1 #include <stdlib.h>		/* for malloc() */
2 #include <string.h>		/* for memcpy() */
3 
4 #include "private/md5.h"
5 #include "share/alloc.h"
6 #include "share/compat.h"
7 #include "share/endswap.h"
8 
9 /*
10  * This code implements the MD5 message-digest algorithm.
11  * The algorithm is due to Ron Rivest.  This code was
12  * written by Colin Plumb in 1993, no copyright is claimed.
13  * This code is in the public domain; do with it what you wish.
14  *
15  * Equivalent code is available from RSA Data Security, Inc.
16  * This code has been tested against that, and is equivalent,
17  * except that you don't need to include two pages of legalese
18  * with every copy.
19  *
20  * To compute the message digest of a chunk of bytes, declare an
21  * MD5Context structure, pass it to MD5Init, call MD5Update as
22  * needed on buffers full of bytes, and then call MD5Final, which
23  * will fill a supplied 16-byte array with the digest.
24  *
25  * Changed so as no longer to depend on Colin Plumb's `usual.h' header
26  * definitions; now uses stuff from dpkg's config.h.
27  *  - Ian Jackson <ijackson@nyx.cs.du.edu>.
28  * Still in the public domain.
29  *
30  * Josh Coalson: made some changes to integrate with libFLAC.
31  * Still in the public domain.
32  */
33 
34 /* The four core functions - F1 is optimized somewhat */
35 
36 /* #define F1(x, y, z) (x & y | ~x & z) */
37 #define F1(x, y, z) (z ^ (x & (y ^ z)))
38 #define F2(x, y, z) F1(z, x, y)
39 #define F3(x, y, z) (x ^ y ^ z)
40 #define F4(x, y, z) (y ^ (x | ~z))
41 
42 /* This is the central step in the MD5 algorithm. */
43 #define MD5STEP(f,w,x,y,z,in,s) \
44 	 (w += f(x,y,z) + in, w = (w<<s | w>>(32-s)) + x)
45 
46 /*
47  * The core of the MD5 algorithm, this alters an existing MD5 hash to
48  * reflect the addition of 16 longwords of new data.  MD5Update blocks
49  * the data and converts bytes into longwords for this routine.
50  */
FLAC__MD5Transform(FLAC__uint32 buf[4],FLAC__uint32 const in[16])51 static void FLAC__MD5Transform(FLAC__uint32 buf[4], FLAC__uint32 const in[16])
52 {
53 	register FLAC__uint32 a, b, c, d;
54 
55 	a = buf[0];
56 	b = buf[1];
57 	c = buf[2];
58 	d = buf[3];
59 
60 	MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
61 	MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
62 	MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
63 	MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
64 	MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
65 	MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
66 	MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
67 	MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
68 	MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
69 	MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
70 	MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
71 	MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
72 	MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
73 	MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
74 	MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
75 	MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
76 
77 	MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
78 	MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
79 	MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
80 	MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
81 	MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
82 	MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
83 	MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
84 	MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
85 	MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
86 	MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
87 	MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
88 	MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
89 	MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
90 	MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
91 	MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
92 	MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
93 
94 	MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
95 	MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
96 	MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
97 	MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
98 	MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
99 	MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
100 	MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
101 	MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
102 	MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
103 	MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
104 	MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
105 	MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
106 	MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
107 	MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
108 	MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
109 	MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
110 
111 	MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
112 	MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
113 	MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
114 	MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
115 	MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
116 	MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
117 	MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
118 	MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
119 	MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
120 	MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
121 	MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
122 	MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
123 	MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
124 	MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
125 	MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
126 	MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
127 
128 	buf[0] += a;
129 	buf[1] += b;
130 	buf[2] += c;
131 	buf[3] += d;
132 }
133 
134 #define byteSwap(buf, words)
135 #define byteSwapX16(buf)
136 
137 /*
138  * Update context to reflect the concatenation of another buffer full
139  * of bytes.
140  */
FLAC__MD5Update(FLAC__MD5Context * ctx,FLAC__byte const * buf,uint32_t len)141 static void FLAC__MD5Update(FLAC__MD5Context *ctx, FLAC__byte const *buf, uint32_t len)
142 {
143 	FLAC__uint32 t;
144 
145 	/* Update byte count */
146 
147 	t = ctx->bytes[0];
148 	if ((ctx->bytes[0] = t + len) < t)
149 		ctx->bytes[1]++;	/* Carry from low to high */
150 
151 	t = 64 - (t & 0x3f);	/* Space available in ctx->in (at least 1) */
152 	if (t > len) {
153 		memcpy((FLAC__byte *)ctx->in + 64 - t, buf, len);
154 		return;
155 	}
156 	/* First chunk is an odd size */
157 	memcpy((FLAC__byte *)ctx->in + 64 - t, buf, t);
158 	byteSwapX16(ctx->in);
159 	FLAC__MD5Transform(ctx->buf, ctx->in);
160 	buf += t;
161 	len -= t;
162 
163 	/* Process data in 64-byte chunks */
164 	while (len >= 64) {
165 		memcpy(ctx->in, buf, 64);
166 		byteSwapX16(ctx->in);
167 		FLAC__MD5Transform(ctx->buf, ctx->in);
168 		buf += 64;
169 		len -= 64;
170 	}
171 
172 	/* Handle any remaining bytes of data. */
173 	memcpy(ctx->in, buf, len);
174 }
175 
176 /*
177  * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
178  * initialization constants.
179  */
FLAC__MD5Init(FLAC__MD5Context * ctx)180 void FLAC__MD5Init(FLAC__MD5Context *ctx)
181 {
182 	ctx->buf[0] = 0x67452301;
183 	ctx->buf[1] = 0xefcdab89;
184 	ctx->buf[2] = 0x98badcfe;
185 	ctx->buf[3] = 0x10325476;
186 
187 	ctx->bytes[0] = 0;
188 	ctx->bytes[1] = 0;
189 
190 	ctx->internal_buf.p8 = 0;
191 	ctx->capacity = 0;
192 }
193 
194 /*
195  * Final wrapup - pad to 64-byte boundary with the bit pattern
196  * 1 0* (64-bit count of bits processed, MSB-first)
197  */
FLAC__MD5Final(FLAC__byte digest[16],FLAC__MD5Context * ctx)198 void FLAC__MD5Final(FLAC__byte digest[16], FLAC__MD5Context *ctx)
199 {
200 	int count = ctx->bytes[0] & 0x3f;	/* Number of bytes in ctx->in */
201 	FLAC__byte *p = (FLAC__byte *)ctx->in + count;
202 
203 	/* Set the first char of padding to 0x80.  There is always room. */
204 	*p++ = 0x80;
205 
206 	/* Bytes of padding needed to make 56 bytes (-8..55) */
207 	count = 56 - 1 - count;
208 
209 	if (count < 0) {	/* Padding forces an extra block */
210 		memset(p, 0, count + 8);
211 		byteSwapX16(ctx->in);
212 		FLAC__MD5Transform(ctx->buf, ctx->in);
213 		p = (FLAC__byte *)ctx->in;
214 		count = 56;
215 	}
216 	memset(p, 0, count);
217 	byteSwap(ctx->in, 14);
218 
219 	/* Append length in bits and transform */
220 	ctx->in[14] = ctx->bytes[0] << 3;
221 	ctx->in[15] = ctx->bytes[1] << 3 | ctx->bytes[0] >> 29;
222 	FLAC__MD5Transform(ctx->buf, ctx->in);
223 
224 	byteSwap(ctx->buf, 4);
225 	memcpy(digest, ctx->buf, 16);
226 	if (0 != ctx->internal_buf.p8) {
227 		free(ctx->internal_buf.p8);
228 		ctx->internal_buf.p8 = 0;
229 		ctx->capacity = 0;
230 	}
231 	memset(ctx, 0, sizeof(*ctx));	/* In case it's sensitive */
232 }
233 
234 /*
235  * Convert the incoming audio signal to a byte stream
236  */
format_input_(FLAC__multibyte * mbuf,const FLAC__int32 * const signal[],uint32_t channels,uint32_t samples,uint32_t bytes_per_sample)237 static void format_input_(FLAC__multibyte *mbuf, const FLAC__int32 * const signal[], uint32_t channels, uint32_t samples, uint32_t bytes_per_sample)
238 {
239 	FLAC__byte *buf_ = mbuf->p8;
240 	FLAC__int16 *buf16 = mbuf->p16;
241 	FLAC__int32 *buf32 = mbuf->p32;
242 	FLAC__int32 a_word;
243 	uint32_t channel, sample;
244 
245 	/* Storage in the output buffer, buf, is little endian. */
246 
247 #define BYTES_CHANNEL_SELECTOR(bytes, channels)   (bytes * 100 + channels)
248 
249 	/* First do the most commonly used combinations. */
250 	switch (BYTES_CHANNEL_SELECTOR (bytes_per_sample, channels)) {
251 		/* One byte per sample. */
252 		case (BYTES_CHANNEL_SELECTOR (1, 1)):
253 			for (sample = 0; sample < samples; sample++)
254 				*buf_++ = (FLAC__byte)signal[0][sample];
255 			return;
256 
257 		case (BYTES_CHANNEL_SELECTOR (1, 2)):
258 			for (sample = 0; sample < samples; sample++) {
259 				*buf_++ = (FLAC__byte)signal[0][sample];
260 				*buf_++ = (FLAC__byte)signal[1][sample];
261 			}
262 			return;
263 
264 		case (BYTES_CHANNEL_SELECTOR (1, 4)):
265 			for (sample = 0; sample < samples; sample++) {
266 				*buf_++ = (FLAC__byte)signal[0][sample];
267 				*buf_++ = (FLAC__byte)signal[1][sample];
268 				*buf_++ = (FLAC__byte)signal[2][sample];
269 				*buf_++ = (FLAC__byte)signal[3][sample];
270 			}
271 			return;
272 
273 		case (BYTES_CHANNEL_SELECTOR (1, 6)):
274 			for (sample = 0; sample < samples; sample++) {
275 				*buf_++ = (FLAC__byte)signal[0][sample];
276 				*buf_++ = (FLAC__byte)signal[1][sample];
277 				*buf_++ = (FLAC__byte)signal[2][sample];
278 				*buf_++ = (FLAC__byte)signal[3][sample];
279 				*buf_++ = (FLAC__byte)signal[4][sample];
280 				*buf_++ = (FLAC__byte)signal[5][sample];
281 			}
282 			return;
283 
284 		case (BYTES_CHANNEL_SELECTOR (1, 8)):
285 			for (sample = 0; sample < samples; sample++) {
286 				*buf_++ = (FLAC__byte)signal[0][sample];
287 				*buf_++ = (FLAC__byte)signal[1][sample];
288 				*buf_++ = (FLAC__byte)signal[2][sample];
289 				*buf_++ = (FLAC__byte)signal[3][sample];
290 				*buf_++ = (FLAC__byte)signal[4][sample];
291 				*buf_++ = (FLAC__byte)signal[5][sample];
292 				*buf_++ = (FLAC__byte)signal[6][sample];
293 				*buf_++ = (FLAC__byte)signal[7][sample];
294 			}
295 			return;
296 
297 		/* Two bytes per sample. */
298 		case (BYTES_CHANNEL_SELECTOR (2, 1)):
299 			for (sample = 0; sample < samples; sample++)
300 				*buf16++ = (FLAC__int16)H2LE_16(signal[0][sample]);
301 			return;
302 
303 		case (BYTES_CHANNEL_SELECTOR (2, 2)):
304 			for (sample = 0; sample < samples; sample++) {
305 				*buf16++ = (FLAC__int16)H2LE_16(signal[0][sample]);
306 				*buf16++ = (FLAC__int16)H2LE_16(signal[1][sample]);
307 			}
308 			return;
309 
310 		case (BYTES_CHANNEL_SELECTOR (2, 4)):
311 			for (sample = 0; sample < samples; sample++) {
312 				*buf16++ = (FLAC__int16)H2LE_16(signal[0][sample]);
313 				*buf16++ = (FLAC__int16)H2LE_16(signal[1][sample]);
314 				*buf16++ = (FLAC__int16)H2LE_16(signal[2][sample]);
315 				*buf16++ = (FLAC__int16)H2LE_16(signal[3][sample]);
316 			}
317 			return;
318 
319 		case (BYTES_CHANNEL_SELECTOR (2, 6)):
320 			for (sample = 0; sample < samples; sample++) {
321 				*buf16++ = (FLAC__int16)H2LE_16(signal[0][sample]);
322 				*buf16++ = (FLAC__int16)H2LE_16(signal[1][sample]);
323 				*buf16++ = (FLAC__int16)H2LE_16(signal[2][sample]);
324 				*buf16++ = (FLAC__int16)H2LE_16(signal[3][sample]);
325 				*buf16++ = (FLAC__int16)H2LE_16(signal[4][sample]);
326 				*buf16++ = (FLAC__int16)H2LE_16(signal[5][sample]);
327 			}
328 			return;
329 
330 		case (BYTES_CHANNEL_SELECTOR (2, 8)):
331 			for (sample = 0; sample < samples; sample++) {
332 				*buf16++ = (FLAC__int16)H2LE_16(signal[0][sample]);
333 				*buf16++ = (FLAC__int16)H2LE_16(signal[1][sample]);
334 				*buf16++ = (FLAC__int16)H2LE_16(signal[2][sample]);
335 				*buf16++ = (FLAC__int16)H2LE_16(signal[3][sample]);
336 				*buf16++ = (FLAC__int16)H2LE_16(signal[4][sample]);
337 				*buf16++ = (FLAC__int16)H2LE_16(signal[5][sample]);
338 				*buf16++ = (FLAC__int16)H2LE_16(signal[6][sample]);
339 				*buf16++ = (FLAC__int16)H2LE_16(signal[7][sample]);
340 			}
341 			return;
342 
343 		/* Three bytes per sample. */
344 		case (BYTES_CHANNEL_SELECTOR (3, 1)):
345 			for (sample = 0; sample < samples; sample++) {
346 				a_word = signal[0][sample];
347 				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
348 				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
349 				*buf_++ = (FLAC__byte)a_word;
350 			}
351 			return;
352 
353 		case (BYTES_CHANNEL_SELECTOR (3, 2)):
354 			for (sample = 0; sample < samples; sample++) {
355 				a_word = signal[0][sample];
356 				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
357 				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
358 				*buf_++ = (FLAC__byte)a_word;
359 				a_word = signal[1][sample];
360 				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
361 				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
362 				*buf_++ = (FLAC__byte)a_word;
363 			}
364 			return;
365 
366 		/* Four bytes per sample. */
367 		case (BYTES_CHANNEL_SELECTOR (4, 1)):
368 			for (sample = 0; sample < samples; sample++)
369 				*buf32++ = H2LE_32(signal[0][sample]);
370 			return;
371 
372 		case (BYTES_CHANNEL_SELECTOR (4, 2)):
373 			for (sample = 0; sample < samples; sample++) {
374 				*buf32++ = H2LE_32(signal[0][sample]);
375 				*buf32++ = H2LE_32(signal[1][sample]);
376 			}
377 			return;
378 
379 		case (BYTES_CHANNEL_SELECTOR (4, 4)):
380 			for (sample = 0; sample < samples; sample++) {
381 				*buf32++ = H2LE_32(signal[0][sample]);
382 				*buf32++ = H2LE_32(signal[1][sample]);
383 				*buf32++ = H2LE_32(signal[2][sample]);
384 				*buf32++ = H2LE_32(signal[3][sample]);
385 			}
386 			return;
387 
388 		case (BYTES_CHANNEL_SELECTOR (4, 6)):
389 			for (sample = 0; sample < samples; sample++) {
390 				*buf32++ = H2LE_32(signal[0][sample]);
391 				*buf32++ = H2LE_32(signal[1][sample]);
392 				*buf32++ = H2LE_32(signal[2][sample]);
393 				*buf32++ = H2LE_32(signal[3][sample]);
394 				*buf32++ = H2LE_32(signal[4][sample]);
395 				*buf32++ = H2LE_32(signal[5][sample]);
396 			}
397 			return;
398 
399 		case (BYTES_CHANNEL_SELECTOR (4, 8)):
400 			for (sample = 0; sample < samples; sample++) {
401 				*buf32++ = H2LE_32(signal[0][sample]);
402 				*buf32++ = H2LE_32(signal[1][sample]);
403 				*buf32++ = H2LE_32(signal[2][sample]);
404 				*buf32++ = H2LE_32(signal[3][sample]);
405 				*buf32++ = H2LE_32(signal[4][sample]);
406 				*buf32++ = H2LE_32(signal[5][sample]);
407 				*buf32++ = H2LE_32(signal[6][sample]);
408 				*buf32++ = H2LE_32(signal[7][sample]);
409 			}
410 			return;
411 
412 		default:
413 			break;
414 	}
415 
416 	/* General version. */
417 	switch (bytes_per_sample) {
418 		case 1:
419 			for (sample = 0; sample < samples; sample++)
420 				for (channel = 0; channel < channels; channel++)
421 					*buf_++ = (FLAC__byte)signal[channel][sample];
422 			return;
423 
424 		case 2:
425 			for (sample = 0; sample < samples; sample++)
426 				for (channel = 0; channel < channels; channel++)
427 					*buf16++ = (FLAC__int16)H2LE_16(signal[channel][sample]);
428 			return;
429 
430 		case 3:
431 			for (sample = 0; sample < samples; sample++)
432 				for (channel = 0; channel < channels; channel++) {
433 					a_word = signal[channel][sample];
434 					*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
435 					*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
436 					*buf_++ = (FLAC__byte)a_word;
437 				}
438 			return;
439 
440 		case 4:
441 			for (sample = 0; sample < samples; sample++)
442 				for (channel = 0; channel < channels; channel++)
443 					*buf32++ = H2LE_32(signal[channel][sample]);
444 			return;
445 
446 		default:
447 			break;
448 	}
449 }
450 
451 /*
452  * Convert the incoming audio signal to a byte stream and FLAC__MD5Update it.
453  */
FLAC__MD5Accumulate(FLAC__MD5Context * ctx,const FLAC__int32 * const signal[],uint32_t channels,uint32_t samples,uint32_t bytes_per_sample)454 FLAC__bool FLAC__MD5Accumulate(FLAC__MD5Context *ctx, const FLAC__int32 * const signal[], uint32_t channels, uint32_t samples, uint32_t bytes_per_sample)
455 {
456 	const size_t bytes_needed = (size_t)channels * (size_t)samples * (size_t)bytes_per_sample;
457 
458 	/* overflow check */
459 	if ((size_t)channels > SIZE_MAX / (size_t)bytes_per_sample)
460 		return false;
461 	if ((size_t)channels * (size_t)bytes_per_sample > SIZE_MAX / (size_t)samples)
462 		return false;
463 
464 	if (ctx->capacity < bytes_needed) {
465 		if (0 == (ctx->internal_buf.p8 = safe_realloc_(ctx->internal_buf.p8, bytes_needed))) {
466 			if (0 == (ctx->internal_buf.p8 = safe_malloc_(bytes_needed))) {
467 				ctx->capacity = 0;
468 				return false;
469 			}
470 		}
471 		ctx->capacity = bytes_needed;
472 	}
473 
474 	format_input_(&ctx->internal_buf, signal, channels, samples, bytes_per_sample);
475 
476 	FLAC__MD5Update(ctx, ctx->internal_buf.p8, (uint32_t)bytes_needed);
477 
478 	return true;
479 }
480