1 /* -----------------------------------------------------------------------------
2 Software License for The Fraunhofer FDK AAC Codec Library for Android
3 
4 © Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
5 Forschung e.V. All rights reserved.
6 
7  1.    INTRODUCTION
8 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9 that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10 scheme for digital audio. This FDK AAC Codec software is intended to be used on
11 a wide variety of Android devices.
12 
13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14 general perceptual audio codecs. AAC-ELD is considered the best-performing
15 full-bandwidth communications codec by independent studies and is widely
16 deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17 specifications.
18 
19 Patent licenses for necessary patent claims for the FDK AAC Codec (including
20 those of Fraunhofer) may be obtained through Via Licensing
21 (www.vialicensing.com) or through the respective patent owners individually for
22 the purpose of encoding or decoding bit streams in products that are compliant
23 with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24 Android devices already license these patent claims through Via Licensing or
25 directly from the patent owners, and therefore FDK AAC Codec software may
26 already be covered under those patent licenses when it is used for those
27 licensed purposes only.
28 
29 Commercially-licensed AAC software libraries, including floating-point versions
30 with enhanced sound quality, are also available from Fraunhofer. Users are
31 encouraged to check the Fraunhofer website for additional applications
32 information and documentation.
33 
34 2.    COPYRIGHT LICENSE
35 
36 Redistribution and use in source and binary forms, with or without modification,
37 are permitted without payment of copyright license fees provided that you
38 satisfy the following conditions:
39 
40 You must retain the complete text of this software license in redistributions of
41 the FDK AAC Codec or your modifications thereto in source code form.
42 
43 You must retain the complete text of this software license in the documentation
44 and/or other materials provided with redistributions of the FDK AAC Codec or
45 your modifications thereto in binary form. You must make available free of
46 charge copies of the complete source code of the FDK AAC Codec and your
47 modifications thereto to recipients of copies in binary form.
48 
49 The name of Fraunhofer may not be used to endorse or promote products derived
50 from this library without prior written permission.
51 
52 You may not charge copyright license fees for anyone to use, copy or distribute
53 the FDK AAC Codec software or your modifications thereto.
54 
55 Your modified versions of the FDK AAC Codec must carry prominent notices stating
56 that you changed the software and the date of any change. For modified versions
57 of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58 must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59 AAC Codec Library for Android."
60 
61 3.    NO PATENT LICENSE
62 
63 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64 limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65 Fraunhofer provides no warranty of patent non-infringement with respect to this
66 software.
67 
68 You may use this FDK AAC Codec software or modifications thereto only for
69 purposes that are authorized by appropriate patent licenses.
70 
71 4.    DISCLAIMER
72 
73 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74 holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75 including but not limited to the implied warranties of merchantability and
76 fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78 or consequential damages, including but not limited to procurement of substitute
79 goods or services; loss of use, data, or profits, or business interruption,
80 however caused and on any theory of liability, whether in contract, strict
81 liability, or tort (including negligence), arising in any way out of the use of
82 this software, even if advised of the possibility of such damage.
83 
84 5.    CONTACT INFORMATION
85 
86 Fraunhofer Institute for Integrated Circuits IIS
87 Attention: Audio and Multimedia Departments - FDK AAC LL
88 Am Wolfsmantel 33
89 91058 Erlangen, Germany
90 
91 www.iis.fraunhofer.de/amm
92 amm-info@iis.fraunhofer.de
93 ----------------------------------------------------------------------------- */
94 
95 /******************* Library for basic calculation routines ********************
96 
97    Author(s):   Haricharan Lakshman, Manuel Jander
98 
99    Description: Trigonometric functions fixed point fractional implementation.
100 
101 *******************************************************************************/
102 
103 #include "FDK_trigFcts.h"
104 
105 #include "fixpoint_math.h"
106 
107 #define IMPROVE_ATAN2_ACCURACY 1 /* 0 --> 59 dB SNR     1 --> 65 dB SNR */
108 #define MINSFTAB 7
109 #define MAXSFTAB 25
110 
111 #if IMPROVE_ATAN2_ACCURACY
112 static const FIXP_DBL f_atan_expand_range[MAXSFTAB - (MINSFTAB - 1)] = {
113     /*****************************************************************************
114      *
115      *  Table holds fixp_atan() output values which are outside of input range
116      *  of fixp_atan() to improve SNR of fixp_atan2().
117      *
118      *  This Table might also be used in fixp_atan() so there a wider input
119      *  range can be covered, too.
120      *
121      *****************************************************************************/
122     FL2FXCONST_DBL(7.775862990872099e-001),
123     FL2FXCONST_DBL(7.814919928673978e-001),
124     FL2FXCONST_DBL(7.834450483314648e-001),
125     FL2FXCONST_DBL(7.844216021392089e-001),
126     FL2FXCONST_DBL(7.849098823026687e-001),
127     FL2FXCONST_DBL(7.851540227918509e-001),
128     FL2FXCONST_DBL(7.852760930873737e-001),
129     FL2FXCONST_DBL(7.853371282415015e-001),
130     FL2FXCONST_DBL(7.853676458193612e-001),
131     FL2FXCONST_DBL(7.853829046083906e-001),
132     FL2FXCONST_DBL(7.853905340029177e-001),
133     FL2FXCONST_DBL(7.853943487001828e-001),
134     FL2FXCONST_DBL(7.853962560488155e-001),
135     FL2FXCONST_DBL(7.853972097231319e-001),
136     FL2FXCONST_DBL(7.853976865602901e-001),
137     FL2FXCONST_DBL(7.853979249788692e-001),
138     FL2FXCONST_DBL(7.853980441881587e-001),
139     FL2FXCONST_DBL(7.853981037928035e-001),
140     FL2FXCONST_DBL(7.853981335951259e-001)
141     /* pi/4 = 0.785398163397448 = pi/2/ATO_SCALE */
142 };
143 #endif
144 
fixp_atan2(FIXP_DBL y,FIXP_DBL x)145 FIXP_DBL fixp_atan2(FIXP_DBL y, FIXP_DBL x) {
146   FIXP_DBL q;
147   FIXP_DBL at;  /* atan  out */
148   FIXP_DBL at2; /* atan2 out */
149   FIXP_DBL ret = FL2FXCONST_DBL(-1.0f);
150   INT sf, sfo, stf;
151 
152   /* --- division */
153 
154   if (y > FL2FXCONST_DBL(0.0f)) {
155     if (x > FL2FXCONST_DBL(0.0f)) {
156       q = fDivNormHighPrec(y, x, &sf); /* both pos. */
157     } else if (x < FL2FXCONST_DBL(0.0f)) {
158       q = -fDivNormHighPrec(y, -x, &sf); /* x neg. */
159     } else {                             /* (x == FL2FXCONST_DBL(0.0f)) */
160       q = FL2FXCONST_DBL(+1.0f);         /* y/x = pos/zero = +Inf */
161       sf = 0;
162     }
163   } else if (y < FL2FXCONST_DBL(0.0f)) {
164     if (x > FL2FXCONST_DBL(0.0f)) {
165       q = -fDivNormHighPrec(-y, x, &sf); /* y neg. */
166     } else if (x < FL2FXCONST_DBL(0.0f)) {
167       q = fDivNormHighPrec(-y, -x, &sf); /* both neg. */
168     } else {                             /* (x == FL2FXCONST_DBL(0.0f)) */
169       q = FL2FXCONST_DBL(-1.0f);         /* y/x = neg/zero = -Inf */
170       sf = 0;
171     }
172   } else { /* (y == FL2FXCONST_DBL(0.0f)) */
173     q = FL2FXCONST_DBL(0.0f);
174     sf = 0;
175   }
176   sfo = sf;
177 
178   /* --- atan() */
179 
180   if (sfo > ATI_SF) {
181   /* --- could not calc fixp_atan() here bec of input data out of range */
182   /*     ==> therefore give back boundary values */
183 
184 #if IMPROVE_ATAN2_ACCURACY
185     if (sfo > MAXSFTAB) sfo = MAXSFTAB;
186 #endif
187 
188     if (q > FL2FXCONST_DBL(0.0f)) {
189 #if IMPROVE_ATAN2_ACCURACY
190       at = +f_atan_expand_range[sfo - ATI_SF - 1];
191 #else
192       at = FL2FXCONST_DBL(+M_PI / 2 / ATO_SCALE);
193 #endif
194     } else if (q < FL2FXCONST_DBL(0.0f)) {
195 #if IMPROVE_ATAN2_ACCURACY
196       at = -f_atan_expand_range[sfo - ATI_SF - 1];
197 #else
198       at = FL2FXCONST_DBL(-M_PI / 2 / ATO_SCALE);
199 #endif
200     } else { /* q == FL2FXCONST_DBL(0.0f) */
201       at = FL2FXCONST_DBL(0.0f);
202     }
203   } else {
204     /* --- calc of fixp_atan() is possible; input data within range */
205     /*     ==> set q on fixed scale level as desired from fixp_atan() */
206     stf = sfo - ATI_SF;
207     if (stf > 0)
208       q = q << (INT)fMin(stf, DFRACT_BITS - 1);
209     else
210       q = q >> (INT)fMin(-stf, DFRACT_BITS - 1);
211     at = fixp_atan(q); /* ATO_SF */
212   }
213 
214   // --- atan2()
215 
216   at2 = at >> (AT2O_SF - ATO_SF);  // now AT2O_SF for atan2
217   if (x > FL2FXCONST_DBL(0.0f)) {
218     ret = at2;
219   } else if (x < FL2FXCONST_DBL(0.0f)) {
220     if (y >= FL2FXCONST_DBL(0.0f)) {
221       ret = at2 + FL2FXCONST_DBL(M_PI / AT2O_SCALE);
222     } else {
223       ret = at2 - FL2FXCONST_DBL(M_PI / AT2O_SCALE);
224     }
225   } else {
226     // x == 0
227     if (y > FL2FXCONST_DBL(0.0f)) {
228       ret = FL2FXCONST_DBL(+M_PI / 2 / AT2O_SCALE);
229     } else if (y < FL2FXCONST_DBL(0.0f)) {
230       ret = FL2FXCONST_DBL(-M_PI / 2 / AT2O_SCALE);
231     } else if (y == FL2FXCONST_DBL(0.0f)) {
232       ret = FL2FXCONST_DBL(0.0f);
233     }
234   }
235   return ret;
236 }
237 
fixp_atan(FIXP_DBL x)238 FIXP_DBL fixp_atan(FIXP_DBL x) {
239   INT sign;
240   FIXP_DBL result, temp;
241 
242   /* SNR of fixp_atan() = 56 dB */
243   FIXP_DBL P281 = (FIXP_DBL)0x00013000;     // 0.281 in q18
244   FIXP_DBL ONEP571 = (FIXP_DBL)0x6487ef00;  // 1.571 in q30
245 
246   if (x < FIXP_DBL(0)) {
247     sign = 1;
248     x = -x;
249   } else {
250     sign = 0;
251   }
252   FDK_ASSERT(FL2FXCONST_DBL(1.0 / 64.0) == Q(Q_ATANINP));
253   /* calc of arctan */
254   if (x < FL2FXCONST_DBL(1.0 / 64.0))
255   /*
256     Chebyshev polynomial approximation of atan(x)
257     5th-order approximation: atan(x) = a1*x + a2*x^3 + a3*x^5 = x(a1 + x^2*(a2 +
258     a3*x^2)); a1 = 0.9949493661166540f, a2 = 0.2870606355326520f, a3 =
259     0.0780371764464410f; 7th-order approximation: atan(x) = a1*x + a2*x^3 +
260     a3*x^5 + a3*x^7 = x(a1 + x^2*(a2 + x^2*(a3 + a4*x^2))); a1 =
261     0.9991334482227801, a2 = -0.3205332923816640, a3 = 0.1449824901444650, a4 =
262     -0.0382544649702990; 7th-order approximation in use (the most accurate
263     solution)
264   */
265   {
266     x <<= ATI_SF;
267     FIXP_DBL x2 = fPow2(x);
268     temp = fMultAddDiv2((FL2FXCONST_DBL(0.1449824901444650f) >> 1), x2,
269                         FL2FXCONST_DBL(-0.0382544649702990));
270     temp = fMultAddDiv2((FL2FXCONST_DBL(-0.3205332923816640f) >> 2), x2, temp);
271     temp = fMultAddDiv2((FL2FXCONST_DBL(0.9991334482227801f) >> 3), x2, temp);
272     result = fMult(x, (temp << 2));
273   } else if (x < FL2FXCONST_DBL(1.28 / 64.0)) {
274     FIXP_DBL delta_fix;
275     FIXP_DBL PI_BY_4 = FL2FXCONST_DBL(3.1415926 / 4.0) >> 1; /* pi/4 in q30 */
276 
277     delta_fix = (x - FL2FXCONST_DBL(1.0 / 64.0)) << 5; /* q30 */
278     result = PI_BY_4 + (delta_fix >> 1) - (fPow2Div2(delta_fix));
279   } else {
280     /* Other approximation for |x| > 1.28 */
281     INT res_e;
282 
283     temp = fPow2Div2(x); /* q25 * q25 - (DFRACT_BITS-1) - 1 = q18 */
284     temp = temp + P281;  /* q18 + q18 = q18 */
285     result = fDivNorm(x, temp, &res_e);
286     result = scaleValue(result,
287                         (Q_ATANOUT - Q_ATANINP + 18 - DFRACT_BITS + 1) + res_e);
288     result = ONEP571 - result; /* q30 + q30 = q30 */
289   }
290   if (sign) {
291     result = -result;
292   }
293 
294   return (result);
295 }
296 
297 #include "FDK_tools_rom.h"
298 
fixp_cos(FIXP_DBL x,int scale)299 FIXP_DBL fixp_cos(FIXP_DBL x, int scale) {
300   FIXP_DBL residual, error, sine, cosine;
301 
302   residual = fixp_sin_cos_residual_inline(x, scale, &sine, &cosine);
303   error = fMult(sine, residual);
304 
305 #ifdef SINETABLE_16BIT
306   return cosine - error;
307 #else
308   /* Undo downscaling by 1 which was done at fixp_sin_cos_residual_inline */
309   return SATURATE_LEFT_SHIFT(cosine - error, 1, DFRACT_BITS);
310 #endif
311 }
312 
fixp_sin(FIXP_DBL x,int scale)313 FIXP_DBL fixp_sin(FIXP_DBL x, int scale) {
314   FIXP_DBL residual, error, sine, cosine;
315 
316   residual = fixp_sin_cos_residual_inline(x, scale, &sine, &cosine);
317   error = fMult(cosine, residual);
318 
319 #ifdef SINETABLE_16BIT
320   return sine + error;
321 #else
322   return SATURATE_LEFT_SHIFT(sine + error, 1, DFRACT_BITS);
323 #endif
324 }
325 
fixp_cos_sin(FIXP_DBL x,int scale,FIXP_DBL * cos,FIXP_DBL * sin)326 void fixp_cos_sin(FIXP_DBL x, int scale, FIXP_DBL *cos, FIXP_DBL *sin) {
327   FIXP_DBL residual, error0, error1, sine, cosine;
328 
329   residual = fixp_sin_cos_residual_inline(x, scale, &sine, &cosine);
330   error0 = fMult(sine, residual);
331   error1 = fMult(cosine, residual);
332 
333 #ifdef SINETABLE_16BIT
334   *cos = cosine - error0;
335   *sin = sine + error1;
336 #else
337   *cos = SATURATE_LEFT_SHIFT(cosine - error0, 1, DFRACT_BITS);
338   *sin = SATURATE_LEFT_SHIFT(sine + error1, 1, DFRACT_BITS);
339 #endif
340 }
341