9268       CGF.Builder.CreateStore(PVal, PAddr);
9269 
9270       if (RuntimeSizes.test(I)) {
9271         llvm::Value *S = CGF.Builder.CreateConstInBoundsGEP2_32(
9272             llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs),
9273             Info.RTArgs.SizesArray,
9274             /*Idx0=*/0,
9275             /*Idx1=*/I);
9276         Address SAddr(S, CGM.Int64Ty, Ctx.getTypeAlignInChars(Int64Ty));
9277         CGF.Builder.CreateStore(CGF.Builder.CreateIntCast(CombinedInfo.Sizes[I],
9278                                                           CGM.Int64Ty,
9279                                                           /*isSigned=*/true),
9280                                 SAddr);
9281       }
9282 
9283       // Fill up the mapper array.
9284       llvm::Value *MFunc = llvm::ConstantPointerNull::get(CGM.VoidPtrTy);
9285       if (CombinedInfo.Mappers[I]) {
9286         MFunc = CGM.getOpenMPRuntime().getOrCreateUserDefinedMapperFunc(
9287             cast<OMPDeclareMapperDecl>(CombinedInfo.Mappers[I]));
9288         MFunc = CGF.Builder.CreatePointerCast(MFunc, CGM.VoidPtrTy);
9289         Info.HasMapper = true;
9290       }
9291       Address MAddr = CGF.Builder.CreateConstArrayGEP(MappersArray, I);
9292       CGF.Builder.CreateStore(MFunc, MAddr);
9293     }
9294   }
9295 
9296   if (!IsNonContiguous || CombinedInfo.NonContigInfo.Offsets.empty() ||
9297       Info.NumberOfPtrs == 0)
9298     return;
9299 
9300   emitNonContiguousDescriptor(CGF, CombinedInfo, Info);
9301 }
9302 
9303 /// Check for inner distribute directive.
9304 static const OMPExecutableDirective *
getNestedDistributeDirective(ASTContext & Ctx,const OMPExecutableDirective & D)9305 getNestedDistributeDirective(ASTContext &Ctx, const OMPExecutableDirective &D) {
9306   const auto *CS = D.getInnermostCapturedStmt();
9307   const auto *Body =
9308       CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
9309   const Stmt *ChildStmt =
9310       CGOpenMPSIMDRuntime::getSingleCompoundChild(Ctx, Body);
9311 
9312   if (const auto *NestedDir =
9313           dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
9314     OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
9315     switch (D.getDirectiveKind()) {
9316     case OMPD_target:
9317       if (isOpenMPDistributeDirective(DKind))
9318         return NestedDir;
9319       if (DKind == OMPD_teams) {
9320         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
9321             /*IgnoreCaptured=*/true);
9322         if (!Body)
9323           return nullptr;
9324         ChildStmt = CGOpenMPSIMDRuntime::getSingleCompoundChild(Ctx, Body);
9325         if (const auto *NND =
9326                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
9327           DKind = NND->getDirectiveKind();
9328           if (isOpenMPDistributeDirective(DKind))
9329             return NND;
9330         }
9331       }
9332       return nullptr;
9333     case OMPD_target_teams:
9334       if (isOpenMPDistributeDirective(DKind))
9335         return NestedDir;
9336       return nullptr;
9337     case OMPD_target_parallel:
9338     case OMPD_target_simd:
9339     case OMPD_target_parallel_for:
9340     case OMPD_target_parallel_for_simd:
9341       return nullptr;
9342     case OMPD_target_teams_distribute:
9343     case OMPD_target_teams_distribute_simd:
9344     case OMPD_target_teams_distribute_parallel_for:
9345     case OMPD_target_teams_distribute_parallel_for_simd:
9346     case OMPD_parallel:
9347     case OMPD_for:
9348     case OMPD_parallel_for:
9349     case OMPD_parallel_master:
9350     case OMPD_parallel_sections:
9351     case OMPD_for_simd:
9352     case OMPD_parallel_for_simd:
9353     case OMPD_cancel:
9354     case OMPD_cancellation_point:
9355     case OMPD_ordered:
9356     case OMPD_threadprivate:
9357     case OMPD_allocate:
9358     case OMPD_task:
9359     case OMPD_simd:
9360     case OMPD_tile:
9361     case OMPD_unroll:
9362     case OMPD_sections:
9363     case OMPD_section:
9364     case OMPD_single:
9365     case OMPD_master:
9366     case OMPD_critical:
9367     case OMPD_taskyield:
9368     case OMPD_barrier:
9369     case OMPD_taskwait:
9370     case OMPD_taskgroup:
9371     case OMPD_atomic:
9372     case OMPD_flush:
9373     case OMPD_depobj:
9374     case OMPD_scan:
9375     case OMPD_teams:
9376     case OMPD_target_data:
9377     case OMPD_target_exit_data:
9378     case OMPD_target_enter_data:
9379     case OMPD_distribute:
9380     case OMPD_distribute_simd:
9381     case OMPD_distribute_parallel_for:
9382     case OMPD_distribute_parallel_for_simd:
9383     case OMPD_teams_distribute:
9384     case OMPD_teams_distribute_simd:
9385     case OMPD_teams_distribute_parallel_for:
9386     case OMPD_teams_distribute_parallel_for_simd:
9387     case OMPD_target_update:
9388     case OMPD_declare_simd:
9389     case OMPD_declare_variant:
9390     case OMPD_begin_declare_variant:
9391     case OMPD_end_declare_variant:
9392     case OMPD_declare_target:
9393     case OMPD_end_declare_target:
9394     case OMPD_declare_reduction:
9395     case OMPD_declare_mapper:
9396     case OMPD_taskloop:
9397     case OMPD_taskloop_simd:
9398     case OMPD_master_taskloop:
9399     case OMPD_master_taskloop_simd:
9400     case OMPD_parallel_master_taskloop:
9401     case OMPD_parallel_master_taskloop_simd:
9402     case OMPD_requires:
9403     case OMPD_metadirective:
9404     case OMPD_unknown:
9405     default:
9406       llvm_unreachable("Unexpected directive.");
9407     }
9408   }
9409 
9410   return nullptr;
9411 }
9412 
9413 /// Emit the user-defined mapper function. The code generation follows the
9414 /// pattern in the example below.
9415 /// \code
9416 /// void .omp_mapper.<type_name>.<mapper_id>.(void *rt_mapper_handle,
9417 ///                                           void *base, void *begin,
9418 ///                                           int64_t size, int64_t type,
9419 ///                                           void *name = nullptr) {
9420 ///   // Allocate space for an array section first or add a base/begin for
9421 ///   // pointer dereference.
9422 ///   if ((size > 1 || (base != begin && maptype.IsPtrAndObj)) &&
9423 ///       !maptype.IsDelete)
9424 ///     __tgt_push_mapper_component(rt_mapper_handle, base, begin,
9425 ///                                 size*sizeof(Ty), clearToFromMember(type));
9426 ///   // Map members.
9427 ///   for (unsigned i = 0; i < size; i++) {
9428 ///     // For each component specified by this mapper:
9429 ///     for (auto c : begin[i]->all_components) {
9430 ///       if (c.hasMapper())
9431 ///         (*c.Mapper())(rt_mapper_handle, c.arg_base, c.arg_begin, c.arg_size,
9432 ///                       c.arg_type, c.arg_name);
9433 ///       else
9434 ///         __tgt_push_mapper_component(rt_mapper_handle, c.arg_base,
9435 ///                                     c.arg_begin, c.arg_size, c.arg_type,
9436 ///                                     c.arg_name);
9437 ///     }
9438 ///   }
9439 ///   // Delete the array section.
9440 ///   if (size > 1 && maptype.IsDelete)
9441 ///     __tgt_push_mapper_component(rt_mapper_handle, base, begin,
9442 ///                                 size*sizeof(Ty), clearToFromMember(type));
9443 /// }
9444 /// \endcode
emitUserDefinedMapper(const OMPDeclareMapperDecl * D,CodeGenFunction * CGF)9445 void CGOpenMPRuntime::emitUserDefinedMapper(const OMPDeclareMapperDecl *D,
9446                                             CodeGenFunction *CGF) {
9447   if (UDMMap.count(D) > 0)
9448     return;
9449   ASTContext &C = CGM.getContext();
9450   QualType Ty = D->getType();
9451   QualType PtrTy = C.getPointerType(Ty).withRestrict();
9452   QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/true);
9453   auto *MapperVarDecl =
9454       cast<VarDecl>(cast<DeclRefExpr>(D->getMapperVarRef())->getDecl());
9455   SourceLocation Loc = D->getLocation();
9456   CharUnits ElementSize = C.getTypeSizeInChars(Ty);
9457   llvm::Type *ElemTy = CGM.getTypes().ConvertTypeForMem(Ty);
9458 
9459   // Prepare mapper function arguments and attributes.
9460   ImplicitParamDecl HandleArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
9461                               C.VoidPtrTy, ImplicitParamDecl::Other);
9462   ImplicitParamDecl BaseArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
9463                             ImplicitParamDecl::Other);
9464   ImplicitParamDecl BeginArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
9465                              C.VoidPtrTy, ImplicitParamDecl::Other);
9466   ImplicitParamDecl SizeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, Int64Ty,
9467                             ImplicitParamDecl::Other);
9468   ImplicitParamDecl TypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, Int64Ty,
9469                             ImplicitParamDecl::Other);
9470   ImplicitParamDecl NameArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
9471                             ImplicitParamDecl::Other);
9472   FunctionArgList Args;
9473   Args.push_back(&HandleArg);
9474   Args.push_back(&BaseArg);
9475   Args.push_back(&BeginArg);
9476   Args.push_back(&SizeArg);
9477   Args.push_back(&TypeArg);
9478   Args.push_back(&NameArg);
9479   const CGFunctionInfo &FnInfo =
9480       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
9481   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
9482   SmallString<64> TyStr;
9483   llvm::raw_svector_ostream Out(TyStr);
9484   CGM.getCXXABI().getMangleContext().mangleTypeName(Ty, Out);
9485   std::string Name = getName({"omp_mapper", TyStr, D->getName()});
9486   auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
9487                                     Name, &CGM.getModule());
9488   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
9489   Fn->removeFnAttr(llvm::Attribute::OptimizeNone);
9490   // Start the mapper function code generation.
9491   CodeGenFunction MapperCGF(CGM);
9492   MapperCGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
9493   // Compute the starting and end addresses of array elements.
9494   llvm::Value *Size = MapperCGF.EmitLoadOfScalar(
9495       MapperCGF.GetAddrOfLocalVar(&SizeArg), /*Volatile=*/false,
9496       C.getPointerType(Int64Ty), Loc);
9497   // Prepare common arguments for array initiation and deletion.
9498   llvm::Value *Handle = MapperCGF.EmitLoadOfScalar(
9499       MapperCGF.GetAddrOfLocalVar(&HandleArg),
9500       /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
9501   llvm::Value *BaseIn = MapperCGF.EmitLoadOfScalar(
9502       MapperCGF.GetAddrOfLocalVar(&BaseArg),
9503       /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
9504   llvm::Value *BeginIn = MapperCGF.EmitLoadOfScalar(
9505       MapperCGF.GetAddrOfLocalVar(&BeginArg),
9506       /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
9507   // Convert the size in bytes into the number of array elements.
9508   Size = MapperCGF.Builder.CreateExactUDiv(
9509       Size, MapperCGF.Builder.getInt64(ElementSize.getQuantity()));
9510   llvm::Value *PtrBegin = MapperCGF.Builder.CreateBitCast(
9511       BeginIn, CGM.getTypes().ConvertTypeForMem(PtrTy));
9512   llvm::Value *PtrEnd = MapperCGF.Builder.CreateGEP(ElemTy, PtrBegin, Size);
9513   llvm::Value *MapType = MapperCGF.EmitLoadOfScalar(
9514       MapperCGF.GetAddrOfLocalVar(&TypeArg), /*Volatile=*/false,
9515       C.getPointerType(Int64Ty), Loc);
9516   llvm::Value *MapName = MapperCGF.EmitLoadOfScalar(
9517       MapperCGF.GetAddrOfLocalVar(&NameArg),
9518       /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
9519 
9520   // Emit array initiation if this is an array section and \p MapType indicates
9521   // that memory allocation is required.
9522   llvm::BasicBlock *HeadBB = MapperCGF.createBasicBlock("omp.arraymap.head");
9523   emitUDMapperArrayInitOrDel(MapperCGF, Handle, BaseIn, BeginIn, Size, MapType,
9524                              MapName, ElementSize, HeadBB, /*IsInit=*/true);
9525 
9526   // Emit a for loop to iterate through SizeArg of elements and map all of them.
9527 
9528   // Emit the loop header block.
9529   MapperCGF.EmitBlock(HeadBB);
9530   llvm::BasicBlock *BodyBB = MapperCGF.createBasicBlock("omp.arraymap.body");
9531   llvm::BasicBlock *DoneBB = MapperCGF.createBasicBlock("omp.done");
9532   // Evaluate whether the initial condition is satisfied.
9533   llvm::Value *IsEmpty =
9534       MapperCGF.Builder.CreateICmpEQ(PtrBegin, PtrEnd, "omp.arraymap.isempty");
9535   MapperCGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
9536   llvm::BasicBlock *EntryBB = MapperCGF.Builder.GetInsertBlock();
9537 
9538   // Emit the loop body block.
9539   MapperCGF.EmitBlock(BodyBB);
9540   llvm::BasicBlock *LastBB = BodyBB;
9541   llvm::PHINode *PtrPHI = MapperCGF.Builder.CreatePHI(
9542       PtrBegin->getType(), 2, "omp.arraymap.ptrcurrent");
9543   PtrPHI->addIncoming(PtrBegin, EntryBB);
9544   Address PtrCurrent(PtrPHI, ElemTy,
9545                      MapperCGF.GetAddrOfLocalVar(&BeginArg)
9546                          .getAlignment()
9547                          .alignmentOfArrayElement(ElementSize));
9548   // Privatize the declared variable of mapper to be the current array element.
9549   CodeGenFunction::OMPPrivateScope Scope(MapperCGF);
9550   Scope.addPrivate(MapperVarDecl, PtrCurrent);
9551   (void)Scope.Privatize();
9552 
9553   // Get map clause information. Fill up the arrays with all mapped variables.
9554   MappableExprsHandler::MapCombinedInfoTy Info;
9555   MappableExprsHandler MEHandler(*D, MapperCGF);
9556   MEHandler.generateAllInfoForMapper(Info);
9557 
9558   // Call the runtime API __tgt_mapper_num_components to get the number of
9559   // pre-existing components.
9560   llvm::Value *OffloadingArgs[] = {Handle};
9561   llvm::Value *PreviousSize = MapperCGF.EmitRuntimeCall(
9562       OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
9563                                             OMPRTL___tgt_mapper_num_components),
9564       OffloadingArgs);
9565   llvm::Value *ShiftedPreviousSize = MapperCGF.Builder.CreateShl(
9566       PreviousSize,
9567       MapperCGF.Builder.getInt64(MappableExprsHandler::getFlagMemberOffset()));
9568 
9569   // Fill up the runtime mapper handle for all components.
9570   for (unsigned I = 0; I < Info.BasePointers.size(); ++I) {
9571     llvm::Value *CurBaseArg = MapperCGF.Builder.CreateBitCast(
9572         *Info.BasePointers[I], CGM.getTypes().ConvertTypeForMem(C.VoidPtrTy));
9573     llvm::Value *CurBeginArg = MapperCGF.Builder.CreateBitCast(
9574         Info.Pointers[I], CGM.getTypes().ConvertTypeForMem(C.VoidPtrTy));
9575     llvm::Value *CurSizeArg = Info.Sizes[I];
9576     llvm::Value *CurNameArg =
9577         (CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo)
9578             ? llvm::ConstantPointerNull::get(CGM.VoidPtrTy)
9579             : emitMappingInformation(MapperCGF, OMPBuilder, Info.Exprs[I]);
9580 
9581     // Extract the MEMBER_OF field from the map type.
9582     llvm::Value *OriMapType = MapperCGF.Builder.getInt64(
9583         static_cast<std::underlying_type_t<OpenMPOffloadMappingFlags>>(
9584             Info.Types[I]));
9585     llvm::Value *MemberMapType =
9586         MapperCGF.Builder.CreateNUWAdd(OriMapType, ShiftedPreviousSize);
9587 
9588     // Combine the map type inherited from user-defined mapper with that
9589     // specified in the program. According to the OMP_MAP_TO and OMP_MAP_FROM
9590     // bits of the \a MapType, which is the input argument of the mapper
9591     // function, the following code will set the OMP_MAP_TO and OMP_MAP_FROM
9592     // bits of MemberMapType.
9593     // [OpenMP 5.0], 1.2.6. map-type decay.
9594     //        | alloc |  to   | from  | tofrom | release | delete
9595     // ----------------------------------------------------------
9596     // alloc  | alloc | alloc | alloc | alloc  | release | delete
9597     // to     | alloc |  to   | alloc |   to   | release | delete
9598     // from   | alloc | alloc | from  |  from  | release | delete
9599     // tofrom | alloc |  to   | from  | tofrom | release | delete
9600     llvm::Value *LeftToFrom = MapperCGF.Builder.CreateAnd(
9601         MapType,
9602         MapperCGF.Builder.getInt64(
9603             static_cast<std::underlying_type_t<OpenMPOffloadMappingFlags>>(
9604                 OpenMPOffloadMappingFlags::OMP_MAP_TO |
9605                 OpenMPOffloadMappingFlags::OMP_MAP_FROM)));
9606     llvm::BasicBlock *AllocBB = MapperCGF.createBasicBlock("omp.type.alloc");
9607     llvm::BasicBlock *AllocElseBB =
9608         MapperCGF.createBasicBlock("omp.type.alloc.else");
9609     llvm::BasicBlock *ToBB = MapperCGF.createBasicBlock("omp.type.to");
9610     llvm::BasicBlock *ToElseBB = MapperCGF.createBasicBlock("omp.type.to.else");
9611     llvm::BasicBlock *FromBB = MapperCGF.createBasicBlock("omp.type.from");
9612     llvm::BasicBlock *EndBB = MapperCGF.createBasicBlock("omp.type.end");
9613     llvm::Value *IsAlloc = MapperCGF.Builder.CreateIsNull(LeftToFrom);
9614     MapperCGF.Builder.CreateCondBr(IsAlloc, AllocBB, AllocElseBB);
9615     // In case of alloc, clear OMP_MAP_TO and OMP_MAP_FROM.
9616     MapperCGF.EmitBlock(AllocBB);
9617     llvm::Value *AllocMapType = MapperCGF.Builder.CreateAnd(
9618         MemberMapType,
9619         MapperCGF.Builder.getInt64(
9620             ~static_cast<std::underlying_type_t<OpenMPOffloadMappingFlags>>(
9621                 OpenMPOffloadMappingFlags::OMP_MAP_TO |
9622                 OpenMPOffloadMappingFlags::OMP_MAP_FROM)));
9623     MapperCGF.Builder.CreateBr(EndBB);
9624     MapperCGF.EmitBlock(AllocElseBB);
9625     llvm::Value *IsTo = MapperCGF.Builder.CreateICmpEQ(
9626         LeftToFrom,
9627         MapperCGF.Builder.getInt64(
9628             static_cast<std::underlying_type_t<OpenMPOffloadMappingFlags>>(
9629                 OpenMPOffloadMappingFlags::OMP_MAP_TO)));
9630     MapperCGF.Builder.CreateCondBr(IsTo, ToBB, ToElseBB);
9631     // In case of to, clear OMP_MAP_FROM.
9632     MapperCGF.EmitBlock(ToBB);
9633     llvm::Value *ToMapType = MapperCGF.Builder.CreateAnd(
9634         MemberMapType,
9635         MapperCGF.Builder.getInt64(
9636             ~static_cast<std::underlying_type_t<OpenMPOffloadMappingFlags>>(
9637                 OpenMPOffloadMappingFlags::OMP_MAP_FROM)));
9638     MapperCGF.Builder.CreateBr(EndBB);
9639     MapperCGF.EmitBlock(ToElseBB);
9640     llvm::Value *IsFrom = MapperCGF.Builder.CreateICmpEQ(
9641         LeftToFrom,
9642         MapperCGF.Builder.getInt64(
9643             static_cast<std::underlying_type_t<OpenMPOffloadMappingFlags>>(
9644                 OpenMPOffloadMappingFlags::OMP_MAP_FROM)));
9645     MapperCGF.Builder.CreateCondBr(IsFrom, FromBB, EndBB);
9646     // In case of from, clear OMP_MAP_TO.
9647     MapperCGF.EmitBlock(FromBB);
9648     llvm::Value *FromMapType = MapperCGF.Builder.CreateAnd(
9649         MemberMapType,
9650         MapperCGF.Builder.getInt64(
9651             ~static_cast<std::underlying_type_t<OpenMPOffloadMappingFlags>>(
9652                 OpenMPOffloadMappingFlags::OMP_MAP_TO)));
9653     // In case of tofrom, do nothing.
9654     MapperCGF.EmitBlock(EndBB);
9655     LastBB = EndBB;
9656     llvm::PHINode *CurMapType =
9657         MapperCGF.Builder.CreatePHI(CGM.Int64Ty, 4, "omp.maptype");
9658     CurMapType->addIncoming(AllocMapType, AllocBB);
9659     CurMapType->addIncoming(ToMapType, ToBB);
9660     CurMapType->addIncoming(FromMapType, FromBB);
9661     CurMapType->addIncoming(MemberMapType, ToElseBB);
9662 
9663     llvm::Value *OffloadingArgs[] = {Handle,     CurBaseArg, CurBeginArg,
9664                                      CurSizeArg, CurMapType, CurNameArg};
9665     if (Info.Mappers[I]) {
9666       // Call the corresponding mapper function.
9667       llvm::Function *MapperFunc = getOrCreateUserDefinedMapperFunc(
9668           cast<OMPDeclareMapperDecl>(Info.Mappers[I]));
9669       assert(MapperFunc && "Expect a valid mapper function is available.");
9670       MapperCGF.EmitNounwindRuntimeCall(MapperFunc, OffloadingArgs);
9671     } else {
9672       // Call the runtime API __tgt_push_mapper_component to fill up the runtime
9673       // data structure.
9674       MapperCGF.EmitRuntimeCall(
9675           OMPBuilder.getOrCreateRuntimeFunction(
9676               CGM.getModule(), OMPRTL___tgt_push_mapper_component),
9677           OffloadingArgs);
9678     }
9679   }
9680 
9681   // Update the pointer to point to the next element that needs to be mapped,
9682   // and check whether we have mapped all elements.
9683   llvm::Value *PtrNext = MapperCGF.Builder.CreateConstGEP1_32(
9684       ElemTy, PtrPHI, /*Idx0=*/1, "omp.arraymap.next");
9685   PtrPHI->addIncoming(PtrNext, LastBB);
9686   llvm::Value *IsDone =
9687       MapperCGF.Builder.CreateICmpEQ(PtrNext, PtrEnd, "omp.arraymap.isdone");
9688   llvm::BasicBlock *ExitBB = MapperCGF.createBasicBlock("omp.arraymap.exit");
9689   MapperCGF.Builder.CreateCondBr(IsDone, ExitBB, BodyBB);
9690 
9691   MapperCGF.EmitBlock(ExitBB);
9692   // Emit array deletion if this is an array section and \p MapType indicates
9693   // that deletion is required.
9694   emitUDMapperArrayInitOrDel(MapperCGF, Handle, BaseIn, BeginIn, Size, MapType,
9695                              MapName, ElementSize, DoneBB, /*IsInit=*/false);
9696 
9697   // Emit the function exit block.
9698   MapperCGF.EmitBlock(DoneBB, /*IsFinished=*/true);
9699   MapperCGF.FinishFunction();
9700   UDMMap.try_emplace(D, Fn);
9701   if (CGF) {
9702     auto &Decls = FunctionUDMMap.FindAndConstruct(CGF->CurFn);
9703     Decls.second.push_back(D);
9704   }
9705 }
9706 
9707 /// Emit the array initialization or deletion portion for user-defined mapper
9708 /// code generation. First, it evaluates whether an array section is mapped and
9709 /// whether the \a MapType instructs to delete this section. If \a IsInit is
9710 /// true, and \a MapType indicates to not delete this array, array
9711 /// initialization code is generated. If \a IsInit is false, and \a MapType
9712 /// indicates to not this array, array deletion code is generated.
emitUDMapperArrayInitOrDel(CodeGenFunction & MapperCGF,llvm::Value * Handle,llvm::Value * Base,llvm::Value * Begin,llvm::Value * Size,llvm::Value * MapType,llvm::Value * MapName,CharUnits ElementSize,llvm::BasicBlock * ExitBB,bool IsInit)9713 void CGOpenMPRuntime::emitUDMapperArrayInitOrDel(
9714     CodeGenFunction &MapperCGF, llvm::Value *Handle, llvm::Value *Base,
9715     llvm::Value *Begin, llvm::Value *Size, llvm::Value *MapType,
9716     llvm::Value *MapName, CharUnits ElementSize, llvm::BasicBlock *ExitBB,
9717     bool IsInit) {
9718   StringRef Prefix = IsInit ? ".init" : ".del";
9719 
9720   // Evaluate if this is an array section.
9721   llvm::BasicBlock *BodyBB =
9722       MapperCGF.createBasicBlock(getName({"omp.array", Prefix}));
9723   llvm::Value *IsArray = MapperCGF.Builder.CreateICmpSGT(
9724       Size, MapperCGF.Builder.getInt64(1), "omp.arrayinit.isarray");
9725   llvm::Value *DeleteBit = MapperCGF.Builder.CreateAnd(
9726       MapType,
9727       MapperCGF.Builder.getInt64(
9728           static_cast<std::underlying_type_t<OpenMPOffloadMappingFlags>>(
9729               OpenMPOffloadMappingFlags::OMP_MAP_DELETE)));
9730   llvm::Value *DeleteCond;
9731   llvm::Value *Cond;
9732   if (IsInit) {
9733     // base != begin?
9734     llvm::Value *BaseIsBegin = MapperCGF.Builder.CreateICmpNE(Base, Begin);
9735     // IsPtrAndObj?
9736     llvm::Value *PtrAndObjBit = MapperCGF.Builder.CreateAnd(
9737         MapType,
9738         MapperCGF.Builder.getInt64(
9739             static_cast<std::underlying_type_t<OpenMPOffloadMappingFlags>>(
9740                 OpenMPOffloadMappingFlags::OMP_MAP_PTR_AND_OBJ)));
9741     PtrAndObjBit = MapperCGF.Builder.CreateIsNotNull(PtrAndObjBit);
9742     BaseIsBegin = MapperCGF.Builder.CreateAnd(BaseIsBegin, PtrAndObjBit);
9743     Cond = MapperCGF.Builder.CreateOr(IsArray, BaseIsBegin);
9744     DeleteCond = MapperCGF.Builder.CreateIsNull(
9745         DeleteBit, getName({"omp.array", Prefix, ".delete"}));
9746   } else {
9747     Cond = IsArray;
9748     DeleteCond = MapperCGF.Builder.CreateIsNotNull(
9749         DeleteBit, getName({"omp.array", Prefix, ".delete"}));
9750   }
9751   Cond = MapperCGF.Builder.CreateAnd(Cond, DeleteCond);
9752   MapperCGF.Builder.CreateCondBr(Cond, BodyBB, ExitBB);
9753 
9754   MapperCGF.EmitBlock(BodyBB);
9755   // Get the array size by multiplying element size and element number (i.e., \p
9756   // Size).
9757   llvm::Value *ArraySize = MapperCGF.Builder.CreateNUWMul(
9758       Size, MapperCGF.Builder.getInt64(ElementSize.getQuantity()));
9759   // Remove OMP_MAP_TO and OMP_MAP_FROM from the map type, so that it achieves
9760   // memory allocation/deletion purpose only.
9761   llvm::Value *MapTypeArg = MapperCGF.Builder.CreateAnd(
9762       MapType,
9763       MapperCGF.Builder.getInt64(
9764           ~static_cast<std::underlying_type_t<OpenMPOffloadMappingFlags>>(
9765               OpenMPOffloadMappingFlags::OMP_MAP_TO |
9766               OpenMPOffloadMappingFlags::OMP_MAP_FROM)));
9767   MapTypeArg = MapperCGF.Builder.CreateOr(
9768       MapTypeArg,
9769       MapperCGF.Builder.getInt64(
9770           static_cast<std::underlying_type_t<OpenMPOffloadMappingFlags>>(
9771               OpenMPOffloadMappingFlags::OMP_MAP_IMPLICIT)));
9772 
9773   // Call the runtime API __tgt_push_mapper_component to fill up the runtime
9774   // data structure.
9775   llvm::Value *OffloadingArgs[] = {Handle,    Base,       Begin,
9776                                    ArraySize, MapTypeArg, MapName};
9777   MapperCGF.EmitRuntimeCall(
9778       OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
9779                                             OMPRTL___tgt_push_mapper_component),
9780       OffloadingArgs);
9781 }
9782 
getOrCreateUserDefinedMapperFunc(const OMPDeclareMapperDecl * D)9783 llvm::Function *CGOpenMPRuntime::getOrCreateUserDefinedMapperFunc(
9784     const OMPDeclareMapperDecl *D) {
9785   auto I = UDMMap.find(D);
9786   if (I != UDMMap.end())
9787     return I->second;
9788   emitUserDefinedMapper(D);
9789   return UDMMap.lookup(D);
9790 }
9791 
emitTargetNumIterationsCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,llvm::function_ref<llvm::Value * (CodeGenFunction & CGF,const OMPLoopDirective & D)> SizeEmitter)9792 llvm::Value *CGOpenMPRuntime::emitTargetNumIterationsCall(
9793     CodeGenFunction &CGF, const OMPExecutableDirective &D,
9794     llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
9795                                      const OMPLoopDirective &D)>
9796         SizeEmitter) {
9797   OpenMPDirectiveKind Kind = D.getDirectiveKind();
9798   const OMPExecutableDirective *TD = &D;
9799   // Get nested teams distribute kind directive, if any.
9800   if (!isOpenMPDistributeDirective(Kind) || !isOpenMPTeamsDirective(Kind))
9801     TD = getNestedDistributeDirective(CGM.getContext(), D);
9802   if (!TD)
9803     return llvm::ConstantInt::get(CGF.Int64Ty, 0);
9804 
9805   const auto *LD = cast<OMPLoopDirective>(TD);
9806   if (llvm::Value *NumIterations = SizeEmitter(CGF, *LD))
9807     return NumIterations;
9808   return llvm::ConstantInt::get(CGF.Int64Ty, 0);
9809 }
9810 
emitTargetCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,llvm::Function * OutlinedFn,llvm::Value * OutlinedFnID,const Expr * IfCond,llvm::PointerIntPair<const Expr *,2,OpenMPDeviceClauseModifier> Device,llvm::function_ref<llvm::Value * (CodeGenFunction & CGF,const OMPLoopDirective & D)> SizeEmitter)9811 void CGOpenMPRuntime::emitTargetCall(
9812     CodeGenFunction &CGF, const OMPExecutableDirective &D,
9813     llvm::Function *OutlinedFn, llvm::Value *OutlinedFnID, const Expr *IfCond,
9814     llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device,
9815     llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
9816                                      const OMPLoopDirective &D)>
9817         SizeEmitter) {
9818   if (!CGF.HaveInsertPoint())
9819     return;
9820 
9821   const bool OffloadingMandatory = !CGM.getLangOpts().OpenMPIsDevice &&
9822                                    CGM.getLangOpts().OpenMPOffloadMandatory;
9823 
9824   assert((OffloadingMandatory || OutlinedFn) && "Invalid outlined function!");
9825 
9826   const bool RequiresOuterTask = D.hasClausesOfKind<OMPDependClause>() ||
9827                                  D.hasClausesOfKind<OMPNowaitClause>() ||
9828                                  D.hasClausesOfKind<OMPInReductionClause>();
9829   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
9830   const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target);
9831   auto &&ArgsCodegen = [&CS, &CapturedVars](CodeGenFunction &CGF,
9832                                             PrePostActionTy &) {
9833     CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
9834   };
9835   emitInlinedDirective(CGF, OMPD_unknown, ArgsCodegen);
9836 
9837   CodeGenFunction::OMPTargetDataInfo InputInfo;
9838   llvm::Value *MapTypesArray = nullptr;
9839   llvm::Value *MapNamesArray = nullptr;
9840   // Generate code for the host fallback function.
9841   auto &&FallbackGen = [this, OutlinedFn, &D, &CapturedVars, RequiresOuterTask,
9842                         &CS, OffloadingMandatory](CodeGenFunction &CGF) {
9843     if (OffloadingMandatory) {
9844       CGF.Builder.CreateUnreachable();
9845     } else {
9846       if (RequiresOuterTask) {
9847         CapturedVars.clear();
9848         CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
9849       }
9850       emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars);
9851     }
9852   };
9853   // Fill up the pointer arrays and transfer execution to the device.
9854   auto &&ThenGen = [this, Device, OutlinedFnID, &D, &InputInfo, &MapTypesArray,
9855                     &MapNamesArray, SizeEmitter,
9856                     FallbackGen](CodeGenFunction &CGF, PrePostActionTy &) {
9857     if (Device.getInt() == OMPC_DEVICE_ancestor) {
9858       // Reverse offloading is not supported, so just execute on the host.
9859       FallbackGen(CGF);
9860       return;
9861     }
9862 
9863     // On top of the arrays that were filled up, the target offloading call
9864     // takes as arguments the device id as well as the host pointer. The host
9865     // pointer is used by the runtime library to identify the current target
9866     // region, so it only has to be unique and not necessarily point to
9867     // anything. It could be the pointer to the outlined function that
9868     // implements the target region, but we aren't using that so that the
9869     // compiler doesn't need to keep that, and could therefore inline the host
9870     // function if proven worthwhile during optimization.
9871 
9872     // From this point on, we need to have an ID of the target region defined.
9873     assert(OutlinedFnID && "Invalid outlined function ID!");
9874     (void)OutlinedFnID;
9875 
9876     // Emit device ID if any.
9877     llvm::Value *DeviceID;
9878     if (Device.getPointer()) {
9879       assert((Device.getInt() == OMPC_DEVICE_unknown ||
9880               Device.getInt() == OMPC_DEVICE_device_num) &&
9881              "Expected device_num modifier.");
9882       llvm::Value *DevVal = CGF.EmitScalarExpr(Device.getPointer());
9883       DeviceID =
9884           CGF.Builder.CreateIntCast(DevVal, CGF.Int64Ty, /*isSigned=*/true);
9885     } else {
9886       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
9887     }
9888 
9889     // Emit the number of elements in the offloading arrays.
9890     llvm::Value *PointerNum =
9891         CGF.Builder.getInt32(InputInfo.NumberOfTargetItems);
9892 
9893     // Return value of the runtime offloading call.
9894     llvm::Value *Return;
9895 
9896     llvm::Value *NumTeams = emitNumTeamsForTargetDirective(CGF, D);
9897     llvm::Value *NumThreads = emitNumThreadsForTargetDirective(CGF, D);
9898 
9899     // Source location for the ident struct
9900     llvm::Value *RTLoc = emitUpdateLocation(CGF, D.getBeginLoc());
9901 
9902     // Get tripcount for the target loop-based directive.
9903     llvm::Value *NumIterations =
9904         emitTargetNumIterationsCall(CGF, D, SizeEmitter);
9905 
9906     llvm::Value *DynCGroupMem = CGF.Builder.getInt32(0);
9907     if (auto *DynMemClause = D.getSingleClause<OMPXDynCGroupMemClause>()) {
9908       CodeGenFunction::RunCleanupsScope DynCGroupMemScope(CGF);
9909       llvm::Value *DynCGroupMemVal = CGF.EmitScalarExpr(
9910           DynMemClause->getSize(), /*IgnoreResultAssign=*/true);
9911       DynCGroupMem = CGF.Builder.CreateIntCast(DynCGroupMemVal, CGF.Int32Ty,
9912                                                /*isSigned=*/false);
9913     }
9914 
9915     llvm::Value *ZeroArray =
9916         llvm::Constant::getNullValue(llvm::ArrayType::get(CGF.CGM.Int32Ty, 3));
9917 
9918     bool HasNoWait = D.hasClausesOfKind<OMPNowaitClause>();
9919     llvm::Value *Flags = CGF.Builder.getInt64(HasNoWait);
9920 
9921     llvm::Value *NumTeams3D =
9922         CGF.Builder.CreateInsertValue(ZeroArray, NumTeams, {0});
9923     llvm::Value *NumThreads3D =
9924         CGF.Builder.CreateInsertValue(ZeroArray, NumThreads, {0});
9925 
9926     // Arguments for the target kernel.
9927     SmallVector<llvm::Value *> KernelArgs{
9928         CGF.Builder.getInt32(/* Version */ 2),
9929         PointerNum,
9930         InputInfo.BasePointersArray.getPointer(),
9931         InputInfo.PointersArray.getPointer(),
9932         InputInfo.SizesArray.getPointer(),
9933         MapTypesArray,
9934         MapNamesArray,
9935         InputInfo.MappersArray.getPointer(),
9936         NumIterations,
9937         Flags,
9938         NumTeams3D,
9939         NumThreads3D,
9940         DynCGroupMem,
9941     };
9942 
9943     // The target region is an outlined function launched by the runtime
9944     // via calls to __tgt_target_kernel().
9945     //
9946     // Note that on the host and CPU targets, the runtime implementation of
9947     // these calls simply call the outlined function without forking threads.
9948     // The outlined functions themselves have runtime calls to
9949     // __kmpc_fork_teams() and __kmpc_fork() for this purpose, codegen'd by
9950     // the compiler in emitTeamsCall() and emitParallelCall().
9951     //
9952     // In contrast, on the NVPTX target, the implementation of
9953     // __tgt_target_teams() launches a GPU kernel with the requested number
9954     // of teams and threads so no additional calls to the runtime are required.
9955     // Check the error code and execute the host version if required.
9956     CGF.Builder.restoreIP(OMPBuilder.emitTargetKernel(
9957         CGF.Builder, Return, RTLoc, DeviceID, NumTeams, NumThreads,
9958         OutlinedFnID, KernelArgs));
9959 
9960     llvm::BasicBlock *OffloadFailedBlock =
9961         CGF.createBasicBlock("omp_offload.failed");
9962     llvm::BasicBlock *OffloadContBlock =
9963         CGF.createBasicBlock("omp_offload.cont");
9964     llvm::Value *Failed = CGF.Builder.CreateIsNotNull(Return);
9965     CGF.Builder.CreateCondBr(Failed, OffloadFailedBlock, OffloadContBlock);
9966 
9967     CGF.EmitBlock(OffloadFailedBlock);
9968     FallbackGen(CGF);
9969 
9970     CGF.EmitBranch(OffloadContBlock);
9971 
9972     CGF.EmitBlock(OffloadContBlock, /*IsFinished=*/true);
9973   };
9974 
9975   // Notify that the host version must be executed.
9976   auto &&ElseGen = [FallbackGen](CodeGenFunction &CGF, PrePostActionTy &) {
9977     FallbackGen(CGF);
9978   };
9979 
9980   auto &&TargetThenGen = [this, &ThenGen, &D, &InputInfo, &MapTypesArray,
9981                           &MapNamesArray, &CapturedVars, RequiresOuterTask,
9982                           &CS](CodeGenFunction &CGF, PrePostActionTy &) {
9983     // Fill up the arrays with all the captured variables.
9984     MappableExprsHandler::MapCombinedInfoTy CombinedInfo;
9985 
9986     // Get mappable expression information.
9987     MappableExprsHandler MEHandler(D, CGF);
9988     llvm::DenseMap<llvm::Value *, llvm::Value *> LambdaPointers;
9989     llvm::DenseSet<CanonicalDeclPtr<const Decl>> MappedVarSet;
9990 
9991     auto RI = CS.getCapturedRecordDecl()->field_begin();
9992     auto *CV = CapturedVars.begin();
9993     for (CapturedStmt::const_capture_iterator CI = CS.capture_begin(),
9994                                               CE = CS.capture_end();
9995          CI != CE; ++CI, ++RI, ++CV) {
9996       MappableExprsHandler::MapCombinedInfoTy CurInfo;
9997       MappableExprsHandler::StructRangeInfoTy PartialStruct;
9998 
9999       // VLA sizes are passed to the outlined region by copy and do not have map
10000       // information associated.
10001       if (CI->capturesVariableArrayType()) {
10002         CurInfo.Exprs.push_back(nullptr);
10003         CurInfo.BasePointers.push_back(*CV);
10004         CurInfo.Pointers.push_back(*CV);
10005         CurInfo.Sizes.push_back(CGF.Builder.CreateIntCast(
10006             CGF.getTypeSize(RI->getType()), CGF.Int64Ty, /*isSigned=*/true));
10007         // Copy to the device as an argument. No need to retrieve it.
10008         CurInfo.Types.push_back(
10009             OpenMPOffloadMappingFlags::OMP_MAP_LITERAL |
10010             OpenMPOffloadMappingFlags::OMP_MAP_TARGET_PARAM |
10011             OpenMPOffloadMappingFlags::OMP_MAP_IMPLICIT);
10012         CurInfo.Mappers.push_back(nullptr);
10013       } else {
10014         // If we have any information in the map clause, we use it, otherwise we
10015         // just do a default mapping.
10016         MEHandler.generateInfoForCapture(CI, *CV, CurInfo, PartialStruct);
10017         if (!CI->capturesThis())
10018           MappedVarSet.insert(CI->getCapturedVar());
10019         else
10020           MappedVarSet.insert(nullptr);
10021         if (CurInfo.BasePointers.empty() && !PartialStruct.Base.isValid())
10022           MEHandler.generateDefaultMapInfo(*CI, **RI, *CV, CurInfo);
10023         // Generate correct mapping for variables captured by reference in
10024         // lambdas.
10025         if (CI->capturesVariable())
10026           MEHandler.generateInfoForLambdaCaptures(CI->getCapturedVar(), *CV,
10027                                                   CurInfo, LambdaPointers);
10028       }
10029       // We expect to have at least an element of information for this capture.
10030       assert((!CurInfo.BasePointers.empty() || PartialStruct.Base.isValid()) &&
10031              "Non-existing map pointer for capture!");
10032       assert(CurInfo.BasePointers.size() == CurInfo.Pointers.size() &&
10033              CurInfo.BasePointers.size() == CurInfo.Sizes.size() &&
10034              CurInfo.BasePointers.size() == CurInfo.Types.size() &&
10035              CurInfo.BasePointers.size() == CurInfo.Mappers.size() &&
10036              "Inconsistent map information sizes!");
10037 
10038       // If there is an entry in PartialStruct it means we have a struct with
10039       // individual members mapped. Emit an extra combined entry.
10040       if (PartialStruct.Base.isValid()) {
10041         CombinedInfo.append(PartialStruct.PreliminaryMapData);
10042         MEHandler.emitCombinedEntry(
10043             CombinedInfo, CurInfo.Types, PartialStruct, nullptr,
10044             !PartialStruct.PreliminaryMapData.BasePointers.empty());
10045       }
10046 
10047       // We need to append the results of this capture to what we already have.
10048       CombinedInfo.append(CurInfo);
10049     }
10050     // Adjust MEMBER_OF flags for the lambdas captures.
10051     MEHandler.adjustMemberOfForLambdaCaptures(
10052         LambdaPointers, CombinedInfo.BasePointers, CombinedInfo.Pointers,
10053         CombinedInfo.Types);
10054     // Map any list items in a map clause that were not captures because they
10055     // weren't referenced within the construct.
10056     MEHandler.generateAllInfo(CombinedInfo, MappedVarSet);
10057 
10058     CGOpenMPRuntime::TargetDataInfo Info;
10059     // Fill up the arrays and create the arguments.
10060     emitOffloadingArrays(CGF, CombinedInfo, Info, OMPBuilder);
10061     bool EmitDebug =
10062         CGF.CGM.getCodeGenOpts().getDebugInfo() != codegenoptions::NoDebugInfo;
10063     OMPBuilder.emitOffloadingArraysArgument(CGF.Builder, Info.RTArgs, Info,
10064                                             EmitDebug,
10065                                             /*ForEndCall=*/false);
10066 
10067     InputInfo.NumberOfTargetItems = Info.NumberOfPtrs;
10068     InputInfo.BasePointersArray = Address(Info.RTArgs.BasePointersArray,
10069                                           CGF.VoidPtrTy, CGM.getPointerAlign());
10070     InputInfo.PointersArray = Address(Info.RTArgs.PointersArray, CGF.VoidPtrTy,
10071                                       CGM.getPointerAlign());
10072     InputInfo.SizesArray =
10073         Address(Info.RTArgs.SizesArray, CGF.Int64Ty, CGM.getPointerAlign());
10074     InputInfo.MappersArray =
10075         Address(Info.RTArgs.MappersArray, CGF.VoidPtrTy, CGM.getPointerAlign());
10076     MapTypesArray = Info.RTArgs.MapTypesArray;
10077     MapNamesArray = Info.RTArgs.MapNamesArray;
10078     if (RequiresOuterTask)
10079       CGF.EmitOMPTargetTaskBasedDirective(D, ThenGen, InputInfo);
10080     else
10081       emitInlinedDirective(CGF, D.getDirectiveKind(), ThenGen);
10082   };
10083 
10084   auto &&TargetElseGen = [this, &ElseGen, &D, RequiresOuterTask](
10085                              CodeGenFunction &CGF, PrePostActionTy &) {
10086     if (RequiresOuterTask) {
10087       CodeGenFunction::OMPTargetDataInfo InputInfo;
10088       CGF.EmitOMPTargetTaskBasedDirective(D, ElseGen, InputInfo);
10089     } else {
10090       emitInlinedDirective(CGF, D.getDirectiveKind(), ElseGen);
10091     }
10092   };
10093 
10094   // If we have a target function ID it means that we need to support
10095   // offloading, otherwise, just execute on the host. We need to execute on host
10096   // regardless of the conditional in the if clause if, e.g., the user do not
10097   // specify target triples.
10098   if (OutlinedFnID) {
10099     if (IfCond) {
10100       emitIfClause(CGF, IfCond, TargetThenGen, TargetElseGen);
10101     } else {
10102       RegionCodeGenTy ThenRCG(TargetThenGen);
10103       ThenRCG(CGF);
10104     }
10105   } else {
10106     RegionCodeGenTy ElseRCG(TargetElseGen);
10107     ElseRCG(CGF);
10108   }
10109 }
10110 
scanForTargetRegionsFunctions(const Stmt * S,StringRef ParentName)10111 void CGOpenMPRuntime::scanForTargetRegionsFunctions(const Stmt *S,
10112                                                     StringRef ParentName) {
10113   if (!S)
10114     return;
10115 
10116   // Codegen OMP target directives that offload compute to the device.
10117   bool RequiresDeviceCodegen =
10118       isa<OMPExecutableDirective>(S) &&
10119       isOpenMPTargetExecutionDirective(
10120           cast<OMPExecutableDirective>(S)->getDirectiveKind());
10121 
10122   if (RequiresDeviceCodegen) {
10123     const auto &E = *cast<OMPExecutableDirective>(S);
10124     auto EntryInfo =
10125         getTargetEntryUniqueInfo(CGM.getContext(), E.getBeginLoc(), ParentName);
10126 
10127     // Is this a target region that should not be emitted as an entry point? If
10128     // so just signal we are done with this target region.
10129     if (!OffloadEntriesInfoManager.hasTargetRegionEntryInfo(EntryInfo))
10130       return;
10131 
10132     switch (E.getDirectiveKind()) {
10133     case OMPD_target:
10134       CodeGenFunction::EmitOMPTargetDeviceFunction(CGM, ParentName,
10135                                                    cast<OMPTargetDirective>(E));
10136       break;
10137     case OMPD_target_parallel:
10138       CodeGenFunction::EmitOMPTargetParallelDeviceFunction(
10139           CGM, ParentName, cast<OMPTargetParallelDirective>(E));
10140       break;
10141     case OMPD_target_teams:
10142       CodeGenFunction::EmitOMPTargetTeamsDeviceFunction(
10143           CGM, ParentName, cast<OMPTargetTeamsDirective>(E));
10144       break;
10145     case OMPD_target_teams_distribute:
10146       CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction(
10147           CGM, ParentName, cast<OMPTargetTeamsDistributeDirective>(E));
10148       break;
10149     case OMPD_target_teams_distribute_simd:
10150       CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction(
10151           CGM, ParentName, cast<OMPTargetTeamsDistributeSimdDirective>(E));
10152       break;
10153     case OMPD_target_parallel_for:
10154       CodeGenFunction::EmitOMPTargetParallelForDeviceFunction(
10155           CGM, ParentName, cast<OMPTargetParallelForDirective>(E));
10156       break;
10157     case OMPD_target_parallel_for_simd:
10158       CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction(
10159           CGM, ParentName, cast<OMPTargetParallelForSimdDirective>(E));
10160       break;
10161     case OMPD_target_simd:
10162       CodeGenFunction::EmitOMPTargetSimdDeviceFunction(
10163           CGM, ParentName, cast<OMPTargetSimdDirective>(E));
10164       break;
10165     case OMPD_target_teams_distribute_parallel_for:
10166       CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
10167           CGM, ParentName,
10168           cast<OMPTargetTeamsDistributeParallelForDirective>(E));
10169       break;
10170     case OMPD_target_teams_distribute_parallel_for_simd:
10171       CodeGenFunction::
10172           EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
10173               CGM, ParentName,
10174               cast<OMPTargetTeamsDistributeParallelForSimdDirective>(E));
10175       break;
10176     case OMPD_parallel:
10177     case OMPD_for:
10178     case OMPD_parallel_for:
10179     case OMPD_parallel_master:
10180     case OMPD_parallel_sections:
10181     case OMPD_for_simd:
10182     case OMPD_parallel_for_simd:
10183     case OMPD_cancel:
10184     case OMPD_cancellation_point:
10185     case OMPD_ordered:
10186     case OMPD_threadprivate:
10187     case OMPD_allocate:
10188     case OMPD_task:
10189     case OMPD_simd:
10190     case OMPD_tile:
10191     case OMPD_unroll:
10192     case OMPD_sections:
10193     case OMPD_section:
10194     case OMPD_single:
10195     case OMPD_master:
10196     case OMPD_critical:
10197     case OMPD_taskyield:
10198     case OMPD_barrier:
10199     case OMPD_taskwait:
10200     case OMPD_taskgroup:
10201     case OMPD_atomic:
10202     case OMPD_flush:
10203     case OMPD_depobj:
10204     case OMPD_scan:
10205     case OMPD_teams:
10206     case OMPD_target_data:
10207     case OMPD_target_exit_data:
10208     case OMPD_target_enter_data:
10209     case OMPD_distribute:
10210     case OMPD_distribute_simd:
10211     case OMPD_distribute_parallel_for:
10212     case OMPD_distribute_parallel_for_simd:
10213     case OMPD_teams_distribute:
10214     case OMPD_teams_distribute_simd:
10215     case OMPD_teams_distribute_parallel_for:
10216     case OMPD_teams_distribute_parallel_for_simd:
10217     case OMPD_target_update:
10218     case OMPD_declare_simd:
10219     case OMPD_declare_variant:
10220     case OMPD_begin_declare_variant:
10221     case OMPD_end_declare_variant:
10222     case OMPD_declare_target:
10223     case OMPD_end_declare_target:
10224     case OMPD_declare_reduction:
10225     case OMPD_declare_mapper:
10226     case OMPD_taskloop:
10227     case OMPD_taskloop_simd:
10228     case OMPD_master_taskloop:
10229     case OMPD_master_taskloop_simd:
10230     case OMPD_parallel_master_taskloop:
10231     case OMPD_parallel_master_taskloop_simd:
10232     case OMPD_requires:
10233     case OMPD_metadirective:
10234     case OMPD_unknown:
10235     default:
10236       llvm_unreachable("Unknown target directive for OpenMP device codegen.");
10237     }
10238     return;
10239   }
10240 
10241   if (const auto *E = dyn_cast<OMPExecutableDirective>(S)) {
10242     if (!E->hasAssociatedStmt() || !E->getAssociatedStmt())
10243       return;
10244 
10245     scanForTargetRegionsFunctions(E->getRawStmt(), ParentName);
10246     return;
10247   }
10248 
10249   // If this is a lambda function, look into its body.
10250   if (const auto *L = dyn_cast<LambdaExpr>(S))
10251     S = L->getBody();
10252 
10253   // Keep looking for target regions recursively.
10254   for (const Stmt *II : S->children())
10255     scanForTargetRegionsFunctions(II, ParentName);
10256 }
10257 
isAssumedToBeNotEmitted(const ValueDecl * VD,bool IsDevice)10258 static bool isAssumedToBeNotEmitted(const ValueDecl *VD, bool IsDevice) {
10259   std::optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
10260       OMPDeclareTargetDeclAttr::getDeviceType(VD);
10261   if (!DevTy)
10262     return false;
10263   // Do not emit device_type(nohost) functions for the host.
10264   if (!IsDevice && DevTy == OMPDeclareTargetDeclAttr::DT_NoHost)
10265     return true;
10266   // Do not emit device_type(host) functions for the device.
10267   if (IsDevice && DevTy == OMPDeclareTargetDeclAttr::DT_Host)
10268     return true;
10269   return false;
10270 }
10271 
emitTargetFunctions(GlobalDecl GD)10272 bool CGOpenMPRuntime::emitTargetFunctions(GlobalDecl GD) {
10273   // If emitting code for the host, we do not process FD here. Instead we do
10274   // the normal code generation.
10275   if (!CGM.getLangOpts().OpenMPIsDevice) {
10276     if (const auto *FD = dyn_cast<FunctionDecl>(GD.getDecl()))
10277       if (isAssumedToBeNotEmitted(cast<ValueDecl>(FD),
10278                                   CGM.getLangOpts().OpenMPIsDevice))
10279         return true;
10280     return false;
10281   }
10282 
10283   const ValueDecl *VD = cast<ValueDecl>(GD.getDecl());
10284   // Try to detect target regions in the function.
10285   if (const auto *FD = dyn_cast<FunctionDecl>(VD)) {
10286     StringRef Name = CGM.getMangledName(GD);
10287     scanForTargetRegionsFunctions(FD->getBody(), Name);
10288     if (isAssumedToBeNotEmitted(cast<ValueDecl>(FD),
10289                                 CGM.getLangOpts().OpenMPIsDevice))
10290       return true;
10291   }
10292 
10293   // Do not to emit function if it is not marked as declare target.
10294   return !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD) &&
10295          AlreadyEmittedTargetDecls.count(VD) == 0;
10296 }
10297 
emitTargetGlobalVariable(GlobalDecl GD)10298 bool CGOpenMPRuntime::emitTargetGlobalVariable(GlobalDecl GD) {
10299   if (isAssumedToBeNotEmitted(cast<ValueDecl>(GD.getDecl()),
10300                               CGM.getLangOpts().OpenMPIsDevice))
10301     return true;
10302 
10303   if (!CGM.getLangOpts().OpenMPIsDevice)
10304     return false;
10305 
10306   // Check if there are Ctors/Dtors in this declaration and look for target
10307   // regions in it. We use the complete variant to produce the kernel name
10308   // mangling.
10309   QualType RDTy = cast<VarDecl>(GD.getDecl())->getType();
10310   if (const auto *RD = RDTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) {
10311     for (const CXXConstructorDecl *Ctor : RD->ctors()) {
10312       StringRef ParentName =
10313           CGM.getMangledName(GlobalDecl(Ctor, Ctor_Complete));
10314       scanForTargetRegionsFunctions(Ctor->getBody(), ParentName);
10315     }
10316     if (const CXXDestructorDecl *Dtor = RD->getDestructor()) {
10317       StringRef ParentName =
10318           CGM.getMangledName(GlobalDecl(Dtor, Dtor_Complete));
10319       scanForTargetRegionsFunctions(Dtor->getBody(), ParentName);
10320     }
10321   }
10322 
10323   // Do not to emit variable if it is not marked as declare target.
10324   std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
10325       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(
10326           cast<VarDecl>(GD.getDecl()));
10327   if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_Link ||
10328       ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
10329         *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
10330        HasRequiresUnifiedSharedMemory)) {
10331     DeferredGlobalVariables.insert(cast<VarDecl>(GD.getDecl()));
10332     return true;
10333   }
10334   return false;
10335 }
10336 
registerTargetGlobalVariable(const VarDecl * VD,llvm::Constant * Addr)10337 void CGOpenMPRuntime::registerTargetGlobalVariable(const VarDecl *VD,
10338                                                    llvm::Constant *Addr) {
10339   if (CGM.getLangOpts().OMPTargetTriples.empty() &&
10340       !CGM.getLangOpts().OpenMPIsDevice)
10341     return;
10342 
10343   // If we have host/nohost variables, they do not need to be registered.
10344   std::optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
10345       OMPDeclareTargetDeclAttr::getDeviceType(VD);
10346   if (DevTy && *DevTy != OMPDeclareTargetDeclAttr::DT_Any)
10347     return;
10348 
10349   std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
10350       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
10351   if (!Res) {
10352     if (CGM.getLangOpts().OpenMPIsDevice) {
10353       // Register non-target variables being emitted in device code (debug info
10354       // may cause this).
10355       StringRef VarName = CGM.getMangledName(VD);
10356       EmittedNonTargetVariables.try_emplace(VarName, Addr);
10357     }
10358     return;
10359   }
10360   // Register declare target variables.
10361   llvm::OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind Flags;
10362   StringRef VarName;
10363   int64_t VarSize;
10364   llvm::GlobalValue::LinkageTypes Linkage;
10365 
10366   if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
10367        *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
10368       !HasRequiresUnifiedSharedMemory) {
10369     Flags = llvm::OffloadEntriesInfoManager::OMPTargetGlobalVarEntryTo;
10370     VarName = CGM.getMangledName(VD);
10371     if (VD->hasDefinition(CGM.getContext()) != VarDecl::DeclarationOnly) {
10372       VarSize =
10373           CGM.getContext().getTypeSizeInChars(VD->getType()).getQuantity();
10374       assert(VarSize != 0 && "Expected non-zero size of the variable");
10375     } else {
10376       VarSize = 0;
10377     }
10378     Linkage = CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false);
10379     // Temp solution to prevent optimizations of the internal variables.
10380     if (CGM.getLangOpts().OpenMPIsDevice && !VD->isExternallyVisible()) {
10381       // Do not create a "ref-variable" if the original is not also available
10382       // on the host.
10383       if (!OffloadEntriesInfoManager.hasDeviceGlobalVarEntryInfo(VarName))
10384         return;
10385       std::string RefName = getName({VarName, "ref"});
10386       if (!CGM.GetGlobalValue(RefName)) {
10387         llvm::Constant *AddrRef =
10388             OMPBuilder.getOrCreateInternalVariable(Addr->getType(), RefName);
10389         auto *GVAddrRef = cast<llvm::GlobalVariable>(AddrRef);
10390         GVAddrRef->setConstant(/*Val=*/true);
10391         GVAddrRef->setLinkage(llvm::GlobalValue::InternalLinkage);
10392         GVAddrRef->setInitializer(Addr);
10393         CGM.addCompilerUsedGlobal(GVAddrRef);
10394       }
10395     }
10396   } else {
10397     assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
10398             ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
10399               *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
10400              HasRequiresUnifiedSharedMemory)) &&
10401            "Declare target attribute must link or to with unified memory.");
10402     if (*Res == OMPDeclareTargetDeclAttr::MT_Link)
10403       Flags = llvm::OffloadEntriesInfoManager::OMPTargetGlobalVarEntryLink;
10404     else
10405       Flags = llvm::OffloadEntriesInfoManager::OMPTargetGlobalVarEntryTo;
10406 
10407     if (CGM.getLangOpts().OpenMPIsDevice) {
10408       VarName = Addr->getName();
10409       Addr = nullptr;
10410     } else {
10411       VarName = getAddrOfDeclareTargetVar(VD).getName();
10412       Addr = cast<llvm::Constant>(getAddrOfDeclareTargetVar(VD).getPointer());
10413     }
10414     VarSize = CGM.getPointerSize().getQuantity();
10415     Linkage = llvm::GlobalValue::WeakAnyLinkage;
10416   }
10417 
10418   OffloadEntriesInfoManager.registerDeviceGlobalVarEntryInfo(
10419       VarName, Addr, VarSize, Flags, Linkage);
10420 }
10421 
emitTargetGlobal(GlobalDecl GD)10422 bool CGOpenMPRuntime::emitTargetGlobal(GlobalDecl GD) {
10423   if (isa<FunctionDecl>(GD.getDecl()) ||
10424       isa<OMPDeclareReductionDecl>(GD.getDecl()))
10425     return emitTargetFunctions(GD);
10426 
10427   return emitTargetGlobalVariable(GD);
10428 }
10429 
emitDeferredTargetDecls() const10430 void CGOpenMPRuntime::emitDeferredTargetDecls() const {
10431   for (const VarDecl *VD : DeferredGlobalVariables) {
10432     std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
10433         OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
10434     if (!Res)
10435       continue;
10436     if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
10437          *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
10438         !HasRequiresUnifiedSharedMemory) {
10439       CGM.EmitGlobal(VD);
10440     } else {
10441       assert((*Res == OMPDeclareTargetDeclAttr::MT_Link ||
10442               ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
10443                 *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
10444                HasRequiresUnifiedSharedMemory)) &&
10445              "Expected link clause or to clause with unified memory.");
10446       (void)CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
10447     }
10448   }
10449 }
10450 
adjustTargetSpecificDataForLambdas(CodeGenFunction & CGF,const OMPExecutableDirective & D) const10451 void CGOpenMPRuntime::adjustTargetSpecificDataForLambdas(
10452     CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
10453   assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
10454          " Expected target-based directive.");
10455 }
10456 
processRequiresDirective(const OMPRequiresDecl * D)10457 void CGOpenMPRuntime::processRequiresDirective(const OMPRequiresDecl *D) {
10458   for (const OMPClause *Clause : D->clauselists()) {
10459     if (Clause->getClauseKind() == OMPC_unified_shared_memory) {
10460       HasRequiresUnifiedSharedMemory = true;
10461       OMPBuilder.Config.setHasRequiresUnifiedSharedMemory(true);
10462     } else if (const auto *AC =
10463                    dyn_cast<OMPAtomicDefaultMemOrderClause>(Clause)) {
10464       switch (AC->getAtomicDefaultMemOrderKind()) {
10465       case OMPC_ATOMIC_DEFAULT_MEM_ORDER_acq_rel:
10466         RequiresAtomicOrdering = llvm::AtomicOrdering::AcquireRelease;
10467         break;
10468       case OMPC_ATOMIC_DEFAULT_MEM_ORDER_seq_cst:
10469         RequiresAtomicOrdering = llvm::AtomicOrdering::SequentiallyConsistent;
10470         break;
10471       case OMPC_ATOMIC_DEFAULT_MEM_ORDER_relaxed:
10472         RequiresAtomicOrdering = llvm::AtomicOrdering::Monotonic;
10473         break;
10474       case OMPC_ATOMIC_DEFAULT_MEM_ORDER_unknown:
10475         break;
10476       }
10477     }
10478   }
10479 }
10480 
getDefaultMemoryOrdering() const10481 llvm::AtomicOrdering CGOpenMPRuntime::getDefaultMemoryOrdering() const {
10482   return RequiresAtomicOrdering;
10483 }
10484 
hasAllocateAttributeForGlobalVar(const VarDecl * VD,LangAS & AS)10485 bool CGOpenMPRuntime::hasAllocateAttributeForGlobalVar(const VarDecl *VD,
10486                                                        LangAS &AS) {
10487   if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())
10488     return false;
10489   const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
10490   switch(A->getAllocatorType()) {
10491   case OMPAllocateDeclAttr::OMPNullMemAlloc:
10492   case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
10493   // Not supported, fallback to the default mem space.
10494   case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
10495   case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
10496   case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
10497   case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
10498   case OMPAllocateDeclAttr::OMPThreadMemAlloc:
10499   case OMPAllocateDeclAttr::OMPConstMemAlloc:
10500   case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
10501     AS = LangAS::Default;
10502     return true;
10503   case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
10504     llvm_unreachable("Expected predefined allocator for the variables with the "
10505                      "static storage.");
10506   }
10507   return false;
10508 }
10509 
hasRequiresUnifiedSharedMemory() const10510 bool CGOpenMPRuntime::hasRequiresUnifiedSharedMemory() const {
10511   return HasRequiresUnifiedSharedMemory;
10512 }
10513 
DisableAutoDeclareTargetRAII(CodeGenModule & CGM)10514 CGOpenMPRuntime::DisableAutoDeclareTargetRAII::DisableAutoDeclareTargetRAII(
10515     CodeGenModule &CGM)
10516     : CGM(CGM) {
10517   if (CGM.getLangOpts().OpenMPIsDevice) {
10518     SavedShouldMarkAsGlobal = CGM.getOpenMPRuntime().ShouldMarkAsGlobal;
10519     CGM.getOpenMPRuntime().ShouldMarkAsGlobal = false;
10520   }
10521 }
10522 
~DisableAutoDeclareTargetRAII()10523 CGOpenMPRuntime::DisableAutoDeclareTargetRAII::~DisableAutoDeclareTargetRAII() {
10524   if (CGM.getLangOpts().OpenMPIsDevice)
10525     CGM.getOpenMPRuntime().ShouldMarkAsGlobal = SavedShouldMarkAsGlobal;
10526 }
10527 
markAsGlobalTarget(GlobalDecl GD)10528 bool CGOpenMPRuntime::markAsGlobalTarget(GlobalDecl GD) {
10529   if (!CGM.getLangOpts().OpenMPIsDevice || !ShouldMarkAsGlobal)
10530     return true;
10531 
10532   const auto *D = cast<FunctionDecl>(GD.getDecl());
10533   // Do not to emit function if it is marked as declare target as it was already
10534   // emitted.
10535   if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(D)) {
10536     if (D->hasBody() && AlreadyEmittedTargetDecls.count(D) == 0) {
10537       if (auto *F = dyn_cast_or_null<llvm::Function>(
10538               CGM.GetGlobalValue(CGM.getMangledName(GD))))
10539         return !F->isDeclaration();
10540       return false;
10541     }
10542     return true;
10543   }
10544 
10545   return !AlreadyEmittedTargetDecls.insert(D).second;
10546 }
10547 
emitRequiresDirectiveRegFun()10548 llvm::Function *CGOpenMPRuntime::emitRequiresDirectiveRegFun() {
10549   // If we don't have entries or if we are emitting code for the device, we
10550   // don't need to do anything.
10551   if (CGM.getLangOpts().OMPTargetTriples.empty() ||
10552       CGM.getLangOpts().OpenMPSimd || CGM.getLangOpts().OpenMPIsDevice ||
10553       (OffloadEntriesInfoManager.empty() &&
10554        !HasEmittedDeclareTargetRegion &&
10555        !HasEmittedTargetRegion))
10556     return nullptr;
10557 
10558   // Create and register the function that handles the requires directives.
10559   ASTContext &C = CGM.getContext();
10560 
10561   llvm::Function *RequiresRegFn;
10562   {
10563     CodeGenFunction CGF(CGM);
10564     const auto &FI = CGM.getTypes().arrangeNullaryFunction();
10565     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
10566     std::string ReqName = getName({"omp_offloading", "requires_reg"});
10567     RequiresRegFn = CGM.CreateGlobalInitOrCleanUpFunction(FTy, ReqName, FI);
10568     CGF.StartFunction(GlobalDecl(), C.VoidTy, RequiresRegFn, FI, {});
10569     OpenMPOffloadingRequiresDirFlags Flags = OMP_REQ_NONE;
10570     // TODO: check for other requires clauses.
10571     // The requires directive takes effect only when a target region is
10572     // present in the compilation unit. Otherwise it is ignored and not
10573     // passed to the runtime. This avoids the runtime from throwing an error
10574     // for mismatching requires clauses across compilation units that don't
10575     // contain at least 1 target region.
10576     assert((HasEmittedTargetRegion ||
10577             HasEmittedDeclareTargetRegion ||
10578             !OffloadEntriesInfoManager.empty()) &&
10579            "Target or declare target region expected.");
10580     if (HasRequiresUnifiedSharedMemory)
10581       Flags = OMP_REQ_UNIFIED_SHARED_MEMORY;
10582     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
10583                             CGM.getModule(), OMPRTL___tgt_register_requires),
10584                         llvm::ConstantInt::get(CGM.Int64Ty, Flags));
10585     CGF.FinishFunction();
10586   }
10587   return RequiresRegFn;
10588 }
10589 
emitTeamsCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars)10590 void CGOpenMPRuntime::emitTeamsCall(CodeGenFunction &CGF,
10591                                     const OMPExecutableDirective &D,
10592                                     SourceLocation Loc,
10593                                     llvm::Function *OutlinedFn,
10594                                     ArrayRef<llvm::Value *> CapturedVars) {
10595   if (!CGF.HaveInsertPoint())
10596     return;
10597 
10598   llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
10599   CodeGenFunction::RunCleanupsScope Scope(CGF);
10600 
10601   // Build call __kmpc_fork_teams(loc, n, microtask, var1, .., varn);
10602   llvm::Value *Args[] = {
10603       RTLoc,
10604       CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars
10605       CGF.Builder.CreateBitCast(OutlinedFn, getKmpc_MicroPointerTy())};
10606   llvm::SmallVector<llvm::Value *, 16> RealArgs;
10607   RealArgs.append(std::begin(Args), std::end(Args));
10608   RealArgs.append(CapturedVars.begin(), CapturedVars.end());
10609 
10610   llvm::FunctionCallee RTLFn = OMPBuilder.getOrCreateRuntimeFunction(
10611       CGM.getModule(), OMPRTL___kmpc_fork_teams);
10612   CGF.EmitRuntimeCall(RTLFn, RealArgs);
10613 }
10614 
emitNumTeamsClause(CodeGenFunction & CGF,const Expr * NumTeams,const Expr * ThreadLimit,SourceLocation Loc)10615 void CGOpenMPRuntime::emitNumTeamsClause(CodeGenFunction &CGF,
10616                                          const Expr *NumTeams,
10617                                          const Expr *ThreadLimit,
10618                                          SourceLocation Loc) {
10619   if (!CGF.HaveInsertPoint())
10620     return;
10621 
10622   llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
10623 
10624   llvm::Value *NumTeamsVal =
10625       NumTeams
10626           ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(NumTeams),
10627                                       CGF.CGM.Int32Ty, /* isSigned = */ true)
10628           : CGF.Builder.getInt32(0);
10629 
10630   llvm::Value *ThreadLimitVal =
10631       ThreadLimit
10632           ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(ThreadLimit),
10633                                       CGF.CGM.Int32Ty, /* isSigned = */ true)
10634           : CGF.Builder.getInt32(0);
10635 
10636   // Build call __kmpc_push_num_teamss(&loc, global_tid, num_teams, thread_limit)
10637   llvm::Value *PushNumTeamsArgs[] = {RTLoc, getThreadID(CGF, Loc), NumTeamsVal,
10638                                      ThreadLimitVal};
10639   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
10640                           CGM.getModule(), OMPRTL___kmpc_push_num_teams),
10641                       PushNumTeamsArgs);
10642 }
10643 
emitTargetDataCalls(CodeGenFunction & CGF,const OMPExecutableDirective & D,const Expr * IfCond,const Expr * Device,const RegionCodeGenTy & CodeGen,CGOpenMPRuntime::TargetDataInfo & Info)10644 void CGOpenMPRuntime::emitTargetDataCalls(
10645     CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
10646     const Expr *Device, const RegionCodeGenTy &CodeGen,
10647     CGOpenMPRuntime::TargetDataInfo &Info) {
10648   if (!CGF.HaveInsertPoint())
10649     return;
10650 
10651   // Action used to replace the default codegen action and turn privatization
10652   // off.
10653   PrePostActionTy NoPrivAction;
10654 
10655   // Generate the code for the opening of the data environment. Capture all the
10656   // arguments of the runtime call by reference because they are used in the
10657   // closing of the region.
10658   auto &&BeginThenGen = [this, &D, Device, &Info,
10659                          &CodeGen](CodeGenFunction &CGF, PrePostActionTy &) {
10660     // Fill up the arrays with all the mapped variables.
10661     MappableExprsHandler::MapCombinedInfoTy CombinedInfo;
10662 
10663     // Get map clause information.
10664     MappableExprsHandler MEHandler(D, CGF);
10665     MEHandler.generateAllInfo(CombinedInfo);
10666 
10667     // Fill up the arrays and create the arguments.
10668     emitOffloadingArrays(CGF, CombinedInfo, Info, OMPBuilder,
10669                          /*IsNonContiguous=*/true);
10670 
10671     llvm::OpenMPIRBuilder::TargetDataRTArgs RTArgs;
10672     bool EmitDebug =
10673         CGF.CGM.getCodeGenOpts().getDebugInfo() != codegenoptions::NoDebugInfo;
10674     OMPBuilder.emitOffloadingArraysArgument(CGF.Builder, RTArgs, Info,
10675                                             EmitDebug);
10676 
10677     // Emit device ID if any.
10678     llvm::Value *DeviceID = nullptr;
10679     if (Device) {
10680       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
10681                                            CGF.Int64Ty, /*isSigned=*/true);
10682     } else {
10683       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
10684     }
10685 
10686     // Emit the number of elements in the offloading arrays.
10687     llvm::Value *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs);
10688     //
10689     // Source location for the ident struct
10690     llvm::Value *RTLoc = emitUpdateLocation(CGF, D.getBeginLoc());
10691 
10692     llvm::Value *OffloadingArgs[] = {RTLoc,
10693                                      DeviceID,
10694                                      PointerNum,
10695                                      RTArgs.BasePointersArray,
10696                                      RTArgs.PointersArray,
10697                                      RTArgs.SizesArray,
10698                                      RTArgs.MapTypesArray,
10699                                      RTArgs.MapNamesArray,
10700                                      RTArgs.MappersArray};
10701     CGF.EmitRuntimeCall(
10702         OMPBuilder.getOrCreateRuntimeFunction(
10703             CGM.getModule(), OMPRTL___tgt_target_data_begin_mapper),
10704         OffloadingArgs);
10705 
10706     // If device pointer privatization is required, emit the body of the region
10707     // here. It will have to be duplicated: with and without privatization.
10708     if (!Info.CaptureDeviceAddrMap.empty())
10709       CodeGen(CGF);
10710   };
10711 
10712   // Generate code for the closing of the data region.
10713   auto &&EndThenGen = [this, Device, &Info, &D](CodeGenFunction &CGF,
10714                                                 PrePostActionTy &) {
10715     assert(Info.isValid() && "Invalid data environment closing arguments.");
10716 
10717     llvm::OpenMPIRBuilder::TargetDataRTArgs RTArgs;
10718     bool EmitDebug =
10719         CGF.CGM.getCodeGenOpts().getDebugInfo() != codegenoptions::NoDebugInfo;
10720     OMPBuilder.emitOffloadingArraysArgument(CGF.Builder, RTArgs, Info,
10721                                             EmitDebug,
10722                                             /*ForEndCall=*/true);
10723 
10724     // Emit device ID if any.
10725     llvm::Value *DeviceID = nullptr;
10726     if (Device) {
10727       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
10728                                            CGF.Int64Ty, /*isSigned=*/true);
10729     } else {
10730       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
10731     }
10732 
10733     // Emit the number of elements in the offloading arrays.
10734     llvm::Value *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs);
10735 
10736     // Source location for the ident struct
10737     llvm::Value *RTLoc = emitUpdateLocation(CGF, D.getBeginLoc());
10738 
10739     llvm::Value *OffloadingArgs[] = {RTLoc,
10740                                      DeviceID,
10741                                      PointerNum,
10742                                      RTArgs.BasePointersArray,
10743                                      RTArgs.PointersArray,
10744                                      RTArgs.SizesArray,
10745                                      RTArgs.MapTypesArray,
10746                                      RTArgs.MapNamesArray,
10747                                      RTArgs.MappersArray};
10748     CGF.EmitRuntimeCall(
10749         OMPBuilder.getOrCreateRuntimeFunction(
10750             CGM.getModule(), OMPRTL___tgt_target_data_end_mapper),
10751         OffloadingArgs);
10752   };
10753 
10754   // If we need device pointer privatization, we need to emit the body of the
10755   // region with no privatization in the 'else' branch of the conditional.
10756   // Otherwise, we don't have to do anything.
10757   auto &&BeginElseGen = [&Info, &CodeGen, &NoPrivAction](CodeGenFunction &CGF,
10758                                                          PrePostActionTy &) {
10759     if (!Info.CaptureDeviceAddrMap.empty()) {
10760       CodeGen.setAction(NoPrivAction);
10761       CodeGen(CGF);
10762     }
10763   };
10764 
10765   // We don't have to do anything to close the region if the if clause evaluates
10766   // to false.
10767   auto &&EndElseGen = [](CodeGenFunction &CGF, PrePostActionTy &) {};
10768 
10769   if (IfCond) {
10770     emitIfClause(CGF, IfCond, BeginThenGen, BeginElseGen);
10771   } else {
10772     RegionCodeGenTy RCG(BeginThenGen);
10773     RCG(CGF);
10774   }
10775 
10776   // If we don't require privatization of device pointers, we emit the body in
10777   // between the runtime calls. This avoids duplicating the body code.
10778   if (Info.CaptureDeviceAddrMap.empty()) {
10779     CodeGen.setAction(NoPrivAction);
10780     CodeGen(CGF);
10781   }
10782 
10783   if (IfCond) {
10784     emitIfClause(CGF, IfCond, EndThenGen, EndElseGen);
10785   } else {
10786     RegionCodeGenTy RCG(EndThenGen);
10787     RCG(CGF);
10788   }
10789 }
10790 
emitTargetDataStandAloneCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,const Expr * IfCond,const Expr * Device)10791 void CGOpenMPRuntime::emitTargetDataStandAloneCall(
10792     CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
10793     const Expr *Device) {
10794   if (!CGF.HaveInsertPoint())
10795     return;
10796 
10797   assert((isa<OMPTargetEnterDataDirective>(D) ||
10798           isa<OMPTargetExitDataDirective>(D) ||
10799           isa<OMPTargetUpdateDirective>(D)) &&
10800          "Expecting either target enter, exit data, or update directives.");
10801 
10802   CodeGenFunction::OMPTargetDataInfo InputInfo;
10803   llvm::Value *MapTypesArray = nullptr;
10804   llvm::Value *MapNamesArray = nullptr;
10805   // Generate the code for the opening of the data environment.
10806   auto &&ThenGen = [this, &D, Device, &InputInfo, &MapTypesArray,
10807                     &MapNamesArray](CodeGenFunction &CGF, PrePostActionTy &) {
10808     // Emit device ID if any.
10809     llvm::Value *DeviceID = nullptr;
10810     if (Device) {
10811       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
10812                                            CGF.Int64Ty, /*isSigned=*/true);
10813     } else {
10814       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
10815     }
10816 
10817     // Emit the number of elements in the offloading arrays.
10818     llvm::Constant *PointerNum =
10819         CGF.Builder.getInt32(InputInfo.NumberOfTargetItems);
10820 
10821     // Source location for the ident struct
10822     llvm::Value *RTLoc = emitUpdateLocation(CGF, D.getBeginLoc());
10823 
10824     llvm::Value *OffloadingArgs[] = {RTLoc,
10825                                      DeviceID,
10826                                      PointerNum,
10827                                      InputInfo.BasePointersArray.getPointer(),
10828                                      InputInfo.PointersArray.getPointer(),
10829                                      InputInfo.SizesArray.getPointer(),
10830                                      MapTypesArray,
10831                                      MapNamesArray,
10832                                      InputInfo.MappersArray.getPointer()};
10833 
10834     // Select the right runtime function call for each standalone
10835     // directive.
10836     const bool HasNowait = D.hasClausesOfKind<OMPNowaitClause>();
10837     RuntimeFunction RTLFn;
10838     switch (D.getDirectiveKind()) {
10839     case OMPD_target_enter_data:
10840       RTLFn = HasNowait ? OMPRTL___tgt_target_data_begin_nowait_mapper
10841                         : OMPRTL___tgt_target_data_begin_mapper;
10842       break;
10843     case OMPD_target_exit_data:
10844       RTLFn = HasNowait ? OMPRTL___tgt_target_data_end_nowait_mapper
10845                         : OMPRTL___tgt_target_data_end_mapper;
10846       break;
10847     case OMPD_target_update:
10848       RTLFn = HasNowait ? OMPRTL___tgt_target_data_update_nowait_mapper
10849                         : OMPRTL___tgt_target_data_update_mapper;
10850       break;
10851     case OMPD_parallel:
10852     case OMPD_for:
10853     case OMPD_parallel_for:
10854     case OMPD_parallel_master:
10855     case OMPD_parallel_sections:
10856     case OMPD_for_simd:
10857     case OMPD_parallel_for_simd:
10858     case OMPD_cancel:
10859     case OMPD_cancellation_point:
10860     case OMPD_ordered:
10861     case OMPD_threadprivate:
10862     case OMPD_allocate:
10863     case OMPD_task:
10864     case OMPD_simd:
10865     case OMPD_tile:
10866     case OMPD_unroll:
10867     case OMPD_sections:
10868     case OMPD_section:
10869     case OMPD_single:
10870     case OMPD_master:
10871     case OMPD_critical:
10872     case OMPD_taskyield:
10873     case OMPD_barrier:
10874     case OMPD_taskwait:
10875     case OMPD_taskgroup:
10876     case OMPD_atomic:
10877     case OMPD_flush:
10878     case OMPD_depobj:
10879     case OMPD_scan:
10880     case OMPD_teams:
10881     case OMPD_target_data:
10882     case OMPD_distribute:
10883     case OMPD_distribute_simd:
10884     case OMPD_distribute_parallel_for:
10885     case OMPD_distribute_parallel_for_simd:
10886     case OMPD_teams_distribute:
10887     case OMPD_teams_distribute_simd:
10888     case OMPD_teams_distribute_parallel_for:
10889     case OMPD_teams_distribute_parallel_for_simd:
10890     case OMPD_declare_simd:
10891     case OMPD_declare_variant:
10892     case OMPD_begin_declare_variant:
10893     case OMPD_end_declare_variant:
10894     case OMPD_declare_target:
10895     case OMPD_end_declare_target:
10896     case OMPD_declare_reduction:
10897     case OMPD_declare_mapper:
10898     case OMPD_taskloop:
10899     case OMPD_taskloop_simd:
10900     case OMPD_master_taskloop:
10901     case OMPD_master_taskloop_simd:
10902     case OMPD_parallel_master_taskloop:
10903     case OMPD_parallel_master_taskloop_simd:
10904     case OMPD_target:
10905     case OMPD_target_simd:
10906     case OMPD_target_teams_distribute:
10907     case OMPD_target_teams_distribute_simd:
10908     case OMPD_target_teams_distribute_parallel_for:
10909     case OMPD_target_teams_distribute_parallel_for_simd:
10910     case OMPD_target_teams:
10911     case OMPD_target_parallel:
10912     case OMPD_target_parallel_for:
10913     case OMPD_target_parallel_for_simd:
10914     case OMPD_requires:
10915     case OMPD_metadirective:
10916     case OMPD_unknown:
10917     default:
10918       llvm_unreachable("Unexpected standalone target data directive.");
10919       break;
10920     }
10921     CGF.EmitRuntimeCall(
10922         OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), RTLFn),
10923         OffloadingArgs);
10924   };
10925 
10926   auto &&TargetThenGen = [this, &ThenGen, &D, &InputInfo, &MapTypesArray,
10927                           &MapNamesArray](CodeGenFunction &CGF,
10928                                           PrePostActionTy &) {
10929     // Fill up the arrays with all the mapped variables.
10930     MappableExprsHandler::MapCombinedInfoTy CombinedInfo;
10931 
10932     // Get map clause information.
10933     MappableExprsHandler MEHandler(D, CGF);
10934     MEHandler.generateAllInfo(CombinedInfo);
10935 
10936     CGOpenMPRuntime::TargetDataInfo Info;
10937     // Fill up the arrays and create the arguments.
10938     emitOffloadingArrays(CGF, CombinedInfo, Info, OMPBuilder,
10939                          /*IsNonContiguous=*/true);
10940     bool RequiresOuterTask = D.hasClausesOfKind<OMPDependClause>() ||
10941                              D.hasClausesOfKind<OMPNowaitClause>();
10942     bool EmitDebug =
10943         CGF.CGM.getCodeGenOpts().getDebugInfo() != codegenoptions::NoDebugInfo;
10944     OMPBuilder.emitOffloadingArraysArgument(CGF.Builder, Info.RTArgs, Info,
10945                                             EmitDebug,
10946                                             /*ForEndCall=*/false);
10947     InputInfo.NumberOfTargetItems = Info.NumberOfPtrs;
10948     InputInfo.BasePointersArray = Address(Info.RTArgs.BasePointersArray,
10949                                           CGF.VoidPtrTy, CGM.getPointerAlign());
10950     InputInfo.PointersArray = Address(Info.RTArgs.PointersArray, CGF.VoidPtrTy,
10951                                       CGM.getPointerAlign());
10952     InputInfo.SizesArray =
10953         Address(Info.RTArgs.SizesArray, CGF.Int64Ty, CGM.getPointerAlign());
10954     InputInfo.MappersArray =
10955         Address(Info.RTArgs.MappersArray, CGF.VoidPtrTy, CGM.getPointerAlign());
10956     MapTypesArray = Info.RTArgs.MapTypesArray;
10957     MapNamesArray = Info.RTArgs.MapNamesArray;
10958     if (RequiresOuterTask)
10959       CGF.EmitOMPTargetTaskBasedDirective(D, ThenGen, InputInfo);
10960     else
10961       emitInlinedDirective(CGF, D.getDirectiveKind(), ThenGen);
10962   };
10963 
10964   if (IfCond) {
10965     emitIfClause(CGF, IfCond, TargetThenGen,
10966                  [](CodeGenFunction &CGF, PrePostActionTy &) {});
10967   } else {
10968     RegionCodeGenTy ThenRCG(TargetThenGen);
10969     ThenRCG(CGF);
10970   }
10971 }
10972 
10973 namespace {
10974   /// Kind of parameter in a function with 'declare simd' directive.
10975 enum ParamKindTy {
10976   Linear,
10977   LinearRef,
10978   LinearUVal,
10979   LinearVal,
10980   Uniform,
10981   Vector,
10982 };
10983 /// Attribute set of the parameter.
10984 struct ParamAttrTy {
10985   ParamKindTy Kind = Vector;
10986   llvm::APSInt StrideOrArg;
10987   llvm::APSInt Alignment;
10988   bool HasVarStride = false;
10989 };
10990 } // namespace
10991 
evaluateCDTSize(const FunctionDecl * FD,ArrayRef<ParamAttrTy> ParamAttrs)10992 static unsigned evaluateCDTSize(const FunctionDecl *FD,
10993                                 ArrayRef<ParamAttrTy> ParamAttrs) {
10994   // Every vector variant of a SIMD-enabled function has a vector length (VLEN).
10995   // If OpenMP clause "simdlen" is used, the VLEN is the value of the argument
10996   // of that clause. The VLEN value must be power of 2.
10997   // In other case the notion of the function`s "characteristic data type" (CDT)
10998   // is used to compute the vector length.
10999   // CDT is defined in the following order:
11000   //   a) For non-void function, the CDT is the return type.
11001   //   b) If the function has any non-uniform, non-linear parameters, then the
11002   //   CDT is the type of the first such parameter.
11003   //   c) If the CDT determined by a) or b) above is struct, union, or class
11004   //   type which is pass-by-value (except for the type that maps to the
11005   //   built-in complex data type), the characteristic data type is int.
11006   //   d) If none of the above three cases is applicable, the CDT is int.
11007   // The VLEN is then determined based on the CDT and the size of vector
11008   // register of that ISA for which current vector version is generated. The
11009   // VLEN is computed using the formula below:
11010   //   VLEN  = sizeof(vector_register) / sizeof(CDT),
11011   // where vector register size specified in section 3.2.1 Registers and the
11012   // Stack Frame of original AMD64 ABI document.
11013   QualType RetType = FD->getReturnType();
11014   if (RetType.isNull())
11015     return 0;
11016   ASTContext &C = FD->getASTContext();
11017   QualType CDT;
11018   if (!RetType.isNull() && !RetType->isVoidType()) {
11019     CDT = RetType;
11020   } else {
11021     unsigned Offset = 0;
11022     if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
11023       if (ParamAttrs[Offset].Kind == Vector)
11024         CDT = C.getPointerType(C.getRecordType(MD->getParent()));
11025       ++Offset;
11026     }
11027     if (CDT.isNull()) {
11028       for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) {
11029         if (ParamAttrs[I + Offset].Kind == Vector) {
11030           CDT = FD->getParamDecl(I)->getType();
11031           break;
11032         }
11033       }
11034     }
11035   }
11036   if (CDT.isNull())
11037     CDT = C.IntTy;
11038   CDT = CDT->getCanonicalTypeUnqualified();
11039   if (CDT->isRecordType() || CDT->isUnionType())
11040     CDT = C.IntTy;
11041   return C.getTypeSize(CDT);
11042 }
11043 
11044 /// Mangle the parameter part of the vector function name according to
11045 /// their OpenMP classification. The mangling function is defined in
11046 /// section 4.5 of the AAVFABI(2021Q1).
mangleVectorParameters(ArrayRef<ParamAttrTy> ParamAttrs)11047 static std::string mangleVectorParameters(ArrayRef<ParamAttrTy> ParamAttrs) {
11048   SmallString<256> Buffer;
11049   llvm::raw_svector_ostream Out(Buffer);
11050   for (const auto &ParamAttr : ParamAttrs) {
11051     switch (ParamAttr.Kind) {
11052     case Linear:
11053       Out << 'l';
11054       break;
11055     case LinearRef:
11056       Out << 'R';
11057       break;
11058     case LinearUVal:
11059       Out << 'U';
11060       break;
11061     case LinearVal:
11062       Out << 'L';
11063       break;
11064     case Uniform:
11065       Out << 'u';
11066       break;
11067     case Vector:
11068       Out << 'v';
11069       break;
11070     }
11071     if (ParamAttr.HasVarStride)
11072       Out << "s" << ParamAttr.StrideOrArg;
11073     else if (ParamAttr.Kind == Linear || ParamAttr.Kind == LinearRef ||
11074              ParamAttr.Kind == LinearUVal || ParamAttr.Kind == LinearVal) {
11075       // Don't print the step value if it is not present or if it is
11076       // equal to 1.
11077       if (ParamAttr.StrideOrArg < 0)
11078         Out << 'n' << -ParamAttr.StrideOrArg;
11079       else if (ParamAttr.StrideOrArg != 1)
11080         Out << ParamAttr.StrideOrArg;
11081     }
11082 
11083     if (!!ParamAttr.Alignment)
11084       Out << 'a' << ParamAttr.Alignment;
11085   }
11086 
11087   return std::string(Out.str());
11088 }
11089 
11090 static void
emitX86DeclareSimdFunction(const FunctionDecl * FD,llvm::Function * Fn,const llvm::APSInt & VLENVal,ArrayRef<ParamAttrTy> ParamAttrs,OMPDeclareSimdDeclAttr::BranchStateTy State)11091 emitX86DeclareSimdFunction(const FunctionDecl *FD, llvm::Function *Fn,
11092                            const llvm::APSInt &VLENVal,
11093                            ArrayRef<ParamAttrTy> ParamAttrs,
11094                            OMPDeclareSimdDeclAttr::BranchStateTy State) {
11095   struct ISADataTy {
11096     char ISA;
11097     unsigned VecRegSize;
11098   };
11099   ISADataTy ISAData[] = {
11100       {
11101           'b', 128
11102       }, // SSE
11103       {
11104           'c', 256
11105       }, // AVX
11106       {
11107           'd', 256
11108       }, // AVX2
11109       {
11110           'e', 512
11111       }, // AVX512
11112   };
11113   llvm::SmallVector<char, 2> Masked;
11114   switch (State) {
11115   case OMPDeclareSimdDeclAttr::BS_Undefined:
11116     Masked.push_back('N');
11117     Masked.push_back('M');
11118     break;
11119   case OMPDeclareSimdDeclAttr::BS_Notinbranch:
11120     Masked.push_back('N');
11121     break;
11122   case OMPDeclareSimdDeclAttr::BS_Inbranch:
11123     Masked.push_back('M');
11124     break;
11125   }
11126   for (char Mask : Masked) {
11127     for (const ISADataTy &Data : ISAData) {
11128       SmallString<256> Buffer;
11129       llvm::raw_svector_ostream Out(Buffer);
11130       Out << "_ZGV" << Data.ISA << Mask;
11131       if (!VLENVal) {
11132         unsigned NumElts = evaluateCDTSize(FD, ParamAttrs);
11133         assert(NumElts && "Non-zero simdlen/cdtsize expected");
11134         Out << llvm::APSInt::getUnsigned(Data.VecRegSize / NumElts);
11135       } else {
11136         Out << VLENVal;
11137       }
11138       Out << mangleVectorParameters(ParamAttrs);
11139       Out << '_' << Fn->getName();
11140       Fn->addFnAttr(Out.str());
11141     }
11142   }
11143 }
11144 
11145 // This are the Functions that are needed to mangle the name of the
11146 // vector functions generated by the compiler, according to the rules
11147 // defined in the "Vector Function ABI specifications for AArch64",
11148 // available at
11149 // https://developer.arm.com/products/software-development-tools/hpc/arm-compiler-for-hpc/vector-function-abi.
11150 
11151 /// Maps To Vector (MTV), as defined in 4.1.1 of the AAVFABI (2021Q1).
getAArch64MTV(QualType QT,ParamKindTy Kind)11152 static bool getAArch64MTV(QualType QT, ParamKindTy Kind) {
11153   QT = QT.getCanonicalType();
11154 
11155   if (QT->isVoidType())
11156     return false;
11157 
11158   if (Kind == ParamKindTy::Uniform)
11159     return false;
11160 
11161   if (Kind == ParamKindTy::LinearUVal || ParamKindTy::LinearRef)
11162     return false;
11163 
11164   if ((Kind == ParamKindTy::Linear || Kind == ParamKindTy::LinearVal) &&
11165       !QT->isReferenceType())
11166     return false;
11167 
11168   return true;
11169 }
11170 
11171 /// Pass By Value (PBV), as defined in 3.1.2 of the AAVFABI.
getAArch64PBV(QualType QT,ASTContext & C)11172 static bool getAArch64PBV(QualType QT, ASTContext &C) {
11173   QT = QT.getCanonicalType();
11174   unsigned Size = C.getTypeSize(QT);
11175 
11176   // Only scalars and complex within 16 bytes wide set PVB to true.
11177   if (Size != 8 && Size != 16 && Size != 32 && Size != 64 && Size != 128)
11178     return false;
11179 
11180   if (QT->isFloatingType())
11181     return true;
11182 
11183   if (QT->isIntegerType())
11184     return true;
11185 
11186   if (QT->isPointerType())
11187     return true;
11188 
11189   // TODO: Add support for complex types (section 3.1.2, item 2).
11190 
11191   return false;
11192 }
11193 
11194 /// Computes the lane size (LS) of a return type or of an input parameter,
11195 /// as defined by `LS(P)` in 3.2.1 of the AAVFABI.
11196 /// TODO: Add support for references, section 3.2.1, item 1.
getAArch64LS(QualType QT,ParamKindTy Kind,ASTContext & C)11197 static unsigned getAArch64LS(QualType QT, ParamKindTy Kind, ASTContext &C) {
11198   if (!getAArch64MTV(QT, Kind) && QT.getCanonicalType()->isPointerType()) {
11199     QualType PTy = QT.getCanonicalType()->getPointeeType();
11200     if (getAArch64PBV(PTy, C))
11201       return C.getTypeSize(PTy);
11202   }
11203   if (getAArch64PBV(QT, C))
11204     return C.getTypeSize(QT);
11205 
11206   return C.getTypeSize(C.getUIntPtrType());
11207 }
11208 
11209 // Get Narrowest Data Size (NDS) and Widest Data Size (WDS) from the
11210 // signature of the scalar function, as defined in 3.2.2 of the
11211 // AAVFABI.
11212 static std::tuple<unsigned, unsigned, bool>
getNDSWDS(const FunctionDecl * FD,ArrayRef<ParamAttrTy> ParamAttrs)11213 getNDSWDS(const FunctionDecl *FD, ArrayRef<ParamAttrTy> ParamAttrs) {
11214   QualType RetType = FD->getReturnType().getCanonicalType();
11215 
11216   ASTContext &C = FD->getASTContext();
11217 
11218   bool OutputBecomesInput = false;
11219 
11220   llvm::SmallVector<unsigned, 8> Sizes;
11221   if (!RetType->isVoidType()) {
11222     Sizes.push_back(getAArch64LS(RetType, ParamKindTy::Vector, C));
11223     if (!getAArch64PBV(RetType, C) && getAArch64MTV(RetType, {}))
11224       OutputBecomesInput = true;
11225   }
11226   for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) {
11227     QualType QT = FD->getParamDecl(I)->getType().getCanonicalType();
11228     Sizes.push_back(getAArch64LS(QT, ParamAttrs[I].Kind, C));
11229   }
11230 
11231   assert(!Sizes.empty() && "Unable to determine NDS and WDS.");
11232   // The LS of a function parameter / return value can only be a power
11233   // of 2, starting from 8 bits, up to 128.
11234   assert(llvm::all_of(Sizes,
11235                       [](unsigned Size) {
11236                         return Size == 8 || Size == 16 || Size == 32 ||
11237                                Size == 64 || Size == 128;
11238                       }) &&
11239          "Invalid size");
11240 
11241   return std::make_tuple(*std::min_element(std::begin(Sizes), std::end(Sizes)),
11242                          *std::max_element(std::begin(Sizes), std::end(Sizes)),
11243                          OutputBecomesInput);
11244 }
11245 
11246 // Function used to add the attribute. The parameter `VLEN` is
11247 // templated to allow the use of "x" when targeting scalable functions
11248 // for SVE.
11249 template <typename T>
addAArch64VectorName(T VLEN,StringRef LMask,StringRef Prefix,char ISA,StringRef ParSeq,StringRef MangledName,bool OutputBecomesInput,llvm::Function * Fn)11250 static void addAArch64VectorName(T VLEN, StringRef LMask, StringRef Prefix,
11251                                  char ISA, StringRef ParSeq,
11252                                  StringRef MangledName, bool OutputBecomesInput,
11253                                  llvm::Function *Fn) {
11254   SmallString<256> Buffer;
11255   llvm::raw_svector_ostream Out(Buffer);
11256   Out << Prefix << ISA << LMask << VLEN;
11257   if (OutputBecomesInput)
11258     Out << "v";
11259   Out << ParSeq << "_" << MangledName;
11260   Fn->addFnAttr(Out.str());
11261 }
11262 
11263 // Helper function to generate the Advanced SIMD names depending on
11264 // the value of the NDS when simdlen is not present.
addAArch64AdvSIMDNDSNames(unsigned NDS,StringRef Mask,StringRef Prefix,char ISA,StringRef ParSeq,StringRef MangledName,bool OutputBecomesInput,llvm::Function * Fn)11265 static void addAArch64AdvSIMDNDSNames(unsigned NDS, StringRef Mask,
11266                                       StringRef Prefix, char ISA,
11267                                       StringRef ParSeq, StringRef MangledName,
11268                                       bool OutputBecomesInput,
11269                                       llvm::Function *Fn) {
11270   switch (NDS) {
11271   case 8:
11272     addAArch64VectorName(8, Mask, Prefix, ISA, ParSeq, MangledName,
11273                          OutputBecomesInput, Fn);
11274     addAArch64VectorName(16, Mask, Prefix, ISA, ParSeq, MangledName,
11275                          OutputBecomesInput, Fn);
11276     break;
11277   case 16:
11278     addAArch64VectorName(4, Mask, Prefix, ISA, ParSeq, MangledName,
11279                          OutputBecomesInput, Fn);
11280     addAArch64VectorName(8, Mask, Prefix, ISA, ParSeq, MangledName,
11281                          OutputBecomesInput, Fn);
11282     break;
11283   case 32:
11284     addAArch64VectorName(2, Mask, Prefix, ISA, ParSeq, MangledName,
11285                          OutputBecomesInput, Fn);
11286     addAArch64VectorName(4, Mask, Prefix, ISA, ParSeq, MangledName,
11287                          OutputBecomesInput, Fn);
11288     break;
11289   case 64:
11290   case 128:
11291     addAArch64VectorName(2, Mask, Prefix, ISA, ParSeq, MangledName,
11292                          OutputBecomesInput, Fn);
11293     break;
11294   default:
11295     llvm_unreachable("Scalar type is too wide.");
11296   }
11297 }
11298 
11299 /// Emit vector function attributes for AArch64, as defined in the AAVFABI.
emitAArch64DeclareSimdFunction(CodeGenModule & CGM,const FunctionDecl * FD,unsigned UserVLEN,ArrayRef<ParamAttrTy> ParamAttrs,OMPDeclareSimdDeclAttr::BranchStateTy State,StringRef MangledName,char ISA,unsigned VecRegSize,llvm::Function * Fn,SourceLocation SLoc)11300 static void emitAArch64DeclareSimdFunction(
11301     CodeGenModule &CGM, const FunctionDecl *FD, unsigned UserVLEN,
11302     ArrayRef<ParamAttrTy> ParamAttrs,
11303     OMPDeclareSimdDeclAttr::BranchStateTy State, StringRef MangledName,
11304     char ISA, unsigned VecRegSize, llvm::Function *Fn, SourceLocation SLoc) {
11305 
11306   // Get basic data for building the vector signature.
11307   const auto Data = getNDSWDS(FD, ParamAttrs);
11308   const unsigned NDS = std::get<0>(Data);
11309   const unsigned WDS = std::get<1>(Data);
11310   const bool OutputBecomesInput = std::get<2>(Data);
11311 
11312   // Check the values provided via `simdlen` by the user.
11313   // 1. A `simdlen(1)` doesn't produce vector signatures,
11314   if (UserVLEN == 1) {
11315     unsigned DiagID = CGM.getDiags().getCustomDiagID(
11316         DiagnosticsEngine::Warning,
11317         "The clause simdlen(1) has no effect when targeting aarch64.");
11318     CGM.getDiags().Report(SLoc, DiagID);
11319     return;
11320   }
11321 
11322   // 2. Section 3.3.1, item 1: user input must be a power of 2 for
11323   // Advanced SIMD output.
11324   if (ISA == 'n' && UserVLEN && !llvm::isPowerOf2_32(UserVLEN)) {
11325     unsigned DiagID = CGM.getDiags().getCustomDiagID(
11326         DiagnosticsEngine::Warning, "The value specified in simdlen must be a "
11327                                     "power of 2 when targeting Advanced SIMD.");
11328     CGM.getDiags().Report(SLoc, DiagID);
11329     return;
11330   }
11331 
11332   // 3. Section 3.4.1. SVE fixed lengh must obey the architectural
11333   // limits.
11334   if (ISA == 's' && UserVLEN != 0) {
11335     if ((UserVLEN * WDS > 2048) || (UserVLEN * WDS % 128 != 0)) {
11336       unsigned DiagID = CGM.getDiags().getCustomDiagID(
11337           DiagnosticsEngine::Warning, "The clause simdlen must fit the %0-bit "
11338                                       "lanes in the architectural constraints "
11339                                       "for SVE (min is 128-bit, max is "
11340                                       "2048-bit, by steps of 128-bit)");
11341       CGM.getDiags().Report(SLoc, DiagID) << WDS;
11342       return;
11343     }
11344   }
11345 
11346   // Sort out parameter sequence.
11347   const std::string ParSeq = mangleVectorParameters(ParamAttrs);
11348   StringRef Prefix = "_ZGV";
11349   // Generate simdlen from user input (if any).
11350   if (UserVLEN) {
11351     if (ISA == 's') {
11352       // SVE generates only a masked function.
11353       addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
11354                            OutputBecomesInput, Fn);
11355     } else {
11356       assert(ISA == 'n' && "Expected ISA either 's' or 'n'.");
11357       // Advanced SIMD generates one or two functions, depending on
11358       // the `[not]inbranch` clause.
11359       switch (State) {
11360       case OMPDeclareSimdDeclAttr::BS_Undefined:
11361         addAArch64VectorName(UserVLEN, "N", Prefix, ISA, ParSeq, MangledName,
11362                              OutputBecomesInput, Fn);
11363         addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
11364                              OutputBecomesInput, Fn);
11365         break;
11366       case OMPDeclareSimdDeclAttr::BS_Notinbranch:
11367         addAArch64VectorName(UserVLEN, "N", Prefix, ISA, ParSeq, MangledName,
11368                              OutputBecomesInput, Fn);
11369         break;
11370       case OMPDeclareSimdDeclAttr::BS_Inbranch:
11371         addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
11372                              OutputBecomesInput, Fn);
11373         break;
11374       }
11375     }
11376   } else {
11377     // If no user simdlen is provided, follow the AAVFABI rules for
11378     // generating the vector length.
11379     if (ISA == 's') {
11380       // SVE, section 3.4.1, item 1.
11381       addAArch64VectorName("x", "M", Prefix, ISA, ParSeq, MangledName,
11382                            OutputBecomesInput, Fn);
11383     } else {
11384       assert(ISA == 'n' && "Expected ISA either 's' or 'n'.");
11385       // Advanced SIMD, Section 3.3.1 of the AAVFABI, generates one or
11386       // two vector names depending on the use of the clause
11387       // `[not]inbranch`.
11388       switch (State) {
11389       case OMPDeclareSimdDeclAttr::BS_Undefined:
11390         addAArch64AdvSIMDNDSNames(NDS, "N", Prefix, ISA, ParSeq, MangledName,
11391                                   OutputBecomesInput, Fn);
11392         addAArch64AdvSIMDNDSNames(NDS, "M", Prefix, ISA, ParSeq, MangledName,
11393                                   OutputBecomesInput, Fn);
11394         break;
11395       case OMPDeclareSimdDeclAttr::BS_Notinbranch:
11396         addAArch64AdvSIMDNDSNames(NDS, "N", Prefix, ISA, ParSeq, MangledName,
11397                                   OutputBecomesInput, Fn);
11398         break;
11399       case OMPDeclareSimdDeclAttr::BS_Inbranch:
11400         addAArch64AdvSIMDNDSNames(NDS, "M", Prefix, ISA, ParSeq, MangledName,
11401                                   OutputBecomesInput, Fn);
11402         break;
11403       }
11404     }
11405   }
11406 }
11407 
emitDeclareSimdFunction(const FunctionDecl * FD,llvm::Function * Fn)11408 void CGOpenMPRuntime::emitDeclareSimdFunction(const FunctionDecl *FD,
11409                                               llvm::Function *Fn) {
11410   ASTContext &C = CGM.getContext();
11411   FD = FD->getMostRecentDecl();
11412   while (FD) {
11413     // Map params to their positions in function decl.
11414     llvm::DenseMap<const Decl *, unsigned> ParamPositions;
11415     if (isa<CXXMethodDecl>(FD))
11416       ParamPositions.try_emplace(FD, 0);
11417     unsigned ParamPos = ParamPositions.size();
11418     for (const ParmVarDecl *P : FD->parameters()) {
11419       ParamPositions.try_emplace(P->getCanonicalDecl(), ParamPos);
11420       ++ParamPos;
11421     }
11422     for (const auto *Attr : FD->specific_attrs<OMPDeclareSimdDeclAttr>()) {
11423       llvm::SmallVector<ParamAttrTy, 8> ParamAttrs(ParamPositions.size());
11424       // Mark uniform parameters.
11425       for (const Expr *E : Attr->uniforms()) {
11426         E = E->IgnoreParenImpCasts();
11427         unsigned Pos;
11428         if (isa<CXXThisExpr>(E)) {
11429           Pos = ParamPositions[FD];
11430         } else {
11431           const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
11432                                 ->getCanonicalDecl();
11433           auto It = ParamPositions.find(PVD);
11434           assert(It != ParamPositions.end() && "Function parameter not found");
11435           Pos = It->second;
11436         }
11437         ParamAttrs[Pos].Kind = Uniform;
11438       }
11439       // Get alignment info.
11440       auto *NI = Attr->alignments_begin();
11441       for (const Expr *E : Attr->aligneds()) {
11442         E = E->IgnoreParenImpCasts();
11443         unsigned Pos;
11444         QualType ParmTy;
11445         if (isa<CXXThisExpr>(E)) {
11446           Pos = ParamPositions[FD];
11447           ParmTy = E->getType();
11448         } else {
11449           const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
11450                                 ->getCanonicalDecl();
11451           auto It = ParamPositions.find(PVD);
11452           assert(It != ParamPositions.end() && "Function parameter not found");
11453           Pos = It->second;
11454           ParmTy = PVD->getType();
11455         }
11456         ParamAttrs[Pos].Alignment =
11457             (*NI)
11458                 ? (*NI)->EvaluateKnownConstInt(C)
11459                 : llvm::APSInt::getUnsigned(
11460                       C.toCharUnitsFromBits(C.getOpenMPDefaultSimdAlign(ParmTy))
11461                           .getQuantity());
11462         ++NI;
11463       }
11464       // Mark linear parameters.
11465       auto *SI = Attr->steps_begin();
11466       auto *MI = Attr->modifiers_begin();
11467       for (const Expr *E : Attr->linears()) {
11468         E = E->IgnoreParenImpCasts();
11469         unsigned Pos;
11470         bool IsReferenceType = false;
11471         // Rescaling factor needed to compute the linear parameter
11472         // value in the mangled name.
11473         unsigned PtrRescalingFactor = 1;
11474         if (isa<CXXThisExpr>(E)) {
11475           Pos = ParamPositions[FD];
11476           auto *P = cast<PointerType>(E->getType());
11477           PtrRescalingFactor = CGM.getContext()
11478                                    .getTypeSizeInChars(P->getPointeeType())
11479                                    .getQuantity();
11480         } else {
11481           const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
11482                                 ->getCanonicalDecl();
11483           auto It = ParamPositions.find(PVD);
11484           assert(It != ParamPositions.end() && "Function parameter not found");
11485           Pos = It->second;
11486           if (auto *P = dyn_cast<PointerType>(PVD->getType()))
11487             PtrRescalingFactor = CGM.getContext()
11488                                      .getTypeSizeInChars(P->getPointeeType())
11489                                      .getQuantity();
11490           else if (PVD->getType()->isReferenceType()) {
11491             IsReferenceType = true;
11492             PtrRescalingFactor =
11493                 CGM.getContext()
11494                     .getTypeSizeInChars(PVD->getType().getNonReferenceType())
11495                     .getQuantity();
11496           }
11497         }
11498         ParamAttrTy &ParamAttr = ParamAttrs[Pos];
11499         if (*MI == OMPC_LINEAR_ref)
11500           ParamAttr.Kind = LinearRef;
11501         else if (*MI == OMPC_LINEAR_uval)
11502           ParamAttr.Kind = LinearUVal;
11503         else if (IsReferenceType)
11504           ParamAttr.Kind = LinearVal;
11505         else
11506           ParamAttr.Kind = Linear;
11507         // Assuming a stride of 1, for `linear` without modifiers.
11508         ParamAttr.StrideOrArg = llvm::APSInt::getUnsigned(1);
11509         if (*SI) {
11510           Expr::EvalResult Result;
11511           if (!(*SI)->EvaluateAsInt(Result, C, Expr::SE_AllowSideEffects)) {
11512             if (const auto *DRE =
11513                     cast<DeclRefExpr>((*SI)->IgnoreParenImpCasts())) {
11514               if (const auto *StridePVD =
11515                       dyn_cast<ParmVarDecl>(DRE->getDecl())) {
11516                 ParamAttr.HasVarStride = true;
11517                 auto It = ParamPositions.find(StridePVD->getCanonicalDecl());
11518                 assert(It != ParamPositions.end() &&
11519                        "Function parameter not found");
11520                 ParamAttr.StrideOrArg = llvm::APSInt::getUnsigned(It->second);
11521               }
11522             }
11523           } else {
11524             ParamAttr.StrideOrArg = Result.Val.getInt();
11525           }
11526         }
11527         // If we are using a linear clause on a pointer, we need to
11528         // rescale the value of linear_step with the byte size of the
11529         // pointee type.
11530         if (!ParamAttr.HasVarStride &&
11531             (ParamAttr.Kind == Linear || ParamAttr.Kind == LinearRef))
11532           ParamAttr.StrideOrArg = ParamAttr.StrideOrArg * PtrRescalingFactor;
11533         ++SI;
11534         ++MI;
11535       }
11536       llvm::APSInt VLENVal;
11537       SourceLocation ExprLoc;
11538       const Expr *VLENExpr = Attr->getSimdlen();
11539       if (VLENExpr) {
11540         VLENVal = VLENExpr->EvaluateKnownConstInt(C);
11541         ExprLoc = VLENExpr->getExprLoc();
11542       }
11543       OMPDeclareSimdDeclAttr::BranchStateTy State = Attr->getBranchState();
11544       if (CGM.getTriple().isX86()) {
11545         emitX86DeclareSimdFunction(FD, Fn, VLENVal, ParamAttrs, State);
11546       } else if (CGM.getTriple().getArch() == llvm::Triple::aarch64) {
11547         unsigned VLEN = VLENVal.getExtValue();
11548         StringRef MangledName = Fn->getName();
11549         if (CGM.getTarget().hasFeature("sve"))
11550           emitAArch64DeclareSimdFunction(CGM, FD, VLEN, ParamAttrs, State,
11551                                          MangledName, 's', 128, Fn, ExprLoc);
11552         else if (CGM.getTarget().hasFeature("neon"))
11553           emitAArch64DeclareSimdFunction(CGM, FD, VLEN, ParamAttrs, State,
11554                                          MangledName, 'n', 128, Fn, ExprLoc);
11555       }
11556     }
11557     FD = FD->getPreviousDecl();
11558   }
11559 }
11560 
11561 namespace {
11562 /// Cleanup action for doacross support.
11563 class DoacrossCleanupTy final : public EHScopeStack::Cleanup {
11564 public:
11565   static const int DoacrossFinArgs = 2;
11566 
11567 private:
11568   llvm::FunctionCallee RTLFn;
11569   llvm::Value *Args[DoacrossFinArgs];
11570 
11571 public:
DoacrossCleanupTy(llvm::FunctionCallee RTLFn,ArrayRef<llvm::Value * > CallArgs)11572   DoacrossCleanupTy(llvm::FunctionCallee RTLFn,
11573                     ArrayRef<llvm::Value *> CallArgs)
11574       : RTLFn(RTLFn) {
11575     assert(CallArgs.size() == DoacrossFinArgs);
11576     std::copy(CallArgs.begin(), CallArgs.end(), std::begin(Args));
11577   }
Emit(CodeGenFunction & CGF,Flags)11578   void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
11579     if (!CGF.HaveInsertPoint())
11580       return;
11581     CGF.EmitRuntimeCall(RTLFn, Args);
11582   }
11583 };
11584 } // namespace
11585 
emitDoacrossInit(CodeGenFunction & CGF,const OMPLoopDirective & D,ArrayRef<Expr * > NumIterations)11586 void CGOpenMPRuntime::emitDoacrossInit(CodeGenFunction &CGF,
11587                                        const OMPLoopDirective &D,
11588                                        ArrayRef<Expr *> NumIterations) {
11589   if (!CGF.HaveInsertPoint())
11590     return;
11591 
11592   ASTContext &C = CGM.getContext();
11593   QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/true);
11594   RecordDecl *RD;
11595   if (KmpDimTy.isNull()) {
11596     // Build struct kmp_dim {  // loop bounds info casted to kmp_int64
11597     //  kmp_int64 lo; // lower
11598     //  kmp_int64 up; // upper
11599     //  kmp_int64 st; // stride
11600     // };
11601     RD = C.buildImplicitRecord("kmp_dim");
11602     RD->startDefinition();
11603     addFieldToRecordDecl(C, RD, Int64Ty);
11604     addFieldToRecordDecl(C, RD, Int64Ty);
11605     addFieldToRecordDecl(C, RD, Int64Ty);
11606     RD->completeDefinition();
11607     KmpDimTy = C.getRecordType(RD);
11608   } else {
11609     RD = cast<RecordDecl>(KmpDimTy->getAsTagDecl());
11610   }
11611   llvm::APInt Size(/*numBits=*/32, NumIterations.size());
11612   QualType ArrayTy =
11613       C.getConstantArrayType(KmpDimTy, Size, nullptr, ArrayType::Normal, 0);
11614 
11615   Address DimsAddr = CGF.CreateMemTemp(ArrayTy, "dims");
11616   CGF.EmitNullInitialization(DimsAddr, ArrayTy);
11617   enum { LowerFD = 0, UpperFD, StrideFD };
11618   // Fill dims with data.
11619   for (unsigned I = 0, E = NumIterations.size(); I < E; ++I) {
11620     LValue DimsLVal = CGF.MakeAddrLValue(
11621         CGF.Builder.CreateConstArrayGEP(DimsAddr, I), KmpDimTy);
11622     // dims.upper = num_iterations;
11623     LValue UpperLVal = CGF.EmitLValueForField(
11624         DimsLVal, *std::next(RD->field_begin(), UpperFD));
11625     llvm::Value *NumIterVal = CGF.EmitScalarConversion(
11626         CGF.EmitScalarExpr(NumIterations[I]), NumIterations[I]->getType(),
11627         Int64Ty, NumIterations[I]->getExprLoc());
11628     CGF.EmitStoreOfScalar(NumIterVal, UpperLVal);
11629     // dims.stride = 1;
11630     LValue StrideLVal = CGF.EmitLValueForField(
11631         DimsLVal, *std::next(RD->field_begin(), StrideFD));
11632     CGF.EmitStoreOfScalar(llvm::ConstantInt::getSigned(CGM.Int64Ty, /*V=*/1),
11633                           StrideLVal);
11634   }
11635 
11636   // Build call void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
11637   // kmp_int32 num_dims, struct kmp_dim * dims);
11638   llvm::Value *Args[] = {
11639       emitUpdateLocation(CGF, D.getBeginLoc()),
11640       getThreadID(CGF, D.getBeginLoc()),
11641       llvm::ConstantInt::getSigned(CGM.Int32Ty, NumIterations.size()),
11642       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
11643           CGF.Builder.CreateConstArrayGEP(DimsAddr, 0).getPointer(),
11644           CGM.VoidPtrTy)};
11645 
11646   llvm::FunctionCallee RTLFn = OMPBuilder.getOrCreateRuntimeFunction(
11647       CGM.getModule(), OMPRTL___kmpc_doacross_init);
11648   CGF.EmitRuntimeCall(RTLFn, Args);
11649   llvm::Value *FiniArgs[DoacrossCleanupTy::DoacrossFinArgs] = {
11650       emitUpdateLocation(CGF, D.getEndLoc()), getThreadID(CGF, D.getEndLoc())};
11651   llvm::FunctionCallee FiniRTLFn = OMPBuilder.getOrCreateRuntimeFunction(
11652       CGM.getModule(), OMPRTL___kmpc_doacross_fini);
11653   CGF.EHStack.pushCleanup<DoacrossCleanupTy>(NormalAndEHCleanup, FiniRTLFn,
11654                                              llvm::ArrayRef(FiniArgs));
11655 }
11656 
emitDoacrossOrdered(CodeGenFunction & CGF,const OMPDependClause * C)11657 void CGOpenMPRuntime::emitDoacrossOrdered(CodeGenFunction &CGF,
11658                                           const OMPDependClause *C) {
11659   QualType Int64Ty =
11660       CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
11661   llvm::APInt Size(/*numBits=*/32, C->getNumLoops());
11662   QualType ArrayTy = CGM.getContext().getConstantArrayType(
11663       Int64Ty, Size, nullptr, ArrayType::Normal, 0);
11664   Address CntAddr = CGF.CreateMemTemp(ArrayTy, ".cnt.addr");
11665   for (unsigned I = 0, E = C->getNumLoops(); I < E; ++I) {
11666     const Expr *CounterVal = C->getLoopData(I);
11667     assert(CounterVal);
11668     llvm::Value *CntVal = CGF.EmitScalarConversion(
11669         CGF.EmitScalarExpr(CounterVal), CounterVal->getType(), Int64Ty,
11670         CounterVal->getExprLoc());
11671     CGF.EmitStoreOfScalar(CntVal, CGF.Builder.CreateConstArrayGEP(CntAddr, I),
11672                           /*Volatile=*/false, Int64Ty);
11673   }
11674   llvm::Value *Args[] = {
11675       emitUpdateLocation(CGF, C->getBeginLoc()),
11676       getThreadID(CGF, C->getBeginLoc()),
11677       CGF.Builder.CreateConstArrayGEP(CntAddr, 0).getPointer()};
11678   llvm::FunctionCallee RTLFn;
11679   if (C->getDependencyKind() == OMPC_DEPEND_source) {
11680     RTLFn = OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
11681                                                   OMPRTL___kmpc_doacross_post);
11682   } else {
11683     assert(C->getDependencyKind() == OMPC_DEPEND_sink);
11684     RTLFn = OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
11685                                                   OMPRTL___kmpc_doacross_wait);
11686   }
11687   CGF.EmitRuntimeCall(RTLFn, Args);
11688 }
11689 
emitCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::FunctionCallee Callee,ArrayRef<llvm::Value * > Args) const11690 void CGOpenMPRuntime::emitCall(CodeGenFunction &CGF, SourceLocation Loc,
11691                                llvm::FunctionCallee Callee,
11692                                ArrayRef<llvm::Value *> Args) const {
11693   assert(Loc.isValid() && "Outlined function call location must be valid.");
11694   auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc);
11695 
11696   if (auto *Fn = dyn_cast<llvm::Function>(Callee.getCallee())) {
11697     if (Fn->doesNotThrow()) {
11698       CGF.EmitNounwindRuntimeCall(Fn, Args);
11699       return;
11700     }
11701   }
11702   CGF.EmitRuntimeCall(Callee, Args);
11703 }
11704 
emitOutlinedFunctionCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::FunctionCallee OutlinedFn,ArrayRef<llvm::Value * > Args) const11705 void CGOpenMPRuntime::emitOutlinedFunctionCall(
11706     CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn,
11707     ArrayRef<llvm::Value *> Args) const {
11708   emitCall(CGF, Loc, OutlinedFn, Args);
11709 }
11710 
emitFunctionProlog(CodeGenFunction & CGF,const Decl * D)11711 void CGOpenMPRuntime::emitFunctionProlog(CodeGenFunction &CGF, const Decl *D) {
11712   if (const auto *FD = dyn_cast<FunctionDecl>(D))
11713     if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(FD))
11714       HasEmittedDeclareTargetRegion = true;
11715 }
11716 
getParameterAddress(CodeGenFunction & CGF,const VarDecl * NativeParam,const VarDecl * TargetParam) const11717 Address CGOpenMPRuntime::getParameterAddress(CodeGenFunction &CGF,
11718                                              const VarDecl *NativeParam,
11719                                              const VarDecl *TargetParam) const {
11720   return CGF.GetAddrOfLocalVar(NativeParam);
11721 }
11722 
11723 /// Return allocator value from expression, or return a null allocator (default
11724 /// when no allocator specified).
getAllocatorVal(CodeGenFunction & CGF,const Expr * Allocator)11725 static llvm::Value *getAllocatorVal(CodeGenFunction &CGF,
11726                                     const Expr *Allocator) {
11727   llvm::Value *AllocVal;
11728   if (Allocator) {
11729     AllocVal = CGF.EmitScalarExpr(Allocator);
11730     // According to the standard, the original allocator type is a enum
11731     // (integer). Convert to pointer type, if required.
11732     AllocVal = CGF.EmitScalarConversion(AllocVal, Allocator->getType(),
11733                                         CGF.getContext().VoidPtrTy,
11734                                         Allocator->getExprLoc());
11735   } else {
11736     // If no allocator specified, it defaults to the null allocator.
11737     AllocVal = llvm::Constant::getNullValue(
11738         CGF.CGM.getTypes().ConvertType(CGF.getContext().VoidPtrTy));
11739   }
11740   return AllocVal;
11741 }
11742 
11743 /// Return the alignment from an allocate directive if present.
getAlignmentValue(CodeGenModule & CGM,const VarDecl * VD)11744 static llvm::Value *getAlignmentValue(CodeGenModule &CGM, const VarDecl *VD) {
11745   std::optional<CharUnits> AllocateAlignment = CGM.getOMPAllocateAlignment(VD);
11746 
11747   if (!AllocateAlignment)
11748     return nullptr;
11749 
11750   return llvm::ConstantInt::get(CGM.SizeTy, AllocateAlignment->getQuantity());
11751 }
11752 
getAddressOfLocalVariable(CodeGenFunction & CGF,const VarDecl * VD)11753 Address CGOpenMPRuntime::getAddressOfLocalVariable(CodeGenFunction &CGF,
11754                                                    const VarDecl *VD) {
11755   if (!VD)
11756     return Address::invalid();
11757   Address UntiedAddr = Address::invalid();
11758   Address UntiedRealAddr = Address::invalid();
11759   auto It = FunctionToUntiedTaskStackMap.find(CGF.CurFn);
11760   if (It != FunctionToUntiedTaskStackMap.end()) {
11761     const UntiedLocalVarsAddressesMap &UntiedData =
11762         UntiedLocalVarsStack[It->second];
11763     auto I = UntiedData.find(VD);
11764     if (I != UntiedData.end()) {
11765       UntiedAddr = I->second.first;
11766       UntiedRealAddr = I->second.second;
11767     }
11768   }
11769   const VarDecl *CVD = VD->getCanonicalDecl();
11770   if (CVD->hasAttr<OMPAllocateDeclAttr>()) {
11771     // Use the default allocation.
11772     if (!isAllocatableDecl(VD))
11773       return UntiedAddr;
11774     llvm::Value *Size;
11775     CharUnits Align = CGM.getContext().getDeclAlign(CVD);
11776     if (CVD->getType()->isVariablyModifiedType()) {
11777       Size = CGF.getTypeSize(CVD->getType());
11778       // Align the size: ((size + align - 1) / align) * align
11779       Size = CGF.Builder.CreateNUWAdd(
11780           Size, CGM.getSize(Align - CharUnits::fromQuantity(1)));
11781       Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align));
11782       Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align));
11783     } else {
11784       CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType());
11785       Size = CGM.getSize(Sz.alignTo(Align));
11786     }
11787     llvm::Value *ThreadID = getThreadID(CGF, CVD->getBeginLoc());
11788     const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>();
11789     const Expr *Allocator = AA->getAllocator();
11790     llvm::Value *AllocVal = getAllocatorVal(CGF, Allocator);
11791     llvm::Value *Alignment = getAlignmentValue(CGM, CVD);
11792     SmallVector<llvm::Value *, 4> Args;
11793     Args.push_back(ThreadID);
11794     if (Alignment)
11795       Args.push_back(Alignment);
11796     Args.push_back(Size);
11797     Args.push_back(AllocVal);
11798     llvm::omp::RuntimeFunction FnID =
11799         Alignment ? OMPRTL___kmpc_aligned_alloc : OMPRTL___kmpc_alloc;
11800     llvm::Value *Addr = CGF.EmitRuntimeCall(
11801         OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), FnID), Args,
11802         getName({CVD->getName(), ".void.addr"}));
11803     llvm::FunctionCallee FiniRTLFn = OMPBuilder.getOrCreateRuntimeFunction(
11804         CGM.getModule(), OMPRTL___kmpc_free);
11805     QualType Ty = CGM.getContext().getPointerType(CVD->getType());
11806     Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
11807         Addr, CGF.ConvertTypeForMem(Ty), getName({CVD->getName(), ".addr"}));
11808     if (UntiedAddr.isValid())
11809       CGF.EmitStoreOfScalar(Addr, UntiedAddr, /*Volatile=*/false, Ty);
11810 
11811     // Cleanup action for allocate support.
11812     class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
11813       llvm::FunctionCallee RTLFn;
11814       SourceLocation::UIntTy LocEncoding;
11815       Address Addr;
11816       const Expr *AllocExpr;
11817 
11818     public:
11819       OMPAllocateCleanupTy(llvm::FunctionCallee RTLFn,
11820                            SourceLocation::UIntTy LocEncoding, Address Addr,
11821                            const Expr *AllocExpr)
11822           : RTLFn(RTLFn), LocEncoding(LocEncoding), Addr(Addr),
11823             AllocExpr(AllocExpr) {}
11824       void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
11825         if (!CGF.HaveInsertPoint())
11826           return;
11827         llvm::Value *Args[3];
11828         Args[0] = CGF.CGM.getOpenMPRuntime().getThreadID(
11829             CGF, SourceLocation::getFromRawEncoding(LocEncoding));
11830         Args[1] = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
11831             Addr.getPointer(), CGF.VoidPtrTy);
11832         llvm::Value *AllocVal = getAllocatorVal(CGF, AllocExpr);
11833         Args[2] = AllocVal;
11834         CGF.EmitRuntimeCall(RTLFn, Args);
11835       }
11836     };
11837     Address VDAddr =
11838         UntiedRealAddr.isValid()
11839             ? UntiedRealAddr
11840             : Address(Addr, CGF.ConvertTypeForMem(CVD->getType()), Align);
11841     CGF.EHStack.pushCleanup<OMPAllocateCleanupTy>(
11842         NormalAndEHCleanup, FiniRTLFn, CVD->getLocation().getRawEncoding(),
11843         VDAddr, Allocator);
11844     if (UntiedRealAddr.isValid())
11845       if (auto *Region =
11846               dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
11847         Region->emitUntiedSwitch(CGF);
11848     return VDAddr;
11849   }
11850   return UntiedAddr;
11851 }
11852 
isLocalVarInUntiedTask(CodeGenFunction & CGF,const VarDecl * VD) const11853 bool CGOpenMPRuntime::isLocalVarInUntiedTask(CodeGenFunction &CGF,
11854                                              const VarDecl *VD) const {
11855   auto It = FunctionToUntiedTaskStackMap.find(CGF.CurFn);
11856   if (It == FunctionToUntiedTaskStackMap.end())
11857     return false;
11858   return UntiedLocalVarsStack[It->second].count(VD) > 0;
11859 }
11860 
NontemporalDeclsRAII(CodeGenModule & CGM,const OMPLoopDirective & S)11861 CGOpenMPRuntime::NontemporalDeclsRAII::NontemporalDeclsRAII(
11862     CodeGenModule &CGM, const OMPLoopDirective &S)
11863     : CGM(CGM), NeedToPush(S.hasClausesOfKind<OMPNontemporalClause>()) {
11864   assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode.");
11865   if (!NeedToPush)
11866     return;
11867   NontemporalDeclsSet &DS =
11868       CGM.getOpenMPRuntime().NontemporalDeclsStack.emplace_back();
11869   for (const auto *C : S.getClausesOfKind<OMPNontemporalClause>()) {
11870     for (const Stmt *Ref : C->private_refs()) {
11871       const auto *SimpleRefExpr = cast<Expr>(Ref)->IgnoreParenImpCasts();
11872       const ValueDecl *VD;
11873       if (const auto *DRE = dyn_cast<DeclRefExpr>(SimpleRefExpr)) {
11874         VD = DRE->getDecl();
11875       } else {
11876         const auto *ME = cast<MemberExpr>(SimpleRefExpr);
11877         assert((ME->isImplicitCXXThis() ||
11878                 isa<CXXThisExpr>(ME->getBase()->IgnoreParenImpCasts())) &&
11879                "Expected member of current class.");
11880         VD = ME->getMemberDecl();
11881       }
11882       DS.insert(VD);
11883     }
11884   }
11885 }
11886 
~NontemporalDeclsRAII()11887 CGOpenMPRuntime::NontemporalDeclsRAII::~NontemporalDeclsRAII() {
11888   if (!NeedToPush)
11889     return;
11890   CGM.getOpenMPRuntime().NontemporalDeclsStack.pop_back();
11891 }
11892 
UntiedTaskLocalDeclsRAII(CodeGenFunction & CGF,const llvm::MapVector<CanonicalDeclPtr<const VarDecl>,std::pair<Address,Address>> & LocalVars)11893 CGOpenMPRuntime::UntiedTaskLocalDeclsRAII::UntiedTaskLocalDeclsRAII(
11894     CodeGenFunction &CGF,
11895     const llvm::MapVector<CanonicalDeclPtr<const VarDecl>,
11896                           std::pair<Address, Address>> &LocalVars)
11897     : CGM(CGF.CGM), NeedToPush(!LocalVars.empty()) {
11898   if (!NeedToPush)
11899     return;
11900   CGM.getOpenMPRuntime().FunctionToUntiedTaskStackMap.try_emplace(
11901       CGF.CurFn, CGM.getOpenMPRuntime().UntiedLocalVarsStack.size());
11902   CGM.getOpenMPRuntime().UntiedLocalVarsStack.push_back(LocalVars);
11903 }
11904 
~UntiedTaskLocalDeclsRAII()11905 CGOpenMPRuntime::UntiedTaskLocalDeclsRAII::~UntiedTaskLocalDeclsRAII() {
11906   if (!NeedToPush)
11907     return;
11908   CGM.getOpenMPRuntime().UntiedLocalVarsStack.pop_back();
11909 }
11910 
isNontemporalDecl(const ValueDecl * VD) const11911 bool CGOpenMPRuntime::isNontemporalDecl(const ValueDecl *VD) const {
11912   assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode.");
11913 
11914   return llvm::any_of(
11915       CGM.getOpenMPRuntime().NontemporalDeclsStack,
11916       [VD](const NontemporalDeclsSet &Set) { return Set.contains(VD); });
11917 }
11918 
tryToDisableInnerAnalysis(const OMPExecutableDirective & S,llvm::DenseSet<CanonicalDeclPtr<const Decl>> & NeedToAddForLPCsAsDisabled) const11919 void CGOpenMPRuntime::LastprivateConditionalRAII::tryToDisableInnerAnalysis(
11920     const OMPExecutableDirective &S,
11921     llvm::DenseSet<CanonicalDeclPtr<const Decl>> &NeedToAddForLPCsAsDisabled)
11922     const {
11923   llvm::DenseSet<CanonicalDeclPtr<const Decl>> NeedToCheckForLPCs;
11924   // Vars in target/task regions must be excluded completely.
11925   if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()) ||
11926       isOpenMPTaskingDirective(S.getDirectiveKind())) {
11927     SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
11928     getOpenMPCaptureRegions(CaptureRegions, S.getDirectiveKind());
11929     const CapturedStmt *CS = S.getCapturedStmt(CaptureRegions.front());
11930     for (const CapturedStmt::Capture &Cap : CS->captures()) {
11931       if (Cap.capturesVariable() || Cap.capturesVariableByCopy())
11932         NeedToCheckForLPCs.insert(Cap.getCapturedVar());
11933     }
11934   }
11935   // Exclude vars in private clauses.
11936   for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) {
11937     for (const Expr *Ref : C->varlists()) {
11938       if (!Ref->getType()->isScalarType())
11939         continue;
11940       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
11941       if (!DRE)
11942         continue;
11943       NeedToCheckForLPCs.insert(DRE->getDecl());
11944     }
11945   }
11946   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
11947     for (const Expr *Ref : C->varlists()) {
11948       if (!Ref->getType()->isScalarType())
11949         continue;
11950       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
11951       if (!DRE)
11952         continue;
11953       NeedToCheckForLPCs.insert(DRE->getDecl());
11954     }
11955   }
11956   for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
11957     for (const Expr *Ref : C->varlists()) {
11958       if (!Ref->getType()->isScalarType())
11959         continue;
11960       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
11961       if (!DRE)
11962         continue;
11963       NeedToCheckForLPCs.insert(DRE->getDecl());
11964     }
11965   }
11966   for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) {
11967     for (const Expr *Ref : C->varlists()) {
11968       if (!Ref->getType()->isScalarType())
11969         continue;
11970       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
11971       if (!DRE)
11972         continue;
11973       NeedToCheckForLPCs.insert(DRE->getDecl());
11974     }
11975   }
11976   for (const auto *C : S.getClausesOfKind<OMPLinearClause>()) {
11977     for (const Expr *Ref : C->varlists()) {
11978       if (!Ref->getType()->isScalarType())
11979         continue;
11980       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
11981       if (!DRE)
11982         continue;
11983       NeedToCheckForLPCs.insert(DRE->getDecl());
11984     }
11985   }
11986   for (const Decl *VD : NeedToCheckForLPCs) {
11987     for (const LastprivateConditionalData &Data :
11988          llvm::reverse(CGM.getOpenMPRuntime().LastprivateConditionalStack)) {
11989       if (Data.DeclToUniqueName.count(VD) > 0) {
11990         if (!Data.Disabled)
11991           NeedToAddForLPCsAsDisabled.insert(VD);
11992         break;
11993       }
11994     }
11995   }
11996 }
11997 
LastprivateConditionalRAII(CodeGenFunction & CGF,const OMPExecutableDirective & S,LValue IVLVal)11998 CGOpenMPRuntime::LastprivateConditionalRAII::LastprivateConditionalRAII(
11999     CodeGenFunction &CGF, const OMPExecutableDirective &S, LValue IVLVal)
12000     : CGM(CGF.CGM),
12001       Action((CGM.getLangOpts().OpenMP >= 50 &&
12002               llvm::any_of(S.getClausesOfKind<OMPLastprivateClause>(),
12003                            [](const OMPLastprivateClause *C) {
12004                              return C->getKind() ==
12005                                     OMPC_LASTPRIVATE_conditional;
12006                            }))
12007                  ? ActionToDo::PushAsLastprivateConditional
12008                  : ActionToDo::DoNotPush) {
12009   assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode.");
12010   if (CGM.getLangOpts().OpenMP < 50 || Action == ActionToDo::DoNotPush)
12011     return;
12012   assert(Action == ActionToDo::PushAsLastprivateConditional &&
12013          "Expected a push action.");
12014   LastprivateConditionalData &Data =
12015       CGM.getOpenMPRuntime().LastprivateConditionalStack.emplace_back();
12016   for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
12017     if (C->getKind() != OMPC_LASTPRIVATE_conditional)
12018       continue;
12019 
12020     for (const Expr *Ref : C->varlists()) {
12021       Data.DeclToUniqueName.insert(std::make_pair(
12022           cast<DeclRefExpr>(Ref->IgnoreParenImpCasts())->getDecl(),
12023           SmallString<16>(generateUniqueName(CGM, "pl_cond", Ref))));
12024     }
12025   }
12026   Data.IVLVal = IVLVal;
12027   Data.Fn = CGF.CurFn;
12028 }
12029 
LastprivateConditionalRAII(CodeGenFunction & CGF,const OMPExecutableDirective & S)12030 CGOpenMPRuntime::LastprivateConditionalRAII::LastprivateConditionalRAII(
12031     CodeGenFunction &CGF, const OMPExecutableDirective &S)
12032     : CGM(CGF.CGM), Action(ActionToDo::DoNotPush) {
12033   assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode.");
12034   if (CGM.getLangOpts().OpenMP < 50)
12035     return;
12036   llvm::DenseSet<CanonicalDeclPtr<const Decl>> NeedToAddForLPCsAsDisabled;
12037   tryToDisableInnerAnalysis(S, NeedToAddForLPCsAsDisabled);
12038   if (!NeedToAddForLPCsAsDisabled.empty()) {
12039     Action = ActionToDo::DisableLastprivateConditional;
12040     LastprivateConditionalData &Data =
12041         CGM.getOpenMPRuntime().LastprivateConditionalStack.emplace_back();
12042     for (const Decl *VD : NeedToAddForLPCsAsDisabled)
12043       Data.DeclToUniqueName.insert(std::make_pair(VD, SmallString<16>()));
12044     Data.Fn = CGF.CurFn;
12045     Data.Disabled = true;
12046   }
12047 }
12048 
12049 CGOpenMPRuntime::LastprivateConditionalRAII
disable(CodeGenFunction & CGF,const OMPExecutableDirective & S)12050 CGOpenMPRuntime::LastprivateConditionalRAII::disable(
12051     CodeGenFunction &CGF, const OMPExecutableDirective &S) {
12052   return LastprivateConditionalRAII(CGF, S);
12053 }
12054 
~LastprivateConditionalRAII()12055 CGOpenMPRuntime::LastprivateConditionalRAII::~LastprivateConditionalRAII() {
12056   if (CGM.getLangOpts().OpenMP < 50)
12057     return;
12058   if (Action == ActionToDo::DisableLastprivateConditional) {
12059     assert(CGM.getOpenMPRuntime().LastprivateConditionalStack.back().Disabled &&
12060            "Expected list of disabled private vars.");
12061     CGM.getOpenMPRuntime().LastprivateConditionalStack.pop_back();
12062   }
12063   if (Action == ActionToDo::PushAsLastprivateConditional) {
12064     assert(
12065         !CGM.getOpenMPRuntime().LastprivateConditionalStack.back().Disabled &&
12066         "Expected list of lastprivate conditional vars.");
12067     CGM.getOpenMPRuntime().LastprivateConditionalStack.pop_back();
12068   }
12069 }
12070 
emitLastprivateConditionalInit(CodeGenFunction & CGF,const VarDecl * VD)12071 Address CGOpenMPRuntime::emitLastprivateConditionalInit(CodeGenFunction &CGF,
12072                                                         const VarDecl *VD) {
12073   ASTContext &C = CGM.getContext();
12074   auto I = LastprivateConditionalToTypes.find(CGF.CurFn);
12075   if (I == LastprivateConditionalToTypes.end())
12076     I = LastprivateConditionalToTypes.try_emplace(CGF.CurFn).first;
12077   QualType NewType;
12078   const FieldDecl *VDField;
12079   const FieldDecl *FiredField;
12080   LValue BaseLVal;
12081   auto VI = I->getSecond().find(VD);
12082   if (VI == I->getSecond().end()) {
12083     RecordDecl *RD = C.buildImplicitRecord("lasprivate.conditional");
12084     RD->startDefinition();
12085     VDField = addFieldToRecordDecl(C, RD, VD->getType().getNonReferenceType());
12086     FiredField = addFieldToRecordDecl(C, RD, C.CharTy);
12087     RD->completeDefinition();
12088     NewType = C.getRecordType(RD);
12089     Address Addr = CGF.CreateMemTemp(NewType, C.getDeclAlign(VD), VD->getName());
12090     BaseLVal = CGF.MakeAddrLValue(Addr, NewType, AlignmentSource::Decl);
12091     I->getSecond().try_emplace(VD, NewType, VDField, FiredField, BaseLVal);
12092   } else {
12093     NewType = std::get<0>(VI->getSecond());
12094     VDField = std::get<1>(VI->getSecond());
12095     FiredField = std::get<2>(VI->getSecond());
12096     BaseLVal = std::get<3>(VI->getSecond());
12097   }
12098   LValue FiredLVal =
12099       CGF.EmitLValueForField(BaseLVal, FiredField);
12100   CGF.EmitStoreOfScalar(
12101       llvm::ConstantInt::getNullValue(CGF.ConvertTypeForMem(C.CharTy)),
12102       FiredLVal);
12103   return CGF.EmitLValueForField(BaseLVal, VDField).getAddress(CGF);
12104 }
12105 
12106 namespace {
12107 /// Checks if the lastprivate conditional variable is referenced in LHS.
12108 class LastprivateConditionalRefChecker final
12109     : public ConstStmtVisitor<LastprivateConditionalRefChecker, bool> {
12110   ArrayRef<CGOpenMPRuntime::LastprivateConditionalData> LPM;
12111   const Expr *FoundE = nullptr;
12112   const Decl *FoundD = nullptr;
12113   StringRef UniqueDeclName;
12114   LValue IVLVal;
12115   llvm::Function *FoundFn = nullptr;
12116   SourceLocation Loc;
12117 
12118 public:
VisitDeclRefExpr(const DeclRefExpr * E)12119   bool VisitDeclRefExpr(const DeclRefExpr *E) {
12120     for (const CGOpenMPRuntime::LastprivateConditionalData &D :
12121          llvm::reverse(LPM)) {
12122       auto It = D.DeclToUniqueName.find(E->getDecl());
12123       if (It == D.DeclToUniqueName.end())
12124         continue;
12125       if (D.Disabled)
12126         return false;
12127       FoundE = E;
12128       FoundD = E->getDecl()->getCanonicalDecl();
12129       UniqueDeclName = It->second;
12130       IVLVal = D.IVLVal;
12131       FoundFn = D.Fn;
12132       break;
12133     }
12134     return FoundE == E;
12135   }
VisitMemberExpr(const MemberExpr * E)12136   bool VisitMemberExpr(const MemberExpr *E) {
12137     if (!CodeGenFunction::IsWrappedCXXThis(E->getBase()))
12138       return false;
12139     for (const CGOpenMPRuntime::LastprivateConditionalData &D :
12140          llvm::reverse(LPM)) {
12141       auto It = D.DeclToUniqueName.find(E->getMemberDecl());
12142       if (It == D.DeclToUniqueName.end())
12143         continue;
12144       if (D.Disabled)
12145         return false;
12146       FoundE = E;
12147       FoundD = E->getMemberDecl()->getCanonicalDecl();
12148       UniqueDeclName = It->second;
12149       IVLVal = D.IVLVal;
12150       FoundFn = D.Fn;
12151       break;
12152     }
12153     return FoundE == E;
12154   }
VisitStmt(const Stmt * S)12155   bool VisitStmt(const Stmt *S) {
12156     for (const Stmt *Child : S->children()) {
12157       if (!Child)
12158         continue;
12159       if (const auto *E = dyn_cast<Expr>(Child))
12160         if (!E->isGLValue())
12161           continue;
12162       if (Visit(Child))
12163         return true;
12164     }
12165     return false;
12166   }
LastprivateConditionalRefChecker(ArrayRef<CGOpenMPRuntime::LastprivateConditionalData> LPM)12167   explicit LastprivateConditionalRefChecker(
12168       ArrayRef<CGOpenMPRuntime::LastprivateConditionalData> LPM)
12169       : LPM(LPM) {}
12170   std::tuple<const Expr *, const Decl *, StringRef, LValue, llvm::Function *>
getFoundData() const12171   getFoundData() const {
12172     return std::make_tuple(FoundE, FoundD, UniqueDeclName, IVLVal, FoundFn);
12173   }
12174 };
12175 } // namespace
12176 
emitLastprivateConditionalUpdate(CodeGenFunction & CGF,LValue IVLVal,StringRef UniqueDeclName,LValue LVal,SourceLocation Loc)12177 void CGOpenMPRuntime::emitLastprivateConditionalUpdate(CodeGenFunction &CGF,
12178                                                        LValue IVLVal,
12179                                                        StringRef UniqueDeclName,
12180                                                        LValue LVal,
12181                                                        SourceLocation Loc) {
12182   // Last updated loop counter for the lastprivate conditional var.
12183   // int<xx> last_iv = 0;
12184   llvm::Type *LLIVTy = CGF.ConvertTypeForMem(IVLVal.getType());
12185   llvm::Constant *LastIV = OMPBuilder.getOrCreateInternalVariable(
12186       LLIVTy, getName({UniqueDeclName, "iv"}));
12187   cast<llvm::GlobalVariable>(LastIV)->setAlignment(
12188       IVLVal.getAlignment().getAsAlign());
12189   LValue LastIVLVal = CGF.MakeNaturalAlignAddrLValue(LastIV, IVLVal.getType());
12190 
12191   // Last value of the lastprivate conditional.
12192   // decltype(priv_a) last_a;
12193   llvm::GlobalVariable *Last = OMPBuilder.getOrCreateInternalVariable(
12194       CGF.ConvertTypeForMem(LVal.getType()), UniqueDeclName);
12195   Last->setAlignment(LVal.getAlignment().getAsAlign());
12196   LValue LastLVal = CGF.MakeAddrLValue(
12197       Address(Last, Last->getValueType(), LVal.getAlignment()), LVal.getType());
12198 
12199   // Global loop counter. Required to handle inner parallel-for regions.
12200   // iv
12201   llvm::Value *IVVal = CGF.EmitLoadOfScalar(IVLVal, Loc);
12202 
12203   // #pragma omp critical(a)
12204   // if (last_iv <= iv) {
12205   //   last_iv = iv;
12206   //   last_a = priv_a;
12207   // }
12208   auto &&CodeGen = [&LastIVLVal, &IVLVal, IVVal, &LVal, &LastLVal,
12209                     Loc](CodeGenFunction &CGF, PrePostActionTy &Action) {
12210     Action.Enter(CGF);
12211     llvm::Value *LastIVVal = CGF.EmitLoadOfScalar(LastIVLVal, Loc);
12212     // (last_iv <= iv) ? Check if the variable is updated and store new
12213     // value in global var.
12214     llvm::Value *CmpRes;
12215     if (IVLVal.getType()->isSignedIntegerType()) {
12216       CmpRes = CGF.Builder.CreateICmpSLE(LastIVVal, IVVal);
12217     } else {
12218       assert(IVLVal.getType()->isUnsignedIntegerType() &&
12219              "Loop iteration variable must be integer.");
12220       CmpRes = CGF.Builder.CreateICmpULE(LastIVVal, IVVal);
12221     }
12222     llvm::BasicBlock *ThenBB = CGF.createBasicBlock("lp_cond_then");
12223     llvm::BasicBlock *ExitBB = CGF.createBasicBlock("lp_cond_exit");
12224     CGF.Builder.CreateCondBr(CmpRes, ThenBB, ExitBB);
12225     // {
12226     CGF.EmitBlock(ThenBB);
12227 
12228     //   last_iv = iv;
12229     CGF.EmitStoreOfScalar(IVVal, LastIVLVal);
12230 
12231     //   last_a = priv_a;
12232     switch (CGF.getEvaluationKind(LVal.getType())) {
12233     case TEK_Scalar: {
12234       llvm::Value *PrivVal = CGF.EmitLoadOfScalar(LVal, Loc);
12235       CGF.EmitStoreOfScalar(PrivVal, LastLVal);
12236       break;
12237     }
12238     case TEK_Complex: {
12239       CodeGenFunction::ComplexPairTy PrivVal = CGF.EmitLoadOfComplex(LVal, Loc);
12240       CGF.EmitStoreOfComplex(PrivVal, LastLVal, /*isInit=*/false);
12241       break;
12242     }
12243     case TEK_Aggregate:
12244       llvm_unreachable(
12245           "Aggregates are not supported in lastprivate conditional.");
12246     }
12247     // }
12248     CGF.EmitBranch(ExitBB);
12249     // There is no need to emit line number for unconditional branch.
12250     (void)ApplyDebugLocation::CreateEmpty(CGF);
12251     CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
12252   };
12253 
12254   if (CGM.getLangOpts().OpenMPSimd) {
12255     // Do not emit as a critical region as no parallel region could be emitted.
12256     RegionCodeGenTy ThenRCG(CodeGen);
12257     ThenRCG(CGF);
12258   } else {
12259     emitCriticalRegion(CGF, UniqueDeclName, CodeGen, Loc);
12260   }
12261 }
12262 
checkAndEmitLastprivateConditional(CodeGenFunction & CGF,const Expr * LHS)12263 void CGOpenMPRuntime::checkAndEmitLastprivateConditional(CodeGenFunction &CGF,
12264                                                          const Expr *LHS) {
12265   if (CGF.getLangOpts().OpenMP < 50 || LastprivateConditionalStack.empty())
12266     return;
12267   LastprivateConditionalRefChecker Checker(LastprivateConditionalStack);
12268   if (!Checker.Visit(LHS))
12269     return;
12270   const Expr *FoundE;
12271   const Decl *FoundD;
12272   StringRef UniqueDeclName;
12273   LValue IVLVal;
12274   llvm::Function *FoundFn;
12275   std::tie(FoundE, FoundD, UniqueDeclName, IVLVal, FoundFn) =
12276       Checker.getFoundData();
12277   if (FoundFn != CGF.CurFn) {
12278     // Special codegen for inner parallel regions.
12279     // ((struct.lastprivate.conditional*)&priv_a)->Fired = 1;
12280     auto It = LastprivateConditionalToTypes[FoundFn].find(FoundD);
12281     assert(It != LastprivateConditionalToTypes[FoundFn].end() &&
12282            "Lastprivate conditional is not found in outer region.");
12283     QualType StructTy = std::get<0>(It->getSecond());
12284     const FieldDecl* FiredDecl = std::get<2>(It->getSecond());
12285     LValue PrivLVal = CGF.EmitLValue(FoundE);
12286     Address StructAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
12287         PrivLVal.getAddress(CGF),
12288         CGF.ConvertTypeForMem(CGF.getContext().getPointerType(StructTy)),
12289         CGF.ConvertTypeForMem(StructTy));
12290     LValue BaseLVal =
12291         CGF.MakeAddrLValue(StructAddr, StructTy, AlignmentSource::Decl);
12292     LValue FiredLVal = CGF.EmitLValueForField(BaseLVal, FiredDecl);
12293     CGF.EmitAtomicStore(RValue::get(llvm::ConstantInt::get(
12294                             CGF.ConvertTypeForMem(FiredDecl->getType()), 1)),
12295                         FiredLVal, llvm::AtomicOrdering::Unordered,
12296                         /*IsVolatile=*/true, /*isInit=*/false);
12297     return;
12298   }
12299 
12300   // Private address of the lastprivate conditional in the current context.
12301   // priv_a
12302   LValue LVal = CGF.EmitLValue(FoundE);
12303   emitLastprivateConditionalUpdate(CGF, IVLVal, UniqueDeclName, LVal,
12304                                    FoundE->getExprLoc());
12305 }
12306 
checkAndEmitSharedLastprivateConditional(CodeGenFunction & CGF,const OMPExecutableDirective & D,const llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> & IgnoredDecls)12307 void CGOpenMPRuntime::checkAndEmitSharedLastprivateConditional(
12308     CodeGenFunction &CGF, const OMPExecutableDirective &D,
12309     const llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> &IgnoredDecls) {
12310   if (CGF.getLangOpts().OpenMP < 50 || LastprivateConditionalStack.empty())
12311     return;
12312   auto Range = llvm::reverse(LastprivateConditionalStack);
12313   auto It = llvm::find_if(
12314       Range, [](const LastprivateConditionalData &D) { return !D.Disabled; });
12315   if (It == Range.end() || It->Fn != CGF.CurFn)
12316     return;
12317   auto LPCI = LastprivateConditionalToTypes.find(It->Fn);
12318   assert(LPCI != LastprivateConditionalToTypes.end() &&
12319          "Lastprivates must be registered already.");
12320   SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
12321   getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind());
12322   const CapturedStmt *CS = D.getCapturedStmt(CaptureRegions.back());
12323   for (const auto &Pair : It->DeclToUniqueName) {
12324     const auto *VD = cast<VarDecl>(Pair.first->getCanonicalDecl());
12325     if (!CS->capturesVariable(VD) || IgnoredDecls.contains(VD))
12326       continue;
12327     auto I = LPCI->getSecond().find(Pair.first);
12328     assert(I != LPCI->getSecond().end() &&
12329            "Lastprivate must be rehistered already.");
12330     // bool Cmp = priv_a.Fired != 0;
12331     LValue BaseLVal = std::get<3>(I->getSecond());
12332     LValue FiredLVal =
12333         CGF.EmitLValueForField(BaseLVal, std::get<2>(I->getSecond()));
12334     llvm::Value *Res = CGF.EmitLoadOfScalar(FiredLVal, D.getBeginLoc());
12335     llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Res);
12336     llvm::BasicBlock *ThenBB = CGF.createBasicBlock("lpc.then");
12337     llvm::BasicBlock *DoneBB = CGF.createBasicBlock("lpc.done");
12338     // if (Cmp) {
12339     CGF.Builder.CreateCondBr(Cmp, ThenBB, DoneBB);
12340     CGF.EmitBlock(ThenBB);
12341     Address Addr = CGF.GetAddrOfLocalVar(VD);
12342     LValue LVal;
12343     if (VD->getType()->isReferenceType())
12344       LVal = CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
12345                                            AlignmentSource::Decl);
12346     else
12347       LVal = CGF.MakeAddrLValue(Addr, VD->getType().getNonReferenceType(),
12348                                 AlignmentSource::Decl);
12349     emitLastprivateConditionalUpdate(CGF, It->IVLVal, Pair.second, LVal,
12350                                      D.getBeginLoc());
12351     auto AL = ApplyDebugLocation::CreateArtificial(CGF);
12352     CGF.EmitBlock(DoneBB, /*IsFinal=*/true);
12353     // }
12354   }
12355 }
12356 
emitLastprivateConditionalFinalUpdate(CodeGenFunction & CGF,LValue PrivLVal,const VarDecl * VD,SourceLocation Loc)12357 void CGOpenMPRuntime::emitLastprivateConditionalFinalUpdate(
12358     CodeGenFunction &CGF, LValue PrivLVal, const VarDecl *VD,
12359     SourceLocation Loc) {
12360   if (CGF.getLangOpts().OpenMP < 50)
12361     return;
12362   auto It = LastprivateConditionalStack.back().DeclToUniqueName.find(VD);
12363   assert(It != LastprivateConditionalStack.back().DeclToUniqueName.end() &&
12364          "Unknown lastprivate conditional variable.");
12365   StringRef UniqueName = It->second;
12366   llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(UniqueName);
12367   // The variable was not updated in the region - exit.
12368   if (!GV)
12369     return;
12370   LValue LPLVal = CGF.MakeAddrLValue(
12371       Address(GV, GV->getValueType(), PrivLVal.getAlignment()),
12372       PrivLVal.getType().getNonReferenceType());
12373   llvm::Value *Res = CGF.EmitLoadOfScalar(LPLVal, Loc);
12374   CGF.EmitStoreOfScalar(Res, PrivLVal);
12375 }
12376 
emitParallelOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)12377 llvm::Function *CGOpenMPSIMDRuntime::emitParallelOutlinedFunction(
12378     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
12379     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
12380   llvm_unreachable("Not supported in SIMD-only mode");
12381 }
12382 
emitTeamsOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)12383 llvm::Function *CGOpenMPSIMDRuntime::emitTeamsOutlinedFunction(
12384     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
12385     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
12386   llvm_unreachable("Not supported in SIMD-only mode");
12387 }
12388 
emitTaskOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,const VarDecl * PartIDVar,const VarDecl * TaskTVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen,bool Tied,unsigned & NumberOfParts)12389 llvm::Function *CGOpenMPSIMDRuntime::emitTaskOutlinedFunction(
12390     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
12391     const VarDecl *PartIDVar, const VarDecl *TaskTVar,
12392     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
12393     bool Tied, unsigned &NumberOfParts) {
12394   llvm_unreachable("Not supported in SIMD-only mode");
12395 }
12396 
emitParallelCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars,const Expr * IfCond,llvm::Value * NumThreads)12397 void CGOpenMPSIMDRuntime::emitParallelCall(CodeGenFunction &CGF,
12398                                            SourceLocation Loc,
12399                                            llvm::Function *OutlinedFn,
12400                                            ArrayRef<llvm::Value *> CapturedVars,
12401                                            const Expr *IfCond,
12402                                            llvm::Value *NumThreads) {
12403   llvm_unreachable("Not supported in SIMD-only mode");
12404 }
12405 
emitCriticalRegion(CodeGenFunction & CGF,StringRef CriticalName,const RegionCodeGenTy & CriticalOpGen,SourceLocation Loc,const Expr * Hint)12406 void CGOpenMPSIMDRuntime::emitCriticalRegion(
12407     CodeGenFunction &CGF, StringRef CriticalName,
12408     const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
12409     const Expr *Hint) {
12410   llvm_unreachable("Not supported in SIMD-only mode");
12411 }
12412 
emitMasterRegion(CodeGenFunction & CGF,const RegionCodeGenTy & MasterOpGen,SourceLocation Loc)12413 void CGOpenMPSIMDRuntime::emitMasterRegion(CodeGenFunction &CGF,
12414                                            const RegionCodeGenTy &MasterOpGen,
12415                                            SourceLocation Loc) {
12416   llvm_unreachable("Not supported in SIMD-only mode");
12417 }
12418 
emitMaskedRegion(CodeGenFunction & CGF,const RegionCodeGenTy & MasterOpGen,SourceLocation Loc,const Expr * Filter)12419 void CGOpenMPSIMDRuntime::emitMaskedRegion(CodeGenFunction &CGF,
12420                                            const RegionCodeGenTy &MasterOpGen,
12421                                            SourceLocation Loc,
12422                                            const Expr *Filter) {
12423   llvm_unreachable("Not supported in SIMD-only mode");
12424 }
12425 
emitTaskyieldCall(CodeGenFunction & CGF,SourceLocation Loc)12426 void CGOpenMPSIMDRuntime::emitTaskyieldCall(CodeGenFunction &CGF,
12427                                             SourceLocation Loc) {
12428   llvm_unreachable("Not supported in SIMD-only mode");
12429 }
12430 
emitTaskgroupRegion(CodeGenFunction & CGF,const RegionCodeGenTy & TaskgroupOpGen,SourceLocation Loc)12431 void CGOpenMPSIMDRuntime::emitTaskgroupRegion(
12432     CodeGenFunction &CGF, const RegionCodeGenTy &TaskgroupOpGen,
12433     SourceLocation Loc) {
12434   llvm_unreachable("Not supported in SIMD-only mode");
12435 }
12436 
emitSingleRegion(CodeGenFunction & CGF,const RegionCodeGenTy & SingleOpGen,SourceLocation Loc,ArrayRef<const Expr * > CopyprivateVars,ArrayRef<const Expr * > DestExprs,ArrayRef<const Expr * > SrcExprs,ArrayRef<const Expr * > AssignmentOps)12437 void CGOpenMPSIMDRuntime::emitSingleRegion(
12438     CodeGenFunction &CGF, const RegionCodeGenTy &SingleOpGen,
12439     SourceLocation Loc, ArrayRef<const Expr *> CopyprivateVars,
12440     ArrayRef<const Expr *> DestExprs, ArrayRef<const Expr *> SrcExprs,
12441     ArrayRef<const Expr *> AssignmentOps) {
12442   llvm_unreachable("Not supported in SIMD-only mode");
12443 }
12444 
emitOrderedRegion(CodeGenFunction & CGF,const RegionCodeGenTy & OrderedOpGen,SourceLocation Loc,bool IsThreads)12445 void CGOpenMPSIMDRuntime::emitOrderedRegion(CodeGenFunction &CGF,
12446                                             const RegionCodeGenTy &OrderedOpGen,
12447                                             SourceLocation Loc,
12448                                             bool IsThreads) {
12449   llvm_unreachable("Not supported in SIMD-only mode");
12450 }
12451 
emitBarrierCall(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind Kind,bool EmitChecks,bool ForceSimpleCall)12452 void CGOpenMPSIMDRuntime::emitBarrierCall(CodeGenFunction &CGF,
12453                                           SourceLocation Loc,
12454                                           OpenMPDirectiveKind Kind,
12455                                           bool EmitChecks,
12456                                           bool ForceSimpleCall) {
12457   llvm_unreachable("Not supported in SIMD-only mode");
12458 }
12459 
emitForDispatchInit(CodeGenFunction & CGF,SourceLocation Loc,const OpenMPScheduleTy & ScheduleKind,unsigned IVSize,bool IVSigned,bool Ordered,const DispatchRTInput & DispatchValues)12460 void CGOpenMPSIMDRuntime::emitForDispatchInit(
12461     CodeGenFunction &CGF, SourceLocation Loc,
12462     const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned,
12463     bool Ordered, const DispatchRTInput &DispatchValues) {
12464   llvm_unreachable("Not supported in SIMD-only mode");
12465 }
12466 
emitForStaticInit(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind DKind,const OpenMPScheduleTy & ScheduleKind,const StaticRTInput & Values)12467 void CGOpenMPSIMDRuntime::emitForStaticInit(
12468     CodeGenFunction &CGF, SourceLocation Loc, OpenMPDirectiveKind DKind,
12469     const OpenMPScheduleTy &ScheduleKind, const StaticRTInput &Values) {
12470   llvm_unreachable("Not supported in SIMD-only mode");
12471 }
12472 
emitDistributeStaticInit(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDistScheduleClauseKind SchedKind,const StaticRTInput & Values)12473 void CGOpenMPSIMDRuntime::emitDistributeStaticInit(
12474     CodeGenFunction &CGF, SourceLocation Loc,
12475     OpenMPDistScheduleClauseKind SchedKind, const StaticRTInput &Values) {
12476   llvm_unreachable("Not supported in SIMD-only mode");
12477 }
12478 
emitForOrderedIterationEnd(CodeGenFunction & CGF,SourceLocation Loc,unsigned IVSize,bool IVSigned)12479 void CGOpenMPSIMDRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF,
12480                                                      SourceLocation Loc,
12481                                                      unsigned IVSize,
12482                                                      bool IVSigned) {
12483   llvm_unreachable("Not supported in SIMD-only mode");
12484 }
12485 
emitForStaticFinish(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind DKind)12486 void CGOpenMPSIMDRuntime::emitForStaticFinish(CodeGenFunction &CGF,
12487                                               SourceLocation Loc,
12488                                               OpenMPDirectiveKind DKind) {
12489   llvm_unreachable("Not supported in SIMD-only mode");
12490 }
12491 
emitForNext(CodeGenFunction & CGF,SourceLocation Loc,unsigned IVSize,bool IVSigned,Address IL,Address LB,Address UB,Address ST)12492 llvm::Value *CGOpenMPSIMDRuntime::emitForNext(CodeGenFunction &CGF,
12493                                               SourceLocation Loc,
12494                                               unsigned IVSize, bool IVSigned,
12495                                               Address IL, Address LB,
12496                                               Address UB, Address ST) {
12497   llvm_unreachable("Not supported in SIMD-only mode");
12498 }
12499 
emitNumThreadsClause(CodeGenFunction & CGF,llvm::Value * NumThreads,SourceLocation Loc)12500 void CGOpenMPSIMDRuntime::emitNumThreadsClause(CodeGenFunction &CGF,
12501                                                llvm::Value *NumThreads,
12502                                                SourceLocation Loc) {
12503   llvm_unreachable("Not supported in SIMD-only mode");
12504 }
12505 
emitProcBindClause(CodeGenFunction & CGF,ProcBindKind ProcBind,SourceLocation Loc)12506 void CGOpenMPSIMDRuntime::emitProcBindClause(CodeGenFunction &CGF,
12507                                              ProcBindKind ProcBind,
12508                                              SourceLocation Loc) {
12509   llvm_unreachable("Not supported in SIMD-only mode");
12510 }
12511 
getAddrOfThreadPrivate(CodeGenFunction & CGF,const VarDecl * VD,Address VDAddr,SourceLocation Loc)12512 Address CGOpenMPSIMDRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF,
12513                                                     const VarDecl *VD,
12514                                                     Address VDAddr,
12515                                                     SourceLocation Loc) {
12516   llvm_unreachable("Not supported in SIMD-only mode");
12517 }
12518 
emitThreadPrivateVarDefinition(const VarDecl * VD,Address VDAddr,SourceLocation Loc,bool PerformInit,CodeGenFunction * CGF)12519 llvm::Function *CGOpenMPSIMDRuntime::emitThreadPrivateVarDefinition(
12520     const VarDecl *VD, Address VDAddr, SourceLocation Loc, bool PerformInit,
12521     CodeGenFunction *CGF) {
12522   llvm_unreachable("Not supported in SIMD-only mode");
12523 }
12524 
getAddrOfArtificialThreadPrivate(CodeGenFunction & CGF,QualType VarType,StringRef Name)12525 Address CGOpenMPSIMDRuntime::getAddrOfArtificialThreadPrivate(
12526     CodeGenFunction &CGF, QualType VarType, StringRef Name) {
12527   llvm_unreachable("Not supported in SIMD-only mode");
12528 }
12529 
emitFlush(CodeGenFunction & CGF,ArrayRef<const Expr * > Vars,SourceLocation Loc,llvm::AtomicOrdering AO)12530 void CGOpenMPSIMDRuntime::emitFlush(CodeGenFunction &CGF,
12531                                     ArrayRef<const Expr *> Vars,
12532                                     SourceLocation Loc,
12533                                     llvm::AtomicOrdering AO) {
12534   llvm_unreachable("Not supported in SIMD-only mode");
12535 }
12536 
emitTaskCall(CodeGenFunction & CGF,SourceLocation Loc,const OMPExecutableDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const Expr * IfCond,const OMPTaskDataTy & Data)12537 void CGOpenMPSIMDRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc,
12538                                        const OMPExecutableDirective &D,
12539                                        llvm::Function *TaskFunction,
12540                                        QualType SharedsTy, Address Shareds,
12541                                        const Expr *IfCond,
12542                                        const OMPTaskDataTy &Data) {
12543   llvm_unreachable("Not supported in SIMD-only mode");
12544 }
12545 
emitTaskLoopCall(CodeGenFunction & CGF,SourceLocation Loc,const OMPLoopDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const Expr * IfCond,const OMPTaskDataTy & Data)12546 void CGOpenMPSIMDRuntime::emitTaskLoopCall(
12547     CodeGenFunction &CGF, SourceLocation Loc, const OMPLoopDirective &D,
12548     llvm::Function *TaskFunction, QualType SharedsTy, Address Shareds,
12549     const Expr *IfCond, const OMPTaskDataTy &Data) {
12550   llvm_unreachable("Not supported in SIMD-only mode");
12551 }
12552 
emitReduction(CodeGenFunction & CGF,SourceLocation Loc,ArrayRef<const Expr * > Privates,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,ArrayRef<const Expr * > ReductionOps,ReductionOptionsTy Options)12553 void CGOpenMPSIMDRuntime::emitReduction(
12554     CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
12555     ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
12556     ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
12557   assert(Options.SimpleReduction && "Only simple reduction is expected.");
12558   CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
12559                                  ReductionOps, Options);
12560 }
12561 
emitTaskReductionInit(CodeGenFunction & CGF,SourceLocation Loc,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,const OMPTaskDataTy & Data)12562 llvm::Value *CGOpenMPSIMDRuntime::emitTaskReductionInit(
12563     CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> LHSExprs,
12564     ArrayRef<const Expr *> RHSExprs, const OMPTaskDataTy &Data) {
12565   llvm_unreachable("Not supported in SIMD-only mode");
12566 }
12567 
emitTaskReductionFini(CodeGenFunction & CGF,SourceLocation Loc,bool IsWorksharingReduction)12568 void CGOpenMPSIMDRuntime::emitTaskReductionFini(CodeGenFunction &CGF,
12569                                                 SourceLocation Loc,
12570                                                 bool IsWorksharingReduction) {
12571   llvm_unreachable("Not supported in SIMD-only mode");
12572 }
12573 
emitTaskReductionFixups(CodeGenFunction & CGF,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N)12574 void CGOpenMPSIMDRuntime::emitTaskReductionFixups(CodeGenFunction &CGF,
12575                                                   SourceLocation Loc,
12576                                                   ReductionCodeGen &RCG,
12577                                                   unsigned N) {
12578   llvm_unreachable("Not supported in SIMD-only mode");
12579 }
12580 
getTaskReductionItem(CodeGenFunction & CGF,SourceLocation Loc,llvm::Value * ReductionsPtr,LValue SharedLVal)12581 Address CGOpenMPSIMDRuntime::getTaskReductionItem(CodeGenFunction &CGF,
12582                                                   SourceLocation Loc,
12583                                                   llvm::Value *ReductionsPtr,
12584                                                   LValue SharedLVal) {
12585   llvm_unreachable("Not supported in SIMD-only mode");
12586 }
12587 
emitTaskwaitCall(CodeGenFunction & CGF,SourceLocation Loc,const OMPTaskDataTy & Data)12588 void CGOpenMPSIMDRuntime::emitTaskwaitCall(CodeGenFunction &CGF,
12589                                            SourceLocation Loc,
12590                                            const OMPTaskDataTy &Data) {
12591   llvm_unreachable("Not supported in SIMD-only mode");
12592 }
12593 
emitCancellationPointCall(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind CancelRegion)12594 void CGOpenMPSIMDRuntime::emitCancellationPointCall(
12595     CodeGenFunction &CGF, SourceLocation Loc,
12596     OpenMPDirectiveKind CancelRegion) {
12597   llvm_unreachable("Not supported in SIMD-only mode");
12598 }
12599 
emitCancelCall(CodeGenFunction & CGF,SourceLocation Loc,const Expr * IfCond,OpenMPDirectiveKind CancelRegion)12600 void CGOpenMPSIMDRuntime::emitCancelCall(CodeGenFunction &CGF,
12601                                          SourceLocation Loc, const Expr *IfCond,
12602                                          OpenMPDirectiveKind CancelRegion) {
12603   llvm_unreachable("Not supported in SIMD-only mode");
12604 }
12605 
emitTargetOutlinedFunction(const OMPExecutableDirective & D,StringRef ParentName,llvm::Function * & OutlinedFn,llvm::Constant * & OutlinedFnID,bool IsOffloadEntry,const RegionCodeGenTy & CodeGen)12606 void CGOpenMPSIMDRuntime::emitTargetOutlinedFunction(
12607     const OMPExecutableDirective &D, StringRef ParentName,
12608     llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
12609     bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
12610   llvm_unreachable("Not supported in SIMD-only mode");
12611 }
12612 
emitTargetCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,llvm::Function * OutlinedFn,llvm::Value * OutlinedFnID,const Expr * IfCond,llvm::PointerIntPair<const Expr *,2,OpenMPDeviceClauseModifier> Device,llvm::function_ref<llvm::Value * (CodeGenFunction & CGF,const OMPLoopDirective & D)> SizeEmitter)12613 void CGOpenMPSIMDRuntime::emitTargetCall(
12614     CodeGenFunction &CGF, const OMPExecutableDirective &D,
12615     llvm::Function *OutlinedFn, llvm::Value *OutlinedFnID, const Expr *IfCond,
12616     llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device,
12617     llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
12618                                      const OMPLoopDirective &D)>
12619         SizeEmitter) {
12620   llvm_unreachable("Not supported in SIMD-only mode");
12621 }
12622 
emitTargetFunctions(GlobalDecl GD)12623 bool CGOpenMPSIMDRuntime::emitTargetFunctions(GlobalDecl GD) {
12624   llvm_unreachable("Not supported in SIMD-only mode");
12625 }
12626 
emitTargetGlobalVariable(GlobalDecl GD)12627 bool CGOpenMPSIMDRuntime::emitTargetGlobalVariable(GlobalDecl GD) {
12628   llvm_unreachable("Not supported in SIMD-only mode");
12629 }
12630 
emitTargetGlobal(GlobalDecl GD)12631 bool CGOpenMPSIMDRuntime::emitTargetGlobal(GlobalDecl GD) {
12632   return false;
12633 }
12634 
emitTeamsCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars)12635 void CGOpenMPSIMDRuntime::emitTeamsCall(CodeGenFunction &CGF,
12636                                         const OMPExecutableDirective &D,
12637                                         SourceLocation Loc,
12638                                         llvm::Function *OutlinedFn,
12639                                         ArrayRef<llvm::Value *> CapturedVars) {
12640   llvm_unreachable("Not supported in SIMD-only mode");
12641 }
12642 
emitNumTeamsClause(CodeGenFunction & CGF,const Expr * NumTeams,const Expr * ThreadLimit,SourceLocation Loc)12643 void CGOpenMPSIMDRuntime::emitNumTeamsClause(CodeGenFunction &CGF,
12644                                              const Expr *NumTeams,
12645                                              const Expr *ThreadLimit,
12646                                              SourceLocation Loc) {
12647   llvm_unreachable("Not supported in SIMD-only mode");
12648 }
12649 
emitTargetDataCalls(CodeGenFunction & CGF,const OMPExecutableDirective & D,const Expr * IfCond,const Expr * Device,const RegionCodeGenTy & CodeGen,CGOpenMPRuntime::TargetDataInfo & Info)12650 void CGOpenMPSIMDRuntime::emitTargetDataCalls(
12651     CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
12652     const Expr *Device, const RegionCodeGenTy &CodeGen,
12653     CGOpenMPRuntime::TargetDataInfo &Info) {
12654   llvm_unreachable("Not supported in SIMD-only mode");
12655 }
12656 
emitTargetDataStandAloneCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,const Expr * IfCond,const Expr * Device)12657 void CGOpenMPSIMDRuntime::emitTargetDataStandAloneCall(
12658     CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
12659     const Expr *Device) {
12660   llvm_unreachable("Not supported in SIMD-only mode");
12661 }
12662 
emitDoacrossInit(CodeGenFunction & CGF,const OMPLoopDirective & D,ArrayRef<Expr * > NumIterations)12663 void CGOpenMPSIMDRuntime::emitDoacrossInit(CodeGenFunction &CGF,
12664                                            const OMPLoopDirective &D,
12665                                            ArrayRef<Expr *> NumIterations) {
12666   llvm_unreachable("Not supported in SIMD-only mode");
12667 }
12668 
emitDoacrossOrdered(CodeGenFunction & CGF,const OMPDependClause * C)12669 void CGOpenMPSIMDRuntime::emitDoacrossOrdered(CodeGenFunction &CGF,
12670                                               const OMPDependClause *C) {
12671   llvm_unreachable("Not supported in SIMD-only mode");
12672 }
12673 
12674 const VarDecl *
translateParameter(const FieldDecl * FD,const VarDecl * NativeParam) const12675 CGOpenMPSIMDRuntime::translateParameter(const FieldDecl *FD,
12676                                         const VarDecl *NativeParam) const {
12677   llvm_unreachable("Not supported in SIMD-only mode");
12678 }
12679 
12680 Address
getParameterAddress(CodeGenFunction & CGF,const VarDecl * NativeParam,const VarDecl * TargetParam) const12681 CGOpenMPSIMDRuntime::getParameterAddress(CodeGenFunction &CGF,
12682                                          const VarDecl *NativeParam,
12683                                          const VarDecl *TargetParam) const {
12684   llvm_unreachable("Not supported in SIMD-only mode");
12685 }
12686