1 /*
2 **
3 ** File: fmopl.c -- software implementation of FM sound generator
4 **
5 ** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development
6 **
7 ** Version 0.37a
8 **
9 */
10 
11 /*
12 	preliminary :
13 	Problem :
14 	note:
15 */
16 
17 /* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL.
18  *
19  * This library is free software; you can redistribute it and/or
20  * modify it under the terms of the GNU Lesser General Public
21  * License as published by the Free Software Foundation; either
22  * version 2.1 of the License, or (at your option) any later version.
23  *
24  * This library is distributed in the hope that it will be useful,
25  * but WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27  * Lesser General Public License for more details.
28  *
29  * You should have received a copy of the GNU Lesser General Public
30  * License along with this library; if not, write to the Free Software
31  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
32  */
33 
34 #if defined(_MSC_VER) && (_MSC_VER < 1900)
35 #define INLINE		__inline
36 #else
37 #define INLINE		static inline
38 #endif
39 #define HAS_YM3812	1
40 
41 #include <stdio.h>
42 #include <stdlib.h>
43 #include <string.h>
44 #include <stdarg.h>
45 #include <math.h>
46 //#include "driver.h"		/* use M.A.M.E. */
47 #include "fmopl.h"
48 
49 #ifndef PI
50 #define PI 3.14159265358979323846
51 #endif
52 
53 /* -------------------- for debug --------------------- */
54 /* #define OPL_OUTPUT_LOG */
55 #ifdef OPL_OUTPUT_LOG
56 static FILE *opl_dbg_fp = NULL;
57 static FM_OPL *opl_dbg_opl[16];
58 static int opl_dbg_maxchip,opl_dbg_chip;
59 #endif
60 
61 /* -------------------- preliminary define section --------------------- */
62 /* attack/decay rate time rate */
63 #define OPL_ARRATE     141280  /* RATE 4 =  2826.24ms @ 3.6MHz */
64 #define OPL_DRRATE    1956000  /* RATE 4 = 39280.64ms @ 3.6MHz */
65 
66 #define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */
67 
68 #define FREQ_BITS 24			/* frequency turn          */
69 
70 /* counter bits = 20 , octerve 7 */
71 #define FREQ_RATE   (1<<(FREQ_BITS-20))
72 #define TL_BITS    (FREQ_BITS+2)
73 
74 /* final output shift , limit minimum and maximum */
75 #define OPL_OUTSB   (TL_BITS+3-16)		/* OPL output final shift 16bit */
76 #define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
77 #define OPL_MINOUT (-(0x8000<<OPL_OUTSB))
78 
79 /* -------------------- quality selection --------------------- */
80 
81 /* sinwave entries */
82 /* used static memory = SIN_ENT * 4 (byte) */
83 #define SIN_ENT 2048
84 
85 /* output level entries (envelope,sinwave) */
86 /* envelope counter lower bits */
87 #define ENV_BITS 16
88 /* envelope output entries */
89 #define EG_ENT   4096
90 /* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
91 /* used static  memory = EG_ENT*4 (byte)                     */
92 
93 #define EG_OFF   ((2*EG_ENT)<<ENV_BITS)  /* OFF          */
94 #define EG_DED   EG_OFF
95 #define EG_DST   (EG_ENT<<ENV_BITS)      /* DECAY  START */
96 #define EG_AED   EG_DST
97 #define EG_AST   0                       /* ATTACK START */
98 
99 #define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step  */
100 
101 /* LFO table entries */
102 #define VIB_ENT 512
103 #define VIB_SHIFT (32-9)
104 #define AMS_ENT 512
105 #define AMS_SHIFT (32-9)
106 
107 #define VIB_RATE 256
108 
109 /* -------------------- local defines , macros --------------------- */
110 
111 /* register number to channel number , slot offset */
112 #define SLOT1 0
113 #define SLOT2 1
114 
115 /* envelope phase */
116 #define ENV_MOD_RR  0x00
117 #define ENV_MOD_DR  0x01
118 #define ENV_MOD_AR  0x02
119 
120 /* -------------------- tables --------------------- */
121 static const int slot_array[32]=
122 {
123 	 0, 2, 4, 1, 3, 5,-1,-1,
124 	 6, 8,10, 7, 9,11,-1,-1,
125 	12,14,16,13,15,17,-1,-1,
126 	-1,-1,-1,-1,-1,-1,-1,-1
127 };
128 
129 /* key scale level */
130 /* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */
131 #define DV (EG_STEP/2)
132 #define U(x) ((UINT32)(x))
133 static const UINT32 KSL_TABLE[8*16]=
134 {
135 	/* OCT 0 */
136 	U( 0.000/DV),U( 0.000/DV),U( 0.000/DV),U( 0.000/DV),
137 	U( 0.000/DV),U( 0.000/DV),U( 0.000/DV),U( 0.000/DV),
138 	U( 0.000/DV),U( 0.000/DV),U( 0.000/DV),U( 0.000/DV),
139 	U( 0.000/DV),U( 0.000/DV),U( 0.000/DV),U( 0.000/DV),
140 	/* OCT 1 */
141 	U( 0.000/DV),U( 0.000/DV),U( 0.000/DV),U( 0.000/DV),
142 	U( 0.000/DV),U( 0.000/DV),U( 0.000/DV),U( 0.000/DV),
143 	U( 0.000/DV),U( 0.750/DV),U( 1.125/DV),U( 1.500/DV),
144 	U( 1.875/DV),U( 2.250/DV),U( 2.625/DV),U( 3.000/DV),
145 	/* OCT 2 */
146 	U( 0.000/DV),U( 0.000/DV),U( 0.000/DV),U( 0.000/DV),
147 	U( 0.000/DV),U( 1.125/DV),U( 1.875/DV),U( 2.625/DV),
148 	U( 3.000/DV),U( 3.750/DV),U( 4.125/DV),U( 4.500/DV),
149 	U( 4.875/DV),U( 5.250/DV),U( 5.625/DV),U( 6.000/DV),
150 	/* OCT 3 */
151 	U( 0.000/DV),U( 0.000/DV),U( 0.000/DV),U( 1.875/DV),
152 	U( 3.000/DV),U( 4.125/DV),U( 4.875/DV),U( 5.625/DV),
153 	U( 6.000/DV),U( 6.750/DV),U( 7.125/DV),U( 7.500/DV),
154 	U( 7.875/DV),U( 8.250/DV),U( 8.625/DV),U( 9.000/DV),
155 	/* OCT 4 */
156 	U( 0.000/DV),U( 0.000/DV),U( 3.000/DV),U( 4.875/DV),
157 	U( 6.000/DV),U( 7.125/DV),U( 7.875/DV),U( 8.625/DV),
158 	U( 9.000/DV),U( 9.750/DV),U(10.125/DV),U(10.500/DV),
159 	U(10.875/DV),U(11.250/DV),U(11.625/DV),U(12.000/DV),
160 	/* OCT 5 */
161 	U( 0.000/DV),U( 3.000/DV),U( 6.000/DV),U( 7.875/DV),
162 	U( 9.000/DV),U(10.125/DV),U(10.875/DV),U(11.625/DV),
163 	U(12.000/DV),U(12.750/DV),U(13.125/DV),U(13.500/DV),
164 	U(13.875/DV),U(14.250/DV),U(14.625/DV),U(15.000/DV),
165 	/* OCT 6 */
166 	U( 0.000/DV),U( 6.000/DV),U( 9.000/DV),U(10.875/DV),
167 	U(12.000/DV),U(13.125/DV),U(13.875/DV),U(14.625/DV),
168 	U(15.000/DV),U(15.750/DV),U(16.125/DV),U(16.500/DV),
169 	U(16.875/DV),U(17.250/DV),U(17.625/DV),U(18.000/DV),
170 	/* OCT 7 */
171 	U( 0.000/DV),U( 9.000/DV),U(12.000/DV),U(13.875/DV),
172 	U(15.000/DV),U(16.125/DV),U(16.875/DV),U(17.625/DV),
173 	U(18.000/DV),U(18.750/DV),U(19.125/DV),U(19.500/DV),
174 	U(19.875/DV),U(20.250/DV),U(20.625/DV),U(21.000/DV)
175 };
176 #undef U
177 #undef DV
178 
179 /* sustain lebel table (3db per step) */
180 /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
181 #define SC(db) (INT32)((db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST)
182 static const INT32 SL_TABLE[16]={
183  SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
184  SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
185 };
186 #undef SC
187 
188 #define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */
189 /* TotalLevel : 48 24 12  6  3 1.5 0.75 (dB) */
190 /* TL_TABLE[ 0      to TL_MAX          ] : plus  section */
191 /* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
192 static INT32 *TL_TABLE;
193 
194 /* pointers to TL_TABLE with sinwave output offset */
195 static INT32 **SIN_TABLE;
196 
197 /* LFO table */
198 static INT32 *AMS_TABLE;
199 static INT32 *VIB_TABLE;
200 
201 /* envelope output curve table */
202 /* attack + decay + OFF */
203 static INT32 ENV_CURVE[2*EG_ENT+1];
204 
205 /* multiple table */
206 #define ML 2
207 static const UINT32 MUL_TABLE[16]= {
208 /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
209    ML/2, 1*ML, 2*ML, 3*ML, 4*ML, 5*ML, 6*ML, 7*ML,
210    8*ML, 9*ML,10*ML,10*ML,12*ML,12*ML,15*ML,15*ML
211 };
212 #undef ML
213 
214 /* dummy attack / decay rate ( when rate == 0 ) */
215 static INT32 RATE_0[16]=
216 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
217 
218 /* -------------------- static state --------------------- */
219 
220 /* lock level of common table */
221 static int num_lock = 0;
222 
223 /* work table */
224 static void *cur_chip = NULL;	/* current chip point */
225 /* currenct chip state */
226 /* static OPLSAMPLE  *bufL,*bufR; */
227 static OPL_CH *S_CH;
228 static OPL_CH *E_CH;
229 OPL_SLOT *SLOT7_1,*SLOT7_2,*SLOT8_1,*SLOT8_2;
230 
231 static INT32 outd[1];
232 static INT32 ams;
233 static INT32 vib;
234 INT32  *ams_table;
235 INT32  *vib_table;
236 static INT32 amsIncr;
237 static INT32 vibIncr;
238 static INT32 feedback2;		/* connect for SLOT 2 */
239 
240 /* log output level */
241 #define LOG_ERR  3      /* ERROR       */
242 #define LOG_WAR  2      /* WARNING     */
243 #define LOG_INF  1      /* INFORMATION */
244 
245 //#define LOG_LEVEL LOG_INF
246 #define LOG_LEVEL	LOG_ERR
247 
248 //#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x
249 #define LOG(n,x)
250 
251 /* --------------------- subroutines  --------------------- */
252 
Limit(int val,int max,int min)253 INLINE int Limit( int val, int max, int min ) {
254 	if ( val > max )
255 		val = max;
256 	else if ( val < min )
257 		val = min;
258 
259 	return val;
260 }
261 
262 /* status set and IRQ handling */
OPL_STATUS_SET(FM_OPL * OPL,int flag)263 INLINE void OPL_STATUS_SET(FM_OPL *OPL,int flag)
264 {
265 	/* set status flag */
266 	OPL->status |= flag;
267 	if(!(OPL->status & 0x80))
268 	{
269 		if(OPL->status & OPL->statusmask)
270 		{	/* IRQ on */
271 			OPL->status |= 0x80;
272 			/* callback user interrupt handler (IRQ is OFF to ON) */
273 			if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,1);
274 		}
275 	}
276 }
277 
278 /* status reset and IRQ handling */
OPL_STATUS_RESET(FM_OPL * OPL,int flag)279 INLINE void OPL_STATUS_RESET(FM_OPL *OPL,int flag)
280 {
281 	/* reset status flag */
282 	OPL->status &=~flag;
283 	if((OPL->status & 0x80))
284 	{
285 		if (!(OPL->status & OPL->statusmask) )
286 		{
287 			OPL->status &= 0x7f;
288 			/* callback user interrupt handler (IRQ is ON to OFF) */
289 			if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0);
290 		}
291 	}
292 }
293 
294 /* IRQ mask set */
OPL_STATUSMASK_SET(FM_OPL * OPL,int flag)295 INLINE void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag)
296 {
297 	OPL->statusmask = flag;
298 	/* IRQ handling check */
299 	OPL_STATUS_SET(OPL,0);
300 	OPL_STATUS_RESET(OPL,0);
301 }
302 
303 /* ----- key on  ----- */
OPL_KEYON(OPL_SLOT * SLOT)304 INLINE void OPL_KEYON(OPL_SLOT *SLOT)
305 {
306 	/* sin wave restart */
307 	SLOT->Cnt = 0;
308 	/* set attack */
309 	SLOT->evm = ENV_MOD_AR;
310 	SLOT->evs = SLOT->evsa;
311 	SLOT->evc = EG_AST;
312 	SLOT->eve = EG_AED;
313 }
314 /* ----- key off ----- */
OPL_KEYOFF(OPL_SLOT * SLOT)315 INLINE void OPL_KEYOFF(OPL_SLOT *SLOT)
316 {
317 	if( SLOT->evm > ENV_MOD_RR)
318 	{
319 		/* set envelope counter from envleope output */
320 		SLOT->evm = ENV_MOD_RR;
321 		if( !(SLOT->evc&EG_DST) )
322 			//SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
323 			SLOT->evc = EG_DST;
324 		SLOT->eve = EG_DED;
325 		SLOT->evs = SLOT->evsr;
326 	}
327 }
328 
329 /* ---------- calcrate Envelope Generator & Phase Generator ---------- */
330 /* return : envelope output */
OPL_CALC_SLOT(OPL_SLOT * SLOT)331 INLINE UINT32 OPL_CALC_SLOT( OPL_SLOT *SLOT )
332 {
333 	/* calcrate envelope generator */
334 	if( (SLOT->evc+=SLOT->evs) >= SLOT->eve )
335 	{
336 		switch( SLOT->evm ){
337 		case ENV_MOD_AR: /* ATTACK -> DECAY1 */
338 			/* next DR */
339 			SLOT->evm = ENV_MOD_DR;
340 			SLOT->evc = EG_DST;
341 			SLOT->eve = SLOT->SL;
342 			SLOT->evs = SLOT->evsd;
343 			break;
344 		case ENV_MOD_DR: /* DECAY -> SL or RR */
345 			SLOT->evc = SLOT->SL;
346 			SLOT->eve = EG_DED;
347 			if(SLOT->eg_typ)
348 			{
349 				SLOT->evs = 0;
350 			}
351 			else
352 			{
353 				SLOT->evm = ENV_MOD_RR;
354 				SLOT->evs = SLOT->evsr;
355 			}
356 			break;
357 		case ENV_MOD_RR: /* RR -> OFF */
358 			SLOT->evc = EG_OFF;
359 			SLOT->eve = EG_OFF+1;
360 			SLOT->evs = 0;
361 			break;
362 		}
363 	}
364 	/* calcrate envelope */
365 	return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0);
366 }
367 
368 /* set algorythm connection */
set_algorythm(OPL_CH * CH)369 static void set_algorythm( OPL_CH *CH)
370 {
371 	INT32 *carrier = &outd[0];
372 	CH->connect1 = CH->CON ? carrier : &feedback2;
373 	CH->connect2 = carrier;
374 }
375 
376 /* ---------- frequency counter for operater update ---------- */
CALC_FCSLOT(OPL_CH * CH,OPL_SLOT * SLOT)377 INLINE void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT)
378 {
379 	int ksr;
380 
381 	/* frequency step counter */
382 	SLOT->Incr = CH->fc * SLOT->mul;
383 	ksr = CH->kcode >> SLOT->KSR;
384 
385 	if( SLOT->ksr != ksr )
386 	{
387 		SLOT->ksr = ksr;
388 		/* attack , decay rate recalcration */
389 		SLOT->evsa = SLOT->AR[ksr];
390 		SLOT->evsd = SLOT->DR[ksr];
391 		SLOT->evsr = SLOT->RR[ksr];
392 	}
393 	SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
394 }
395 
396 /* set multi,am,vib,EG-TYP,KSR,mul */
set_mul(FM_OPL * OPL,int slot,int v)397 INLINE void set_mul(FM_OPL *OPL,int slot,int v)
398 {
399 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
400 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
401 
402 	SLOT->mul    = MUL_TABLE[v&0x0f];
403 	SLOT->KSR    = (v&0x10) ? 0 : 2;
404 	SLOT->eg_typ = (v&0x20)>>5;
405 	SLOT->vib    = (v&0x40);
406 	SLOT->ams    = (v&0x80);
407 	CALC_FCSLOT(CH,SLOT);
408 }
409 
410 /* set ksl & tl */
set_ksl_tl(FM_OPL * OPL,int slot,int v)411 INLINE void set_ksl_tl(FM_OPL *OPL,int slot,int v)
412 {
413 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
414 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
415 	int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */
416 
417 	SLOT->ksl = ksl ? 3-ksl : 31;
418 	SLOT->TL  = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */
419 
420 	if( !(OPL->mode&0x80) )
421 	{	/* not CSM latch total level */
422 		SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
423 	}
424 }
425 
426 /* set attack rate & decay rate  */
set_ar_dr(FM_OPL * OPL,int slot,int v)427 INLINE void set_ar_dr(FM_OPL *OPL,int slot,int v)
428 {
429 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
430 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
431 	int ar = v>>4;
432 	int dr = v&0x0f;
433 
434 	SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0;
435 	SLOT->evsa = SLOT->AR[SLOT->ksr];
436 	if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa;
437 
438 	SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
439 	SLOT->evsd = SLOT->DR[SLOT->ksr];
440 	if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd;
441 }
442 
443 /* set sustain level & release rate */
set_sl_rr(FM_OPL * OPL,int slot,int v)444 INLINE void set_sl_rr(FM_OPL *OPL,int slot,int v)
445 {
446 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
447 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
448 	int sl = v>>4;
449 	int rr = v & 0x0f;
450 
451 	SLOT->SL = SL_TABLE[sl];
452 	if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL;
453 	SLOT->RR = &OPL->DR_TABLE[rr<<2];
454 	SLOT->evsr = SLOT->RR[SLOT->ksr];
455 	if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr;
456 }
457 
458 /* operator output calcrator */
459 #define OP_OUT(slot,env,con)   slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
460 /* ---------- calcrate one of channel ---------- */
OPL_CALC_CH(OPL_CH * CH)461 INLINE void OPL_CALC_CH( OPL_CH *CH )
462 {
463 	UINT32 env_out;
464 	OPL_SLOT *SLOT;
465 
466 	feedback2 = 0;
467 	/* SLOT 1 */
468 	SLOT = &CH->SLOT[SLOT1];
469 	env_out=OPL_CALC_SLOT(SLOT);
470 	if( env_out < EG_ENT-1 )
471 	{
472 		/* PG */
473 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
474 		else          SLOT->Cnt += SLOT->Incr;
475 		/* connectoion */
476 		if(CH->FB)
477 		{
478 			int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB;
479 			CH->op1_out[1] = CH->op1_out[0];
480 			*CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
481 		}
482 		else
483 		{
484 			*CH->connect1 += OP_OUT(SLOT,env_out,0);
485 		}
486 	}else
487 	{
488 		CH->op1_out[1] = CH->op1_out[0];
489 		CH->op1_out[0] = 0;
490 	}
491 	/* SLOT 2 */
492 	SLOT = &CH->SLOT[SLOT2];
493 	env_out=OPL_CALC_SLOT(SLOT);
494 	if( env_out < EG_ENT-1 )
495 	{
496 		/* PG */
497 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
498 		else          SLOT->Cnt += SLOT->Incr;
499 		/* connectoion */
500 		outd[0] += OP_OUT(SLOT,env_out, feedback2);
501 	}
502 }
503 
504 /* ---------- calcrate rythm block ---------- */
505 #define WHITE_NOISE_db 6.0
OPL_CALC_RH(OPL_CH * CH)506 INLINE void OPL_CALC_RH( OPL_CH *CH )
507 {
508 	UINT32 env_tam,env_sd,env_top,env_hh;
509 	int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP);
510 	INT32 tone8;
511 
512 	OPL_SLOT *SLOT;
513 	int env_out;
514 
515 	/* BD : same as FM serial mode and output level is large */
516 	feedback2 = 0;
517 	/* SLOT 1 */
518 	SLOT = &CH[6].SLOT[SLOT1];
519 	env_out=OPL_CALC_SLOT(SLOT);
520 	if( env_out < EG_ENT-1 )
521 	{
522 		/* PG */
523 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
524 		else          SLOT->Cnt += SLOT->Incr;
525 		/* connectoion */
526 		if(CH[6].FB)
527 		{
528 			int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB;
529 			CH[6].op1_out[1] = CH[6].op1_out[0];
530 			feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
531 		}
532 		else
533 		{
534 			feedback2 = OP_OUT(SLOT,env_out,0);
535 		}
536 	}else
537 	{
538 		feedback2 = 0;
539 		CH[6].op1_out[1] = CH[6].op1_out[0];
540 		CH[6].op1_out[0] = 0;
541 	}
542 	/* SLOT 2 */
543 	SLOT = &CH[6].SLOT[SLOT2];
544 	env_out=OPL_CALC_SLOT(SLOT);
545 	if( env_out < EG_ENT-1 )
546 	{
547 		/* PG */
548 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
549 		else          SLOT->Cnt += SLOT->Incr;
550 		/* connectoion */
551 		outd[0] += OP_OUT(SLOT,env_out, feedback2)*2;
552 	}
553 
554 	// SD  (17) = mul14[fnum7] + white noise
555 	// TAM (15) = mul15[fnum8]
556 	// TOP (18) = fnum6(mul18[fnum8]+whitenoise)
557 	// HH  (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
558 	env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise;
559 	env_tam=OPL_CALC_SLOT(SLOT8_1);
560 	env_top=OPL_CALC_SLOT(SLOT8_2);
561 	env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise;
562 
563 	/* PG */
564 	if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE);
565 	else             SLOT7_1->Cnt += 2*SLOT7_1->Incr;
566 	if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE);
567 	else             SLOT7_2->Cnt += (CH[7].fc*8);
568 	if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE);
569 	else             SLOT8_1->Cnt += SLOT8_1->Incr;
570 	if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE);
571 	else             SLOT8_2->Cnt += (CH[8].fc*48);
572 
573 	tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
574 
575 	/* SD */
576 	if( env_sd < EG_ENT-1 )
577 		outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8;
578 	/* TAM */
579 	if( env_tam < EG_ENT-1 )
580 		outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2;
581 	/* TOP-CY */
582 	if( env_top < EG_ENT-1 )
583 		outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2;
584 	/* HH */
585 	if( env_hh  < EG_ENT-1 )
586 		outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2;
587 }
588 
589 /* ----------- initialize time tabls ----------- */
init_timetables(FM_OPL * OPL,int ARRATE,int DRRATE)590 static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE )
591 {
592 	int i;
593 	double rate;
594 
595 	/* make attack rate & decay rate tables */
596 	for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
597 	for (i = 4;i <= 60;i++){
598 		rate  = OPL->freqbase;						/* frequency rate */
599 		if( i < 60 ) rate *= 1.0+(i&3)*0.25;		/* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
600 		rate *= 1<<((i>>2)-1);						/* b2-5 : shift bit */
601 		rate *= (double)(EG_ENT<<ENV_BITS);
602 		OPL->AR_TABLE[i] = rate / ARRATE;
603 		OPL->DR_TABLE[i] = rate / DRRATE;
604 	}
605 	for (i = 60;i < 75;i++)
606 	{
607 		OPL->AR_TABLE[i] = EG_AED-1;
608 		OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
609 	}
610 #if 0
611 	for (i = 0;i < 64 ;i++){	/* make for overflow area */
612 		LOG(LOG_WAR,("rate %2d , ar %f ms , dr %f ms \n",i,
613 			((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate),
614 			((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) ));
615 	}
616 #endif
617 }
618 
619 /* ---------- generic table initialize ---------- */
OPLOpenTable(void)620 static int OPLOpenTable( void )
621 {
622 	int s,t;
623 	double rate;
624 	int i,j;
625 	double pom;
626 
627 	/* allocate dynamic tables */
628 	if( (TL_TABLE = malloc(TL_MAX*2*sizeof(INT32))) == NULL)
629 		return 0;
630 	if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(INT32 *))) == NULL)
631 	{
632 		free(TL_TABLE);
633 		return 0;
634 	}
635 	if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(INT32))) == NULL)
636 	{
637 		free(TL_TABLE);
638 		free(SIN_TABLE);
639 		return 0;
640 	}
641 	if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(INT32))) == NULL)
642 	{
643 		free(TL_TABLE);
644 		free(SIN_TABLE);
645 		free(AMS_TABLE);
646 		return 0;
647 	}
648 	/* make total level table */
649 	for (t = 0;t < EG_ENT-1 ;t++){
650 		rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20);	/* dB -> voltage */
651 		TL_TABLE[       t] =  (int)rate;
652 		TL_TABLE[TL_MAX+t] = -TL_TABLE[t];
653 /*		LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/
654 	}
655 	/* fill volume off area */
656 	for ( t = EG_ENT-1; t < TL_MAX ;t++){
657 		TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0;
658 	}
659 
660 	/* make sinwave table (total level offet) */
661 	/* degree 0 = degree 180                   = off */
662 	SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2]         = &TL_TABLE[EG_ENT-1];
663 	for (s = 1;s <= SIN_ENT/4;s++){
664 		pom = sin(2*PI*s/SIN_ENT); /* sin     */
665 		pom = 20*log10(1/pom);	   /* decibel */
666 		j = pom / EG_STEP;         /* TL_TABLE steps */
667 
668         /* degree 0   -  90    , degree 180 -  90 : plus section */
669 		SIN_TABLE[          s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j];
670         /* degree 180 - 270    , degree 360 - 270 : minus section */
671 		SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT  -s] = &TL_TABLE[TL_MAX+j];
672 /*		LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/
673 	}
674 	for (s = 0;s < SIN_ENT;s++)
675 	{
676 		SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
677 		SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)];
678 		SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s];
679 	}
680 
681 	/* envelope counter -> envelope output table */
682 	for (i=0; i<EG_ENT; i++)
683 	{
684 		/* ATTACK curve */
685 		pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT;
686 		/* if( pom >= EG_ENT ) pom = EG_ENT-1; */
687 		ENV_CURVE[i] = (int)pom;
688 		/* DECAY ,RELEASE curve */
689 		ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i;
690 	}
691 	/* off */
692 	ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1;
693 	/* make LFO ams table */
694 	for (i=0; i<AMS_ENT; i++)
695 	{
696 		pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */
697 		AMS_TABLE[i]         = (1.0/EG_STEP)*pom; /* 1dB   */
698 		AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */
699 	}
700 	/* make LFO vibrate table */
701 	for (i=0; i<VIB_ENT; i++)
702 	{
703 		/* 100cent = 1seminote = 6% ?? */
704 		pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */
705 		VIB_TABLE[i]         = VIB_RATE + (pom*0.07); /* +- 7cent */
706 		VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */
707 		/* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */
708 	}
709 	return 1;
710 }
711 
712 
OPLCloseTable(void)713 static void OPLCloseTable( void )
714 {
715 	free(TL_TABLE);
716 	free(SIN_TABLE);
717 	free(AMS_TABLE);
718 	free(VIB_TABLE);
719 }
720 
721 /* CSM Key Controll */
CSMKeyControll(OPL_CH * CH)722 INLINE void CSMKeyControll(OPL_CH *CH)
723 {
724 	OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
725 	OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
726 	/* all key off */
727 	OPL_KEYOFF(slot1);
728 	OPL_KEYOFF(slot2);
729 	/* total level latch */
730 	slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
731 	slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
732 	/* key on */
733 	CH->op1_out[0] = CH->op1_out[1] = 0;
734 	OPL_KEYON(slot1);
735 	OPL_KEYON(slot2);
736 }
737 
738 /* ---------- opl initialize ---------- */
OPL_initalize(FM_OPL * OPL)739 static void OPL_initalize(FM_OPL *OPL)
740 {
741 	int fn;
742 
743 	/* frequency base */
744 	OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72  : 0;
745 	/* Timer base time */
746 	OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 );
747 	/* make time tables */
748 	init_timetables( OPL , OPL_ARRATE , OPL_DRRATE );
749 	/* make fnumber -> increment counter table */
750 	for( fn=0 ; fn < 1024 ; fn++ )
751 	{
752 		OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2;
753 	}
754 	/* LFO freq.table */
755 	OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0;
756 	OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0;
757 }
758 
759 /* ---------- write a OPL registers ---------- */
OPLWriteReg(FM_OPL * OPL,int r,int v)760 static void OPLWriteReg(FM_OPL *OPL, int r, int v)
761 {
762 	OPL_CH *CH;
763 	int slot;
764 	int block_fnum;
765 
766 	switch(r&0xe0)
767 	{
768 	case 0x00: /* 00-1f:controll */
769 		switch(r&0x1f)
770 		{
771 		case 0x01:
772 			/* wave selector enable */
773 			if(OPL->type&OPL_TYPE_WAVESEL)
774 			{
775 				OPL->wavesel = v&0x20;
776 				if(!OPL->wavesel)
777 				{
778 					/* preset compatible mode */
779 					int c;
780 					for(c=0;c<OPL->max_ch;c++)
781 					{
782 						OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
783 						OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
784 					}
785 				}
786 			}
787 			return;
788 		case 0x02:	/* Timer 1 */
789 			OPL->T[0] = (256-v)*4;
790 			break;
791 		case 0x03:	/* Timer 2 */
792 			OPL->T[1] = (256-v)*16;
793 			return;
794 		case 0x04:	/* IRQ clear / mask and Timer enable */
795 			if(v&0x80)
796 			{	/* IRQ flag clear */
797 				OPL_STATUS_RESET(OPL,0x7f);
798 			}
799 			else
800 			{	/* set IRQ mask ,timer enable*/
801 				UINT8 st1 = v&1;
802 				UINT8 st2 = (v>>1)&1;
803 				/* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
804 				OPL_STATUS_RESET(OPL,v&0x78);
805 				OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01);
806 				/* timer 2 */
807 				if(OPL->st[1] != st2)
808 				{
809 					double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0;
810 					OPL->st[1] = st2;
811 					if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+1,interval);
812 				}
813 				/* timer 1 */
814 				if(OPL->st[0] != st1)
815 				{
816 					double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0;
817 					OPL->st[0] = st1;
818 					if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+0,interval);
819 				}
820 			}
821 			return;
822 #if BUILD_Y8950
823 		case 0x06:		/* Key Board OUT */
824 			if(OPL->type&OPL_TYPE_KEYBOARD)
825 			{
826 				if(OPL->keyboardhandler_w)
827 					OPL->keyboardhandler_w(OPL->keyboard_param,v);
828 				else
829 					LOG(LOG_WAR,("OPL:write unmapped KEYBOARD port\n"));
830 			}
831 			return;
832 		case 0x07:	/* DELTA-T controll : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */
833 			if(OPL->type&OPL_TYPE_ADPCM)
834 				YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
835 			return;
836 		case 0x08:	/* MODE,DELTA-T : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */
837 			OPL->mode = v;
838 			v&=0x1f;	/* for DELTA-T unit */
839 		case 0x09:		/* START ADD */
840 		case 0x0a:
841 		case 0x0b:		/* STOP ADD  */
842 		case 0x0c:
843 		case 0x0d:		/* PRESCALE   */
844 		case 0x0e:
845 		case 0x0f:		/* ADPCM data */
846 		case 0x10: 		/* DELTA-N    */
847 		case 0x11: 		/* DELTA-N    */
848 		case 0x12: 		/* EG-CTRL    */
849 			if(OPL->type&OPL_TYPE_ADPCM)
850 				YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
851 			return;
852 #if 0
853 		case 0x15:		/* DAC data    */
854 		case 0x16:
855 		case 0x17:		/* SHIFT    */
856 			return;
857 		case 0x18:		/* I/O CTRL (Direction) */
858 			if(OPL->type&OPL_TYPE_IO)
859 				OPL->portDirection = v&0x0f;
860 			return;
861 		case 0x19:		/* I/O DATA */
862 			if(OPL->type&OPL_TYPE_IO)
863 			{
864 				OPL->portLatch = v;
865 				if(OPL->porthandler_w)
866 					OPL->porthandler_w(OPL->port_param,v&OPL->portDirection);
867 			}
868 			return;
869 		case 0x1a:		/* PCM data */
870 			return;
871 #endif
872 #endif
873 		}
874 		break;
875 	case 0x20:	/* am,vib,ksr,eg type,mul */
876 		slot = slot_array[r&0x1f];
877 		if(slot == -1) return;
878 		set_mul(OPL,slot,v);
879 		return;
880 	case 0x40:
881 		slot = slot_array[r&0x1f];
882 		if(slot == -1) return;
883 		set_ksl_tl(OPL,slot,v);
884 		return;
885 	case 0x60:
886 		slot = slot_array[r&0x1f];
887 		if(slot == -1) return;
888 		set_ar_dr(OPL,slot,v);
889 		return;
890 	case 0x80:
891 		slot = slot_array[r&0x1f];
892 		if(slot == -1) return;
893 		set_sl_rr(OPL,slot,v);
894 		return;
895 	case 0xa0:
896 		switch(r)
897 		{
898 		case 0xbd:
899 			/* amsep,vibdep,r,bd,sd,tom,tc,hh */
900 			{
901 			UINT8 rkey = OPL->rythm^v;
902 			OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0];
903 			OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0];
904 			OPL->rythm  = v&0x3f;
905 			if(OPL->rythm&0x20)
906 			{
907 #if 0
908 				usrintf_showmessage("OPL Rythm mode select");
909 #endif
910 				/* BD key on/off */
911 				if(rkey&0x10)
912 				{
913 					if(v&0x10)
914 					{
915 						OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
916 						OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
917 						OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
918 					}
919 					else
920 					{
921 						OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
922 						OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
923 					}
924 				}
925 				/* SD key on/off */
926 				if(rkey&0x08)
927 				{
928 					if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
929 					else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
930 				}/* TAM key on/off */
931 				if(rkey&0x04)
932 				{
933 					if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
934 					else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
935 				}
936 				/* TOP-CY key on/off */
937 				if(rkey&0x02)
938 				{
939 					if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
940 					else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
941 				}
942 				/* HH key on/off */
943 				if(rkey&0x01)
944 				{
945 					if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
946 					else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
947 				}
948 			}
949 			}
950 			return;
951 		}
952 		/* keyon,block,fnum */
953 		if( (r&0x0f) > 8) return;
954 		CH = &OPL->P_CH[r&0x0f];
955 		if(!(r&0x10))
956 		{	/* a0-a8 */
957 			block_fnum  = (CH->block_fnum&0x1f00) | v;
958 		}
959 		else
960 		{	/* b0-b8 */
961 			int keyon = (v>>5)&1;
962 			block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
963 			if(CH->keyon != keyon)
964 			{
965 				if( (CH->keyon=keyon) )
966 				{
967 					CH->op1_out[0] = CH->op1_out[1] = 0;
968 					OPL_KEYON(&CH->SLOT[SLOT1]);
969 					OPL_KEYON(&CH->SLOT[SLOT2]);
970 				}
971 				else
972 				{
973 					OPL_KEYOFF(&CH->SLOT[SLOT1]);
974 					OPL_KEYOFF(&CH->SLOT[SLOT2]);
975 				}
976 			}
977 		}
978 		/* update */
979 		if((int)CH->block_fnum != block_fnum)
980 		{
981 			int blockRv = 7-(block_fnum>>10);
982 			int fnum   = block_fnum&0x3ff;
983 			CH->block_fnum = block_fnum;
984 
985 			CH->ksl_base = KSL_TABLE[block_fnum>>6];
986 			CH->fc = OPL->FN_TABLE[fnum]>>blockRv;
987 			CH->kcode = CH->block_fnum>>9;
988 			if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1;
989 			CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
990 			CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
991 		}
992 		return;
993 	case 0xc0:
994 		/* FB,C */
995 		if( (r&0x0f) > 8) return;
996 		CH = &OPL->P_CH[r&0x0f];
997 		{
998 		int feedback = (v>>1)&7;
999 		CH->FB   = feedback ? (8+1) - feedback : 0;
1000 		CH->CON = v&1;
1001 		set_algorythm(CH);
1002 		}
1003 		return;
1004 	case 0xe0: /* wave type */
1005 		slot = slot_array[r&0x1f];
1006 		if(slot == -1) return;
1007 		CH = &OPL->P_CH[slot/2];
1008 		if(OPL->wavesel)
1009 		{
1010 			/* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */
1011 			CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT];
1012 		}
1013 		return;
1014 	}
1015 }
1016 
1017 /* lock/unlock for common table */
OPL_LockTable(void)1018 static int OPL_LockTable(void)
1019 {
1020 	num_lock++;
1021 	if(num_lock>1) return 0;
1022 	/* first time */
1023 	cur_chip = NULL;
1024 	/* allocate total level table (128kb space) */
1025 	if( !OPLOpenTable() )
1026 	{
1027 		num_lock--;
1028 		return -1;
1029 	}
1030 	return 0;
1031 }
1032 
OPL_UnLockTable(void)1033 static void OPL_UnLockTable(void)
1034 {
1035 	if(num_lock) num_lock--;
1036 	if(num_lock) return;
1037 	/* last time */
1038 	cur_chip = NULL;
1039 	OPLCloseTable();
1040 }
1041 
1042 #if (BUILD_YM3812 || BUILD_YM3526)
1043 /*******************************************************************************/
1044 /*		YM3812 local section                                                   */
1045 /*******************************************************************************/
1046 
1047 /* ---------- update one of chip ----------- */
YM3812UpdateOne(FM_OPL * OPL,INT16 * buffer,int length)1048 void YM3812UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
1049 {
1050     int i;
1051 	int data;
1052 	OPLSAMPLE *buf = buffer;
1053 	UINT32 amsCnt  = OPL->amsCnt;
1054 	UINT32 vibCnt  = OPL->vibCnt;
1055 	UINT8 rythm = OPL->rythm&0x20;
1056 	OPL_CH *CH,*R_CH;
1057 
1058 	if( (void *)OPL != cur_chip ){
1059 		cur_chip = (void *)OPL;
1060 		/* channel pointers */
1061 		S_CH = OPL->P_CH;
1062 		E_CH = &S_CH[9];
1063 		/* rythm slot */
1064 		SLOT7_1 = &S_CH[7].SLOT[SLOT1];
1065 		SLOT7_2 = &S_CH[7].SLOT[SLOT2];
1066 		SLOT8_1 = &S_CH[8].SLOT[SLOT1];
1067 		SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1068 		/* LFO state */
1069 		amsIncr = OPL->amsIncr;
1070 		vibIncr = OPL->vibIncr;
1071 		ams_table = OPL->ams_table;
1072 		vib_table = OPL->vib_table;
1073 	}
1074 	R_CH = rythm ? &S_CH[6] : E_CH;
1075     for( i=0; i < length ; i++ )
1076 	{
1077 		/*            channel A         channel B         channel C      */
1078 		/* LFO */
1079 		ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1080 		vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1081 		outd[0] = 0;
1082 		/* FM part */
1083 		for(CH=S_CH ; CH < R_CH ; CH++)
1084 			OPL_CALC_CH(CH);
1085 		/* Rythn part */
1086 		if(rythm)
1087 			OPL_CALC_RH(S_CH);
1088 		/* limit check */
1089 		data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1090 		/* store to sound buffer */
1091 		buf[i] = data >> OPL_OUTSB;
1092 	}
1093 
1094 	OPL->amsCnt = amsCnt;
1095 	OPL->vibCnt = vibCnt;
1096 #ifdef OPL_OUTPUT_LOG
1097 	if(opl_dbg_fp)
1098 	{
1099 		for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1100 			if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1101 		fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256);
1102 	}
1103 #endif
1104 }
1105 #endif /* (BUILD_YM3812 || BUILD_YM3526) */
1106 
1107 #if BUILD_Y8950
1108 
Y8950UpdateOne(FM_OPL * OPL,INT16 * buffer,int length)1109 void Y8950UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
1110 {
1111     int i;
1112 	int data;
1113 	OPLSAMPLE *buf = buffer;
1114 	UINT32 amsCnt  = OPL->amsCnt;
1115 	UINT32 vibCnt  = OPL->vibCnt;
1116 	UINT8 rythm = OPL->rythm&0x20;
1117 	OPL_CH *CH,*R_CH;
1118 	YM_DELTAT *DELTAT = OPL->deltat;
1119 
1120 	/* setup DELTA-T unit */
1121 	YM_DELTAT_DECODE_PRESET(DELTAT);
1122 
1123 	if( (void *)OPL != cur_chip ){
1124 		cur_chip = (void *)OPL;
1125 		/* channel pointers */
1126 		S_CH = OPL->P_CH;
1127 		E_CH = &S_CH[9];
1128 		/* rythm slot */
1129 		SLOT7_1 = &S_CH[7].SLOT[SLOT1];
1130 		SLOT7_2 = &S_CH[7].SLOT[SLOT2];
1131 		SLOT8_1 = &S_CH[8].SLOT[SLOT1];
1132 		SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1133 		/* LFO state */
1134 		amsIncr = OPL->amsIncr;
1135 		vibIncr = OPL->vibIncr;
1136 		ams_table = OPL->ams_table;
1137 		vib_table = OPL->vib_table;
1138 	}
1139 	R_CH = rythm ? &S_CH[6] : E_CH;
1140     for( i=0; i < length ; i++ )
1141 	{
1142 		/*            channel A         channel B         channel C      */
1143 		/* LFO */
1144 		ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1145 		vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1146 		outd[0] = 0;
1147 		/* deltaT ADPCM */
1148 		if( DELTAT->portstate )
1149 			YM_DELTAT_ADPCM_CALC(DELTAT);
1150 		/* FM part */
1151 		for(CH=S_CH ; CH < R_CH ; CH++)
1152 			OPL_CALC_CH(CH);
1153 		/* Rythn part */
1154 		if(rythm)
1155 			OPL_CALC_RH(S_CH);
1156 		/* limit check */
1157 		data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1158 		/* store to sound buffer */
1159 		buf[i] = data >> OPL_OUTSB;
1160 	}
1161 	OPL->amsCnt = amsCnt;
1162 	OPL->vibCnt = vibCnt;
1163 	/* deltaT START flag */
1164 	if( !DELTAT->portstate )
1165 		OPL->status &= 0xfe;
1166 }
1167 #endif
1168 
1169 /* ---------- reset one of chip ---------- */
OPLResetChip(FM_OPL * OPL)1170 void OPLResetChip(FM_OPL *OPL)
1171 {
1172 	int c,s;
1173 	int i;
1174 
1175 	/* reset chip */
1176 	OPL->mode   = 0;	/* normal mode */
1177 	OPL_STATUS_RESET(OPL,0x7f);
1178 	/* reset with register write */
1179 	OPLWriteReg(OPL,0x01,0); /* wabesel disable */
1180 	OPLWriteReg(OPL,0x02,0); /* Timer1 */
1181 	OPLWriteReg(OPL,0x03,0); /* Timer2 */
1182 	OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */
1183 	for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0);
1184 	/* reset OPerator paramater */
1185 	for( c = 0 ; c < OPL->max_ch ; c++ )
1186 	{
1187 		OPL_CH *CH = &OPL->P_CH[c];
1188 		/* OPL->P_CH[c].PAN = OPN_CENTER; */
1189 		for(s = 0 ; s < 2 ; s++ )
1190 		{
1191 			/* wave table */
1192 			CH->SLOT[s].wavetable = &SIN_TABLE[0];
1193 			/* CH->SLOT[s].evm = ENV_MOD_RR; */
1194 			CH->SLOT[s].evc = EG_OFF;
1195 			CH->SLOT[s].eve = EG_OFF+1;
1196 			CH->SLOT[s].evs = 0;
1197 		}
1198 	}
1199 #if BUILD_Y8950
1200 	if(OPL->type&OPL_TYPE_ADPCM)
1201 	{
1202 		YM_DELTAT *DELTAT = OPL->deltat;
1203 
1204 		DELTAT->freqbase = OPL->freqbase;
1205 		DELTAT->output_pointer = outd;
1206 		DELTAT->portshift = 5;
1207 		DELTAT->output_range = DELTAT_MIXING_LEVEL<<TL_BITS;
1208 		YM_DELTAT_ADPCM_Reset(DELTAT,0);
1209 	}
1210 #endif
1211 }
1212 
1213 /* ----------  Create one of vietual YM3812 ----------       */
1214 /* 'rate'  is sampling rate and 'bufsiz' is the size of the  */
OPLCreate(int type,int clock,int rate)1215 FM_OPL *OPLCreate(int type, int clock, int rate)
1216 {
1217 	char *ptr;
1218 	FM_OPL *OPL;
1219 	int state_size;
1220 	int max_ch = 9; /* normaly 9 channels */
1221 
1222 	if( OPL_LockTable() ==-1) return NULL;
1223 	/* allocate OPL state space */
1224 	state_size  = sizeof(FM_OPL);
1225 	state_size += sizeof(OPL_CH)*max_ch;
1226 #if BUILD_Y8950
1227 	if(type&OPL_TYPE_ADPCM) state_size+= sizeof(YM_DELTAT);
1228 #endif
1229 	/* allocate memory block */
1230 	ptr = malloc(state_size);
1231 	if(ptr==NULL) return NULL;
1232 	/* clear */
1233 	memset(ptr,0,state_size);
1234 	OPL        = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL);
1235 	OPL->P_CH  = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch;
1236 #if BUILD_Y8950
1237 	if(type&OPL_TYPE_ADPCM) OPL->deltat = (YM_DELTAT *)ptr; ptr+=sizeof(YM_DELTAT);
1238 #endif
1239 	/* set channel state pointer */
1240 	OPL->type  = type;
1241 	OPL->clock = clock;
1242 	OPL->rate  = rate;
1243 	OPL->max_ch = max_ch;
1244 	/* init grobal tables */
1245 	OPL_initalize(OPL);
1246 	/* reset chip */
1247 	OPLResetChip(OPL);
1248 #ifdef OPL_OUTPUT_LOG
1249 	if(!opl_dbg_fp)
1250 	{
1251 		opl_dbg_fp = fopen("opllog.opl","wb");
1252 		opl_dbg_maxchip = 0;
1253 	}
1254 	if(opl_dbg_fp)
1255 	{
1256 		opl_dbg_opl[opl_dbg_maxchip] = OPL;
1257 		fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip,
1258 			type,
1259 			clock&0xff,
1260 			(clock/0x100)&0xff,
1261 			(clock/0x10000)&0xff,
1262 			(clock/0x1000000)&0xff);
1263 		opl_dbg_maxchip++;
1264 	}
1265 #endif
1266 	return OPL;
1267 }
1268 
1269 /* ----------  Destroy one of vietual YM3812 ----------       */
OPLDestroy(FM_OPL * OPL)1270 void OPLDestroy(FM_OPL *OPL)
1271 {
1272 	if(!OPL)
1273 	{
1274 		return;
1275 	}
1276 #ifdef OPL_OUTPUT_LOG
1277 	if(opl_dbg_fp)
1278 	{
1279 		fclose(opl_dbg_fp);
1280 		opl_dbg_fp = NULL;
1281 	}
1282 #endif
1283 	OPL_UnLockTable();
1284 	free(OPL);
1285 }
1286 
1287 /* ----------  Option handlers ----------       */
1288 
OPLSetTimerHandler(FM_OPL * OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset)1289 void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset)
1290 {
1291 	OPL->TimerHandler   = TimerHandler;
1292 	OPL->TimerParam = channelOffset;
1293 }
OPLSetIRQHandler(FM_OPL * OPL,OPL_IRQHANDLER IRQHandler,int param)1294 void OPLSetIRQHandler(FM_OPL *OPL,OPL_IRQHANDLER IRQHandler,int param)
1295 {
1296 	OPL->IRQHandler     = IRQHandler;
1297 	OPL->IRQParam = param;
1298 }
OPLSetUpdateHandler(FM_OPL * OPL,OPL_UPDATEHANDLER UpdateHandler,int param)1299 void OPLSetUpdateHandler(FM_OPL *OPL,OPL_UPDATEHANDLER UpdateHandler,int param)
1300 {
1301 	OPL->UpdateHandler = UpdateHandler;
1302 	OPL->UpdateParam = param;
1303 }
1304 #if BUILD_Y8950
OPLSetPortHandler(FM_OPL * OPL,OPL_PORTHANDLER_W PortHandler_w,OPL_PORTHANDLER_R PortHandler_r,int param)1305 void OPLSetPortHandler(FM_OPL *OPL,OPL_PORTHANDLER_W PortHandler_w,OPL_PORTHANDLER_R PortHandler_r,int param)
1306 {
1307 	OPL->porthandler_w = PortHandler_w;
1308 	OPL->porthandler_r = PortHandler_r;
1309 	OPL->port_param = param;
1310 }
1311 
OPLSetKeyboardHandler(FM_OPL * OPL,OPL_PORTHANDLER_W KeyboardHandler_w,OPL_PORTHANDLER_R KeyboardHandler_r,int param)1312 void OPLSetKeyboardHandler(FM_OPL *OPL,OPL_PORTHANDLER_W KeyboardHandler_w,OPL_PORTHANDLER_R KeyboardHandler_r,int param)
1313 {
1314 	OPL->keyboardhandler_w = KeyboardHandler_w;
1315 	OPL->keyboardhandler_r = KeyboardHandler_r;
1316 	OPL->keyboard_param = param;
1317 }
1318 #endif
1319 /* ---------- YM3812 I/O interface ---------- */
OPLWrite(FM_OPL * OPL,int a,int v)1320 int OPLWrite(FM_OPL *OPL,int a,int v)
1321 {
1322 	if( !(a&1) )
1323 	{	/* address port */
1324 		OPL->address = v & 0xff;
1325 	}
1326 	else
1327 	{	/* data port */
1328 		if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
1329 #ifdef OPL_OUTPUT_LOG
1330 	if(opl_dbg_fp)
1331 	{
1332 		for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1333 			if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1334 		fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v);
1335 	}
1336 #endif
1337 		OPLWriteReg(OPL,OPL->address,v);
1338 	}
1339 	return OPL->status>>7;
1340 }
1341 
OPLRead(FM_OPL * OPL,int a)1342 unsigned char OPLRead(FM_OPL *OPL,int a)
1343 {
1344 	if( !(a&1) )
1345 	{	/* status port */
1346 		return OPL->status & (OPL->statusmask|0x80);
1347 	}
1348 	/* data port */
1349 	switch(OPL->address)
1350 	{
1351 	case 0x05: /* KeyBoard IN */
1352 		if(OPL->type&OPL_TYPE_KEYBOARD)
1353 		{
1354 			if(OPL->keyboardhandler_r)
1355 				return OPL->keyboardhandler_r(OPL->keyboard_param);
1356 			else
1357 			{
1358 				LOG(LOG_WAR,("OPL:read unmapped KEYBOARD port\n"));
1359 			}
1360 		}
1361 		return 0;
1362 #if 0
1363 	case 0x0f: /* ADPCM-DATA  */
1364 		return 0;
1365 #endif
1366 	case 0x19: /* I/O DATA    */
1367 		if(OPL->type&OPL_TYPE_IO)
1368 		{
1369 			if(OPL->porthandler_r)
1370 				return OPL->porthandler_r(OPL->port_param);
1371 			else
1372 			{
1373 				LOG(LOG_WAR,("OPL:read unmapped I/O port\n"));
1374 			}
1375 		}
1376 		return 0;
1377 	case 0x1a: /* PCM-DATA    */
1378 		return 0;
1379 	}
1380 	return 0;
1381 }
1382 
OPLTimerOver(FM_OPL * OPL,int c)1383 int OPLTimerOver(FM_OPL *OPL,int c)
1384 {
1385 	if( c )
1386 	{	/* Timer B */
1387 		OPL_STATUS_SET(OPL,0x20);
1388 	}
1389 	else
1390 	{	/* Timer A */
1391 		OPL_STATUS_SET(OPL,0x40);
1392 		/* CSM mode key,TL controll */
1393 		if( OPL->mode & 0x80 )
1394 		{	/* CSM mode total level latch and auto key on */
1395 			int ch;
1396 			if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
1397 			for(ch=0;ch<9;ch++)
1398 				CSMKeyControll( &OPL->P_CH[ch] );
1399 		}
1400 	}
1401 	/* reload timer */
1402 	if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+c,(double)OPL->T[c]*OPL->TimerBase);
1403 	return OPL->status>>7;
1404 }
1405