1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 2011 by Chris Robinson
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
8 *
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
13 *
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
19 */
20
21 #include "config.h"
22
23 #include "hrtf.h"
24
25 #include <algorithm>
26 #include <array>
27 #include <cassert>
28 #include <cctype>
29 #include <cmath>
30 #include <cstdint>
31 #include <cstdio>
32 #include <cstring>
33 #include <functional>
34 #include <fstream>
35 #include <iterator>
36 #include <memory>
37 #include <mutex>
38 #include <new>
39 #include <numeric>
40 #include <type_traits>
41 #include <utility>
42
43 #include "albit.h"
44 #include "albyte.h"
45 #include "alcmain.h"
46 #include "alconfig.h"
47 #include "alfstream.h"
48 #include "almalloc.h"
49 #include "alnumeric.h"
50 #include "aloptional.h"
51 #include "alspan.h"
52 #include "core/filters/splitter.h"
53 #include "core/logging.h"
54 #include "math_defs.h"
55 #include "opthelpers.h"
56 #include "polyphase_resampler.h"
57
58
59 namespace {
60
61 using namespace std::placeholders;
62
63 struct HrtfEntry {
64 std::string mDispName;
65 std::string mFilename;
66 };
67
68 struct LoadedHrtf {
69 std::string mFilename;
70 std::unique_ptr<HrtfStore> mEntry;
71 };
72
73 /* Data set limits must be the same as or more flexible than those defined in
74 * the makemhr utility.
75 */
76 constexpr uint MinFdCount{1};
77 constexpr uint MaxFdCount{16};
78
79 constexpr uint MinFdDistance{50};
80 constexpr uint MaxFdDistance{2500};
81
82 constexpr uint MinEvCount{5};
83 constexpr uint MaxEvCount{181};
84
85 constexpr uint MinAzCount{1};
86 constexpr uint MaxAzCount{255};
87
88 constexpr uint MaxHrirDelay{HrtfHistoryLength - 1};
89
90 constexpr uint HrirDelayFracBits{2};
91 constexpr uint HrirDelayFracOne{1 << HrirDelayFracBits};
92 constexpr uint HrirDelayFracHalf{HrirDelayFracOne >> 1};
93
94 static_assert(MaxHrirDelay*HrirDelayFracOne < 256, "MAX_HRIR_DELAY or DELAY_FRAC too large");
95
96 constexpr char magicMarker00[8]{'M','i','n','P','H','R','0','0'};
97 constexpr char magicMarker01[8]{'M','i','n','P','H','R','0','1'};
98 constexpr char magicMarker02[8]{'M','i','n','P','H','R','0','2'};
99 constexpr char magicMarker03[8]{'M','i','n','P','H','R','0','3'};
100
101 /* First value for pass-through coefficients (remaining are 0), used for omni-
102 * directional sounds. */
103 constexpr float PassthruCoeff{0.707106781187f/*sqrt(0.5)*/};
104
105 std::mutex LoadedHrtfLock;
106 al::vector<LoadedHrtf> LoadedHrtfs;
107
108 std::mutex EnumeratedHrtfLock;
109 al::vector<HrtfEntry> EnumeratedHrtfs;
110
111
112 class databuf final : public std::streambuf {
underflow()113 int_type underflow() override
114 { return traits_type::eof(); }
115
seekoff(off_type offset,std::ios_base::seekdir whence,std::ios_base::openmode mode)116 pos_type seekoff(off_type offset, std::ios_base::seekdir whence, std::ios_base::openmode mode) override
117 {
118 if((mode&std::ios_base::out) || !(mode&std::ios_base::in))
119 return traits_type::eof();
120
121 char_type *cur;
122 switch(whence)
123 {
124 case std::ios_base::beg:
125 if(offset < 0 || offset > egptr()-eback())
126 return traits_type::eof();
127 cur = eback() + offset;
128 break;
129
130 case std::ios_base::cur:
131 if((offset >= 0 && offset > egptr()-gptr()) ||
132 (offset < 0 && -offset > gptr()-eback()))
133 return traits_type::eof();
134 cur = gptr() + offset;
135 break;
136
137 case std::ios_base::end:
138 if(offset > 0 || -offset > egptr()-eback())
139 return traits_type::eof();
140 cur = egptr() + offset;
141 break;
142
143 default:
144 return traits_type::eof();
145 }
146
147 setg(eback(), cur, egptr());
148 return cur - eback();
149 }
150
seekpos(pos_type pos,std::ios_base::openmode mode)151 pos_type seekpos(pos_type pos, std::ios_base::openmode mode) override
152 {
153 // Simplified version of seekoff
154 if((mode&std::ios_base::out) || !(mode&std::ios_base::in))
155 return traits_type::eof();
156
157 if(pos < 0 || pos > egptr()-eback())
158 return traits_type::eof();
159
160 setg(eback(), eback() + static_cast<size_t>(pos), egptr());
161 return pos;
162 }
163
164 public:
databuf(const char_type * start_,const char_type * end_)165 databuf(const char_type *start_, const char_type *end_) noexcept
166 {
167 setg(const_cast<char_type*>(start_), const_cast<char_type*>(start_),
168 const_cast<char_type*>(end_));
169 }
170 };
171
172 class idstream final : public std::istream {
173 databuf mStreamBuf;
174
175 public:
idstream(const char * start_,const char * end_)176 idstream(const char *start_, const char *end_)
177 : std::istream{nullptr}, mStreamBuf{start_, end_}
178 { init(&mStreamBuf); }
179 };
180
181
182 struct IdxBlend { uint idx; float blend; };
183 /* Calculate the elevation index given the polar elevation in radians. This
184 * will return an index between 0 and (evcount - 1).
185 */
CalcEvIndex(uint evcount,float ev)186 IdxBlend CalcEvIndex(uint evcount, float ev)
187 {
188 ev = (al::MathDefs<float>::Pi()*0.5f + ev) * static_cast<float>(evcount-1) /
189 al::MathDefs<float>::Pi();
190 uint idx{float2uint(ev)};
191
192 return IdxBlend{minu(idx, evcount-1), ev-static_cast<float>(idx)};
193 }
194
195 /* Calculate the azimuth index given the polar azimuth in radians. This will
196 * return an index between 0 and (azcount - 1).
197 */
CalcAzIndex(uint azcount,float az)198 IdxBlend CalcAzIndex(uint azcount, float az)
199 {
200 az = (al::MathDefs<float>::Tau()+az) * static_cast<float>(azcount) /
201 al::MathDefs<float>::Tau();
202 uint idx{float2uint(az)};
203
204 return IdxBlend{idx%azcount, az-static_cast<float>(idx)};
205 }
206
207 } // namespace
208
209
210 /* Calculates static HRIR coefficients and delays for the given polar elevation
211 * and azimuth in radians. The coefficients are normalized.
212 */
GetHrtfCoeffs(const HrtfStore * Hrtf,float elevation,float azimuth,float distance,float spread,HrirArray & coeffs,const al::span<uint,2> delays)213 void GetHrtfCoeffs(const HrtfStore *Hrtf, float elevation, float azimuth, float distance,
214 float spread, HrirArray &coeffs, const al::span<uint,2> delays)
215 {
216 const float dirfact{1.0f - (spread / al::MathDefs<float>::Tau())};
217
218 const auto *field = Hrtf->field;
219 const auto *field_end = field + Hrtf->fdCount-1;
220 size_t ebase{0};
221 while(distance < field->distance && field != field_end)
222 {
223 ebase += field->evCount;
224 ++field;
225 }
226
227 /* Calculate the elevation indices. */
228 const auto elev0 = CalcEvIndex(field->evCount, elevation);
229 const size_t elev1_idx{minu(elev0.idx+1, field->evCount-1)};
230 const size_t ir0offset{Hrtf->elev[ebase + elev0.idx].irOffset};
231 const size_t ir1offset{Hrtf->elev[ebase + elev1_idx].irOffset};
232
233 /* Calculate azimuth indices. */
234 const auto az0 = CalcAzIndex(Hrtf->elev[ebase + elev0.idx].azCount, azimuth);
235 const auto az1 = CalcAzIndex(Hrtf->elev[ebase + elev1_idx].azCount, azimuth);
236
237 /* Calculate the HRIR indices to blend. */
238 const size_t idx[4]{
239 ir0offset + az0.idx,
240 ir0offset + ((az0.idx+1) % Hrtf->elev[ebase + elev0.idx].azCount),
241 ir1offset + az1.idx,
242 ir1offset + ((az1.idx+1) % Hrtf->elev[ebase + elev1_idx].azCount)
243 };
244
245 /* Calculate bilinear blending weights, attenuated according to the
246 * directional panning factor.
247 */
248 const float blend[4]{
249 (1.0f-elev0.blend) * (1.0f-az0.blend) * dirfact,
250 (1.0f-elev0.blend) * ( az0.blend) * dirfact,
251 ( elev0.blend) * (1.0f-az1.blend) * dirfact,
252 ( elev0.blend) * ( az1.blend) * dirfact
253 };
254
255 /* Calculate the blended HRIR delays. */
256 float d{Hrtf->delays[idx[0]][0]*blend[0] + Hrtf->delays[idx[1]][0]*blend[1] +
257 Hrtf->delays[idx[2]][0]*blend[2] + Hrtf->delays[idx[3]][0]*blend[3]};
258 delays[0] = fastf2u(d * float{1.0f/HrirDelayFracOne});
259 d = Hrtf->delays[idx[0]][1]*blend[0] + Hrtf->delays[idx[1]][1]*blend[1] +
260 Hrtf->delays[idx[2]][1]*blend[2] + Hrtf->delays[idx[3]][1]*blend[3];
261 delays[1] = fastf2u(d * float{1.0f/HrirDelayFracOne});
262
263 /* Calculate the blended HRIR coefficients. */
264 float *coeffout{al::assume_aligned<16>(&coeffs[0][0])};
265 coeffout[0] = PassthruCoeff * (1.0f-dirfact);
266 coeffout[1] = PassthruCoeff * (1.0f-dirfact);
267 std::fill_n(coeffout+2, size_t{HrirLength-1}*2, 0.0f);
268 for(size_t c{0};c < 4;c++)
269 {
270 const float *srccoeffs{al::assume_aligned<16>(Hrtf->coeffs[idx[c]][0].data())};
271 const float mult{blend[c]};
272 auto blend_coeffs = [mult](const float src, const float coeff) noexcept -> float
273 { return src*mult + coeff; };
274 std::transform(srccoeffs, srccoeffs + HrirLength*2, coeffout, coeffout, blend_coeffs);
275 }
276 }
277
278
Create(size_t num_chans)279 std::unique_ptr<DirectHrtfState> DirectHrtfState::Create(size_t num_chans)
280 { return std::unique_ptr<DirectHrtfState>{new(FamCount(num_chans)) DirectHrtfState{num_chans}}; }
281
build(const HrtfStore * Hrtf,const uint irSize,const al::span<const AngularPoint> AmbiPoints,const float (* AmbiMatrix)[MaxAmbiChannels],const float XOverFreq,const al::span<const float,MaxAmbiOrder+1> AmbiOrderHFGain)282 void DirectHrtfState::build(const HrtfStore *Hrtf, const uint irSize,
283 const al::span<const AngularPoint> AmbiPoints, const float (*AmbiMatrix)[MaxAmbiChannels],
284 const float XOverFreq, const al::span<const float,MaxAmbiOrder+1> AmbiOrderHFGain)
285 {
286 using double2 = std::array<double,2>;
287 struct ImpulseResponse {
288 const HrirArray &hrir;
289 uint ldelay, rdelay;
290 };
291
292 const double xover_norm{double{XOverFreq} / Hrtf->sampleRate};
293 for(size_t i{0};i < mChannels.size();++i)
294 {
295 const size_t order{AmbiIndex::OrderFromChannel()[i]};
296 mChannels[i].mSplitter.init(static_cast<float>(xover_norm));
297 mChannels[i].mHfScale = AmbiOrderHFGain[order];
298 }
299
300 uint min_delay{HrtfHistoryLength*HrirDelayFracOne}, max_delay{0};
301 al::vector<ImpulseResponse> impres; impres.reserve(AmbiPoints.size());
302 auto calc_res = [Hrtf,&max_delay,&min_delay](const AngularPoint &pt) -> ImpulseResponse
303 {
304 auto &field = Hrtf->field[0];
305 const auto elev0 = CalcEvIndex(field.evCount, pt.Elev.value);
306 const size_t elev1_idx{minu(elev0.idx+1, field.evCount-1)};
307 const size_t ir0offset{Hrtf->elev[elev0.idx].irOffset};
308 const size_t ir1offset{Hrtf->elev[elev1_idx].irOffset};
309
310 const auto az0 = CalcAzIndex(Hrtf->elev[elev0.idx].azCount, pt.Azim.value);
311 const auto az1 = CalcAzIndex(Hrtf->elev[elev1_idx].azCount, pt.Azim.value);
312
313 const size_t idx[4]{
314 ir0offset + az0.idx,
315 ir0offset + ((az0.idx+1) % Hrtf->elev[elev0.idx].azCount),
316 ir1offset + az1.idx,
317 ir1offset + ((az1.idx+1) % Hrtf->elev[elev1_idx].azCount)
318 };
319
320 const std::array<double,4> blend{{
321 (1.0-elev0.blend) * (1.0-az0.blend),
322 (1.0-elev0.blend) * ( az0.blend),
323 ( elev0.blend) * (1.0-az1.blend),
324 ( elev0.blend) * ( az1.blend)
325 }};
326
327 /* The largest blend factor serves as the closest HRIR. */
328 const size_t irOffset{idx[std::max_element(blend.begin(), blend.end()) - blend.begin()]};
329 ImpulseResponse res{Hrtf->coeffs[irOffset],
330 Hrtf->delays[irOffset][0], Hrtf->delays[irOffset][1]};
331
332 min_delay = minu(min_delay, minu(res.ldelay, res.rdelay));
333 max_delay = maxu(max_delay, maxu(res.ldelay, res.rdelay));
334
335 return res;
336 };
337 std::transform(AmbiPoints.begin(), AmbiPoints.end(), std::back_inserter(impres), calc_res);
338 auto hrir_delay_round = [](const uint d) noexcept -> uint
339 { return (d+HrirDelayFracHalf) >> HrirDelayFracBits; };
340
341 auto tmpres = al::vector<std::array<double2,HrirLength>>(mChannels.size());
342 for(size_t c{0u};c < AmbiPoints.size();++c)
343 {
344 const HrirArray &hrir{impres[c].hrir};
345 const uint ldelay{hrir_delay_round(impres[c].ldelay - min_delay)};
346 const uint rdelay{hrir_delay_round(impres[c].rdelay - min_delay)};
347
348 for(size_t i{0u};i < mChannels.size();++i)
349 {
350 const double mult{AmbiMatrix[c][i]};
351 const size_t numirs{HrirLength - maxz(ldelay, rdelay)};
352 size_t lidx{ldelay}, ridx{rdelay};
353 for(size_t j{0};j < numirs;++j)
354 {
355 tmpres[i][lidx++][0] += hrir[j][0] * mult;
356 tmpres[i][ridx++][1] += hrir[j][1] * mult;
357 }
358 }
359 }
360 impres.clear();
361
362 for(size_t i{0u};i < mChannels.size();++i)
363 {
364 auto copy_arr = [](const double2 &in) noexcept -> float2
365 { return float2{{static_cast<float>(in[0]), static_cast<float>(in[1])}}; };
366 std::transform(tmpres[i].cbegin(), tmpres[i].cend(), mChannels[i].mCoeffs.begin(),
367 copy_arr);
368 }
369 tmpres.clear();
370
371 max_delay -= min_delay;
372 const uint max_length{minu(hrir_delay_round(max_delay) + irSize, HrirLength)};
373
374 TRACE("Skipped delay: %.2f, new max delay: %.2f, FIR length: %u\n",
375 min_delay/double{HrirDelayFracOne}, max_delay/double{HrirDelayFracOne},
376 max_length);
377 mIrSize = max_length;
378 }
379
380
381 namespace {
382
CreateHrtfStore(uint rate,ushort irSize,const al::span<const HrtfStore::Field> fields,const al::span<const HrtfStore::Elevation> elevs,const HrirArray * coeffs,const ubyte2 * delays,const char * filename)383 std::unique_ptr<HrtfStore> CreateHrtfStore(uint rate, ushort irSize,
384 const al::span<const HrtfStore::Field> fields,
385 const al::span<const HrtfStore::Elevation> elevs, const HrirArray *coeffs,
386 const ubyte2 *delays, const char *filename)
387 {
388 std::unique_ptr<HrtfStore> Hrtf;
389
390 const size_t irCount{size_t{elevs.back().azCount} + elevs.back().irOffset};
391 size_t total{sizeof(HrtfStore)};
392 total = RoundUp(total, alignof(HrtfStore::Field)); /* Align for field infos */
393 total += sizeof(HrtfStore::Field)*fields.size();
394 total = RoundUp(total, alignof(HrtfStore::Elevation)); /* Align for elevation infos */
395 total += sizeof(Hrtf->elev[0])*elevs.size();
396 total = RoundUp(total, 16); /* Align for coefficients using SIMD */
397 total += sizeof(Hrtf->coeffs[0])*irCount;
398 total += sizeof(Hrtf->delays[0])*irCount;
399
400 Hrtf.reset(new (al_calloc(16, total)) HrtfStore{});
401 if(!Hrtf)
402 ERR("Out of memory allocating storage for %s.\n", filename);
403 else
404 {
405 InitRef(Hrtf->mRef, 1u);
406 Hrtf->sampleRate = rate;
407 Hrtf->irSize = irSize;
408 Hrtf->fdCount = static_cast<uint>(fields.size());
409
410 /* Set up pointers to storage following the main HRTF struct. */
411 char *base = reinterpret_cast<char*>(Hrtf.get());
412 size_t offset{sizeof(HrtfStore)};
413
414 offset = RoundUp(offset, alignof(HrtfStore::Field)); /* Align for field infos */
415 auto field_ = reinterpret_cast<HrtfStore::Field*>(base + offset);
416 offset += sizeof(field_[0])*fields.size();
417
418 offset = RoundUp(offset, alignof(HrtfStore::Elevation)); /* Align for elevation infos */
419 auto elev_ = reinterpret_cast<HrtfStore::Elevation*>(base + offset);
420 offset += sizeof(elev_[0])*elevs.size();
421
422 offset = RoundUp(offset, 16); /* Align for coefficients using SIMD */
423 auto coeffs_ = reinterpret_cast<HrirArray*>(base + offset);
424 offset += sizeof(coeffs_[0])*irCount;
425
426 auto delays_ = reinterpret_cast<ubyte2*>(base + offset);
427 offset += sizeof(delays_[0])*irCount;
428
429 assert(offset == total);
430
431 /* Copy input data to storage. */
432 std::copy(fields.cbegin(), fields.cend(), field_);
433 std::copy(elevs.cbegin(), elevs.cend(), elev_);
434 std::copy_n(coeffs, irCount, coeffs_);
435 std::copy_n(delays, irCount, delays_);
436
437 /* Finally, assign the storage pointers. */
438 Hrtf->field = field_;
439 Hrtf->elev = elev_;
440 Hrtf->coeffs = coeffs_;
441 Hrtf->delays = delays_;
442 }
443
444 return Hrtf;
445 }
446
MirrorLeftHrirs(const al::span<const HrtfStore::Elevation> elevs,HrirArray * coeffs,ubyte2 * delays)447 void MirrorLeftHrirs(const al::span<const HrtfStore::Elevation> elevs, HrirArray *coeffs,
448 ubyte2 *delays)
449 {
450 for(const auto &elev : elevs)
451 {
452 const ushort evoffset{elev.irOffset};
453 const ushort azcount{elev.azCount};
454 for(size_t j{0};j < azcount;j++)
455 {
456 const size_t lidx{evoffset + j};
457 const size_t ridx{evoffset + ((azcount-j) % azcount)};
458
459 const size_t irSize{coeffs[ridx].size()};
460 for(size_t k{0};k < irSize;k++)
461 coeffs[ridx][k][1] = coeffs[lidx][k][0];
462 delays[ridx][1] = delays[lidx][0];
463 }
464 }
465 }
466
467
468 template<typename T, size_t num_bits=sizeof(T)*8>
readle(std::istream & data)469 inline T readle(std::istream &data)
470 {
471 static_assert((num_bits&7) == 0, "num_bits must be a multiple of 8");
472 static_assert(num_bits <= sizeof(T)*8, "num_bits is too large for the type");
473
474 T ret{};
475 if_constexpr(al::endian::native == al::endian::little)
476 {
477 if(!data.read(reinterpret_cast<char*>(&ret), num_bits/8))
478 return static_cast<T>(EOF);
479 }
480 else
481 {
482 al::byte b[sizeof(T)]{};
483 if(!data.read(reinterpret_cast<char*>(b), num_bits/8))
484 return static_cast<T>(EOF);
485 std::reverse_copy(std::begin(b), std::end(b), reinterpret_cast<al::byte*>(&ret));
486 }
487
488 if_constexpr(std::is_signed<T>::value && num_bits < sizeof(T)*8)
489 {
490 constexpr auto signbit = static_cast<T>(1u << (num_bits-1));
491 return static_cast<T>((ret^signbit) - signbit);
492 }
493 return ret;
494 }
495
496 template<>
readle(std::istream & data)497 inline uint8_t readle<uint8_t,8>(std::istream &data)
498 { return static_cast<uint8_t>(data.get()); }
499
500
LoadHrtf00(std::istream & data,const char * filename)501 std::unique_ptr<HrtfStore> LoadHrtf00(std::istream &data, const char *filename)
502 {
503 uint rate{readle<uint32_t>(data)};
504 ushort irCount{readle<uint16_t>(data)};
505 ushort irSize{readle<uint16_t>(data)};
506 ubyte evCount{readle<uint8_t>(data)};
507 if(!data || data.eof())
508 {
509 ERR("Failed reading %s\n", filename);
510 return nullptr;
511 }
512
513 if(irSize < MinIrLength || irSize > HrirLength)
514 {
515 ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize, MinIrLength, HrirLength);
516 return nullptr;
517 }
518 if(evCount < MinEvCount || evCount > MaxEvCount)
519 {
520 ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
521 evCount, MinEvCount, MaxEvCount);
522 return nullptr;
523 }
524
525 auto elevs = al::vector<HrtfStore::Elevation>(evCount);
526 for(auto &elev : elevs)
527 elev.irOffset = readle<uint16_t>(data);
528 if(!data || data.eof())
529 {
530 ERR("Failed reading %s\n", filename);
531 return nullptr;
532 }
533 for(size_t i{1};i < evCount;i++)
534 {
535 if(elevs[i].irOffset <= elevs[i-1].irOffset)
536 {
537 ERR("Invalid evOffset: evOffset[%zu]=%d (last=%d)\n", i, elevs[i].irOffset,
538 elevs[i-1].irOffset);
539 return nullptr;
540 }
541 }
542 if(irCount <= elevs.back().irOffset)
543 {
544 ERR("Invalid evOffset: evOffset[%zu]=%d (irCount=%d)\n",
545 elevs.size()-1, elevs.back().irOffset, irCount);
546 return nullptr;
547 }
548
549 for(size_t i{1};i < evCount;i++)
550 {
551 elevs[i-1].azCount = static_cast<ushort>(elevs[i].irOffset - elevs[i-1].irOffset);
552 if(elevs[i-1].azCount < MinAzCount || elevs[i-1].azCount > MaxAzCount)
553 {
554 ERR("Unsupported azimuth count: azCount[%zd]=%d (%d to %d)\n",
555 i-1, elevs[i-1].azCount, MinAzCount, MaxAzCount);
556 return nullptr;
557 }
558 }
559 elevs.back().azCount = static_cast<ushort>(irCount - elevs.back().irOffset);
560 if(elevs.back().azCount < MinAzCount || elevs.back().azCount > MaxAzCount)
561 {
562 ERR("Unsupported azimuth count: azCount[%zu]=%d (%d to %d)\n",
563 elevs.size()-1, elevs.back().azCount, MinAzCount, MaxAzCount);
564 return nullptr;
565 }
566
567 auto coeffs = al::vector<HrirArray>(irCount, HrirArray{});
568 auto delays = al::vector<ubyte2>(irCount);
569 for(auto &hrir : coeffs)
570 {
571 for(auto &val : al::span<float2>{hrir.data(), irSize})
572 val[0] = readle<int16_t>(data) / 32768.0f;
573 }
574 for(auto &val : delays)
575 val[0] = readle<uint8_t>(data);
576 if(!data || data.eof())
577 {
578 ERR("Failed reading %s\n", filename);
579 return nullptr;
580 }
581 for(size_t i{0};i < irCount;i++)
582 {
583 if(delays[i][0] > MaxHrirDelay)
584 {
585 ERR("Invalid delays[%zd]: %d (%d)\n", i, delays[i][0], MaxHrirDelay);
586 return nullptr;
587 }
588 delays[i][0] <<= HrirDelayFracBits;
589 }
590
591 /* Mirror the left ear responses to the right ear. */
592 MirrorLeftHrirs({elevs.data(), elevs.size()}, coeffs.data(), delays.data());
593
594 const HrtfStore::Field field[1]{{0.0f, evCount}};
595 return CreateHrtfStore(rate, irSize, field, {elevs.data(), elevs.size()}, coeffs.data(),
596 delays.data(), filename);
597 }
598
LoadHrtf01(std::istream & data,const char * filename)599 std::unique_ptr<HrtfStore> LoadHrtf01(std::istream &data, const char *filename)
600 {
601 uint rate{readle<uint32_t>(data)};
602 ushort irSize{readle<uint8_t>(data)};
603 ubyte evCount{readle<uint8_t>(data)};
604 if(!data || data.eof())
605 {
606 ERR("Failed reading %s\n", filename);
607 return nullptr;
608 }
609
610 if(irSize < MinIrLength || irSize > HrirLength)
611 {
612 ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize, MinIrLength, HrirLength);
613 return nullptr;
614 }
615 if(evCount < MinEvCount || evCount > MaxEvCount)
616 {
617 ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
618 evCount, MinEvCount, MaxEvCount);
619 return nullptr;
620 }
621
622 auto elevs = al::vector<HrtfStore::Elevation>(evCount);
623 for(auto &elev : elevs)
624 elev.azCount = readle<uint8_t>(data);
625 if(!data || data.eof())
626 {
627 ERR("Failed reading %s\n", filename);
628 return nullptr;
629 }
630 for(size_t i{0};i < evCount;++i)
631 {
632 if(elevs[i].azCount < MinAzCount || elevs[i].azCount > MaxAzCount)
633 {
634 ERR("Unsupported azimuth count: azCount[%zd]=%d (%d to %d)\n", i, elevs[i].azCount,
635 MinAzCount, MaxAzCount);
636 return nullptr;
637 }
638 }
639
640 elevs[0].irOffset = 0;
641 for(size_t i{1};i < evCount;i++)
642 elevs[i].irOffset = static_cast<ushort>(elevs[i-1].irOffset + elevs[i-1].azCount);
643 const ushort irCount{static_cast<ushort>(elevs.back().irOffset + elevs.back().azCount)};
644
645 auto coeffs = al::vector<HrirArray>(irCount, HrirArray{});
646 auto delays = al::vector<ubyte2>(irCount);
647 for(auto &hrir : coeffs)
648 {
649 for(auto &val : al::span<float2>{hrir.data(), irSize})
650 val[0] = readle<int16_t>(data) / 32768.0f;
651 }
652 for(auto &val : delays)
653 val[0] = readle<uint8_t>(data);
654 if(!data || data.eof())
655 {
656 ERR("Failed reading %s\n", filename);
657 return nullptr;
658 }
659 for(size_t i{0};i < irCount;i++)
660 {
661 if(delays[i][0] > MaxHrirDelay)
662 {
663 ERR("Invalid delays[%zd]: %d (%d)\n", i, delays[i][0], MaxHrirDelay);
664 return nullptr;
665 }
666 delays[i][0] <<= HrirDelayFracBits;
667 }
668
669 /* Mirror the left ear responses to the right ear. */
670 MirrorLeftHrirs({elevs.data(), elevs.size()}, coeffs.data(), delays.data());
671
672 const HrtfStore::Field field[1]{{0.0f, evCount}};
673 return CreateHrtfStore(rate, irSize, field, {elevs.data(), elevs.size()}, coeffs.data(),
674 delays.data(), filename);
675 }
676
LoadHrtf02(std::istream & data,const char * filename)677 std::unique_ptr<HrtfStore> LoadHrtf02(std::istream &data, const char *filename)
678 {
679 constexpr ubyte SampleType_S16{0};
680 constexpr ubyte SampleType_S24{1};
681 constexpr ubyte ChanType_LeftOnly{0};
682 constexpr ubyte ChanType_LeftRight{1};
683
684 uint rate{readle<uint32_t>(data)};
685 ubyte sampleType{readle<uint8_t>(data)};
686 ubyte channelType{readle<uint8_t>(data)};
687 ushort irSize{readle<uint8_t>(data)};
688 ubyte fdCount{readle<uint8_t>(data)};
689 if(!data || data.eof())
690 {
691 ERR("Failed reading %s\n", filename);
692 return nullptr;
693 }
694
695 if(sampleType > SampleType_S24)
696 {
697 ERR("Unsupported sample type: %d\n", sampleType);
698 return nullptr;
699 }
700 if(channelType > ChanType_LeftRight)
701 {
702 ERR("Unsupported channel type: %d\n", channelType);
703 return nullptr;
704 }
705
706 if(irSize < MinIrLength || irSize > HrirLength)
707 {
708 ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize, MinIrLength, HrirLength);
709 return nullptr;
710 }
711 if(fdCount < 1 || fdCount > MaxFdCount)
712 {
713 ERR("Unsupported number of field-depths: fdCount=%d (%d to %d)\n", fdCount, MinFdCount,
714 MaxFdCount);
715 return nullptr;
716 }
717
718 auto fields = al::vector<HrtfStore::Field>(fdCount);
719 auto elevs = al::vector<HrtfStore::Elevation>{};
720 for(size_t f{0};f < fdCount;f++)
721 {
722 const ushort distance{readle<uint16_t>(data)};
723 const ubyte evCount{readle<uint8_t>(data)};
724 if(!data || data.eof())
725 {
726 ERR("Failed reading %s\n", filename);
727 return nullptr;
728 }
729
730 if(distance < MinFdDistance || distance > MaxFdDistance)
731 {
732 ERR("Unsupported field distance[%zu]=%d (%d to %d millimeters)\n", f, distance,
733 MinFdDistance, MaxFdDistance);
734 return nullptr;
735 }
736 if(evCount < MinEvCount || evCount > MaxEvCount)
737 {
738 ERR("Unsupported elevation count: evCount[%zu]=%d (%d to %d)\n", f, evCount,
739 MinEvCount, MaxEvCount);
740 return nullptr;
741 }
742
743 fields[f].distance = distance / 1000.0f;
744 fields[f].evCount = evCount;
745 if(f > 0 && fields[f].distance <= fields[f-1].distance)
746 {
747 ERR("Field distance[%zu] is not after previous (%f > %f)\n", f, fields[f].distance,
748 fields[f-1].distance);
749 return nullptr;
750 }
751
752 const size_t ebase{elevs.size()};
753 elevs.resize(ebase + evCount);
754 for(auto &elev : al::span<HrtfStore::Elevation>(elevs.data()+ebase, evCount))
755 elev.azCount = readle<uint8_t>(data);
756 if(!data || data.eof())
757 {
758 ERR("Failed reading %s\n", filename);
759 return nullptr;
760 }
761
762 for(size_t e{0};e < evCount;e++)
763 {
764 if(elevs[ebase+e].azCount < MinAzCount || elevs[ebase+e].azCount > MaxAzCount)
765 {
766 ERR("Unsupported azimuth count: azCount[%zu][%zu]=%d (%d to %d)\n", f, e,
767 elevs[ebase+e].azCount, MinAzCount, MaxAzCount);
768 return nullptr;
769 }
770 }
771 }
772
773 elevs[0].irOffset = 0;
774 std::partial_sum(elevs.cbegin(), elevs.cend(), elevs.begin(),
775 [](const HrtfStore::Elevation &last, const HrtfStore::Elevation &cur)
776 -> HrtfStore::Elevation
777 {
778 return HrtfStore::Elevation{cur.azCount,
779 static_cast<ushort>(last.azCount + last.irOffset)};
780 });
781 const auto irTotal = static_cast<ushort>(elevs.back().azCount + elevs.back().irOffset);
782
783 auto coeffs = al::vector<HrirArray>(irTotal, HrirArray{});
784 auto delays = al::vector<ubyte2>(irTotal);
785 if(channelType == ChanType_LeftOnly)
786 {
787 if(sampleType == SampleType_S16)
788 {
789 for(auto &hrir : coeffs)
790 {
791 for(auto &val : al::span<float2>{hrir.data(), irSize})
792 val[0] = readle<int16_t>(data) / 32768.0f;
793 }
794 }
795 else if(sampleType == SampleType_S24)
796 {
797 for(auto &hrir : coeffs)
798 {
799 for(auto &val : al::span<float2>{hrir.data(), irSize})
800 val[0] = static_cast<float>(readle<int,24>(data)) / 8388608.0f;
801 }
802 }
803 for(auto &val : delays)
804 val[0] = readle<uint8_t>(data);
805 if(!data || data.eof())
806 {
807 ERR("Failed reading %s\n", filename);
808 return nullptr;
809 }
810 for(size_t i{0};i < irTotal;++i)
811 {
812 if(delays[i][0] > MaxHrirDelay)
813 {
814 ERR("Invalid delays[%zu][0]: %d (%d)\n", i, delays[i][0], MaxHrirDelay);
815 return nullptr;
816 }
817 delays[i][0] <<= HrirDelayFracBits;
818 }
819
820 /* Mirror the left ear responses to the right ear. */
821 MirrorLeftHrirs({elevs.data(), elevs.size()}, coeffs.data(), delays.data());
822 }
823 else if(channelType == ChanType_LeftRight)
824 {
825 if(sampleType == SampleType_S16)
826 {
827 for(auto &hrir : coeffs)
828 {
829 for(auto &val : al::span<float2>{hrir.data(), irSize})
830 {
831 val[0] = readle<int16_t>(data) / 32768.0f;
832 val[1] = readle<int16_t>(data) / 32768.0f;
833 }
834 }
835 }
836 else if(sampleType == SampleType_S24)
837 {
838 for(auto &hrir : coeffs)
839 {
840 for(auto &val : al::span<float2>{hrir.data(), irSize})
841 {
842 val[0] = static_cast<float>(readle<int,24>(data)) / 8388608.0f;
843 val[1] = static_cast<float>(readle<int,24>(data)) / 8388608.0f;
844 }
845 }
846 }
847 for(auto &val : delays)
848 {
849 val[0] = readle<uint8_t>(data);
850 val[1] = readle<uint8_t>(data);
851 }
852 if(!data || data.eof())
853 {
854 ERR("Failed reading %s\n", filename);
855 return nullptr;
856 }
857
858 for(size_t i{0};i < irTotal;++i)
859 {
860 if(delays[i][0] > MaxHrirDelay)
861 {
862 ERR("Invalid delays[%zu][0]: %d (%d)\n", i, delays[i][0], MaxHrirDelay);
863 return nullptr;
864 }
865 if(delays[i][1] > MaxHrirDelay)
866 {
867 ERR("Invalid delays[%zu][1]: %d (%d)\n", i, delays[i][1], MaxHrirDelay);
868 return nullptr;
869 }
870 delays[i][0] <<= HrirDelayFracBits;
871 delays[i][1] <<= HrirDelayFracBits;
872 }
873 }
874
875 if(fdCount > 1)
876 {
877 auto fields_ = al::vector<HrtfStore::Field>(fields.size());
878 auto elevs_ = al::vector<HrtfStore::Elevation>(elevs.size());
879 auto coeffs_ = al::vector<HrirArray>(coeffs.size());
880 auto delays_ = al::vector<ubyte2>(delays.size());
881
882 /* Simple reverse for the per-field elements. */
883 std::reverse_copy(fields.cbegin(), fields.cend(), fields_.begin());
884
885 /* Each field has a group of elevations, which each have an azimuth
886 * count. Reverse the order of the groups, keeping the relative order
887 * of per-group azimuth counts.
888 */
889 auto elevs__end = elevs_.end();
890 auto copy_azs = [&elevs,&elevs__end](const ptrdiff_t ebase, const HrtfStore::Field &field)
891 -> ptrdiff_t
892 {
893 auto elevs_src = elevs.begin()+ebase;
894 elevs__end = std::copy_backward(elevs_src, elevs_src+field.evCount, elevs__end);
895 return ebase + field.evCount;
896 };
897 (void)std::accumulate(fields.cbegin(), fields.cend(), ptrdiff_t{0}, copy_azs);
898 assert(elevs_.begin() == elevs__end);
899
900 /* Reestablish the IR offset for each elevation index, given the new
901 * ordering of elevations.
902 */
903 elevs_[0].irOffset = 0;
904 std::partial_sum(elevs_.cbegin(), elevs_.cend(), elevs_.begin(),
905 [](const HrtfStore::Elevation &last, const HrtfStore::Elevation &cur)
906 -> HrtfStore::Elevation
907 {
908 return HrtfStore::Elevation{cur.azCount,
909 static_cast<ushort>(last.azCount + last.irOffset)};
910 });
911
912 /* Reverse the order of each field's group of IRs. */
913 auto coeffs_end = coeffs_.end();
914 auto delays_end = delays_.end();
915 auto copy_irs = [&elevs,&coeffs,&delays,&coeffs_end,&delays_end](
916 const ptrdiff_t ebase, const HrtfStore::Field &field) -> ptrdiff_t
917 {
918 auto accum_az = [](int count, const HrtfStore::Elevation &elev) noexcept -> int
919 { return count + elev.azCount; };
920 const auto elevs_mid = elevs.cbegin() + ebase;
921 const auto elevs_end = elevs_mid + field.evCount;
922 const int abase{std::accumulate(elevs.cbegin(), elevs_mid, 0, accum_az)};
923 const int num_azs{std::accumulate(elevs_mid, elevs_end, 0, accum_az)};
924
925 coeffs_end = std::copy_backward(coeffs.cbegin() + abase,
926 coeffs.cbegin() + (abase+num_azs), coeffs_end);
927 delays_end = std::copy_backward(delays.cbegin() + abase,
928 delays.cbegin() + (abase+num_azs), delays_end);
929
930 return ebase + field.evCount;
931 };
932 (void)std::accumulate(fields.cbegin(), fields.cend(), ptrdiff_t{0}, copy_irs);
933 assert(coeffs_.begin() == coeffs_end);
934 assert(delays_.begin() == delays_end);
935
936 fields = std::move(fields_);
937 elevs = std::move(elevs_);
938 coeffs = std::move(coeffs_);
939 delays = std::move(delays_);
940 }
941
942 return CreateHrtfStore(rate, irSize, {fields.data(), fields.size()},
943 {elevs.data(), elevs.size()}, coeffs.data(), delays.data(), filename);
944 }
945
LoadHrtf03(std::istream & data,const char * filename)946 std::unique_ptr<HrtfStore> LoadHrtf03(std::istream &data, const char *filename)
947 {
948 constexpr ubyte ChanType_LeftOnly{0};
949 constexpr ubyte ChanType_LeftRight{1};
950
951 uint rate{readle<uint32_t>(data)};
952 ubyte channelType{readle<uint8_t>(data)};
953 ushort irSize{readle<uint8_t>(data)};
954 ubyte fdCount{readle<uint8_t>(data)};
955 if(!data || data.eof())
956 {
957 ERR("Failed reading %s\n", filename);
958 return nullptr;
959 }
960
961 if(channelType > ChanType_LeftRight)
962 {
963 ERR("Unsupported channel type: %d\n", channelType);
964 return nullptr;
965 }
966
967 if(irSize < MinIrLength || irSize > HrirLength)
968 {
969 ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize, MinIrLength, HrirLength);
970 return nullptr;
971 }
972 if(fdCount < 1 || fdCount > MaxFdCount)
973 {
974 ERR("Unsupported number of field-depths: fdCount=%d (%d to %d)\n", fdCount, MinFdCount,
975 MaxFdCount);
976 return nullptr;
977 }
978
979 auto fields = al::vector<HrtfStore::Field>(fdCount);
980 auto elevs = al::vector<HrtfStore::Elevation>{};
981 for(size_t f{0};f < fdCount;f++)
982 {
983 const ushort distance{readle<uint16_t>(data)};
984 const ubyte evCount{readle<uint8_t>(data)};
985 if(!data || data.eof())
986 {
987 ERR("Failed reading %s\n", filename);
988 return nullptr;
989 }
990
991 if(distance < MinFdDistance || distance > MaxFdDistance)
992 {
993 ERR("Unsupported field distance[%zu]=%d (%d to %d millimeters)\n", f, distance,
994 MinFdDistance, MaxFdDistance);
995 return nullptr;
996 }
997 if(evCount < MinEvCount || evCount > MaxEvCount)
998 {
999 ERR("Unsupported elevation count: evCount[%zu]=%d (%d to %d)\n", f, evCount,
1000 MinEvCount, MaxEvCount);
1001 return nullptr;
1002 }
1003
1004 fields[f].distance = distance / 1000.0f;
1005 fields[f].evCount = evCount;
1006 if(f > 0 && fields[f].distance > fields[f-1].distance)
1007 {
1008 ERR("Field distance[%zu] is not before previous (%f <= %f)\n", f, fields[f].distance,
1009 fields[f-1].distance);
1010 return nullptr;
1011 }
1012
1013 const size_t ebase{elevs.size()};
1014 elevs.resize(ebase + evCount);
1015 for(auto &elev : al::span<HrtfStore::Elevation>(elevs.data()+ebase, evCount))
1016 elev.azCount = readle<uint8_t>(data);
1017 if(!data || data.eof())
1018 {
1019 ERR("Failed reading %s\n", filename);
1020 return nullptr;
1021 }
1022
1023 for(size_t e{0};e < evCount;e++)
1024 {
1025 if(elevs[ebase+e].azCount < MinAzCount || elevs[ebase+e].azCount > MaxAzCount)
1026 {
1027 ERR("Unsupported azimuth count: azCount[%zu][%zu]=%d (%d to %d)\n", f, e,
1028 elevs[ebase+e].azCount, MinAzCount, MaxAzCount);
1029 return nullptr;
1030 }
1031 }
1032 }
1033
1034 elevs[0].irOffset = 0;
1035 std::partial_sum(elevs.cbegin(), elevs.cend(), elevs.begin(),
1036 [](const HrtfStore::Elevation &last, const HrtfStore::Elevation &cur)
1037 -> HrtfStore::Elevation
1038 {
1039 return HrtfStore::Elevation{cur.azCount,
1040 static_cast<ushort>(last.azCount + last.irOffset)};
1041 });
1042 const auto irTotal = static_cast<ushort>(elevs.back().azCount + elevs.back().irOffset);
1043
1044 auto coeffs = al::vector<HrirArray>(irTotal, HrirArray{});
1045 auto delays = al::vector<ubyte2>(irTotal);
1046 if(channelType == ChanType_LeftOnly)
1047 {
1048 for(auto &hrir : coeffs)
1049 {
1050 for(auto &val : al::span<float2>{hrir.data(), irSize})
1051 val[0] = static_cast<float>(readle<int,24>(data)) / 8388608.0f;
1052 }
1053 for(auto &val : delays)
1054 val[0] = readle<uint8_t>(data);
1055 if(!data || data.eof())
1056 {
1057 ERR("Failed reading %s\n", filename);
1058 return nullptr;
1059 }
1060 for(size_t i{0};i < irTotal;++i)
1061 {
1062 if(delays[i][0] > MaxHrirDelay<<HrirDelayFracBits)
1063 {
1064 ERR("Invalid delays[%zu][0]: %f (%d)\n", i,
1065 delays[i][0] / float{HrirDelayFracOne}, MaxHrirDelay);
1066 return nullptr;
1067 }
1068 }
1069
1070 /* Mirror the left ear responses to the right ear. */
1071 MirrorLeftHrirs({elevs.data(), elevs.size()}, coeffs.data(), delays.data());
1072 }
1073 else if(channelType == ChanType_LeftRight)
1074 {
1075 for(auto &hrir : coeffs)
1076 {
1077 for(auto &val : al::span<float2>{hrir.data(), irSize})
1078 {
1079 val[0] = static_cast<float>(readle<int,24>(data)) / 8388608.0f;
1080 val[1] = static_cast<float>(readle<int,24>(data)) / 8388608.0f;
1081 }
1082 }
1083 for(auto &val : delays)
1084 {
1085 val[0] = readle<uint8_t>(data);
1086 val[1] = readle<uint8_t>(data);
1087 }
1088 if(!data || data.eof())
1089 {
1090 ERR("Failed reading %s\n", filename);
1091 return nullptr;
1092 }
1093
1094 for(size_t i{0};i < irTotal;++i)
1095 {
1096 if(delays[i][0] > MaxHrirDelay<<HrirDelayFracBits)
1097 {
1098 ERR("Invalid delays[%zu][0]: %f (%d)\n", i,
1099 delays[i][0] / float{HrirDelayFracOne}, MaxHrirDelay);
1100 return nullptr;
1101 }
1102 if(delays[i][1] > MaxHrirDelay<<HrirDelayFracBits)
1103 {
1104 ERR("Invalid delays[%zu][1]: %f (%d)\n", i,
1105 delays[i][1] / float{HrirDelayFracOne}, MaxHrirDelay);
1106 return nullptr;
1107 }
1108 }
1109 }
1110
1111 return CreateHrtfStore(rate, irSize, {fields.data(), fields.size()},
1112 {elevs.data(), elevs.size()}, coeffs.data(), delays.data(), filename);
1113 }
1114
1115
checkName(const std::string & name)1116 bool checkName(const std::string &name)
1117 {
1118 auto match_name = [&name](const HrtfEntry &entry) -> bool { return name == entry.mDispName; };
1119 auto &enum_names = EnumeratedHrtfs;
1120 return std::find_if(enum_names.cbegin(), enum_names.cend(), match_name) != enum_names.cend();
1121 }
1122
AddFileEntry(const std::string & filename)1123 void AddFileEntry(const std::string &filename)
1124 {
1125 /* Check if this file has already been enumerated. */
1126 auto enum_iter = std::find_if(EnumeratedHrtfs.cbegin(), EnumeratedHrtfs.cend(),
1127 [&filename](const HrtfEntry &entry) -> bool
1128 { return entry.mFilename == filename; });
1129 if(enum_iter != EnumeratedHrtfs.cend())
1130 {
1131 TRACE("Skipping duplicate file entry %s\n", filename.c_str());
1132 return;
1133 }
1134
1135 /* TODO: Get a human-readable name from the HRTF data (possibly coming in a
1136 * format update). */
1137 size_t namepos{filename.find_last_of('/')+1};
1138 if(!namepos) namepos = filename.find_last_of('\\')+1;
1139
1140 size_t extpos{filename.find_last_of('.')};
1141 if(extpos <= namepos) extpos = std::string::npos;
1142
1143 const std::string basename{(extpos == std::string::npos) ?
1144 filename.substr(namepos) : filename.substr(namepos, extpos-namepos)};
1145 std::string newname{basename};
1146 int count{1};
1147 while(checkName(newname))
1148 {
1149 newname = basename;
1150 newname += " #";
1151 newname += std::to_string(++count);
1152 }
1153 EnumeratedHrtfs.emplace_back(HrtfEntry{newname, filename});
1154 const HrtfEntry &entry = EnumeratedHrtfs.back();
1155
1156 TRACE("Adding file entry \"%s\"\n", entry.mFilename.c_str());
1157 }
1158
1159 /* Unfortunate that we have to duplicate AddFileEntry to take a memory buffer
1160 * for input instead of opening the given filename.
1161 */
AddBuiltInEntry(const std::string & dispname,uint residx)1162 void AddBuiltInEntry(const std::string &dispname, uint residx)
1163 {
1164 const std::string filename{'!'+std::to_string(residx)+'_'+dispname};
1165
1166 auto enum_iter = std::find_if(EnumeratedHrtfs.cbegin(), EnumeratedHrtfs.cend(),
1167 [&filename](const HrtfEntry &entry) -> bool
1168 { return entry.mFilename == filename; });
1169 if(enum_iter != EnumeratedHrtfs.cend())
1170 {
1171 TRACE("Skipping duplicate file entry %s\n", filename.c_str());
1172 return;
1173 }
1174
1175 /* TODO: Get a human-readable name from the HRTF data (possibly coming in a
1176 * format update). */
1177
1178 std::string newname{dispname};
1179 int count{1};
1180 while(checkName(newname))
1181 {
1182 newname = dispname;
1183 newname += " #";
1184 newname += std::to_string(++count);
1185 }
1186 EnumeratedHrtfs.emplace_back(HrtfEntry{newname, filename});
1187 const HrtfEntry &entry = EnumeratedHrtfs.back();
1188
1189 TRACE("Adding built-in entry \"%s\"\n", entry.mFilename.c_str());
1190 }
1191
1192
1193 #define IDR_DEFAULT_HRTF_MHR 1
1194
1195 #ifndef ALSOFT_EMBED_HRTF_DATA
1196
GetResource(int)1197 al::span<const char> GetResource(int /*name*/)
1198 { return {}; }
1199
1200 #else
1201
1202 #include "hrtf_default.h"
1203
GetResource(int name)1204 al::span<const char> GetResource(int name)
1205 {
1206 if(name == IDR_DEFAULT_HRTF_MHR)
1207 return {reinterpret_cast<const char*>(hrtf_default), sizeof(hrtf_default)};
1208 return {};
1209 }
1210 #endif
1211
1212 } // namespace
1213
1214
EnumerateHrtf(const char * devname)1215 al::vector<std::string> EnumerateHrtf(const char *devname)
1216 {
1217 std::lock_guard<std::mutex> _{EnumeratedHrtfLock};
1218 EnumeratedHrtfs.clear();
1219
1220 bool usedefaults{true};
1221 if(auto pathopt = ConfigValueStr(devname, nullptr, "hrtf-paths"))
1222 {
1223 const char *pathlist{pathopt->c_str()};
1224 while(pathlist && *pathlist)
1225 {
1226 const char *next, *end;
1227
1228 while(isspace(*pathlist) || *pathlist == ',')
1229 pathlist++;
1230 if(*pathlist == '\0')
1231 continue;
1232
1233 next = strchr(pathlist, ',');
1234 if(next)
1235 end = next++;
1236 else
1237 {
1238 end = pathlist + strlen(pathlist);
1239 usedefaults = false;
1240 }
1241
1242 while(end != pathlist && isspace(*(end-1)))
1243 --end;
1244 if(end != pathlist)
1245 {
1246 const std::string pname{pathlist, end};
1247 for(const auto &fname : SearchDataFiles(".mhr", pname.c_str()))
1248 AddFileEntry(fname);
1249 }
1250
1251 pathlist = next;
1252 }
1253 }
1254
1255 if(usedefaults)
1256 {
1257 for(const auto &fname : SearchDataFiles(".mhr", "openal/hrtf"))
1258 AddFileEntry(fname);
1259
1260 if(!GetResource(IDR_DEFAULT_HRTF_MHR).empty())
1261 AddBuiltInEntry("Built-In HRTF", IDR_DEFAULT_HRTF_MHR);
1262 }
1263
1264 al::vector<std::string> list;
1265 list.reserve(EnumeratedHrtfs.size());
1266 for(auto &entry : EnumeratedHrtfs)
1267 list.emplace_back(entry.mDispName);
1268
1269 if(auto defhrtfopt = ConfigValueStr(devname, nullptr, "default-hrtf"))
1270 {
1271 auto iter = std::find(list.begin(), list.end(), *defhrtfopt);
1272 if(iter == list.end())
1273 WARN("Failed to find default HRTF \"%s\"\n", defhrtfopt->c_str());
1274 else if(iter != list.begin())
1275 std::rotate(list.begin(), iter, iter+1);
1276 }
1277
1278 return list;
1279 }
1280
GetLoadedHrtf(const std::string & name,const uint devrate)1281 HrtfStorePtr GetLoadedHrtf(const std::string &name, const uint devrate)
1282 {
1283 std::lock_guard<std::mutex> _{EnumeratedHrtfLock};
1284 auto entry_iter = std::find_if(EnumeratedHrtfs.cbegin(), EnumeratedHrtfs.cend(),
1285 [&name](const HrtfEntry &entry) -> bool { return entry.mDispName == name; });
1286 if(entry_iter == EnumeratedHrtfs.cend())
1287 return nullptr;
1288 const std::string &fname = entry_iter->mFilename;
1289
1290 std::lock_guard<std::mutex> __{LoadedHrtfLock};
1291 auto hrtf_lt_fname = [](LoadedHrtf &hrtf, const std::string &filename) -> bool
1292 { return hrtf.mFilename < filename; };
1293 auto handle = std::lower_bound(LoadedHrtfs.begin(), LoadedHrtfs.end(), fname, hrtf_lt_fname);
1294 while(handle != LoadedHrtfs.end() && handle->mFilename == fname)
1295 {
1296 HrtfStore *hrtf{handle->mEntry.get()};
1297 if(hrtf && hrtf->sampleRate == devrate)
1298 {
1299 hrtf->add_ref();
1300 return HrtfStorePtr{hrtf};
1301 }
1302 ++handle;
1303 }
1304
1305 std::unique_ptr<std::istream> stream;
1306 int residx{};
1307 char ch{};
1308 if(sscanf(fname.c_str(), "!%d%c", &residx, &ch) == 2 && ch == '_')
1309 {
1310 TRACE("Loading %s...\n", fname.c_str());
1311 al::span<const char> res{GetResource(residx)};
1312 if(res.empty())
1313 {
1314 ERR("Could not get resource %u, %s\n", residx, name.c_str());
1315 return nullptr;
1316 }
1317 stream = std::make_unique<idstream>(res.begin(), res.end());
1318 }
1319 else
1320 {
1321 TRACE("Loading %s...\n", fname.c_str());
1322 auto fstr = std::make_unique<al::ifstream>(fname.c_str(), std::ios::binary);
1323 if(!fstr->is_open())
1324 {
1325 ERR("Could not open %s\n", fname.c_str());
1326 return nullptr;
1327 }
1328 stream = std::move(fstr);
1329 }
1330
1331 std::unique_ptr<HrtfStore> hrtf;
1332 char magic[sizeof(magicMarker03)];
1333 stream->read(magic, sizeof(magic));
1334 if(stream->gcount() < static_cast<std::streamsize>(sizeof(magicMarker03)))
1335 ERR("%s data is too short (%zu bytes)\n", name.c_str(), stream->gcount());
1336 else if(memcmp(magic, magicMarker03, sizeof(magicMarker03)) == 0)
1337 {
1338 TRACE("Detected data set format v3\n");
1339 hrtf = LoadHrtf03(*stream, name.c_str());
1340 }
1341 else if(memcmp(magic, magicMarker02, sizeof(magicMarker02)) == 0)
1342 {
1343 TRACE("Detected data set format v2\n");
1344 hrtf = LoadHrtf02(*stream, name.c_str());
1345 }
1346 else if(memcmp(magic, magicMarker01, sizeof(magicMarker01)) == 0)
1347 {
1348 TRACE("Detected data set format v1\n");
1349 hrtf = LoadHrtf01(*stream, name.c_str());
1350 }
1351 else if(memcmp(magic, magicMarker00, sizeof(magicMarker00)) == 0)
1352 {
1353 TRACE("Detected data set format v0\n");
1354 hrtf = LoadHrtf00(*stream, name.c_str());
1355 }
1356 else
1357 ERR("Invalid header in %s: \"%.8s\"\n", name.c_str(), magic);
1358 stream.reset();
1359
1360 if(!hrtf)
1361 {
1362 ERR("Failed to load %s\n", name.c_str());
1363 return nullptr;
1364 }
1365
1366 if(hrtf->sampleRate != devrate)
1367 {
1368 TRACE("Resampling HRTF %s (%uhz -> %uhz)\n", name.c_str(), hrtf->sampleRate, devrate);
1369
1370 /* Calculate the last elevation's index and get the total IR count. */
1371 const size_t lastEv{std::accumulate(hrtf->field, hrtf->field+hrtf->fdCount, size_t{0},
1372 [](const size_t curval, const HrtfStore::Field &field) noexcept -> size_t
1373 { return curval + field.evCount; }
1374 ) - 1};
1375 const size_t irCount{size_t{hrtf->elev[lastEv].irOffset} + hrtf->elev[lastEv].azCount};
1376
1377 /* Resample all the IRs. */
1378 std::array<std::array<double,HrirLength>,2> inout;
1379 PPhaseResampler rs;
1380 rs.init(hrtf->sampleRate, devrate);
1381 for(size_t i{0};i < irCount;++i)
1382 {
1383 HrirArray &coeffs = const_cast<HrirArray&>(hrtf->coeffs[i]);
1384 for(size_t j{0};j < 2;++j)
1385 {
1386 std::transform(coeffs.cbegin(), coeffs.cend(), inout[0].begin(),
1387 [j](const float2 &in) noexcept -> double { return in[j]; });
1388 rs.process(HrirLength, inout[0].data(), HrirLength, inout[1].data());
1389 for(size_t k{0};k < HrirLength;++k)
1390 coeffs[k][j] = static_cast<float>(inout[1][k]);
1391 }
1392 }
1393 rs = {};
1394
1395 /* Scale the delays for the new sample rate. */
1396 float max_delay{0.0f};
1397 auto new_delays = al::vector<float2>(irCount);
1398 const float rate_scale{static_cast<float>(devrate)/static_cast<float>(hrtf->sampleRate)};
1399 for(size_t i{0};i < irCount;++i)
1400 {
1401 for(size_t j{0};j < 2;++j)
1402 {
1403 const float new_delay{std::round(hrtf->delays[i][j] * rate_scale) /
1404 float{HrirDelayFracOne}};
1405 max_delay = maxf(max_delay, new_delay);
1406 new_delays[i][j] = new_delay;
1407 }
1408 }
1409
1410 /* If the new delays exceed the max, scale it down to fit (essentially
1411 * shrinking the head radius; not ideal but better than a per-delay
1412 * clamp).
1413 */
1414 float delay_scale{HrirDelayFracOne};
1415 if(max_delay > MaxHrirDelay)
1416 {
1417 WARN("Resampled delay exceeds max (%.2f > %d)\n", max_delay, MaxHrirDelay);
1418 delay_scale *= float{MaxHrirDelay} / max_delay;
1419 }
1420
1421 for(size_t i{0};i < irCount;++i)
1422 {
1423 ubyte2 &delays = const_cast<ubyte2&>(hrtf->delays[i]);
1424 for(size_t j{0};j < 2;++j)
1425 delays[j] = static_cast<ubyte>(float2int(new_delays[i][j]*delay_scale + 0.5f));
1426 }
1427
1428 /* Scale the IR size for the new sample rate and update the stored
1429 * sample rate.
1430 */
1431 const float newIrSize{std::round(static_cast<float>(hrtf->irSize) * rate_scale)};
1432 hrtf->irSize = static_cast<uint>(minf(HrirLength, newIrSize));
1433 hrtf->sampleRate = devrate;
1434 }
1435
1436 TRACE("Loaded HRTF %s for sample rate %uhz, %u-sample filter\n", name.c_str(),
1437 hrtf->sampleRate, hrtf->irSize);
1438 handle = LoadedHrtfs.emplace(handle, LoadedHrtf{fname, std::move(hrtf)});
1439
1440 return HrtfStorePtr{handle->mEntry.get()};
1441 }
1442
1443
add_ref()1444 void HrtfStore::add_ref()
1445 {
1446 auto ref = IncrementRef(mRef);
1447 TRACE("HrtfStore %p increasing refcount to %u\n", decltype(std::declval<void*>()){this}, ref);
1448 }
1449
release()1450 void HrtfStore::release()
1451 {
1452 auto ref = DecrementRef(mRef);
1453 TRACE("HrtfStore %p decreasing refcount to %u\n", decltype(std::declval<void*>()){this}, ref);
1454 if(ref == 0)
1455 {
1456 std::lock_guard<std::mutex> _{LoadedHrtfLock};
1457
1458 /* Go through and remove all unused HRTFs. */
1459 auto remove_unused = [](LoadedHrtf &hrtf) -> bool
1460 {
1461 HrtfStore *entry{hrtf.mEntry.get()};
1462 if(entry && ReadRef(entry->mRef) == 0)
1463 {
1464 TRACE("Unloading unused HRTF %s\n", hrtf.mFilename.data());
1465 hrtf.mEntry = nullptr;
1466 return true;
1467 }
1468 return false;
1469 };
1470 auto iter = std::remove_if(LoadedHrtfs.begin(), LoadedHrtfs.end(), remove_unused);
1471 LoadedHrtfs.erase(iter, LoadedHrtfs.end());
1472 }
1473 }
1474