1 /* deflate.c -- compress data using the deflation algorithm
2  * Copyright (C) 1995-2017 Jean-loup Gailly and Mark Adler
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  */
5 
6 /*
7  *  ALGORITHM
8  *
9  *      The "deflation" process depends on being able to identify portions
10  *      of the input text which are identical to earlier input (within a
11  *      sliding window trailing behind the input currently being processed).
12  *
13  *      The most straightforward technique turns out to be the fastest for
14  *      most input files: try all possible matches and select the longest.
15  *      The key feature of this algorithm is that insertions into the string
16  *      dictionary are very simple and thus fast, and deletions are avoided
17  *      completely. Insertions are performed at each input character, whereas
18  *      string matches are performed only when the previous match ends. So it
19  *      is preferable to spend more time in matches to allow very fast string
20  *      insertions and avoid deletions. The matching algorithm for small
21  *      strings is inspired from that of Rabin & Karp. A brute force approach
22  *      is used to find longer strings when a small match has been found.
23  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24  *      (by Leonid Broukhis).
25  *         A previous version of this file used a more sophisticated algorithm
26  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
27  *      time, but has a larger average cost, uses more memory and is patented.
28  *      However the F&G algorithm may be faster for some highly redundant
29  *      files if the parameter max_chain_length (described below) is too large.
30  *
31  *  ACKNOWLEDGEMENTS
32  *
33  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34  *      I found it in 'freeze' written by Leonid Broukhis.
35  *      Thanks to many people for bug reports and testing.
36  *
37  *  REFERENCES
38  *
39  *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40  *      Available in http://tools.ietf.org/html/rfc1951
41  *
42  *      A description of the Rabin and Karp algorithm is given in the book
43  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44  *
45  *      Fiala,E.R., and Greene,D.H.
46  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47  *
48  */
49 
50 /* @(#) $Id$ */
51 
52 #include "deflate.h"
53 
54 const char deflate_copyright[] =
55    " deflate 1.2.11 Copyright 1995-2017 Jean-loup Gailly and Mark Adler ";
56 /*
57   If you use the zlib library in a product, an acknowledgment is welcome
58   in the documentation of your product. If for some reason you cannot
59   include such an acknowledgment, I would appreciate that you keep this
60   copyright string in the executable of your product.
61  */
62 
63 /* ===========================================================================
64  *  Function prototypes.
65  */
66 typedef enum {
67     need_more,      /* block not completed, need more input or more output */
68     block_done,     /* block flush performed */
69     finish_started, /* finish started, need only more output at next deflate */
70     finish_done     /* finish done, accept no more input or output */
71 } block_state;
72 
73 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
74 /* Compression function. Returns the block state after the call. */
75 
76 local int deflateStateCheck      OF((z_streamp strm));
77 local void slide_hash     OF((deflate_state *s));
78 local void fill_window    OF((deflate_state *s));
79 local block_state deflate_stored OF((deflate_state *s, int flush));
80 local block_state deflate_fast   OF((deflate_state *s, int flush));
81 #ifndef FASTEST
82 local block_state deflate_slow   OF((deflate_state *s, int flush));
83 #endif
84 local block_state deflate_rle    OF((deflate_state *s, int flush));
85 local block_state deflate_huff   OF((deflate_state *s, int flush));
86 local void lm_init        OF((deflate_state *s));
87 local void putShortMSB    OF((deflate_state *s, uInt b));
88 local void flush_pending  OF((z_streamp strm));
89 local unsigned read_buf   OF((z_streamp strm, Bytef *buf, unsigned size));
90 #ifdef ASMV
91 #  pragma message("Assembler code may have bugs -- use at your own risk")
92       void match_init OF((void)); /* asm code initialization */
93       uInt longest_match  OF((deflate_state *s, IPos cur_match));
94 #else
95 local uInt longest_match  OF((deflate_state *s, IPos cur_match));
96 #endif
97 
98 #ifdef ZLIB_DEBUG
99 local  void check_match OF((deflate_state *s, IPos start, IPos match,
100                             int length));
101 #endif
102 
103 /* ===========================================================================
104  * Local data
105  */
106 
107 #define NIL 0
108 /* Tail of hash chains */
109 
110 #ifndef TOO_FAR
111 #  define TOO_FAR 4096
112 #endif
113 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
114 
115 /* Values for max_lazy_match, good_match and max_chain_length, depending on
116  * the desired pack level (0..9). The values given below have been tuned to
117  * exclude worst case performance for pathological files. Better values may be
118  * found for specific files.
119  */
120 typedef struct config_s {
121    ush good_length; /* reduce lazy search above this match length */
122    ush max_lazy;    /* do not perform lazy search above this match length */
123    ush nice_length; /* quit search above this match length */
124    ush max_chain;
125    compress_func func;
126 } config;
127 
128 #ifdef FASTEST
129 local const config configuration_table[2] = {
130 /*      good lazy nice chain */
131 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
132 /* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
133 #else
134 local const config configuration_table[10] = {
135 /*      good lazy nice chain */
136 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
137 /* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
138 /* 2 */ {4,    5, 16,    8, deflate_fast},
139 /* 3 */ {4,    6, 32,   32, deflate_fast},
140 
141 /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
142 /* 5 */ {8,   16, 32,   32, deflate_slow},
143 /* 6 */ {8,   16, 128, 128, deflate_slow},
144 /* 7 */ {8,   32, 128, 256, deflate_slow},
145 /* 8 */ {32, 128, 258, 1024, deflate_slow},
146 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
147 #endif
148 
149 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
150  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
151  * meaning.
152  */
153 
154 /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
155 #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
156 
157 /* ===========================================================================
158  * Update a hash value with the given input byte
159  * IN  assertion: all calls to UPDATE_HASH are made with consecutive input
160  *    characters, so that a running hash key can be computed from the previous
161  *    key instead of complete recalculation each time.
162  */
163 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
164 
165 
166 /* ===========================================================================
167  * Insert string str in the dictionary and set match_head to the previous head
168  * of the hash chain (the most recent string with same hash key). Return
169  * the previous length of the hash chain.
170  * If this file is compiled with -DFASTEST, the compression level is forced
171  * to 1, and no hash chains are maintained.
172  * IN  assertion: all calls to INSERT_STRING are made with consecutive input
173  *    characters and the first MIN_MATCH bytes of str are valid (except for
174  *    the last MIN_MATCH-1 bytes of the input file).
175  */
176 #ifdef FASTEST
177 #define INSERT_STRING(s, str, match_head) \
178    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
179     match_head = s->head[s->ins_h], \
180     s->head[s->ins_h] = (Pos)(str))
181 #else
182 #define INSERT_STRING(s, str, match_head) \
183    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
184     match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
185     s->head[s->ins_h] = (Pos)(str))
186 #endif
187 
188 /* ===========================================================================
189  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
190  * prev[] will be initialized on the fly.
191  */
192 #define CLEAR_HASH(s) \
193     do { \
194         s->head[s->hash_size-1] = NIL; \
195         zmemzero((Bytef *)s->head, \
196                  (unsigned)(s->hash_size-1)*sizeof(*s->head)); \
197     } while (0)
198 
199 /* ===========================================================================
200  * Slide the hash table when sliding the window down (could be avoided with 32
201  * bit values at the expense of memory usage). We slide even when level == 0 to
202  * keep the hash table consistent if we switch back to level > 0 later.
203  */
slide_hash(deflate_state * s)204 local void slide_hash(
205     deflate_state *s)
206 {
207     unsigned n, m;
208     Posf *p;
209     uInt wsize = s->w_size;
210 
211     n = s->hash_size;
212     p = &s->head[n];
213     do {
214         m = *--p;
215         *p = (Pos)(m >= wsize ? m - wsize : NIL);
216     } while (--n);
217     n = wsize;
218 #ifndef FASTEST
219     p = &s->prev[n];
220     do {
221         m = *--p;
222         *p = (Pos)(m >= wsize ? m - wsize : NIL);
223         /* If n is not on any hash chain, prev[n] is garbage but
224          * its value will never be used.
225          */
226     } while (--n);
227 #endif
228 }
229 
230 /* ========================================================================= */
deflateInit_(z_streamp strm,int level,const char * version,int stream_size)231 int ZEXPORT deflateInit_(
232     z_streamp strm,
233     int level,
234     const char *version,
235     int stream_size)
236 {
237     return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
238                          Z_DEFAULT_STRATEGY, version, stream_size);
239     /* To do: ignore strm->next_in if we use it as window */
240 }
241 
242 /* ========================================================================= */
deflateInit2_(z_streamp strm,int level,int method,int windowBits,int memLevel,int strategy,const char * version,int stream_size)243 int ZEXPORT deflateInit2_(
244     z_streamp strm,
245     int  level,
246     int  method,
247     int  windowBits,
248     int  memLevel,
249     int  strategy,
250     const char *version,
251     int stream_size)
252 {
253     deflate_state *s;
254     int wrap = 1;
255     static const char my_version[] = ZLIB_VERSION;
256 
257     ushf *overlay;
258     /* We overlay pending_buf and d_buf+l_buf. This works since the average
259      * output size for (length,distance) codes is <= 24 bits.
260      */
261 
262     if (version == Z_NULL || version[0] != my_version[0] ||
263         stream_size != sizeof(z_stream)) {
264         return Z_VERSION_ERROR;
265     }
266     if (strm == Z_NULL) return Z_STREAM_ERROR;
267 
268     strm->msg = Z_NULL;
269     if (strm->zalloc == (alloc_func)0) {
270 #ifdef Z_SOLO
271         return Z_STREAM_ERROR;
272 #else
273         strm->zalloc = zcalloc;
274         strm->opaque = (voidpf)0;
275 #endif
276     }
277     if (strm->zfree == (free_func)0)
278 #ifdef Z_SOLO
279         return Z_STREAM_ERROR;
280 #else
281         strm->zfree = zcfree;
282 #endif
283 
284 #ifdef FASTEST
285     if (level != 0) level = 1;
286 #else
287     if (level == Z_DEFAULT_COMPRESSION) level = 6;
288 #endif
289 
290     if (windowBits < 0) { /* suppress zlib wrapper */
291         wrap = 0;
292         windowBits = -windowBits;
293     }
294 #ifdef GZIP
295     else if (windowBits > 15) {
296         wrap = 2;       /* write gzip wrapper instead */
297         windowBits -= 16;
298     }
299 #endif
300     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
301         windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
302         strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
303         return Z_STREAM_ERROR;
304     }
305     if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
306     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
307     if (s == Z_NULL) return Z_MEM_ERROR;
308     strm->state = (struct internal_state FAR *)s;
309     s->strm = strm;
310     s->status = INIT_STATE;     /* to pass state test in deflateReset() */
311 
312     s->wrap = wrap;
313     s->gzhead = Z_NULL;
314     s->w_bits = (uInt)windowBits;
315     s->w_size = 1 << s->w_bits;
316     s->w_mask = s->w_size - 1;
317 
318     s->hash_bits = (uInt)memLevel + 7;
319     s->hash_size = 1 << s->hash_bits;
320     s->hash_mask = s->hash_size - 1;
321     s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
322 
323     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
324     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
325     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
326 
327     s->high_water = 0;      /* nothing written to s->window yet */
328 
329     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
330 
331     overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
332     s->pending_buf = (uchf *) overlay;
333     s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
334 
335     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
336         s->pending_buf == Z_NULL) {
337         s->status = FINISH_STATE;
338         strm->msg = ERR_MSG(Z_MEM_ERROR);
339         deflateEnd (strm);
340         return Z_MEM_ERROR;
341     }
342     s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
343     s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
344 
345     s->level = level;
346     s->strategy = strategy;
347     s->method = (Byte)method;
348 
349     return deflateReset(strm);
350 }
351 
352 /* =========================================================================
353  * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
354  */
deflateStateCheck(z_streamp strm)355 local int deflateStateCheck (
356     z_streamp strm)
357 {
358     deflate_state *s;
359     if (strm == Z_NULL ||
360         strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
361         return 1;
362     s = strm->state;
363     if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
364 #ifdef GZIP
365                                            s->status != GZIP_STATE &&
366 #endif
367                                            s->status != EXTRA_STATE &&
368                                            s->status != NAME_STATE &&
369                                            s->status != COMMENT_STATE &&
370                                            s->status != HCRC_STATE &&
371                                            s->status != BUSY_STATE &&
372                                            s->status != FINISH_STATE))
373         return 1;
374     return 0;
375 }
376 
377 /* ========================================================================= */
deflateSetDictionary(z_streamp strm,const Bytef * dictionary,uInt dictLength)378 int ZEXPORT deflateSetDictionary (
379     z_streamp strm,
380     const Bytef *dictionary,
381     uInt  dictLength)
382 {
383     deflate_state *s;
384     uInt str, n;
385     int wrap;
386     unsigned avail;
387     z_const unsigned char *next;
388 
389     if (deflateStateCheck(strm) || dictionary == Z_NULL)
390         return Z_STREAM_ERROR;
391     s = strm->state;
392     wrap = s->wrap;
393     if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
394         return Z_STREAM_ERROR;
395 
396     /* when using zlib wrappers, compute Adler-32 for provided dictionary */
397     if (wrap == 1)
398         strm->adler = adler32(strm->adler, dictionary, dictLength);
399     s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */
400 
401     /* if dictionary would fill window, just replace the history */
402     if (dictLength >= s->w_size) {
403         if (wrap == 0) {            /* already empty otherwise */
404             CLEAR_HASH(s);
405             s->strstart = 0;
406             s->block_start = 0L;
407             s->insert = 0;
408         }
409         dictionary += dictLength - s->w_size;  /* use the tail */
410         dictLength = s->w_size;
411     }
412 
413     /* insert dictionary into window and hash */
414     avail = strm->avail_in;
415     next = strm->next_in;
416     strm->avail_in = dictLength;
417     strm->next_in = (z_const Bytef *)dictionary;
418     fill_window(s);
419     while (s->lookahead >= MIN_MATCH) {
420         str = s->strstart;
421         n = s->lookahead - (MIN_MATCH-1);
422         do {
423             UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
424 #ifndef FASTEST
425             s->prev[str & s->w_mask] = s->head[s->ins_h];
426 #endif
427             s->head[s->ins_h] = (Pos)str;
428             str++;
429         } while (--n);
430         s->strstart = str;
431         s->lookahead = MIN_MATCH-1;
432         fill_window(s);
433     }
434     s->strstart += s->lookahead;
435     s->block_start = (long)s->strstart;
436     s->insert = s->lookahead;
437     s->lookahead = 0;
438     s->match_length = s->prev_length = MIN_MATCH-1;
439     s->match_available = 0;
440     strm->next_in = next;
441     strm->avail_in = avail;
442     s->wrap = wrap;
443     return Z_OK;
444 }
445 
446 /* ========================================================================= */
deflateGetDictionary(z_streamp strm,Bytef * dictionary,uInt * dictLength)447 int ZEXPORT deflateGetDictionary (
448     z_streamp strm,
449     Bytef *dictionary,
450     uInt  *dictLength)
451 {
452     deflate_state *s;
453     uInt len;
454 
455     if (deflateStateCheck(strm))
456         return Z_STREAM_ERROR;
457     s = strm->state;
458     len = s->strstart + s->lookahead;
459     if (len > s->w_size)
460         len = s->w_size;
461     if (dictionary != Z_NULL && len)
462         zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
463     if (dictLength != Z_NULL)
464         *dictLength = len;
465     return Z_OK;
466 }
467 
468 /* ========================================================================= */
deflateResetKeep(z_streamp strm)469 int ZEXPORT deflateResetKeep (
470     z_streamp strm)
471 {
472     deflate_state *s;
473 
474     if (deflateStateCheck(strm)) {
475         return Z_STREAM_ERROR;
476     }
477 
478     strm->total_in = strm->total_out = 0;
479     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
480     strm->data_type = Z_UNKNOWN;
481 
482     s = (deflate_state *)strm->state;
483     s->pending = 0;
484     s->pending_out = s->pending_buf;
485 
486     if (s->wrap < 0) {
487         s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
488     }
489     s->status =
490 #ifdef GZIP
491         s->wrap == 2 ? GZIP_STATE :
492 #endif
493         s->wrap ? INIT_STATE : BUSY_STATE;
494     strm->adler =
495 #ifdef GZIP
496         s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
497 #endif
498         adler32(0L, Z_NULL, 0);
499     s->last_flush = Z_NO_FLUSH;
500 
501     _tr_init(s);
502 
503     return Z_OK;
504 }
505 
506 /* ========================================================================= */
deflateReset(z_streamp strm)507 int ZEXPORT deflateReset (
508     z_streamp strm)
509 {
510     int ret;
511 
512     ret = deflateResetKeep(strm);
513     if (ret == Z_OK)
514         lm_init(strm->state);
515     return ret;
516 }
517 
518 /* ========================================================================= */
deflateSetHeader(z_streamp strm,gz_headerp head)519 int ZEXPORT deflateSetHeader (
520     z_streamp strm,
521     gz_headerp head)
522 {
523     if (deflateStateCheck(strm) || strm->state->wrap != 2)
524         return Z_STREAM_ERROR;
525     strm->state->gzhead = head;
526     return Z_OK;
527 }
528 
529 /* ========================================================================= */
deflatePending(z_streamp strm,unsigned * pending,int * bits)530 int ZEXPORT deflatePending (
531     z_streamp strm,
532     unsigned *pending,
533     int *bits)
534 {
535     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
536     if (pending != Z_NULL)
537         *pending = strm->state->pending;
538     if (bits != Z_NULL)
539         *bits = strm->state->bi_valid;
540     return Z_OK;
541 }
542 
543 /* ========================================================================= */
deflatePrime(z_streamp strm,int bits,int value)544 int ZEXPORT deflatePrime (
545     z_streamp strm,
546     int bits,
547     int value)
548 {
549     deflate_state *s;
550     int put;
551 
552     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
553     s = strm->state;
554     if ((Bytef *)(s->d_buf) < s->pending_out + ((Buf_size + 7) >> 3))
555         return Z_BUF_ERROR;
556     do {
557         put = Buf_size - s->bi_valid;
558         if (put > bits)
559             put = bits;
560         s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
561         s->bi_valid += put;
562         _tr_flush_bits(s);
563         value >>= put;
564         bits -= put;
565     } while (bits);
566     return Z_OK;
567 }
568 
569 /* ========================================================================= */
deflateParams(z_streamp strm,int level,int strategy)570 int ZEXPORT deflateParams(
571     z_streamp strm,
572     int level,
573     int strategy)
574 {
575     deflate_state *s;
576     compress_func func;
577 
578     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
579     s = strm->state;
580 
581 #ifdef FASTEST
582     if (level != 0) level = 1;
583 #else
584     if (level == Z_DEFAULT_COMPRESSION) level = 6;
585 #endif
586     if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
587         return Z_STREAM_ERROR;
588     }
589     func = configuration_table[s->level].func;
590 
591     if ((strategy != s->strategy || func != configuration_table[level].func) &&
592         s->high_water) {
593         /* Flush the last buffer: */
594         int err = deflate(strm, Z_BLOCK);
595         if (err == Z_STREAM_ERROR)
596             return err;
597         if (strm->avail_out == 0)
598             return Z_BUF_ERROR;
599     }
600     if (s->level != level) {
601         if (s->level == 0 && s->matches != 0) {
602             if (s->matches == 1)
603                 slide_hash(s);
604             else
605                 CLEAR_HASH(s);
606             s->matches = 0;
607         }
608         s->level = level;
609         s->max_lazy_match   = configuration_table[level].max_lazy;
610         s->good_match       = configuration_table[level].good_length;
611         s->nice_match       = configuration_table[level].nice_length;
612         s->max_chain_length = configuration_table[level].max_chain;
613     }
614     s->strategy = strategy;
615     return Z_OK;
616 }
617 
618 /* ========================================================================= */
deflateTune(z_streamp strm,int good_length,int max_lazy,int nice_length,int max_chain)619 int ZEXPORT deflateTune(
620     z_streamp strm,
621     int good_length,
622     int max_lazy,
623     int nice_length,
624     int max_chain)
625 {
626     deflate_state *s;
627 
628     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
629     s = strm->state;
630     s->good_match = (uInt)good_length;
631     s->max_lazy_match = (uInt)max_lazy;
632     s->nice_match = nice_length;
633     s->max_chain_length = (uInt)max_chain;
634     return Z_OK;
635 }
636 
637 /* =========================================================================
638  * For the default windowBits of 15 and memLevel of 8, this function returns
639  * a close to exact, as well as small, upper bound on the compressed size.
640  * They are coded as constants here for a reason--if the #define's are
641  * changed, then this function needs to be changed as well.  The return
642  * value for 15 and 8 only works for those exact settings.
643  *
644  * For any setting other than those defaults for windowBits and memLevel,
645  * the value returned is a conservative worst case for the maximum expansion
646  * resulting from using fixed blocks instead of stored blocks, which deflate
647  * can emit on compressed data for some combinations of the parameters.
648  *
649  * This function could be more sophisticated to provide closer upper bounds for
650  * every combination of windowBits and memLevel.  But even the conservative
651  * upper bound of about 14% expansion does not seem onerous for output buffer
652  * allocation.
653  */
deflateBound(z_streamp strm,uLong sourceLen)654 uLong ZEXPORT deflateBound(
655     z_streamp strm,
656     uLong sourceLen)
657 {
658     deflate_state *s;
659     uLong complen, wraplen;
660 
661     /* conservative upper bound for compressed data */
662     complen = sourceLen +
663               ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;
664 
665     /* if can't get parameters, return conservative bound plus zlib wrapper */
666     if (deflateStateCheck(strm))
667         return complen + 6;
668 
669     /* compute wrapper length */
670     s = strm->state;
671     switch (s->wrap) {
672     case 0:                                 /* raw deflate */
673         wraplen = 0;
674         break;
675     case 1:                                 /* zlib wrapper */
676         wraplen = 6 + (s->strstart ? 4 : 0);
677         break;
678 #ifdef GZIP
679     case 2:                                 /* gzip wrapper */
680         wraplen = 18;
681         if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
682             Bytef *str;
683             if (s->gzhead->extra != Z_NULL)
684                 wraplen += 2 + s->gzhead->extra_len;
685             str = s->gzhead->name;
686             if (str != Z_NULL)
687                 do {
688                     wraplen++;
689                 } while (*str++);
690             str = s->gzhead->comment;
691             if (str != Z_NULL)
692                 do {
693                     wraplen++;
694                 } while (*str++);
695             if (s->gzhead->hcrc)
696                 wraplen += 2;
697         }
698         break;
699 #endif
700     default:                                /* for compiler happiness */
701         wraplen = 6;
702     }
703 
704     /* if not default parameters, return conservative bound */
705     if (s->w_bits != 15 || s->hash_bits != 8 + 7)
706         return complen + wraplen;
707 
708     /* default settings: return tight bound for that case */
709     return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
710            (sourceLen >> 25) + 13 - 6 + wraplen;
711 }
712 
713 /* =========================================================================
714  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
715  * IN assertion: the stream state is correct and there is enough room in
716  * pending_buf.
717  */
putShortMSB(deflate_state * s,uInt b)718 local void putShortMSB (
719     deflate_state *s,
720     uInt b)
721 {
722     put_byte(s, (Byte)(b >> 8));
723     put_byte(s, (Byte)(b & 0xff));
724 }
725 
726 /* =========================================================================
727  * Flush as much pending output as possible. All deflate() output, except for
728  * some deflate_stored() output, goes through this function so some
729  * applications may wish to modify it to avoid allocating a large
730  * strm->next_out buffer and copying into it. (See also read_buf()).
731  */
flush_pending(z_streamp strm)732 local void flush_pending(
733     z_streamp strm)
734 {
735     unsigned len;
736     deflate_state *s = strm->state;
737 
738     _tr_flush_bits(s);
739     len = s->pending;
740     if (len > strm->avail_out) len = strm->avail_out;
741     if (len == 0) return;
742 
743     zmemcpy(strm->next_out, s->pending_out, len);
744     strm->next_out  += len;
745     s->pending_out  += len;
746     strm->total_out += len;
747     strm->avail_out -= len;
748     s->pending      -= len;
749     if (s->pending == 0) {
750         s->pending_out = s->pending_buf;
751     }
752 }
753 
754 /* ===========================================================================
755  * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
756  */
757 #define HCRC_UPDATE(beg) \
758     do { \
759         if (s->gzhead->hcrc && s->pending > (beg)) \
760             strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
761                                 s->pending - (beg)); \
762     } while (0)
763 
764 /* ========================================================================= */
deflate(z_streamp strm,int flush)765 int ZEXPORT deflate (
766     z_streamp strm,
767     int flush)
768 {
769     int old_flush; /* value of flush param for previous deflate call */
770     deflate_state *s;
771 
772     if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
773         return Z_STREAM_ERROR;
774     }
775     s = strm->state;
776 
777     if (strm->next_out == Z_NULL ||
778         (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
779         (s->status == FINISH_STATE && flush != Z_FINISH)) {
780         ERR_RETURN(strm, Z_STREAM_ERROR);
781     }
782     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
783 
784     old_flush = s->last_flush;
785     s->last_flush = flush;
786 
787     /* Flush as much pending output as possible */
788     if (s->pending != 0) {
789         flush_pending(strm);
790         if (strm->avail_out == 0) {
791             /* Since avail_out is 0, deflate will be called again with
792              * more output space, but possibly with both pending and
793              * avail_in equal to zero. There won't be anything to do,
794              * but this is not an error situation so make sure we
795              * return OK instead of BUF_ERROR at next call of deflate:
796              */
797             s->last_flush = -1;
798             return Z_OK;
799         }
800 
801     /* Make sure there is something to do and avoid duplicate consecutive
802      * flushes. For repeated and useless calls with Z_FINISH, we keep
803      * returning Z_STREAM_END instead of Z_BUF_ERROR.
804      */
805     } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
806                flush != Z_FINISH) {
807         ERR_RETURN(strm, Z_BUF_ERROR);
808     }
809 
810     /* User must not provide more input after the first FINISH: */
811     if (s->status == FINISH_STATE && strm->avail_in != 0) {
812         ERR_RETURN(strm, Z_BUF_ERROR);
813     }
814 
815     /* Write the header */
816     if (s->status == INIT_STATE) {
817         /* zlib header */
818         uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
819         uInt level_flags;
820 
821         if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
822             level_flags = 0;
823         else if (s->level < 6)
824             level_flags = 1;
825         else if (s->level == 6)
826             level_flags = 2;
827         else
828             level_flags = 3;
829         header |= (level_flags << 6);
830         if (s->strstart != 0) header |= PRESET_DICT;
831         header += 31 - (header % 31);
832 
833         putShortMSB(s, header);
834 
835         /* Save the adler32 of the preset dictionary: */
836         if (s->strstart != 0) {
837             putShortMSB(s, (uInt)(strm->adler >> 16));
838             putShortMSB(s, (uInt)(strm->adler & 0xffff));
839         }
840         strm->adler = adler32(0L, Z_NULL, 0);
841         s->status = BUSY_STATE;
842 
843         /* Compression must start with an empty pending buffer */
844         flush_pending(strm);
845         if (s->pending != 0) {
846             s->last_flush = -1;
847             return Z_OK;
848         }
849     }
850 #ifdef GZIP
851     if (s->status == GZIP_STATE) {
852         /* gzip header */
853         strm->adler = crc32(0L, Z_NULL, 0);
854         put_byte(s, 31);
855         put_byte(s, 139);
856         put_byte(s, 8);
857         if (s->gzhead == Z_NULL) {
858             put_byte(s, 0);
859             put_byte(s, 0);
860             put_byte(s, 0);
861             put_byte(s, 0);
862             put_byte(s, 0);
863             put_byte(s, s->level == 9 ? 2 :
864                      (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
865                       4 : 0));
866             put_byte(s, OS_CODE);
867             s->status = BUSY_STATE;
868 
869             /* Compression must start with an empty pending buffer */
870             flush_pending(strm);
871             if (s->pending != 0) {
872                 s->last_flush = -1;
873                 return Z_OK;
874             }
875         }
876         else {
877             put_byte(s, (s->gzhead->text ? 1 : 0) +
878                      (s->gzhead->hcrc ? 2 : 0) +
879                      (s->gzhead->extra == Z_NULL ? 0 : 4) +
880                      (s->gzhead->name == Z_NULL ? 0 : 8) +
881                      (s->gzhead->comment == Z_NULL ? 0 : 16)
882                      );
883             put_byte(s, (Byte)(s->gzhead->time & 0xff));
884             put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
885             put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
886             put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
887             put_byte(s, s->level == 9 ? 2 :
888                      (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
889                       4 : 0));
890             put_byte(s, s->gzhead->os & 0xff);
891             if (s->gzhead->extra != Z_NULL) {
892                 put_byte(s, s->gzhead->extra_len & 0xff);
893                 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
894             }
895             if (s->gzhead->hcrc)
896                 strm->adler = crc32(strm->adler, s->pending_buf,
897                                     s->pending);
898             s->gzindex = 0;
899             s->status = EXTRA_STATE;
900         }
901     }
902     if (s->status == EXTRA_STATE) {
903         if (s->gzhead->extra != Z_NULL) {
904             ulg beg = s->pending;   /* start of bytes to update crc */
905             uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
906             while (s->pending + left > s->pending_buf_size) {
907                 uInt copy = s->pending_buf_size - s->pending;
908                 zmemcpy(s->pending_buf + s->pending,
909                         s->gzhead->extra + s->gzindex, copy);
910                 s->pending = s->pending_buf_size;
911                 HCRC_UPDATE(beg);
912                 s->gzindex += copy;
913                 flush_pending(strm);
914                 if (s->pending != 0) {
915                     s->last_flush = -1;
916                     return Z_OK;
917                 }
918                 beg = 0;
919                 left -= copy;
920             }
921             zmemcpy(s->pending_buf + s->pending,
922                     s->gzhead->extra + s->gzindex, left);
923             s->pending += left;
924             HCRC_UPDATE(beg);
925             s->gzindex = 0;
926         }
927         s->status = NAME_STATE;
928     }
929     if (s->status == NAME_STATE) {
930         if (s->gzhead->name != Z_NULL) {
931             ulg beg = s->pending;   /* start of bytes to update crc */
932             int val;
933             do {
934                 if (s->pending == s->pending_buf_size) {
935                     HCRC_UPDATE(beg);
936                     flush_pending(strm);
937                     if (s->pending != 0) {
938                         s->last_flush = -1;
939                         return Z_OK;
940                     }
941                     beg = 0;
942                 }
943                 val = s->gzhead->name[s->gzindex++];
944                 put_byte(s, val);
945             } while (val != 0);
946             HCRC_UPDATE(beg);
947             s->gzindex = 0;
948         }
949         s->status = COMMENT_STATE;
950     }
951     if (s->status == COMMENT_STATE) {
952         if (s->gzhead->comment != Z_NULL) {
953             ulg beg = s->pending;   /* start of bytes to update crc */
954             int val;
955             do {
956                 if (s->pending == s->pending_buf_size) {
957                     HCRC_UPDATE(beg);
958                     flush_pending(strm);
959                     if (s->pending != 0) {
960                         s->last_flush = -1;
961                         return Z_OK;
962                     }
963                     beg = 0;
964                 }
965                 val = s->gzhead->comment[s->gzindex++];
966                 put_byte(s, val);
967             } while (val != 0);
968             HCRC_UPDATE(beg);
969         }
970         s->status = HCRC_STATE;
971     }
972     if (s->status == HCRC_STATE) {
973         if (s->gzhead->hcrc) {
974             if (s->pending + 2 > s->pending_buf_size) {
975                 flush_pending(strm);
976                 if (s->pending != 0) {
977                     s->last_flush = -1;
978                     return Z_OK;
979                 }
980             }
981             put_byte(s, (Byte)(strm->adler & 0xff));
982             put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
983             strm->adler = crc32(0L, Z_NULL, 0);
984         }
985         s->status = BUSY_STATE;
986 
987         /* Compression must start with an empty pending buffer */
988         flush_pending(strm);
989         if (s->pending != 0) {
990             s->last_flush = -1;
991             return Z_OK;
992         }
993     }
994 #endif
995 
996     /* Start a new block or continue the current one.
997      */
998     if (strm->avail_in != 0 || s->lookahead != 0 ||
999         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1000         block_state bstate;
1001 
1002         bstate = s->level == 0 ? deflate_stored(s, flush) :
1003                  s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1004                  s->strategy == Z_RLE ? deflate_rle(s, flush) :
1005                  (*(configuration_table[s->level].func))(s, flush);
1006 
1007         if (bstate == finish_started || bstate == finish_done) {
1008             s->status = FINISH_STATE;
1009         }
1010         if (bstate == need_more || bstate == finish_started) {
1011             if (strm->avail_out == 0) {
1012                 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1013             }
1014             return Z_OK;
1015             /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1016              * of deflate should use the same flush parameter to make sure
1017              * that the flush is complete. So we don't have to output an
1018              * empty block here, this will be done at next call. This also
1019              * ensures that for a very small output buffer, we emit at most
1020              * one empty block.
1021              */
1022         }
1023         if (bstate == block_done) {
1024             if (flush == Z_PARTIAL_FLUSH) {
1025                 _tr_align(s);
1026             } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1027                 _tr_stored_block(s, (char*)0, 0L, 0);
1028                 /* For a full flush, this empty block will be recognized
1029                  * as a special marker by inflate_sync().
1030                  */
1031                 if (flush == Z_FULL_FLUSH) {
1032                     CLEAR_HASH(s);             /* forget history */
1033                     if (s->lookahead == 0) {
1034                         s->strstart = 0;
1035                         s->block_start = 0L;
1036                         s->insert = 0;
1037                     }
1038                 }
1039             }
1040             flush_pending(strm);
1041             if (strm->avail_out == 0) {
1042               s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1043               return Z_OK;
1044             }
1045         }
1046     }
1047 
1048     if (flush != Z_FINISH) return Z_OK;
1049     if (s->wrap <= 0) return Z_STREAM_END;
1050 
1051     /* Write the trailer */
1052 #ifdef GZIP
1053     if (s->wrap == 2) {
1054         put_byte(s, (Byte)(strm->adler & 0xff));
1055         put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1056         put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1057         put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1058         put_byte(s, (Byte)(strm->total_in & 0xff));
1059         put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1060         put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1061         put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1062     }
1063     else
1064 #endif
1065     {
1066         putShortMSB(s, (uInt)(strm->adler >> 16));
1067         putShortMSB(s, (uInt)(strm->adler & 0xffff));
1068     }
1069     flush_pending(strm);
1070     /* If avail_out is zero, the application will call deflate again
1071      * to flush the rest.
1072      */
1073     if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1074     return s->pending != 0 ? Z_OK : Z_STREAM_END;
1075 }
1076 
1077 /* ========================================================================= */
deflateEnd(z_streamp strm)1078 int ZEXPORT deflateEnd (
1079     z_streamp strm)
1080 {
1081     int status;
1082 
1083     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1084 
1085     status = strm->state->status;
1086 
1087     /* Deallocate in reverse order of allocations: */
1088     TRY_FREE(strm, strm->state->pending_buf);
1089     TRY_FREE(strm, strm->state->head);
1090     TRY_FREE(strm, strm->state->prev);
1091     TRY_FREE(strm, strm->state->window);
1092 
1093     ZFREE(strm, strm->state);
1094     strm->state = Z_NULL;
1095 
1096     return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1097 }
1098 
1099 /* =========================================================================
1100  * Copy the source state to the destination state.
1101  * To simplify the source, this is not supported for 16-bit MSDOS (which
1102  * doesn't have enough memory anyway to duplicate compression states).
1103  */
deflateCopy(z_streamp dest,z_streamp source)1104 int ZEXPORT deflateCopy (
1105     z_streamp dest,
1106     z_streamp source)
1107 {
1108 #ifdef MAXSEG_64K
1109     return Z_STREAM_ERROR;
1110 #else
1111     deflate_state *ds;
1112     deflate_state *ss;
1113     ushf *overlay;
1114 
1115 
1116     if (deflateStateCheck(source) || dest == Z_NULL) {
1117         return Z_STREAM_ERROR;
1118     }
1119 
1120     ss = source->state;
1121 
1122     zmemcpy((Bytef*)dest, (Bytef*)source, sizeof(z_stream));
1123 
1124     ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1125     if (ds == Z_NULL) return Z_MEM_ERROR;
1126     dest->state = (struct internal_state FAR *) ds;
1127     zmemcpy((Bytef*)ds, (Bytef*)ss, sizeof(deflate_state));
1128     ds->strm = dest;
1129 
1130     ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1131     ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1132     ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1133     overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
1134     ds->pending_buf = (uchf *) overlay;
1135 
1136     if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1137         ds->pending_buf == Z_NULL) {
1138         deflateEnd (dest);
1139         return Z_MEM_ERROR;
1140     }
1141     /* following zmemcpy do not work for 16-bit MSDOS */
1142     zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1143     zmemcpy((Bytef*)ds->prev, (Bytef*)ss->prev, ds->w_size * sizeof(Pos));
1144     zmemcpy((Bytef*)ds->head, (Bytef*)ss->head, ds->hash_size * sizeof(Pos));
1145     zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1146 
1147     ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1148     ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
1149     ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
1150 
1151     ds->l_desc.dyn_tree = ds->dyn_ltree;
1152     ds->d_desc.dyn_tree = ds->dyn_dtree;
1153     ds->bl_desc.dyn_tree = ds->bl_tree;
1154 
1155     return Z_OK;
1156 #endif /* MAXSEG_64K */
1157 }
1158 
1159 /* ===========================================================================
1160  * Read a new buffer from the current input stream, update the adler32
1161  * and total number of bytes read.  All deflate() input goes through
1162  * this function so some applications may wish to modify it to avoid
1163  * allocating a large strm->next_in buffer and copying from it.
1164  * (See also flush_pending()).
1165  */
read_buf(z_streamp strm,Bytef * buf,unsigned size)1166 local unsigned read_buf(
1167     z_streamp strm,
1168     Bytef *buf,
1169     unsigned size)
1170 {
1171     unsigned len = strm->avail_in;
1172 
1173     if (len > size) len = size;
1174     if (len == 0) return 0;
1175 
1176     strm->avail_in  -= len;
1177 
1178     zmemcpy(buf, strm->next_in, len);
1179     if (strm->state->wrap == 1) {
1180         strm->adler = adler32(strm->adler, buf, len);
1181     }
1182 #ifdef GZIP
1183     else if (strm->state->wrap == 2) {
1184         strm->adler = crc32(strm->adler, buf, len);
1185     }
1186 #endif
1187     strm->next_in  += len;
1188     strm->total_in += len;
1189 
1190     return len;
1191 }
1192 
1193 /* ===========================================================================
1194  * Initialize the "longest match" routines for a new zlib stream
1195  */
lm_init(deflate_state * s)1196 local void lm_init (
1197     deflate_state *s)
1198 {
1199     s->window_size = (ulg)2L*s->w_size;
1200 
1201     CLEAR_HASH(s);
1202 
1203     /* Set the default configuration parameters:
1204      */
1205     s->max_lazy_match   = configuration_table[s->level].max_lazy;
1206     s->good_match       = configuration_table[s->level].good_length;
1207     s->nice_match       = configuration_table[s->level].nice_length;
1208     s->max_chain_length = configuration_table[s->level].max_chain;
1209 
1210     s->strstart = 0;
1211     s->block_start = 0L;
1212     s->lookahead = 0;
1213     s->insert = 0;
1214     s->match_length = s->prev_length = MIN_MATCH-1;
1215     s->match_available = 0;
1216     s->ins_h = 0;
1217 #ifndef FASTEST
1218 #ifdef ASMV
1219     match_init(); /* initialize the asm code */
1220 #endif
1221 #endif
1222 }
1223 
1224 #ifndef FASTEST
1225 /* ===========================================================================
1226  * Set match_start to the longest match starting at the given string and
1227  * return its length. Matches shorter or equal to prev_length are discarded,
1228  * in which case the result is equal to prev_length and match_start is
1229  * garbage.
1230  * IN assertions: cur_match is the head of the hash chain for the current
1231  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1232  * OUT assertion: the match length is not greater than s->lookahead.
1233  */
1234 #ifndef ASMV
1235 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1236  * match.S. The code will be functionally equivalent.
1237  */
longest_match(deflate_state * s,IPos cur_match)1238 local uInt longest_match(
1239     deflate_state *s,
1240     IPos cur_match)
1241 {
1242     unsigned chain_length = s->max_chain_length;/* max hash chain length */
1243     register Bytef *scan = s->window + s->strstart; /* current string */
1244     register Bytef *match;                      /* matched string */
1245     register int len;                           /* length of current match */
1246     int best_len = (int)s->prev_length;         /* best match length so far */
1247     int nice_match = s->nice_match;             /* stop if match long enough */
1248     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1249         s->strstart - (IPos)MAX_DIST(s) : NIL;
1250     /* Stop when cur_match becomes <= limit. To simplify the code,
1251      * we prevent matches with the string of window index 0.
1252      */
1253     Posf *prev = s->prev;
1254     uInt wmask = s->w_mask;
1255 
1256 #ifdef UNALIGNED_OK
1257     /* Compare two bytes at a time. Note: this is not always beneficial.
1258      * Try with and without -DUNALIGNED_OK to check.
1259      */
1260     register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1261     register ush scan_start = *(ushf*)scan;
1262     register ush scan_end   = *(ushf*)(scan+best_len-1);
1263 #else
1264     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1265     register Byte scan_end1  = scan[best_len-1];
1266     register Byte scan_end   = scan[best_len];
1267 #endif
1268 
1269     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1270      * It is easy to get rid of this optimization if necessary.
1271      */
1272     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1273 
1274     /* Do not waste too much time if we already have a good match: */
1275     if (s->prev_length >= s->good_match) {
1276         chain_length >>= 2;
1277     }
1278     /* Do not look for matches beyond the end of the input. This is necessary
1279      * to make deflate deterministic.
1280      */
1281     if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1282 
1283     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1284 
1285     do {
1286         Assert(cur_match < s->strstart, "no future");
1287         match = s->window + cur_match;
1288 
1289         /* Skip to next match if the match length cannot increase
1290          * or if the match length is less than 2.  Note that the checks below
1291          * for insufficient lookahead only occur occasionally for performance
1292          * reasons.  Therefore uninitialized memory will be accessed, and
1293          * conditional jumps will be made that depend on those values.
1294          * However the length of the match is limited to the lookahead, so
1295          * the output of deflate is not affected by the uninitialized values.
1296          */
1297 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1298         /* This code assumes sizeof(unsigned short) == 2. Do not use
1299          * UNALIGNED_OK if your compiler uses a different size.
1300          */
1301         if (*(ushf*)(match+best_len-1) != scan_end ||
1302             *(ushf*)match != scan_start) continue;
1303 
1304         /* It is not necessary to compare scan[2] and match[2] since they are
1305          * always equal when the other bytes match, given that the hash keys
1306          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1307          * strstart+3, +5, ... up to strstart+257. We check for insufficient
1308          * lookahead only every 4th comparison; the 128th check will be made
1309          * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1310          * necessary to put more guard bytes at the end of the window, or
1311          * to check more often for insufficient lookahead.
1312          */
1313         Assert(scan[2] == match[2], "scan[2]?");
1314         scan++, match++;
1315         do {
1316         } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1317                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1318                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1319                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1320                  scan < strend);
1321         /* The funny "do {}" generates better code on most compilers */
1322 
1323         /* Here, scan <= window+strstart+257 */
1324         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1325         if (*scan == *match) scan++;
1326 
1327         len = (MAX_MATCH - 1) - (int)(strend-scan);
1328         scan = strend - (MAX_MATCH-1);
1329 
1330 #else /* UNALIGNED_OK */
1331 
1332         if (match[best_len]   != scan_end  ||
1333             match[best_len-1] != scan_end1 ||
1334             *match            != *scan     ||
1335             *++match          != scan[1])      continue;
1336 
1337         /* The check at best_len-1 can be removed because it will be made
1338          * again later. (This heuristic is not always a win.)
1339          * It is not necessary to compare scan[2] and match[2] since they
1340          * are always equal when the other bytes match, given that
1341          * the hash keys are equal and that HASH_BITS >= 8.
1342          */
1343         scan += 2, match++;
1344         Assert(*scan == *match, "match[2]?");
1345 
1346         /* We check for insufficient lookahead only every 8th comparison;
1347          * the 256th check will be made at strstart+258.
1348          */
1349         do {
1350         } while (*++scan == *++match && *++scan == *++match &&
1351                  *++scan == *++match && *++scan == *++match &&
1352                  *++scan == *++match && *++scan == *++match &&
1353                  *++scan == *++match && *++scan == *++match &&
1354                  scan < strend);
1355 
1356         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1357 
1358         len = MAX_MATCH - (int)(strend - scan);
1359         scan = strend - MAX_MATCH;
1360 
1361 #endif /* UNALIGNED_OK */
1362 
1363         if (len > best_len) {
1364             s->match_start = cur_match;
1365             best_len = len;
1366             if (len >= nice_match) break;
1367 #ifdef UNALIGNED_OK
1368             scan_end = *(ushf*)(scan+best_len-1);
1369 #else
1370             scan_end1  = scan[best_len-1];
1371             scan_end   = scan[best_len];
1372 #endif
1373         }
1374     } while ((cur_match = prev[cur_match & wmask]) > limit
1375              && --chain_length != 0);
1376 
1377     if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1378     return s->lookahead;
1379 }
1380 #endif /* ASMV */
1381 
1382 #else /* FASTEST */
1383 
1384 /* ---------------------------------------------------------------------------
1385  * Optimized version for FASTEST only
1386  */
longest_match(deflate_state * s,IPos cur_match)1387 local uInt longest_match(
1388     deflate_state *s,
1389     IPos cur_match)
1390 {
1391     register Bytef *scan = s->window + s->strstart; /* current string */
1392     register Bytef *match;                       /* matched string */
1393     register int len;                           /* length of current match */
1394     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1395 
1396     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1397      * It is easy to get rid of this optimization if necessary.
1398      */
1399     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1400 
1401     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1402 
1403     Assert(cur_match < s->strstart, "no future");
1404 
1405     match = s->window + cur_match;
1406 
1407     /* Return failure if the match length is less than 2:
1408      */
1409     if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1410 
1411     /* The check at best_len-1 can be removed because it will be made
1412      * again later. (This heuristic is not always a win.)
1413      * It is not necessary to compare scan[2] and match[2] since they
1414      * are always equal when the other bytes match, given that
1415      * the hash keys are equal and that HASH_BITS >= 8.
1416      */
1417     scan += 2, match += 2;
1418     Assert(*scan == *match, "match[2]?");
1419 
1420     /* We check for insufficient lookahead only every 8th comparison;
1421      * the 256th check will be made at strstart+258.
1422      */
1423     do {
1424     } while (*++scan == *++match && *++scan == *++match &&
1425              *++scan == *++match && *++scan == *++match &&
1426              *++scan == *++match && *++scan == *++match &&
1427              *++scan == *++match && *++scan == *++match &&
1428              scan < strend);
1429 
1430     Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1431 
1432     len = MAX_MATCH - (int)(strend - scan);
1433 
1434     if (len < MIN_MATCH) return MIN_MATCH - 1;
1435 
1436     s->match_start = cur_match;
1437     return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1438 }
1439 
1440 #endif /* FASTEST */
1441 
1442 #ifdef ZLIB_DEBUG
1443 
1444 #define EQUAL 0
1445 /* result of memcmp for equal strings */
1446 
1447 /* ===========================================================================
1448  * Check that the match at match_start is indeed a match.
1449  */
check_match(deflate_state * s,IPos start,IPos match,int length)1450 local void check_match(
1451     deflate_state *s,
1452     IPos start,
1453     IPos match,
1454     int length)
1455 {
1456     /* check that the match is indeed a match */
1457     if (zmemcmp(s->window + match,
1458                 s->window + start, length) != EQUAL) {
1459         fprintf(stderr, " start %u, match %u, length %d\n",
1460                 start, match, length);
1461         do {
1462             fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1463         } while (--length != 0);
1464         z_error("invalid match");
1465     }
1466     if (z_verbose > 1) {
1467         fprintf(stderr,"\\[%d,%d]", start-match, length);
1468         do { putc(s->window[start++], stderr); } while (--length != 0);
1469     }
1470 }
1471 #else
1472 #  define check_match(s, start, match, length)
1473 #endif /* ZLIB_DEBUG */
1474 
1475 /* ===========================================================================
1476  * Fill the window when the lookahead becomes insufficient.
1477  * Updates strstart and lookahead.
1478  *
1479  * IN assertion: lookahead < MIN_LOOKAHEAD
1480  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1481  *    At least one byte has been read, or avail_in == 0; reads are
1482  *    performed for at least two bytes (required for the zip translate_eol
1483  *    option -- not supported here).
1484  */
fill_window(deflate_state * s)1485 local void fill_window(
1486     deflate_state *s)
1487 {
1488     unsigned n;
1489     unsigned more;    /* Amount of free space at the end of the window. */
1490     uInt wsize = s->w_size;
1491 
1492     Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
1493 
1494     do {
1495         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1496 
1497         /* Deal with !@#$% 64K limit: */
1498         if (sizeof(int) <= 2) {
1499             if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1500                 more = wsize;
1501 
1502             } else if (more == (unsigned)(-1)) {
1503                 /* Very unlikely, but possible on 16 bit machine if
1504                  * strstart == 0 && lookahead == 1 (input done a byte at time)
1505                  */
1506                 more--;
1507             }
1508         }
1509 
1510         /* If the window is almost full and there is insufficient lookahead,
1511          * move the upper half to the lower one to make room in the upper half.
1512          */
1513         if (s->strstart >= wsize+MAX_DIST(s)) {
1514 
1515             zmemcpy(s->window, s->window+wsize, (unsigned)wsize - more);
1516             s->match_start -= wsize;
1517             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
1518             s->block_start -= (long) wsize;
1519             slide_hash(s);
1520             more += wsize;
1521         }
1522         if (s->strm->avail_in == 0) break;
1523 
1524         /* If there was no sliding:
1525          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1526          *    more == window_size - lookahead - strstart
1527          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1528          * => more >= window_size - 2*WSIZE + 2
1529          * In the BIG_MEM or MMAP case (not yet supported),
1530          *   window_size == input_size + MIN_LOOKAHEAD  &&
1531          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1532          * Otherwise, window_size == 2*WSIZE so more >= 2.
1533          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1534          */
1535         Assert(more >= 2, "more < 2");
1536 
1537         n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1538         s->lookahead += n;
1539 
1540         /* Initialize the hash value now that we have some input: */
1541         if (s->lookahead + s->insert >= MIN_MATCH) {
1542             uInt str = s->strstart - s->insert;
1543             s->ins_h = s->window[str];
1544             UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
1545 #if MIN_MATCH != 3
1546             Call UPDATE_HASH() MIN_MATCH-3 more times
1547 #endif
1548             while (s->insert) {
1549                 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
1550 #ifndef FASTEST
1551                 s->prev[str & s->w_mask] = s->head[s->ins_h];
1552 #endif
1553                 s->head[s->ins_h] = (Pos)str;
1554                 str++;
1555                 s->insert--;
1556                 if (s->lookahead + s->insert < MIN_MATCH)
1557                     break;
1558             }
1559         }
1560         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1561          * but this is not important since only literal bytes will be emitted.
1562          */
1563 
1564     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1565 
1566     /* If the WIN_INIT bytes after the end of the current data have never been
1567      * written, then zero those bytes in order to avoid memory check reports of
1568      * the use of uninitialized (or uninitialised as Julian writes) bytes by
1569      * the longest match routines.  Update the high water mark for the next
1570      * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
1571      * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
1572      */
1573     if (s->high_water < s->window_size) {
1574         ulg curr = s->strstart + (ulg)(s->lookahead);
1575         ulg init;
1576 
1577         if (s->high_water < curr) {
1578             /* Previous high water mark below current data -- zero WIN_INIT
1579              * bytes or up to end of window, whichever is less.
1580              */
1581             init = s->window_size - curr;
1582             if (init > WIN_INIT)
1583                 init = WIN_INIT;
1584             zmemzero(s->window + curr, (unsigned)init);
1585             s->high_water = curr + init;
1586         }
1587         else if (s->high_water < (ulg)curr + WIN_INIT) {
1588             /* High water mark at or above current data, but below current data
1589              * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
1590              * to end of window, whichever is less.
1591              */
1592             init = (ulg)curr + WIN_INIT - s->high_water;
1593             if (init > s->window_size - s->high_water)
1594                 init = s->window_size - s->high_water;
1595             zmemzero(s->window + s->high_water, (unsigned)init);
1596             s->high_water += init;
1597         }
1598     }
1599 
1600     Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1601            "not enough room for search");
1602 }
1603 
1604 /* ===========================================================================
1605  * Flush the current block, with given end-of-file flag.
1606  * IN assertion: strstart is set to the end of the current match.
1607  */
1608 #define FLUSH_BLOCK_ONLY(s, last) { \
1609    _tr_flush_block(s, (s->block_start >= 0L ? \
1610                    (charf *)&s->window[(unsigned)s->block_start] : \
1611                    (charf *)Z_NULL), \
1612                 (ulg)((long)s->strstart - s->block_start), \
1613                 (last)); \
1614    s->block_start = s->strstart; \
1615    flush_pending(s->strm); \
1616    Tracev((stderr,"[FLUSH]")); \
1617 }
1618 
1619 /* Same but force premature exit if necessary. */
1620 #define FLUSH_BLOCK(s, last) { \
1621    FLUSH_BLOCK_ONLY(s, last); \
1622    if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1623 }
1624 
1625 /* Maximum stored block length in deflate format (not including header). */
1626 #define MAX_STORED 65535
1627 
1628 /* Minimum of a and b. */
1629 #define MIN(a, b) ((a) > (b) ? (b) : (a))
1630 
1631 /* ===========================================================================
1632  * Copy without compression as much as possible from the input stream, return
1633  * the current block state.
1634  *
1635  * In case deflateParams() is used to later switch to a non-zero compression
1636  * level, s->matches (otherwise unused when storing) keeps track of the number
1637  * of hash table slides to perform. If s->matches is 1, then one hash table
1638  * slide will be done when switching. If s->matches is 2, the maximum value
1639  * allowed here, then the hash table will be cleared, since two or more slides
1640  * is the same as a clear.
1641  *
1642  * deflate_stored() is written to minimize the number of times an input byte is
1643  * copied. It is most efficient with large input and output buffers, which
1644  * maximizes the opportunites to have a single copy from next_in to next_out.
1645  */
deflate_stored(deflate_state * s,int flush)1646 local block_state deflate_stored(
1647     deflate_state *s,
1648     int flush)
1649 {
1650     /* Smallest worthy block size when not flushing or finishing. By default
1651      * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1652      * large input and output buffers, the stored block size will be larger.
1653      */
1654     unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1655 
1656     /* Copy as many min_block or larger stored blocks directly to next_out as
1657      * possible. If flushing, copy the remaining available input to next_out as
1658      * stored blocks, if there is enough space.
1659      */
1660     unsigned len, left, have, last = 0;
1661     unsigned used = s->strm->avail_in;
1662     do {
1663         /* Set len to the maximum size block that we can copy directly with the
1664          * available input data and output space. Set left to how much of that
1665          * would be copied from what's left in the window.
1666          */
1667         len = MAX_STORED;       /* maximum deflate stored block length */
1668         have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1669         if (s->strm->avail_out < have)          /* need room for header */
1670             break;
1671             /* maximum stored block length that will fit in avail_out: */
1672         have = s->strm->avail_out - have;
1673         left = s->strstart - s->block_start;    /* bytes left in window */
1674         if (len > (ulg)left + s->strm->avail_in)
1675             len = left + s->strm->avail_in;     /* limit len to the input */
1676         if (len > have)
1677             len = have;                         /* limit len to the output */
1678 
1679         /* If the stored block would be less than min_block in length, or if
1680          * unable to copy all of the available input when flushing, then try
1681          * copying to the window and the pending buffer instead. Also don't
1682          * write an empty block when flushing -- deflate() does that.
1683          */
1684         if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1685                                 flush == Z_NO_FLUSH ||
1686                                 len != left + s->strm->avail_in))
1687             break;
1688 
1689         /* Make a dummy stored block in pending to get the header bytes,
1690          * including any pending bits. This also updates the debugging counts.
1691          */
1692         last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
1693         _tr_stored_block(s, (char *)0, 0L, last);
1694 
1695         /* Replace the lengths in the dummy stored block with len. */
1696         s->pending_buf[s->pending - 4] = len;
1697         s->pending_buf[s->pending - 3] = len >> 8;
1698         s->pending_buf[s->pending - 2] = ~len;
1699         s->pending_buf[s->pending - 1] = ~len >> 8;
1700 
1701         /* Write the stored block header bytes. */
1702         flush_pending(s->strm);
1703 
1704 #ifdef ZLIB_DEBUG
1705         /* Update debugging counts for the data about to be copied. */
1706         s->compressed_len += len << 3;
1707         s->bits_sent += len << 3;
1708 #endif
1709 
1710         /* Copy uncompressed bytes from the window to next_out. */
1711         if (left) {
1712             if (left > len)
1713                 left = len;
1714             zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1715             s->strm->next_out += left;
1716             s->strm->avail_out -= left;
1717             s->strm->total_out += left;
1718             s->block_start += left;
1719             len -= left;
1720         }
1721 
1722         /* Copy uncompressed bytes directly from next_in to next_out, updating
1723          * the check value.
1724          */
1725         if (len) {
1726             read_buf(s->strm, s->strm->next_out, len);
1727             s->strm->next_out += len;
1728             s->strm->avail_out -= len;
1729             s->strm->total_out += len;
1730         }
1731     } while (last == 0);
1732 
1733     /* Update the sliding window with the last s->w_size bytes of the copied
1734      * data, or append all of the copied data to the existing window if less
1735      * than s->w_size bytes were copied. Also update the number of bytes to
1736      * insert in the hash tables, in the event that deflateParams() switches to
1737      * a non-zero compression level.
1738      */
1739     used -= s->strm->avail_in;      /* number of input bytes directly copied */
1740     if (used) {
1741         /* If any input was used, then no unused input remains in the window,
1742          * therefore s->block_start == s->strstart.
1743          */
1744         if (used >= s->w_size) {    /* supplant the previous history */
1745             s->matches = 2;         /* clear hash */
1746             zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1747             s->strstart = s->w_size;
1748         }
1749         else {
1750             if (s->window_size - s->strstart <= used) {
1751                 /* Slide the window down. */
1752                 s->strstart -= s->w_size;
1753                 zmemcpy(s->window, s->window + s->w_size, s->strstart);
1754                 if (s->matches < 2)
1755                     s->matches++;   /* add a pending slide_hash() */
1756             }
1757             zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1758             s->strstart += used;
1759         }
1760         s->block_start = s->strstart;
1761         s->insert += MIN(used, s->w_size - s->insert);
1762     }
1763     if (s->high_water < s->strstart)
1764         s->high_water = s->strstart;
1765 
1766     /* If the last block was written to next_out, then done. */
1767     if (last)
1768         return finish_done;
1769 
1770     /* If flushing and all input has been consumed, then done. */
1771     if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1772         s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1773         return block_done;
1774 
1775     /* Fill the window with any remaining input. */
1776     have = s->window_size - s->strstart - 1;
1777     if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1778         /* Slide the window down. */
1779         s->block_start -= s->w_size;
1780         s->strstart -= s->w_size;
1781         zmemcpy(s->window, s->window + s->w_size, s->strstart);
1782         if (s->matches < 2)
1783             s->matches++;           /* add a pending slide_hash() */
1784         have += s->w_size;          /* more space now */
1785     }
1786     if (have > s->strm->avail_in)
1787         have = s->strm->avail_in;
1788     if (have) {
1789         read_buf(s->strm, s->window + s->strstart, have);
1790         s->strstart += have;
1791     }
1792     if (s->high_water < s->strstart)
1793         s->high_water = s->strstart;
1794 
1795     /* There was not enough avail_out to write a complete worthy or flushed
1796      * stored block to next_out. Write a stored block to pending instead, if we
1797      * have enough input for a worthy block, or if flushing and there is enough
1798      * room for the remaining input as a stored block in the pending buffer.
1799      */
1800     have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1801         /* maximum stored block length that will fit in pending: */
1802     have = MIN(s->pending_buf_size - have, MAX_STORED);
1803     min_block = MIN(have, s->w_size);
1804     left = s->strstart - s->block_start;
1805     if (left >= min_block ||
1806         ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1807          s->strm->avail_in == 0 && left <= have)) {
1808         len = MIN(left, have);
1809         last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1810                len == left ? 1 : 0;
1811         _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1812         s->block_start += len;
1813         flush_pending(s->strm);
1814     }
1815 
1816     /* We've done all we can with the available input and output. */
1817     return last ? finish_started : need_more;
1818 }
1819 
1820 /* ===========================================================================
1821  * Compress as much as possible from the input stream, return the current
1822  * block state.
1823  * This function does not perform lazy evaluation of matches and inserts
1824  * new strings in the dictionary only for unmatched strings or for short
1825  * matches. It is used only for the fast compression options.
1826  */
deflate_fast(deflate_state * s,int flush)1827 local block_state deflate_fast(
1828     deflate_state *s,
1829     int flush)
1830 {
1831     IPos hash_head;       /* head of the hash chain */
1832     int bflush;           /* set if current block must be flushed */
1833 
1834     for (;;) {
1835         /* Make sure that we always have enough lookahead, except
1836          * at the end of the input file. We need MAX_MATCH bytes
1837          * for the next match, plus MIN_MATCH bytes to insert the
1838          * string following the next match.
1839          */
1840         if (s->lookahead < MIN_LOOKAHEAD) {
1841             fill_window(s);
1842             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1843                 return need_more;
1844             }
1845             if (s->lookahead == 0) break; /* flush the current block */
1846         }
1847 
1848         /* Insert the string window[strstart .. strstart+2] in the
1849          * dictionary, and set hash_head to the head of the hash chain:
1850          */
1851         hash_head = NIL;
1852         if (s->lookahead >= MIN_MATCH) {
1853             INSERT_STRING(s, s->strstart, hash_head);
1854         }
1855 
1856         /* Find the longest match, discarding those <= prev_length.
1857          * At this point we have always match_length < MIN_MATCH
1858          */
1859         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1860             /* To simplify the code, we prevent matches with the string
1861              * of window index 0 (in particular we have to avoid a match
1862              * of the string with itself at the start of the input file).
1863              */
1864             s->match_length = longest_match (s, hash_head);
1865             /* longest_match() sets match_start */
1866         }
1867         if (s->match_length >= MIN_MATCH) {
1868             check_match(s, s->strstart, s->match_start, s->match_length);
1869 
1870             _tr_tally_dist(s, s->strstart - s->match_start,
1871                            s->match_length - MIN_MATCH, bflush);
1872 
1873             s->lookahead -= s->match_length;
1874 
1875             /* Insert new strings in the hash table only if the match length
1876              * is not too large. This saves time but degrades compression.
1877              */
1878 #ifndef FASTEST
1879             if (s->match_length <= s->max_insert_length &&
1880                 s->lookahead >= MIN_MATCH) {
1881                 s->match_length--; /* string at strstart already in table */
1882                 do {
1883                     s->strstart++;
1884                     INSERT_STRING(s, s->strstart, hash_head);
1885                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1886                      * always MIN_MATCH bytes ahead.
1887                      */
1888                 } while (--s->match_length != 0);
1889                 s->strstart++;
1890             } else
1891 #endif
1892             {
1893                 s->strstart += s->match_length;
1894                 s->match_length = 0;
1895                 s->ins_h = s->window[s->strstart];
1896                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1897 #if MIN_MATCH != 3
1898                 Call UPDATE_HASH() MIN_MATCH-3 more times
1899 #endif
1900                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1901                  * matter since it will be recomputed at next deflate call.
1902                  */
1903             }
1904         } else {
1905             /* No match, output a literal byte */
1906             Tracevv((stderr,"%c", s->window[s->strstart]));
1907             _tr_tally_lit (s, s->window[s->strstart], bflush);
1908             s->lookahead--;
1909             s->strstart++;
1910         }
1911         if (bflush) FLUSH_BLOCK(s, 0);
1912     }
1913     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1914     if (flush == Z_FINISH) {
1915         FLUSH_BLOCK(s, 1);
1916         return finish_done;
1917     }
1918     if (s->last_lit)
1919         FLUSH_BLOCK(s, 0);
1920     return block_done;
1921 }
1922 
1923 #ifndef FASTEST
1924 /* ===========================================================================
1925  * Same as above, but achieves better compression. We use a lazy
1926  * evaluation for matches: a match is finally adopted only if there is
1927  * no better match at the next window position.
1928  */
deflate_slow(deflate_state * s,int flush)1929 local block_state deflate_slow(
1930     deflate_state *s,
1931     int flush)
1932 {
1933     IPos hash_head;          /* head of hash chain */
1934     int bflush;              /* set if current block must be flushed */
1935 
1936     /* Process the input block. */
1937     for (;;) {
1938         /* Make sure that we always have enough lookahead, except
1939          * at the end of the input file. We need MAX_MATCH bytes
1940          * for the next match, plus MIN_MATCH bytes to insert the
1941          * string following the next match.
1942          */
1943         if (s->lookahead < MIN_LOOKAHEAD) {
1944             fill_window(s);
1945             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1946                 return need_more;
1947             }
1948             if (s->lookahead == 0) break; /* flush the current block */
1949         }
1950 
1951         /* Insert the string window[strstart .. strstart+2] in the
1952          * dictionary, and set hash_head to the head of the hash chain:
1953          */
1954         hash_head = NIL;
1955         if (s->lookahead >= MIN_MATCH) {
1956             INSERT_STRING(s, s->strstart, hash_head);
1957         }
1958 
1959         /* Find the longest match, discarding those <= prev_length.
1960          */
1961         s->prev_length = s->match_length, s->prev_match = s->match_start;
1962         s->match_length = MIN_MATCH-1;
1963 
1964         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1965             s->strstart - hash_head <= MAX_DIST(s)) {
1966             /* To simplify the code, we prevent matches with the string
1967              * of window index 0 (in particular we have to avoid a match
1968              * of the string with itself at the start of the input file).
1969              */
1970             s->match_length = longest_match (s, hash_head);
1971             /* longest_match() sets match_start */
1972 
1973             if (s->match_length <= 5 && (s->strategy == Z_FILTERED
1974 #if TOO_FAR <= 32767
1975                 || (s->match_length == MIN_MATCH &&
1976                     s->strstart - s->match_start > TOO_FAR)
1977 #endif
1978                 )) {
1979 
1980                 /* If prev_match is also MIN_MATCH, match_start is garbage
1981                  * but we will ignore the current match anyway.
1982                  */
1983                 s->match_length = MIN_MATCH-1;
1984             }
1985         }
1986         /* If there was a match at the previous step and the current
1987          * match is not better, output the previous match:
1988          */
1989         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1990             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1991             /* Do not insert strings in hash table beyond this. */
1992 
1993             check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1994 
1995             _tr_tally_dist(s, s->strstart -1 - s->prev_match,
1996                            s->prev_length - MIN_MATCH, bflush);
1997 
1998             /* Insert in hash table all strings up to the end of the match.
1999              * strstart-1 and strstart are already inserted. If there is not
2000              * enough lookahead, the last two strings are not inserted in
2001              * the hash table.
2002              */
2003             s->lookahead -= s->prev_length-1;
2004             s->prev_length -= 2;
2005             do {
2006                 if (++s->strstart <= max_insert) {
2007                     INSERT_STRING(s, s->strstart, hash_head);
2008                 }
2009             } while (--s->prev_length != 0);
2010             s->match_available = 0;
2011             s->match_length = MIN_MATCH-1;
2012             s->strstart++;
2013 
2014             if (bflush) FLUSH_BLOCK(s, 0);
2015 
2016         } else if (s->match_available) {
2017             /* If there was no match at the previous position, output a
2018              * single literal. If there was a match but the current match
2019              * is longer, truncate the previous match to a single literal.
2020              */
2021             Tracevv((stderr,"%c", s->window[s->strstart-1]));
2022             _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2023             if (bflush) {
2024                 FLUSH_BLOCK_ONLY(s, 0);
2025             }
2026             s->strstart++;
2027             s->lookahead--;
2028             if (s->strm->avail_out == 0) return need_more;
2029         } else {
2030             /* There is no previous match to compare with, wait for
2031              * the next step to decide.
2032              */
2033             s->match_available = 1;
2034             s->strstart++;
2035             s->lookahead--;
2036         }
2037     }
2038     Assert (flush != Z_NO_FLUSH, "no flush?");
2039     if (s->match_available) {
2040         Tracevv((stderr,"%c", s->window[s->strstart-1]));
2041         _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2042         s->match_available = 0;
2043     }
2044     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2045     if (flush == Z_FINISH) {
2046         FLUSH_BLOCK(s, 1);
2047         return finish_done;
2048     }
2049     if (s->last_lit)
2050         FLUSH_BLOCK(s, 0);
2051     return block_done;
2052 }
2053 #endif /* FASTEST */
2054 
2055 /* ===========================================================================
2056  * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2057  * one.  Do not maintain a hash table.  (It will be regenerated if this run of
2058  * deflate switches away from Z_RLE.)
2059  */
deflate_rle(deflate_state * s,int flush)2060 local block_state deflate_rle(
2061     deflate_state *s,
2062     int flush)
2063 {
2064     int bflush;             /* set if current block must be flushed */
2065     uInt prev;              /* byte at distance one to match */
2066     Bytef *scan, *strend;   /* scan goes up to strend for length of run */
2067 
2068     for (;;) {
2069         /* Make sure that we always have enough lookahead, except
2070          * at the end of the input file. We need MAX_MATCH bytes
2071          * for the longest run, plus one for the unrolled loop.
2072          */
2073         if (s->lookahead <= MAX_MATCH) {
2074             fill_window(s);
2075             if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2076                 return need_more;
2077             }
2078             if (s->lookahead == 0) break; /* flush the current block */
2079         }
2080 
2081         /* See how many times the previous byte repeats */
2082         s->match_length = 0;
2083         if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2084             scan = s->window + s->strstart - 1;
2085             prev = *scan;
2086             if (prev == *++scan && prev == *++scan && prev == *++scan) {
2087                 strend = s->window + s->strstart + MAX_MATCH;
2088                 do {
2089                 } while (prev == *++scan && prev == *++scan &&
2090                          prev == *++scan && prev == *++scan &&
2091                          prev == *++scan && prev == *++scan &&
2092                          prev == *++scan && prev == *++scan &&
2093                          scan < strend);
2094                 s->match_length = MAX_MATCH - (uInt)(strend - scan);
2095                 if (s->match_length > s->lookahead)
2096                     s->match_length = s->lookahead;
2097             }
2098             Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
2099         }
2100 
2101         /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2102         if (s->match_length >= MIN_MATCH) {
2103             check_match(s, s->strstart, s->strstart - 1, s->match_length);
2104 
2105             _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2106 
2107             s->lookahead -= s->match_length;
2108             s->strstart += s->match_length;
2109             s->match_length = 0;
2110         } else {
2111             /* No match, output a literal byte */
2112             Tracevv((stderr,"%c", s->window[s->strstart]));
2113             _tr_tally_lit (s, s->window[s->strstart], bflush);
2114             s->lookahead--;
2115             s->strstart++;
2116         }
2117         if (bflush) FLUSH_BLOCK(s, 0);
2118     }
2119     s->insert = 0;
2120     if (flush == Z_FINISH) {
2121         FLUSH_BLOCK(s, 1);
2122         return finish_done;
2123     }
2124     if (s->last_lit)
2125         FLUSH_BLOCK(s, 0);
2126     return block_done;
2127 }
2128 
2129 /* ===========================================================================
2130  * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
2131  * (It will be regenerated if this run of deflate switches away from Huffman.)
2132  */
deflate_huff(deflate_state * s,int flush)2133 local block_state deflate_huff(
2134     deflate_state *s,
2135     int flush)
2136 {
2137     int bflush;             /* set if current block must be flushed */
2138 
2139     for (;;) {
2140         /* Make sure that we have a literal to write. */
2141         if (s->lookahead == 0) {
2142             fill_window(s);
2143             if (s->lookahead == 0) {
2144                 if (flush == Z_NO_FLUSH)
2145                     return need_more;
2146                 break;      /* flush the current block */
2147             }
2148         }
2149 
2150         /* Output a literal byte */
2151         s->match_length = 0;
2152         Tracevv((stderr,"%c", s->window[s->strstart]));
2153         _tr_tally_lit (s, s->window[s->strstart], bflush);
2154         s->lookahead--;
2155         s->strstart++;
2156         if (bflush) FLUSH_BLOCK(s, 0);
2157     }
2158     s->insert = 0;
2159     if (flush == Z_FINISH) {
2160         FLUSH_BLOCK(s, 1);
2161         return finish_done;
2162     }
2163     if (s->last_lit)
2164         FLUSH_BLOCK(s, 0);
2165     return block_done;
2166 }
2167