1 /* Copyright 2013 Google Inc. All Rights Reserved.
2 
3    Distributed under MIT license.
4    See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
5 */
6 
7 /* Utilities for building Huffman decoding tables. */
8 
9 #include "./huffman.h"
10 
11 #include <string.h>  /* memcpy, memset */
12 
13 #include "../common/constants.h"
14 #include "../common/platform.h"
15 #include <brotli/types.h>
16 
17 #if defined(__cplusplus) || defined(c_plusplus)
18 extern "C" {
19 #endif
20 
21 #define BROTLI_REVERSE_BITS_MAX 8
22 
23 #ifdef BROTLI_RBIT
24 #define BROTLI_REVERSE_BITS_BASE \
25   ((sizeof(brotli_reg_t) << 3) - BROTLI_REVERSE_BITS_MAX)
26 #else
27 #define BROTLI_REVERSE_BITS_BASE 0
28 static uint8_t kReverseBits[1 << BROTLI_REVERSE_BITS_MAX] = {
29   0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0,
30   0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,
31   0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8,
32   0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,
33   0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4,
34   0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,
35   0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC,
36   0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,
37   0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2,
38   0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,
39   0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA,
40   0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
41   0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6,
42   0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,
43   0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE,
44   0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
45   0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1,
46   0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
47   0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9,
48   0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,
49   0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5,
50   0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
51   0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED,
52   0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
53   0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3,
54   0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,
55   0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB,
56   0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
57   0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7,
58   0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,
59   0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF,
60   0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
61 };
62 #endif  /* BROTLI_RBIT */
63 
64 #define BROTLI_REVERSE_BITS_LOWEST \
65   ((brotli_reg_t)1 << (BROTLI_REVERSE_BITS_MAX - 1 + BROTLI_REVERSE_BITS_BASE))
66 
67 /* Returns reverse(num >> BROTLI_REVERSE_BITS_BASE, BROTLI_REVERSE_BITS_MAX),
68    where reverse(value, len) is the bit-wise reversal of the len least
69    significant bits of value. */
BrotliReverseBits(brotli_reg_t num)70 static BROTLI_INLINE brotli_reg_t BrotliReverseBits(brotli_reg_t num) {
71 #ifdef BROTLI_RBIT
72   return BROTLI_RBIT(num);
73 #else
74   return kReverseBits[num];
75 #endif
76 }
77 
78 /* Stores code in table[0], table[step], table[2*step], ..., table[end] */
79 /* Assumes that end is an integer multiple of step */
ReplicateValue(HuffmanCode * table,int step,int end,HuffmanCode code)80 static BROTLI_INLINE void ReplicateValue(HuffmanCode* table,
81                                          int step, int end,
82                                          HuffmanCode code) {
83   do {
84     end -= step;
85     table[end] = code;
86   } while (end > 0);
87 }
88 
89 /* Returns the table width of the next 2nd level table. |count| is the histogram
90    of bit lengths for the remaining symbols, |len| is the code length of the
91    next processed symbol. */
NextTableBitSize(const uint16_t * const count,int len,int root_bits)92 static BROTLI_INLINE int NextTableBitSize(const uint16_t* const count,
93                                           int len, int root_bits) {
94   int left = 1 << (len - root_bits);
95   while (len < BROTLI_HUFFMAN_MAX_CODE_LENGTH) {
96     left -= count[len];
97     if (left <= 0) break;
98     ++len;
99     left <<= 1;
100   }
101   return len - root_bits;
102 }
103 
BrotliBuildCodeLengthsHuffmanTable(HuffmanCode * table,const uint8_t * const code_lengths,uint16_t * count)104 void BrotliBuildCodeLengthsHuffmanTable(HuffmanCode* table,
105                                         const uint8_t* const code_lengths,
106                                         uint16_t* count) {
107   HuffmanCode code;       /* current table entry */
108   int symbol;             /* symbol index in original or sorted table */
109   brotli_reg_t key;       /* prefix code */
110   brotli_reg_t key_step;  /* prefix code addend */
111   int step;               /* step size to replicate values in current table */
112   int table_size;         /* size of current table */
113   int sorted[BROTLI_CODE_LENGTH_CODES];  /* symbols sorted by code length */
114   /* offsets in sorted table for each length */
115   int offset[BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH + 1];
116   int bits;
117   int bits_count;
118   BROTLI_DCHECK(BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH <=
119                 BROTLI_REVERSE_BITS_MAX);
120 
121   /* Generate offsets into sorted symbol table by code length. */
122   symbol = -1;
123   bits = 1;
124   BROTLI_REPEAT(BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH, {
125     symbol += count[bits];
126     offset[bits] = symbol;
127     bits++;
128   });
129   /* Symbols with code length 0 are placed after all other symbols. */
130   offset[0] = BROTLI_CODE_LENGTH_CODES - 1;
131 
132   /* Sort symbols by length, by symbol order within each length. */
133   symbol = BROTLI_CODE_LENGTH_CODES;
134   do {
135     BROTLI_REPEAT(6, {
136       symbol--;
137       sorted[offset[code_lengths[symbol]]--] = symbol;
138     });
139   } while (symbol != 0);
140 
141   table_size = 1 << BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH;
142 
143   /* Special case: all symbols but one have 0 code length. */
144   if (offset[0] == 0) {
145     code.bits = 0;
146     code.value = (uint16_t)sorted[0];
147     for (key = 0; key < (brotli_reg_t)table_size; ++key) {
148       table[key] = code;
149     }
150     return;
151   }
152 
153   /* Fill in table. */
154   key = 0;
155   key_step = BROTLI_REVERSE_BITS_LOWEST;
156   symbol = 0;
157   bits = 1;
158   step = 2;
159   do {
160     code.bits = (uint8_t)bits;
161     for (bits_count = count[bits]; bits_count != 0; --bits_count) {
162       code.value = (uint16_t)sorted[symbol++];
163       ReplicateValue(&table[BrotliReverseBits(key)], step, table_size, code);
164       key += key_step;
165     }
166     step <<= 1;
167     key_step >>= 1;
168   } while (++bits <= BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH);
169 }
170 
BrotliBuildHuffmanTable(HuffmanCode * root_table,int root_bits,const uint16_t * const symbol_lists,uint16_t * count)171 uint32_t BrotliBuildHuffmanTable(HuffmanCode* root_table,
172                                  int root_bits,
173                                  const uint16_t* const symbol_lists,
174                                  uint16_t* count) {
175   HuffmanCode code;       /* current table entry */
176   HuffmanCode* table;     /* next available space in table */
177   int len;                /* current code length */
178   int symbol;             /* symbol index in original or sorted table */
179   brotli_reg_t key;       /* prefix code */
180   brotli_reg_t key_step;  /* prefix code addend */
181   brotli_reg_t sub_key;   /* 2nd level table prefix code */
182   brotli_reg_t sub_key_step;  /* 2nd level table prefix code addend */
183   int step;               /* step size to replicate values in current table */
184   int table_bits;         /* key length of current table */
185   int table_size;         /* size of current table */
186   int total_size;         /* sum of root table size and 2nd level table sizes */
187   int max_length = -1;
188   int bits;
189   int bits_count;
190 
191   BROTLI_DCHECK(root_bits <= BROTLI_REVERSE_BITS_MAX);
192   BROTLI_DCHECK(BROTLI_HUFFMAN_MAX_CODE_LENGTH - root_bits <=
193                 BROTLI_REVERSE_BITS_MAX);
194 
195   while (symbol_lists[max_length] == 0xFFFF) max_length--;
196   max_length += BROTLI_HUFFMAN_MAX_CODE_LENGTH + 1;
197 
198   table = root_table;
199   table_bits = root_bits;
200   table_size = 1 << table_bits;
201   total_size = table_size;
202 
203   /* Fill in the root table. Reduce the table size to if possible,
204      and create the repetitions by memcpy. */
205   if (table_bits > max_length) {
206     table_bits = max_length;
207     table_size = 1 << table_bits;
208   }
209   key = 0;
210   key_step = BROTLI_REVERSE_BITS_LOWEST;
211   bits = 1;
212   step = 2;
213   do {
214     code.bits = (uint8_t)bits;
215     symbol = bits - (BROTLI_HUFFMAN_MAX_CODE_LENGTH + 1);
216     for (bits_count = count[bits]; bits_count != 0; --bits_count) {
217       symbol = symbol_lists[symbol];
218       code.value = (uint16_t)symbol;
219       ReplicateValue(&table[BrotliReverseBits(key)], step, table_size, code);
220       key += key_step;
221     }
222     step <<= 1;
223     key_step >>= 1;
224   } while (++bits <= table_bits);
225 
226   /* If root_bits != table_bits then replicate to fill the remaining slots. */
227   while (total_size != table_size) {
228     memcpy(&table[table_size], &table[0],
229            (size_t)table_size * sizeof(table[0]));
230     table_size <<= 1;
231   }
232 
233   /* Fill in 2nd level tables and add pointers to root table. */
234   key_step = BROTLI_REVERSE_BITS_LOWEST >> (root_bits - 1);
235   sub_key = (BROTLI_REVERSE_BITS_LOWEST << 1);
236   sub_key_step = BROTLI_REVERSE_BITS_LOWEST;
237   for (len = root_bits + 1, step = 2; len <= max_length; ++len) {
238     symbol = len - (BROTLI_HUFFMAN_MAX_CODE_LENGTH + 1);
239     for (; count[len] != 0; --count[len]) {
240       if (sub_key == (BROTLI_REVERSE_BITS_LOWEST << 1U)) {
241         table += table_size;
242         table_bits = NextTableBitSize(count, len, root_bits);
243         table_size = 1 << table_bits;
244         total_size += table_size;
245         sub_key = BrotliReverseBits(key);
246         key += key_step;
247         root_table[sub_key].bits = (uint8_t)(table_bits + root_bits);
248         root_table[sub_key].value =
249             (uint16_t)(((size_t)(table - root_table)) - sub_key);
250         sub_key = 0;
251       }
252       code.bits = (uint8_t)(len - root_bits);
253       symbol = symbol_lists[symbol];
254       code.value = (uint16_t)symbol;
255       ReplicateValue(
256           &table[BrotliReverseBits(sub_key)], step, table_size, code);
257       sub_key += sub_key_step;
258     }
259     step <<= 1;
260     sub_key_step >>= 1;
261   }
262   return (uint32_t)total_size;
263 }
264 
BrotliBuildSimpleHuffmanTable(HuffmanCode * table,int root_bits,uint16_t * val,uint32_t num_symbols)265 uint32_t BrotliBuildSimpleHuffmanTable(HuffmanCode* table,
266                                        int root_bits,
267                                        uint16_t* val,
268                                        uint32_t num_symbols) {
269   uint32_t table_size = 1;
270   const uint32_t goal_size = 1U << root_bits;
271   switch (num_symbols) {
272     case 0:
273       table[0].bits = 0;
274       table[0].value = val[0];
275       break;
276     case 1:
277       table[0].bits = 1;
278       table[1].bits = 1;
279       if (val[1] > val[0]) {
280         table[0].value = val[0];
281         table[1].value = val[1];
282       } else {
283         table[0].value = val[1];
284         table[1].value = val[0];
285       }
286       table_size = 2;
287       break;
288     case 2:
289       table[0].bits = 1;
290       table[0].value = val[0];
291       table[2].bits = 1;
292       table[2].value = val[0];
293       if (val[2] > val[1]) {
294         table[1].value = val[1];
295         table[3].value = val[2];
296       } else {
297         table[1].value = val[2];
298         table[3].value = val[1];
299       }
300       table[1].bits = 2;
301       table[3].bits = 2;
302       table_size = 4;
303       break;
304     case 3: {
305       int i, k;
306       for (i = 0; i < 3; ++i) {
307         for (k = i + 1; k < 4; ++k) {
308           if (val[k] < val[i]) {
309             uint16_t t = val[k];
310             val[k] = val[i];
311             val[i] = t;
312           }
313         }
314       }
315       for (i = 0; i < 4; ++i) {
316         table[i].bits = 2;
317       }
318       table[0].value = val[0];
319       table[2].value = val[1];
320       table[1].value = val[2];
321       table[3].value = val[3];
322       table_size = 4;
323       break;
324     }
325     case 4: {
326       int i;
327       if (val[3] < val[2]) {
328         uint16_t t = val[3];
329         val[3] = val[2];
330         val[2] = t;
331       }
332       for (i = 0; i < 7; ++i) {
333         table[i].value = val[0];
334         table[i].bits = (uint8_t)(1 + (i & 1));
335       }
336       table[1].value = val[1];
337       table[3].value = val[2];
338       table[5].value = val[1];
339       table[7].value = val[3];
340       table[3].bits = 3;
341       table[7].bits = 3;
342       table_size = 8;
343       break;
344     }
345   }
346   while (table_size != goal_size) {
347     memcpy(&table[table_size], &table[0],
348            (size_t)table_size * sizeof(table[0]));
349     table_size <<= 1;
350   }
351   return goal_size;
352 }
353 
354 #if defined(__cplusplus) || defined(c_plusplus)
355 }  /* extern "C" */
356 #endif
357