1 // Copyright 2015-2017 Brian Smith.
2 //
3 // Permission to use, copy, modify, and/or distribute this software for any
4 // purpose with or without fee is hereby granted, provided that the above
5 // copyright notice and this permission notice appear in all copies.
6 //
7 // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
8 // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9 // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
10 // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11 // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12 // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13 // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
14 
15 //! Elliptic curve operations on the birationally equivalent curves Curve25519
16 //! and Edwards25519.
17 
18 pub use super::scalar::{MaskedScalar, Scalar, SCALAR_LEN};
19 use crate::{
20     bssl, error,
21     limb::{Limb, LIMB_BITS},
22 };
23 use core::marker::PhantomData;
24 
25 // Elem<T>` is `fe` in curve25519/internal.h.
26 // Elem<L> is `fe_loose` in curve25519/internal.h.
27 // Keep this in sync with curve25519/internal.h.
28 #[repr(C)]
29 pub struct Elem<E: Encoding> {
30     limbs: [Limb; ELEM_LIMBS], // This is called `v` in the C code.
31     encoding: PhantomData<E>,
32 }
33 
34 pub trait Encoding {}
35 pub struct T;
36 impl Encoding for T {}
37 
38 const ELEM_LIMBS: usize = 5 * 64 / LIMB_BITS;
39 
40 impl<E: Encoding> Elem<E> {
zero() -> Self41     fn zero() -> Self {
42         Self {
43             limbs: Default::default(),
44             encoding: PhantomData,
45         }
46     }
47 }
48 
49 impl Elem<T> {
negate(&mut self)50     fn negate(&mut self) {
51         unsafe {
52             GFp_x25519_fe_neg(self);
53         }
54     }
55 }
56 
57 // An encoding of a curve point. If on Curve25519, it should be encoded as
58 // described in Section 5 of [RFC 7748]. If on Edwards25519, it should be
59 // encoded as described in section 5.1.2 of [RFC 8032].
60 //
61 // [RFC 7748] https://tools.ietf.org/html/rfc7748#section-5
62 // [RFC 8032] https://tools.ietf.org/html/rfc8032#section-5.1.2
63 pub type EncodedPoint = [u8; ELEM_LEN];
64 pub const ELEM_LEN: usize = 32;
65 
66 // Keep this in sync with `ge_p3` in curve25519/internal.h.
67 #[repr(C)]
68 pub struct ExtPoint {
69     x: Elem<T>,
70     y: Elem<T>,
71     z: Elem<T>,
72     t: Elem<T>,
73 }
74 
75 impl ExtPoint {
new_at_infinity() -> Self76     pub fn new_at_infinity() -> Self {
77         Self {
78             x: Elem::zero(),
79             y: Elem::zero(),
80             z: Elem::zero(),
81             t: Elem::zero(),
82         }
83     }
84 
from_encoded_point_vartime(encoded: &EncodedPoint) -> Result<Self, error::Unspecified>85     pub fn from_encoded_point_vartime(encoded: &EncodedPoint) -> Result<Self, error::Unspecified> {
86         let mut point = Self::new_at_infinity();
87 
88         Result::from(unsafe { GFp_x25519_ge_frombytes_vartime(&mut point, encoded) })
89             .map(|()| point)
90     }
91 
into_encoded_point(self) -> EncodedPoint92     pub fn into_encoded_point(self) -> EncodedPoint {
93         encode_point(self.x, self.y, self.z)
94     }
95 
invert_vartime(&mut self)96     pub fn invert_vartime(&mut self) {
97         self.x.negate();
98         self.t.negate();
99     }
100 }
101 
102 // Keep this in sync with `ge_p2` in curve25519/internal.h.
103 #[repr(C)]
104 pub struct Point {
105     x: Elem<T>,
106     y: Elem<T>,
107     z: Elem<T>,
108 }
109 
110 impl Point {
new_at_infinity() -> Self111     pub fn new_at_infinity() -> Self {
112         Self {
113             x: Elem::zero(),
114             y: Elem::zero(),
115             z: Elem::zero(),
116         }
117     }
118 
into_encoded_point(self) -> EncodedPoint119     pub fn into_encoded_point(self) -> EncodedPoint {
120         encode_point(self.x, self.y, self.z)
121     }
122 }
123 
encode_point(x: Elem<T>, y: Elem<T>, z: Elem<T>) -> EncodedPoint124 fn encode_point(x: Elem<T>, y: Elem<T>, z: Elem<T>) -> EncodedPoint {
125     let mut bytes = [0; ELEM_LEN];
126 
127     let sign_bit: u8 = unsafe {
128         let mut recip = Elem::zero();
129         GFp_x25519_fe_invert(&mut recip, &z);
130 
131         let mut x_over_z = Elem::zero();
132         GFp_x25519_fe_mul_ttt(&mut x_over_z, &x, &recip);
133 
134         let mut y_over_z = Elem::zero();
135         GFp_x25519_fe_mul_ttt(&mut y_over_z, &y, &recip);
136         GFp_x25519_fe_tobytes(&mut bytes, &y_over_z);
137 
138         GFp_x25519_fe_isnegative(&x_over_z)
139     };
140 
141     // The preceding computations must execute in constant time, but this
142     // doesn't need to.
143     bytes[ELEM_LEN - 1] ^= sign_bit << 7;
144 
145     bytes
146 }
147 
148 extern "C" {
GFp_x25519_fe_invert(out: &mut Elem<T>, z: &Elem<T>)149     fn GFp_x25519_fe_invert(out: &mut Elem<T>, z: &Elem<T>);
GFp_x25519_fe_isnegative(elem: &Elem<T>) -> u8150     fn GFp_x25519_fe_isnegative(elem: &Elem<T>) -> u8;
GFp_x25519_fe_mul_ttt(h: &mut Elem<T>, f: &Elem<T>, g: &Elem<T>)151     fn GFp_x25519_fe_mul_ttt(h: &mut Elem<T>, f: &Elem<T>, g: &Elem<T>);
GFp_x25519_fe_neg(f: &mut Elem<T>)152     fn GFp_x25519_fe_neg(f: &mut Elem<T>);
GFp_x25519_fe_tobytes(bytes: &mut EncodedPoint, elem: &Elem<T>)153     fn GFp_x25519_fe_tobytes(bytes: &mut EncodedPoint, elem: &Elem<T>);
GFp_x25519_ge_frombytes_vartime(h: &mut ExtPoint, s: &EncodedPoint) -> bssl::Result154     fn GFp_x25519_ge_frombytes_vartime(h: &mut ExtPoint, s: &EncodedPoint) -> bssl::Result;
155 }
156