1 /* ========================================================================== */
2 /* === colamd/symamd - a sparse matrix column ordering algorithm ============ */
3 /* ========================================================================== */
4 
5 /* COLAMD / SYMAMD
6 
7     colamd:  an approximate minimum degree column ordering algorithm,
8         for LU factorization of symmetric or unsymmetric matrices,
9         QR factorization, least squares, interior point methods for
10         linear programming problems, and other related problems.
11 
12     symamd:  an approximate minimum degree ordering algorithm for Cholesky
13         factorization of symmetric matrices.
14 
15     Purpose:
16 
17         Colamd computes a permutation Q such that the Cholesky factorization of
18         (AQ)'(AQ) has less fill-in and requires fewer floating point operations
19         than A'A.  This also provides a good ordering for sparse partial
20         pivoting methods, P(AQ) = LU, where Q is computed prior to numerical
21         factorization, and P is computed during numerical factorization via
22         conventional partial pivoting with row interchanges.  Colamd is the
23         column ordering method used in SuperLU, part of the ScaLAPACK library.
NumLoopsLoopExtractorPass24         It is also available as built-in function in MATLAB Version 6,
25         available from MathWorks, Inc. (http://www.mathworks.com).  This
26         routine can be used in place of colmmd in MATLAB.
27 
28         Symamd computes a permutation P of a symmetric matrix A such that the
29         Cholesky factorization of PAP' has less fill-in and requires fewer
30         floating point operations than A.  Symamd constructs a matrix M such
31         that M'M has the same nonzero pattern of A, and then orders the columns
32         of M using colmmd.  The column ordering of M is then returned as the
33         row and column ordering P of A.
34 
35     Authors:
36 
37         The authors of the code itself are Stefan I. Larimore and Timothy A.
38         Davis (davis at cise.ufl.edu), University of Florida.  The algorithm was
39         developed in collaboration with John Gilbert, Xerox PARC, and Esmond
40         Ng, Oak Ridge National Laboratory.
41 
42     Acknowledgements:
43 
44         This work was supported by the National Science Foundation, under
45         grants DMS-9504974 and DMS-9803599.
46 
47     Copyright and License:
48 
49         Copyright (c) 1998-2007, Timothy A. Davis, All Rights Reserved.
50         COLAMD is also available under alternate licenses, contact T. Davis
51         for details.
52 
53         This library is free software; you can redistribute it and/or
54         modify it under the terms of the GNU Lesser General Public
55         License as published by the Free Software Foundation; either
56         version 2.1 of the License, or (at your option) any later version.
57 
58         This library is distributed in the hope that it will be useful,
59         but WITHOUT ANY WARRANTY; without even the implied warranty of
60         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
61         Lesser General Public License for more details.
62 
63         You should have received a copy of the GNU Lesser General Public
64         License along with this library; if not, write to the Free Software
65         Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301
66         USA
67 
68         Permission is hereby granted to use or copy this program under the
69         terms of the GNU LGPL, provided that the Copyright, this License,
70         and the Availability of the original version is retained on all copies.
71         User documentation of any code that uses this code or any modified
72         version of this code must cite the Copyright, this License, the
73         Availability note, and "Used by permission." Permission to modify
74         the code and to distribute modified code is granted, provided the
75         Copyright, this License, and the Availability note are retained,
76         and a notice that the code was modified is included.
77 
78     Availability:
79 
80         The colamd/symamd library is available at
81 
82             http://www.cise.ufl.edu/research/sparse/colamd/
83 
84         This is the http://www.cise.ufl.edu/research/sparse/colamd/colamd.c
85         file.  It requires the colamd.h file.  It is required by the colamdmex.c
86         and symamdmex.c files, for the MATLAB interface to colamd and symamd.
87         Appears as ACM Algorithm 836.
88 
89     See the ChangeLog file for changes since Version 1.0.
90 
91     References:
92 
93         T. A. Davis, J. R. Gilbert, S. Larimore, E. Ng, An approximate column
94         minimum degree ordering algorithm, ACM Transactions on Mathematical
95         Software, vol. 30, no. 3., pp. 353-376, 2004.
96 
97         T. A. Davis, J. R. Gilbert, S. Larimore, E. Ng, Algorithm 836: COLAMD,
98         an approximate column minimum degree ordering algorithm, ACM
99         Transactions on Mathematical Software, vol. 30, no. 3., pp. 377-380,
100         2004.
101 
102 */
103 
104 /* ========================================================================== */
105 /* === Description of user-callable routines ================================ */
106 /* ========================================================================== */
107 
108 /* COLAMD includes both int and UF_long versions of all its routines.  The
109  * description below is for the int version.  For UF_long, all int arguments
110  * become UF_long.  UF_long is normally defined as long, except for WIN64.
111 
112     ----------------------------------------------------------------------------
113     colamd_recommended:
114     ----------------------------------------------------------------------------
115 
116         C syntax:
117 
118             #include "colamd.h"
119             size_t colamd_recommended (int nnz, int n_row, int n_col) ;
120             size_t colamd_l_recommended (UF_long nnz, UF_long n_row,
121                 UF_long n_col) ;
122 
123         Purpose:
124 
125             Returns recommended value of Alen for use by colamd.  Returns 0
126             if any input argument is negative.  The use of this routine
127             is optional.  Not needed for symamd, which dynamically allocates
128             its own memory.
129 
130             Note that in v2.4 and earlier, these routines returned int or long.
131             They now return a value of type size_t.
132 
133         Arguments (all input arguments):
134 
135             int nnz ;           Number of nonzeros in the matrix A.  This must
136                                 be the same value as p [n_col] in the call to
137                                 colamd - otherwise you will get a wrong value
138                                 of the recommended memory to use.
139 
140             int n_row ;         Number of rows in the matrix A.
141 
142             int n_col ;         Number of columns in the matrix A.
143 
144     ----------------------------------------------------------------------------
145     colamd_set_defaults:
146     ----------------------------------------------------------------------------
147 
148         C syntax:
149 
150             #include "colamd.h"
151             colamd_set_defaults (double knobs [COLAMD_KNOBS]) ;
152             colamd_l_set_defaults (double knobs [COLAMD_KNOBS]) ;
153 
154         Purpose:
155 
156             Sets the default parameters.  The use of this routine is optional.
157 
158         Arguments:
159 
160             double knobs [COLAMD_KNOBS] ;       Output only.
161 
162                 NOTE: the meaning of the dense row/col knobs has changed in v2.4
163 
164                 knobs [0] and knobs [1] control dense row and col detection:
165 
166                 Colamd: rows with more than
167                 max (16, knobs [COLAMD_DENSE_ROW] * sqrt (n_col))
168                 entries are removed prior to ordering.  Columns with more than
169                 max (16, knobs [COLAMD_DENSE_COL] * sqrt (MIN (n_row,n_col)))
170                 entries are removed prior to
171                 ordering, and placed last in the output column ordering.
172 
173                 Symamd: uses only knobs [COLAMD_DENSE_ROW], which is knobs [0].
174                 Rows and columns with more than
175                 max (16, knobs [COLAMD_DENSE_ROW] * sqrt (n))
176                 entries are removed prior to ordering, and placed last in the
177                 output ordering.
178 
179                 COLAMD_DENSE_ROW and COLAMD_DENSE_COL are defined as 0 and 1,
180                 respectively, in colamd.h.  Default values of these two knobs
181                 are both 10.  Currently, only knobs [0] and knobs [1] are
182                 used, but future versions may use more knobs.  If so, they will
183                 be properly set to their defaults by the future version of
184                 colamd_set_defaults, so that the code that calls colamd will
185                 not need to change, assuming that you either use
186                 colamd_set_defaults, or pass a (double *) NULL pointer as the
187                 knobs array to colamd or symamd.
188 
189             knobs [2]: aggressive absorption
190 
191                 knobs [COLAMD_AGGRESSIVE] controls whether or not to do
192                 aggressive absorption during the ordering.  Default is TRUE.
193 
194 
195     ----------------------------------------------------------------------------
196     colamd:
197     ----------------------------------------------------------------------------
198 
199         C syntax:
200 
201             #include "colamd.h"
202             int colamd (int n_row, int n_col, int Alen, int *A, int *p,
203                 double knobs [COLAMD_KNOBS], int stats [COLAMD_STATS]) ;
204             UF_long colamd_l (UF_long n_row, UF_long n_col, UF_long Alen,
205                 UF_long *A, UF_long *p, double knobs [COLAMD_KNOBS],
206                 UF_long stats [COLAMD_STATS]) ;
207 
208         Purpose:
209 
210             Computes a column ordering (Q) of A such that P(AQ)=LU or
211             (AQ)'AQ=LL' have less fill-in and require fewer floating point
212             operations than factorizing the unpermuted matrix A or A'A,
213             respectively.
214 
215         Returns:
216 
217             TRUE (1) if successful, FALSE (0) otherwise.
218 
219         Arguments:
220 
221             int n_row ;         Input argument.
222 
223                 Number of rows in the matrix A.
224                 Restriction:  n_row >= 0.
225                 Colamd returns FALSE if n_row is negative.
226 
227             int n_col ;         Input argument.
228 
229                 Number of columns in the matrix A.
230                 Restriction:  n_col >= 0.
231                 Colamd returns FALSE if n_col is negative.
232 
233             int Alen ;          Input argument.
234 
235                 Restriction (see note):
236                 Alen >= 2*nnz + 6*(n_col+1) + 4*(n_row+1) + n_col
237                 Colamd returns FALSE if these conditions are not met.
238 
239                 Note:  this restriction makes an modest assumption regarding
240                 the size of the two typedef's structures in colamd.h.
241                 We do, however, guarantee that
242 
243                         Alen >= colamd_recommended (nnz, n_row, n_col)
244 
245                 will be sufficient.  Note: the macro version does not check
246                 for integer overflow, and thus is not recommended.  Use
247                 the colamd_recommended routine instead.
248 
249             int A [Alen] ;      Input argument, undefined on output.
250 
251                 A is an integer array of size Alen.  Alen must be at least as
252                 large as the bare minimum value given above, but this is very
253                 low, and can result in excessive run time.  For best
254                 performance, we recommend that Alen be greater than or equal to
255                 colamd_recommended (nnz, n_row, n_col), which adds
256                 nnz/5 to the bare minimum value given above.
257 
258                 On input, the row indices of the entries in column c of the
259                 matrix are held in A [(p [c]) ... (p [c+1]-1)].  The row indices
260                 in a given column c need not be in ascending order, and
261                 duplicate row indices may be be present.  However, colamd will
262                 work a little faster if both of these conditions are met
263                 (Colamd puts the matrix into this format, if it finds that the
264                 the conditions are not met).
265 
266                 The matrix is 0-based.  That is, rows are in the range 0 to
267                 n_row-1, and columns are in the range 0 to n_col-1.  Colamd
268                 returns FALSE if any row index is out of range.
269 
270                 The contents of A are modified during ordering, and are
271                 undefined on output.
272 
273             int p [n_col+1] ;   Both input and output argument.
274 
275                 p is an integer array of size n_col+1.  On input, it holds the
276                 "pointers" for the column form of the matrix A.  Column c of
277                 the matrix A is held in A [(p [c]) ... (p [c+1]-1)].  The first
278                 entry, p [0], must be zero, and p [c] <= p [c+1] must hold
279                 for all c in the range 0 to n_col-1.  The value p [n_col] is
280                 thus the total number of entries in the pattern of the matrix A.
281                 Colamd returns FALSE if these conditions are not met.
282 
283                 On output, if colamd returns TRUE, the array p holds the column
284                 permutation (Q, for P(AQ)=LU or (AQ)'(AQ)=LL'), where p [0] is
285                 the first column index in the new ordering, and p [n_col-1] is
286                 the last.  That is, p [k] = j means that column j of A is the
287                 kth pivot column, in AQ, where k is in the range 0 to n_col-1
288                 (p [0] = j means that column j of A is the first column in AQ).
289 
290                 If colamd returns FALSE, then no permutation is returned, and
291                 p is undefined on output.
292 
293             double knobs [COLAMD_KNOBS] ;       Input argument.
294 
295                 See colamd_set_defaults for a description.
296 
297             int stats [COLAMD_STATS] ;          Output argument.
298 
299                 Statistics on the ordering, and error status.
300                 See colamd.h for related definitions.
301                 Colamd returns FALSE if stats is not present.
302 
303                 stats [0]:  number of dense or empty rows ignored.
304 
305                 stats [1]:  number of dense or empty columns ignored (and
306                                 ordered last in the output permutation p)
307                                 Note that a row can become "empty" if it
308                                 contains only "dense" and/or "empty" columns,
309                                 and similarly a column can become "empty" if it
310                                 only contains "dense" and/or "empty" rows.
311 
312                 stats [2]:  number of garbage collections performed.
313                                 This can be excessively high if Alen is close
314                                 to the minimum required value.
315 
316                 stats [3]:  status code.  < 0 is an error code.
317                             > 1 is a warning or notice.
318 
319                         0       OK.  Each column of the input matrix contained
320                                 row indices in increasing order, with no
321                                 duplicates.
322 
323                         1       OK, but columns of input matrix were jumbled
324                                 (unsorted columns or duplicate entries).  Colamd
325                                 had to do some extra work to sort the matrix
326                                 first and remove duplicate entries, but it
327                                 still was able to return a valid permutation
328                                 (return value of colamd was TRUE).
329 
330                                         stats [4]: highest numbered column that
331                                                 is unsorted or has duplicate
332                                                 entries.
333                                         stats [5]: last seen duplicate or
334                                                 unsorted row index.
335                                         stats [6]: number of duplicate or
336                                                 unsorted row indices.
337 
338                         -1      A is a null pointer
339 
340                         -2      p is a null pointer
341 
342                         -3      n_row is negative
343 
344                                         stats [4]: n_row
345 
346                         -4      n_col is negative
347 
348                                         stats [4]: n_col
349 
350                         -5      number of nonzeros in matrix is negative
351 
352                                         stats [4]: number of nonzeros, p [n_col]
353 
354                         -6      p [0] is nonzero
355 
356                                         stats [4]: p [0]
357 
358                         -7      A is too small
359 
360                                         stats [4]: required size
361                                         stats [5]: actual size (Alen)
362 
363                         -8      a column has a negative number of entries
364 
365                                         stats [4]: column with < 0 entries
366                                         stats [5]: number of entries in col
367 
368                         -9      a row index is out of bounds
369 
370                                         stats [4]: column with bad row index
371                                         stats [5]: bad row index
372                                         stats [6]: n_row, # of rows of matrx
373 
374                         -10     (unused; see symamd.c)
375 
376                         -999    (unused; see symamd.c)
377 
378                 Future versions may return more statistics in the stats array.
379 
380         Example:
381 
382             See http://www.cise.ufl.edu/research/sparse/colamd/example.c
383             for a complete example.
384 
385             To order the columns of a 5-by-4 matrix with 11 nonzero entries in
386             the following nonzero pattern
387 
388                 x 0 x 0
389                 x 0 x x
390                 0 x x 0
391                 0 0 x x
392                 x x 0 0
393 
394             with default knobs and no output statistics, do the following:
395 
396                 #include "colamd.h"
397                 #define ALEN 100
398                 int A [ALEN] = {0, 1, 4, 2, 4, 0, 1, 2, 3, 1, 3} ;
399                 int p [ ] = {0, 3, 5, 9, 11} ;
400                 int stats [COLAMD_STATS] ;
401                 colamd (5, 4, ALEN, A, p, (double *) NULL, stats) ;
402 
403             The permutation is returned in the array p, and A is destroyed.
404 
405     ----------------------------------------------------------------------------
406     symamd:
407     ----------------------------------------------------------------------------
408 
409         C syntax:
410 
411             #include "colamd.h"
412             int symamd (int n, int *A, int *p, int *perm,
413                 double knobs [COLAMD_KNOBS], int stats [COLAMD_STATS],
414                 void (*allocate) (size_t, size_t), void (*release) (void *)) ;
415             UF_long symamd_l (UF_long n, UF_long *A, UF_long *p, UF_long *perm,
416                 double knobs [COLAMD_KNOBS], UF_long stats [COLAMD_STATS],
417                 void (*allocate) (size_t, size_t), void (*release) (void *)) ;
418 
419         Purpose:
420 
421             The symamd routine computes an ordering P of a symmetric sparse
422             matrix A such that the Cholesky factorization PAP' = LL' remains
423             sparse.  It is based on a column ordering of a matrix M constructed
424             so that the nonzero pattern of M'M is the same as A.  The matrix A
425             is assumed to be symmetric; only the strictly lower triangular part
426             is accessed.  You must pass your selected memory allocator (usually
427             calloc/free or mxCalloc/mxFree) to symamd, for it to allocate
428             memory for the temporary matrix M.
429 
430         Returns:
431 
432             TRUE (1) if successful, FALSE (0) otherwise.
433 
434         Arguments:
435 
436             int n ;             Input argument.
437 
438                 Number of rows and columns in the symmetrix matrix A.
439                 Restriction:  n >= 0.
440                 Symamd returns FALSE if n is negative.
441 
442             int A [nnz] ;       Input argument.
443 
444                 A is an integer array of size nnz, where nnz = p [n].
445 
446                 The row indices of the entries in column c of the matrix are
447                 held in A [(p [c]) ... (p [c+1]-1)].  The row indices in a
448                 given column c need not be in ascending order, and duplicate
449                 row indices may be present.  However, symamd will run faster
450                 if the columns are in sorted order with no duplicate entries.
451 
452                 The matrix is 0-based.  That is, rows are in the range 0 to
453                 n-1, and columns are in the range 0 to n-1.  Symamd
454                 returns FALSE if any row index is out of range.
455 
456                 The contents of A are not modified.
457 
458             int p [n+1] ;       Input argument.
459 
460                 p is an integer array of size n+1.  On input, it holds the
461                 "pointers" for the column form of the matrix A.  Column c of
462                 the matrix A is held in A [(p [c]) ... (p [c+1]-1)].  The first
463                 entry, p [0], must be zero, and p [c] <= p [c+1] must hold
464                 for all c in the range 0 to n-1.  The value p [n] is
465                 thus the total number of entries in the pattern of the matrix A.
466                 Symamd returns FALSE if these conditions are not met.
467 
468                 The contents of p are not modified.
469 
470             int perm [n+1] ;    Output argument.
471 
472                 On output, if symamd returns TRUE, the array perm holds the
473                 permutation P, where perm [0] is the first index in the new
474                 ordering, and perm [n-1] is the last.  That is, perm [k] = j
475                 means that row and column j of A is the kth column in PAP',
476                 where k is in the range 0 to n-1 (perm [0] = j means
477                 that row and column j of A are the first row and column in
478                 PAP').  The array is used as a workspace during the ordering,
479                 which is why it must be of length n+1, not just n.
480 
481             double knobs [COLAMD_KNOBS] ;       Input argument.
482 
483                 See colamd_set_defaults for a description.
484 
485             int stats [COLAMD_STATS] ;          Output argument.
486 
487                 Statistics on the ordering, and error status.
488                 See colamd.h for related definitions.
489                 Symamd returns FALSE if stats is not present.
490 
491                 stats [0]:  number of dense or empty row and columns ignored
492                                 (and ordered last in the output permutation
493                                 perm).  Note that a row/column can become
494                                 "empty" if it contains only "dense" and/or
495                                 "empty" columns/rows.
496 
497                 stats [1]:  (same as stats [0])
498 
499                 stats [2]:  number of garbage collections performed.
500 
501                 stats [3]:  status code.  < 0 is an error code.
502                             > 1 is a warning or notice.
503 
504                         0       OK.  Each column of the input matrix contained
505                                 row indices in increasing order, with no
506                                 duplicates.
507 
508                         1       OK, but columns of input matrix were jumbled
509                                 (unsorted columns or duplicate entries).  Symamd
510                                 had to do some extra work to sort the matrix
511                                 first and remove duplicate entries, but it
512                                 still was able to return a valid permutation
513                                 (return value of symamd was TRUE).
514 
515                                         stats [4]: highest numbered column that
516                                                 is unsorted or has duplicate
517                                                 entries.
518                                         stats [5]: last seen duplicate or
519                                                 unsorted row index.
520                                         stats [6]: number of duplicate or
521                                                 unsorted row indices.
522 
523                         -1      A is a null pointer
524 
525                         -2      p is a null pointer
526 
527                         -3      (unused, see colamd.c)
528 
529                         -4      n is negative
530 
531                                         stats [4]: n
532 
533                         -5      number of nonzeros in matrix is negative
534 
535                                         stats [4]: # of nonzeros (p [n]).
536 
537                         -6      p [0] is nonzero
538 
539                                         stats [4]: p [0]
540 
541                         -7      (unused)
542 
543                         -8      a column has a negative number of entries
544 
545                                         stats [4]: column with < 0 entries
546                                         stats [5]: number of entries in col
547 
548                         -9      a row index is out of bounds
549 
550                                         stats [4]: column with bad row index
551                                         stats [5]: bad row index
552                                         stats [6]: n_row, # of rows of matrx
553 
554                         -10     out of memory (unable to allocate temporary
555                                 workspace for M or count arrays using the
556                                 "allocate" routine passed into symamd).
557 
558                 Future versions may return more statistics in the stats array.
559 
560             void * (*allocate) (size_t, size_t)
561 
562                 A pointer to a function providing memory allocation.  The
563                 allocated memory must be returned initialized to zero.  For a
564                 C application, this argument should normally be a pointer to
565                 calloc.  For a MATLAB mexFunction, the routine mxCalloc is
566                 passed instead.
567 
568             void (*release) (size_t, size_t)
569 
570                 A pointer to a function that frees memory allocated by the
571                 memory allocation routine above.  For a C application, this
572                 argument should normally be a pointer to free.  For a MATLAB
573                 mexFunction, the routine mxFree is passed instead.
574 
575 
576     ----------------------------------------------------------------------------
577     colamd_report:
578     ----------------------------------------------------------------------------
579 
580         C syntax:
581 
582             #include "colamd.h"
583             colamd_report (int stats [COLAMD_STATS]) ;
584             colamd_l_report (UF_long stats [COLAMD_STATS]) ;
585 
586         Purpose:
587 
588             Prints the error status and statistics recorded in the stats
589             array on the standard error output (for a standard C routine)
590             or on the MATLAB output (for a mexFunction).
591 
592         Arguments:
593 
594             int stats [COLAMD_STATS] ;  Input only.  Statistics from colamd.
595 
596 
597     ----------------------------------------------------------------------------
598     symamd_report:
599     ----------------------------------------------------------------------------
600 
601         C syntax:
602 
603             #include "colamd.h"
604             symamd_report (int stats [COLAMD_STATS]) ;
605             symamd_l_report (UF_long stats [COLAMD_STATS]) ;
606 
607         Purpose:
608 
609             Prints the error status and statistics recorded in the stats
610             array on the standard error output (for a standard C routine)
611             or on the MATLAB output (for a mexFunction).
612 
613         Arguments:
614 
615             int stats [COLAMD_STATS] ;  Input only.  Statistics from symamd.
616 
617 
618 */
619 
620 /* ========================================================================== */
621 /* === Scaffolding code definitions  ======================================== */
622 /* ========================================================================== */
623 
624 /* Ensure that debugging is turned off: */
625 #ifndef NDEBUG
626 #define NDEBUG
627 #endif
628 
629 /* turn on debugging by uncommenting the following line
630  #undef NDEBUG
631 */
632 
633 /*
634    Our "scaffolding code" philosophy:  In our opinion, well-written library
635    code should keep its "debugging" code, and just normally have it turned off
636    by the compiler so as not to interfere with performance.  This serves
637    several purposes:
638 
639    (1) assertions act as comments to the reader, telling you what the code
640         expects at that point.  All assertions will always be true (unless
641         there really is a bug, of course).
642 
643    (2) leaving in the scaffolding code assists anyone who would like to modify
644         the code, or understand the algorithm (by reading the debugging output,
645         one can get a glimpse into what the code is doing).
646 
647    (3) (gasp!) for actually finding bugs.  This code has been heavily tested
648         and "should" be fully functional and bug-free ... but you never know...
649 
650     The code will become outrageously slow when debugging is
651     enabled.  To control the level of debugging output, set an environment
652     variable D to 0 (little), 1 (some), 2, 3, or 4 (lots).  When debugging,
653     you should see the following message on the standard output:
654 
655         colamd: debug version, D = 1 (THIS WILL BE SLOW!)
656 
657     or a similar message for symamd.  If you don't, then debugging has not
658     been enabled.
659 
660 */
661 
662 /* ========================================================================== */
663 /* === Include files ======================================================== */
664 /* ========================================================================== */
665 
666 #include "colamd.h"
667 
668 #if 0 /* by mao */
669 #include <limits.h>
670 #include <math.h>
671 
672 #ifdef MATLAB_MEX_FILE
673 #include "mex.h"
674 #include "matrix.h"
675 #endif /* MATLAB_MEX_FILE */
676 
677 #if !defined (NPRINT) || !defined (NDEBUG)
678 #include <stdio.h>
679 #endif
680 
681 #ifndef NULL
682 #define NULL ((void *) 0)
683 #endif
684 #endif
685 
686 /* ========================================================================== */
687 /* === int or UF_long ======================================================= */
688 /* ========================================================================== */
689 
690 #if 0 /* by mao */
691 /* define UF_long */
692 #include "UFconfig.h"
693 #endif
694 
695 #ifdef DLONG
696 
697 #define Int UF_long
698 #define ID  UF_long_id
699 #define Int_MAX UF_long_max
700 
701 #define COLAMD_recommended colamd_l_recommended
702 #define COLAMD_set_defaults colamd_l_set_defaults
703 #define COLAMD_MAIN colamd_l
704 #define SYMAMD_MAIN symamd_l
705 #define COLAMD_report colamd_l_report
706 #define SYMAMD_report symamd_l_report
707 
708 #else
709 
710 #define Int int
711 #define ID "%d"
712 #define Int_MAX INT_MAX
713 
714 #define COLAMD_recommended colamd_recommended
715 #define COLAMD_set_defaults colamd_set_defaults
716 #define COLAMD_MAIN colamd
717 #define SYMAMD_MAIN symamd
718 #define COLAMD_report colamd_report
719 #define SYMAMD_report symamd_report
720 
721 #endif
722 
723 /* ========================================================================== */
724 /* === Row and Column structures ============================================ */
725 /* ========================================================================== */
726 
727 /* User code that makes use of the colamd/symamd routines need not directly */
728 /* reference these structures.  They are used only for colamd_recommended. */
729 
730 typedef struct Colamd_Col_struct
731 {
732     Int start ;         /* index for A of first row in this column, or DEAD */
733                         /* if column is dead */
734     Int length ;        /* number of rows in this column */
735     union
736     {
737         Int thickness ; /* number of original columns represented by this */
738                         /* col, if the column is alive */
739         Int parent ;    /* parent in parent tree super-column structure, if */
740                         /* the column is dead */
741     } shared1 ;
742     union
743     {
744         Int score ;     /* the score used to maintain heap, if col is alive */
745         Int order ;     /* pivot ordering of this column, if col is dead */
746     } shared2 ;
747     union
748     {
749         Int headhash ;  /* head of a hash bucket, if col is at the head of */
750                         /* a degree list */
751         Int hash ;      /* hash value, if col is not in a degree list */
752         Int prev ;      /* previous column in degree list, if col is in a */
753                         /* degree list (but not at the head of a degree list) */
754     } shared3 ;
755     union
756     {
757         Int degree_next ;       /* next column, if col is in a degree list */
758         Int hash_next ;         /* next column, if col is in a hash list */
759     } shared4 ;
760 
761 } Colamd_Col ;
762 
763 typedef struct Colamd_Row_struct
764 {
765     Int start ;         /* index for A of first col in this row */
766     Int length ;        /* number of principal columns in this row */
767     union
768     {
769         Int degree ;    /* number of principal & non-principal columns in row */
770         Int p ;         /* used as a row pointer in init_rows_cols () */
771     } shared1 ;
772     union
773     {
774         Int mark ;      /* for computing set differences and marking dead rows*/
775         Int first_column ;/* first column in row (used in garbage collection) */
776     } shared2 ;
777 
778 } Colamd_Row ;
779 
780 /* ========================================================================== */
781 /* === Definitions ========================================================== */
782 /* ========================================================================== */
783 
784 /* Routines are either PUBLIC (user-callable) or PRIVATE (not user-callable) */
785 #define PUBLIC
786 #define PRIVATE static
787 
788 #define DENSE_DEGREE(alpha,n) \
789     ((Int) MAX (16.0, (alpha) * sqrt ((double) (n))))
790 
791 #define MAX(a,b) (((a) > (b)) ? (a) : (b))
792 #define MIN(a,b) (((a) < (b)) ? (a) : (b))
793 
794 #define ONES_COMPLEMENT(r) (-(r)-1)
795 
796 /* -------------------------------------------------------------------------- */
797 /* Change for version 2.1:  define TRUE and FALSE only if not yet defined */
798 /* -------------------------------------------------------------------------- */
799 
800 #ifndef TRUE
801 #define TRUE (1)
802 #endif
803 
804 #ifndef FALSE
805 #define FALSE (0)
806 #endif
807 
808 /* -------------------------------------------------------------------------- */
809 
810 #define EMPTY   (-1)
811 
812 /* Row and column status */
813 #define ALIVE   (0)
814 #define DEAD    (-1)
815 
816 /* Column status */
817 #define DEAD_PRINCIPAL          (-1)
818 #define DEAD_NON_PRINCIPAL      (-2)
819 
820 /* Macros for row and column status update and checking. */
821 #define ROW_IS_DEAD(r)                  ROW_IS_MARKED_DEAD (Row[r].shared2.mark)
822 #define ROW_IS_MARKED_DEAD(row_mark)    (row_mark < ALIVE)
823 #define ROW_IS_ALIVE(r)                 (Row [r].shared2.mark >= ALIVE)
824 #define COL_IS_DEAD(c)                  (Col [c].start < ALIVE)
825 #define COL_IS_ALIVE(c)                 (Col [c].start >= ALIVE)
826 #define COL_IS_DEAD_PRINCIPAL(c)        (Col [c].start == DEAD_PRINCIPAL)
827 #define KILL_ROW(r)                     { Row [r].shared2.mark = DEAD ; }
828 #define KILL_PRINCIPAL_COL(c)           { Col [c].start = DEAD_PRINCIPAL ; }
829 #define KILL_NON_PRINCIPAL_COL(c)       { Col [c].start = DEAD_NON_PRINCIPAL ; }
830 
831 /* ========================================================================== */
832 /* === Colamd reporting mechanism =========================================== */
833 /* ========================================================================== */
834 
835 #if defined (MATLAB_MEX_FILE) || defined (MATHWORKS)
836 /* In MATLAB, matrices are 1-based to the user, but 0-based internally */
837 #define INDEX(i) ((i)+1)
838 #else
839 /* In C, matrices are 0-based and indices are reported as such in *_report */
840 #define INDEX(i) (i)
841 #endif
842 
843 /* All output goes through the PRINTF macro.  */
844 #define PRINTF(params) { if (colamd_printf != NULL) (void) colamd_printf params ; }
845 
846 /* ========================================================================== */
847 /* === Prototypes of PRIVATE routines ======================================= */
848 /* ========================================================================== */
849 
850 PRIVATE Int init_rows_cols
851 (
852     Int n_row,
853     Int n_col,
854     Colamd_Row Row [],
855     Colamd_Col Col [],
856     Int A [],
857     Int p [],
858     Int stats [COLAMD_STATS]
859 ) ;
860 
861 PRIVATE void init_scoring
862 (
863     Int n_row,
864     Int n_col,
865     Colamd_Row Row [],
866     Colamd_Col Col [],
867     Int A [],
868     Int head [],
869     double knobs [COLAMD_KNOBS],
870     Int *p_n_row2,
871     Int *p_n_col2,
872     Int *p_max_deg
873 ) ;
874 
875 PRIVATE Int find_ordering
876 (
877     Int n_row,
878     Int n_col,
879     Int Alen,
880     Colamd_Row Row [],
881     Colamd_Col Col [],
882     Int A [],
883     Int head [],
884     Int n_col2,
885     Int max_deg,
886     Int pfree,
887     Int aggressive
888 ) ;
889 
890 PRIVATE void order_children
891 (
892     Int n_col,
893     Colamd_Col Col [],
894     Int p []
895 ) ;
896 
897 PRIVATE void detect_super_cols
898 (
899 
900 #ifndef NDEBUG
901     Int n_col,
902     Colamd_Row Row [],
903 #endif /* NDEBUG */
904 
905     Colamd_Col Col [],
906     Int A [],
907     Int head [],
908     Int row_start,
909     Int row_length
910 ) ;
911 
912 PRIVATE Int garbage_collection
913 (
914     Int n_row,
915     Int n_col,
916     Colamd_Row Row [],
917     Colamd_Col Col [],
918     Int A [],
919     Int *pfree
920 ) ;
921 
922 PRIVATE Int clear_mark
923 (
924     Int tag_mark,
925     Int max_mark,
926     Int n_row,
927     Colamd_Row Row []
928 ) ;
929 
930 PRIVATE void print_report
931 (
932     char *method,
933     Int stats [COLAMD_STATS]
934 ) ;
935 
936 /* ========================================================================== */
937 /* === Debugging prototypes and definitions ================================= */
938 /* ========================================================================== */
939 
940 #ifndef NDEBUG
941 
942 #if 0 /* by mao */
943 #include <assert.h>
944 #endif
945 
946 /* colamd_debug is the *ONLY* global variable, and is only */
947 /* present when debugging */
948 
949 PRIVATE Int colamd_debug = 0 ;  /* debug print level */
950 
951 #define DEBUG0(params) { PRINTF (params) ; }
952 #define DEBUG1(params) { if (colamd_debug >= 1) PRINTF (params) ; }
953 #define DEBUG2(params) { if (colamd_debug >= 2) PRINTF (params) ; }
954 #define DEBUG3(params) { if (colamd_debug >= 3) PRINTF (params) ; }
955 #define DEBUG4(params) { if (colamd_debug >= 4) PRINTF (params) ; }
956 
957 #if 0 /* by mao */
958 #ifdef MATLAB_MEX_FILE
959 #define ASSERT(expression) (mxAssert ((expression), ""))
960 #else
961 #define ASSERT(expression) (assert (expression))
962 #endif /* MATLAB_MEX_FILE */
963 #else
964 #define ASSERT xassert
965 #endif
966 
967 PRIVATE void colamd_get_debug   /* gets the debug print level from getenv */
968 (
969     char *method
970 ) ;
971 
972 PRIVATE void debug_deg_lists
973 (
974     Int n_row,
975     Int n_col,
976     Colamd_Row Row [],
977     Colamd_Col Col [],
978     Int head [],
979     Int min_score,
980     Int should,
981     Int max_deg
982 ) ;
983 
984 PRIVATE void debug_mark
985 (
986     Int n_row,
987     Colamd_Row Row [],
988     Int tag_mark,
989     Int max_mark
990 ) ;
991 
992 PRIVATE void debug_matrix
993 (
994     Int n_row,
995     Int n_col,
996     Colamd_Row Row [],
997     Colamd_Col Col [],
998     Int A []
999 ) ;
1000 
1001 PRIVATE void debug_structures
1002 (
1003     Int n_row,
1004     Int n_col,
1005     Colamd_Row Row [],
1006     Colamd_Col Col [],
1007     Int A [],
1008     Int n_col2
1009 ) ;
1010 
1011 #else /* NDEBUG */
1012 
1013 /* === No debugging ========================================================= */
1014 
1015 #define DEBUG0(params) ;
1016 #define DEBUG1(params) ;
1017 #define DEBUG2(params) ;
1018 #define DEBUG3(params) ;
1019 #define DEBUG4(params) ;
1020 
1021 #define ASSERT(expression)
1022 
1023 #endif /* NDEBUG */
1024 
1025 /* ========================================================================== */
1026 /* === USER-CALLABLE ROUTINES: ============================================== */
1027 /* ========================================================================== */
1028 
1029 /* ========================================================================== */
1030 /* === colamd_recommended =================================================== */
1031 /* ========================================================================== */
1032 
1033 /*
1034     The colamd_recommended routine returns the suggested size for Alen.  This
1035     value has been determined to provide good balance between the number of
1036     garbage collections and the memory requirements for colamd.  If any
1037     argument is negative, or if integer overflow occurs, a 0 is returned as an
1038     error condition.  2*nnz space is required for the row and column
1039     indices of the matrix. COLAMD_C (n_col) + COLAMD_R (n_row) space is
1040     required for the Col and Row arrays, respectively, which are internal to
1041     colamd (roughly 6*n_col + 4*n_row).  An additional n_col space is the
1042     minimal amount of "elbow room", and nnz/5 more space is recommended for
1043     run time efficiency.
1044 
1045     Alen is approximately 2.2*nnz + 7*n_col + 4*n_row + 10.
1046 
1047     This function is not needed when using symamd.
1048 */
1049 
1050 /* add two values of type size_t, and check for integer overflow */
1051 static size_t t_add (size_t a, size_t b, int *ok)
1052 {
1053     (*ok) = (*ok) && ((a + b) >= MAX (a,b)) ;
1054     return ((*ok) ? (a + b) : 0) ;
1055 }
1056 
1057 /* compute a*k where k is a small integer, and check for integer overflow */
1058 static size_t t_mult (size_t a, size_t k, int *ok)
1059 {
1060     size_t i, s = 0 ;
1061     for (i = 0 ; i < k ; i++)
1062     {
1063         s = t_add (s, a, ok) ;
1064     }
1065     return (s) ;
1066 }
1067 
1068 /* size of the Col and Row structures */
1069 #define COLAMD_C(n_col,ok) \
1070     ((t_mult (t_add (n_col, 1, ok), sizeof (Colamd_Col), ok) / sizeof (Int)))
1071 
1072 #define COLAMD_R(n_row,ok) \
1073     ((t_mult (t_add (n_row, 1, ok), sizeof (Colamd_Row), ok) / sizeof (Int)))
1074 
1075 
1076 PUBLIC size_t COLAMD_recommended        /* returns recommended value of Alen. */
1077 (
1078     /* === Parameters ======================================================= */
1079 
1080     Int nnz,                    /* number of nonzeros in A */
1081     Int n_row,                  /* number of rows in A */
1082     Int n_col                   /* number of columns in A */
1083 )
1084 {
1085     size_t s, c, r ;
1086     int ok = TRUE ;
1087     if (nnz < 0 || n_row < 0 || n_col < 0)
1088     {
1089         return (0) ;
1090     }
1091     s = t_mult (nnz, 2, &ok) ;      /* 2*nnz */
1092     c = COLAMD_C (n_col, &ok) ;     /* size of column structures */
1093     r = COLAMD_R (n_row, &ok) ;     /* size of row structures */
1094     s = t_add (s, c, &ok) ;
1095     s = t_add (s, r, &ok) ;
1096     s = t_add (s, n_col, &ok) ;     /* elbow room */
1097     s = t_add (s, nnz/5, &ok) ;     /* elbow room */
1098     ok = ok && (s < Int_MAX) ;
1099     return (ok ? s : 0) ;
1100 }
1101 
1102 
1103 /* ========================================================================== */
1104 /* === colamd_set_defaults ================================================== */
1105 /* ========================================================================== */
1106 
1107 /*
1108     The colamd_set_defaults routine sets the default values of the user-
1109     controllable parameters for colamd and symamd:
1110 
1111         Colamd: rows with more than max (16, knobs [0] * sqrt (n_col))
1112         entries are removed prior to ordering.  Columns with more than
1113         max (16, knobs [1] * sqrt (MIN (n_row,n_col))) entries are removed
1114         prior to ordering, and placed last in the output column ordering.
1115 
1116         Symamd: Rows and columns with more than max (16, knobs [0] * sqrt (n))
1117         entries are removed prior to ordering, and placed last in the
1118         output ordering.
1119 
1120         knobs [0]       dense row control
1121 
1122         knobs [1]       dense column control
1123 
1124         knobs [2]       if nonzero, do aggresive absorption
1125 
1126         knobs [3..19]   unused, but future versions might use this
1127 
1128 */
1129 
1130 PUBLIC void COLAMD_set_defaults
1131 (
1132     /* === Parameters ======================================================= */
1133 
1134     double knobs [COLAMD_KNOBS]         /* knob array */
1135 )
1136 {
1137     /* === Local variables ================================================== */
1138 
1139     Int i ;
1140 
1141     if (!knobs)
1142     {
1143         return ;                        /* no knobs to initialize */
1144     }
1145     for (i = 0 ; i < COLAMD_KNOBS ; i++)
1146     {
1147         knobs [i] = 0 ;
1148     }
1149     knobs [COLAMD_DENSE_ROW] = 10 ;
1150     knobs [COLAMD_DENSE_COL] = 10 ;
1151     knobs [COLAMD_AGGRESSIVE] = TRUE ;  /* default: do aggressive absorption*/
1152 }
1153 
1154 
1155 /* ========================================================================== */
1156 /* === symamd =============================================================== */
1157 /* ========================================================================== */
1158 
1159 PUBLIC Int SYMAMD_MAIN                  /* return TRUE if OK, FALSE otherwise */
1160 (
1161     /* === Parameters ======================================================= */
1162 
1163     Int n,                              /* number of rows and columns of A */
1164     Int A [],                           /* row indices of A */
1165     Int p [],                           /* column pointers of A */
1166     Int perm [],                        /* output permutation, size n+1 */
1167     double knobs [COLAMD_KNOBS],        /* parameters (uses defaults if NULL) */
1168     Int stats [COLAMD_STATS],           /* output statistics and error codes */
1169     void * (*allocate) (size_t, size_t),
1170                                         /* pointer to calloc (ANSI C) or */
1171                                         /* mxCalloc (for MATLAB mexFunction) */
1172     void (*release) (void *)
1173                                         /* pointer to free (ANSI C) or */
1174                                         /* mxFree (for MATLAB mexFunction) */
1175 )
1176 {
1177     /* === Local variables ================================================== */
1178 
1179     Int *count ;                /* length of each column of M, and col pointer*/
1180     Int *mark ;                 /* mark array for finding duplicate entries */
1181     Int *M ;                    /* row indices of matrix M */
1182     size_t Mlen ;               /* length of M */
1183     Int n_row ;                 /* number of rows in M */
1184     Int nnz ;                   /* number of entries in A */
1185     Int i ;                     /* row index of A */
1186     Int j ;                     /* column index of A */
1187     Int k ;                     /* row index of M */
1188     Int mnz ;                   /* number of nonzeros in M */
1189     Int pp ;                    /* index into a column of A */
1190     Int last_row ;              /* last row seen in the current column */
1191     Int length ;                /* number of nonzeros in a column */
1192 
1193     double cknobs [COLAMD_KNOBS] ;              /* knobs for colamd */
1194     double default_knobs [COLAMD_KNOBS] ;       /* default knobs for colamd */
1195 
1196 #ifndef NDEBUG
1197     colamd_get_debug ("symamd") ;
1198 #endif /* NDEBUG */
1199 
1200     /* === Check the input arguments ======================================== */
1201 
1202     if (!stats)
1203     {
1204         DEBUG0 (("symamd: stats not present\n")) ;
1205         return (FALSE) ;
1206     }
1207     for (i = 0 ; i < COLAMD_STATS ; i++)
1208     {
1209         stats [i] = 0 ;
1210     }
1211     stats [COLAMD_STATUS] = COLAMD_OK ;
1212     stats [COLAMD_INFO1] = -1 ;
1213     stats [COLAMD_INFO2] = -1 ;
1214 
1215     if (!A)
1216     {
1217         stats [COLAMD_STATUS] = COLAMD_ERROR_A_not_present ;
1218         DEBUG0 (("symamd: A not present\n")) ;
1219         return (FALSE) ;
1220     }
1221 
1222     if (!p)             /* p is not present */
1223     {
1224         stats [COLAMD_STATUS] = COLAMD_ERROR_p_not_present ;
1225         DEBUG0 (("symamd: p not present\n")) ;
1226         return (FALSE) ;
1227     }
1228 
1229     if (n < 0)          /* n must be >= 0 */
1230     {
1231         stats [COLAMD_STATUS] = COLAMD_ERROR_ncol_negative ;
1232         stats [COLAMD_INFO1] = n ;
1233         DEBUG0 (("symamd: n negative %d\n", n)) ;
1234         return (FALSE) ;
1235     }
1236 
1237     nnz = p [n] ;
1238     if (nnz < 0)        /* nnz must be >= 0 */
1239     {
1240         stats [COLAMD_STATUS] = COLAMD_ERROR_nnz_negative ;
1241         stats [COLAMD_INFO1] = nnz ;
1242         DEBUG0 (("symamd: number of entries negative %d\n", nnz)) ;
1243         return (FALSE) ;
1244     }
1245 
1246     if (p [0] != 0)
1247     {
1248         stats [COLAMD_STATUS] = COLAMD_ERROR_p0_nonzero ;
1249         stats [COLAMD_INFO1] = p [0] ;
1250         DEBUG0 (("symamd: p[0] not zero %d\n", p [0])) ;
1251         return (FALSE) ;
1252     }
1253 
1254     /* === If no knobs, set default knobs =================================== */
1255 
1256     if (!knobs)
1257     {
1258         COLAMD_set_defaults (default_knobs) ;
1259         knobs = default_knobs ;
1260     }
1261 
1262     /* === Allocate count and mark ========================================== */
1263 
1264     count = (Int *) ((*allocate) (n+1, sizeof (Int))) ;
1265     if (!count)
1266     {
1267         stats [COLAMD_STATUS] = COLAMD_ERROR_out_of_memory ;
1268         DEBUG0 (("symamd: allocate count (size %d) failed\n", n+1)) ;
1269         return (FALSE) ;
1270     }
1271 
1272     mark = (Int *) ((*allocate) (n+1, sizeof (Int))) ;
1273     if (!mark)
1274     {
1275         stats [COLAMD_STATUS] = COLAMD_ERROR_out_of_memory ;
1276         (*release) ((void *) count) ;
1277         DEBUG0 (("symamd: allocate mark (size %d) failed\n", n+1)) ;
1278         return (FALSE) ;
1279     }
1280 
1281     /* === Compute column counts of M, check if A is valid ================== */
1282 
1283     stats [COLAMD_INFO3] = 0 ;  /* number of duplicate or unsorted row indices*/
1284 
1285     for (i = 0 ; i < n ; i++)
1286     {
1287         mark [i] = -1 ;
1288     }
1289 
1290     for (j = 0 ; j < n ; j++)
1291     {
1292         last_row = -1 ;
1293 
1294         length = p [j+1] - p [j] ;
1295         if (length < 0)
1296         {
1297             /* column pointers must be non-decreasing */
1298             stats [COLAMD_STATUS] = COLAMD_ERROR_col_length_negative ;
1299             stats [COLAMD_INFO1] = j ;
1300             stats [COLAMD_INFO2] = length ;
1301             (*release) ((void *) count) ;
1302             (*release) ((void *) mark) ;
1303             DEBUG0 (("symamd: col %d negative length %d\n", j, length)) ;
1304             return (FALSE) ;
1305         }
1306 
1307         for (pp = p [j] ; pp < p [j+1] ; pp++)
1308         {
1309             i = A [pp] ;
1310             if (i < 0 || i >= n)
1311             {
1312                 /* row index i, in column j, is out of bounds */
1313                 stats [COLAMD_STATUS] = COLAMD_ERROR_row_index_out_of_bounds ;
1314                 stats [COLAMD_INFO1] = j ;
1315                 stats [COLAMD_INFO2] = i ;
1316                 stats [COLAMD_INFO3] = n ;
1317                 (*release) ((void *) count) ;
1318                 (*release) ((void *) mark) ;
1319                 DEBUG0 (("symamd: row %d col %d out of bounds\n", i, j)) ;
1320                 return (FALSE) ;
1321             }
1322 
1323             if (i <= last_row || mark [i] == j)
1324             {
1325                 /* row index is unsorted or repeated (or both), thus col */
1326                 /* is jumbled.  This is a notice, not an error condition. */
1327                 stats [COLAMD_STATUS] = COLAMD_OK_BUT_JUMBLED ;
1328                 stats [COLAMD_INFO1] = j ;
1329                 stats [COLAMD_INFO2] = i ;
1330                 (stats [COLAMD_INFO3]) ++ ;
1331                 DEBUG1 (("symamd: row %d col %d unsorted/duplicate\n", i, j)) ;
1332             }
1333 
1334             if (i > j && mark [i] != j)
1335             {
1336                 /* row k of M will contain column indices i and j */
1337                 count [i]++ ;
1338                 count [j]++ ;
1339             }
1340 
1341             /* mark the row as having been seen in this column */
1342             mark [i] = j ;
1343 
1344             last_row = i ;
1345         }
1346     }
1347 
1348     /* v2.4: removed free(mark) */
1349 
1350     /* === Compute column pointers of M ===================================== */
1351 
1352     /* use output permutation, perm, for column pointers of M */
1353     perm [0] = 0 ;
1354     for (j = 1 ; j <= n ; j++)
1355     {
1356         perm [j] = perm [j-1] + count [j-1] ;
1357     }
1358     for (j = 0 ; j < n ; j++)
1359     {
1360         count [j] = perm [j] ;
1361     }
1362 
1363     /* === Construct M ====================================================== */
1364 
1365     mnz = perm [n] ;
1366     n_row = mnz / 2 ;
1367     Mlen = COLAMD_recommended (mnz, n_row, n) ;
1368     M = (Int *) ((*allocate) (Mlen, sizeof (Int))) ;
1369     DEBUG0 (("symamd: M is %d-by-%d with %d entries, Mlen = %g\n",
1370         n_row, n, mnz, (double) Mlen)) ;
1371 
1372     if (!M)
1373     {
1374         stats [COLAMD_STATUS] = COLAMD_ERROR_out_of_memory ;
1375         (*release) ((void *) count) ;
1376         (*release) ((void *) mark) ;
1377         DEBUG0 (("symamd: allocate M (size %g) failed\n", (double) Mlen)) ;
1378         return (FALSE) ;
1379     }
1380 
1381     k = 0 ;
1382 
1383     if (stats [COLAMD_STATUS] == COLAMD_OK)
1384     {
1385         /* Matrix is OK */
1386         for (j = 0 ; j < n ; j++)
1387         {
1388             ASSERT (p [j+1] - p [j] >= 0) ;
1389             for (pp = p [j] ; pp < p [j+1] ; pp++)
1390             {
1391                 i = A [pp] ;
1392                 ASSERT (i >= 0 && i < n) ;
1393                 if (i > j)
1394                 {
1395                     /* row k of M contains column indices i and j */
1396                     M [count [i]++] = k ;
1397                     M [count [j]++] = k ;
1398                     k++ ;
1399                 }
1400             }
1401         }
1402     }
1403     else
1404     {
1405         /* Matrix is jumbled.  Do not add duplicates to M.  Unsorted cols OK. */
1406         DEBUG0 (("symamd: Duplicates in A.\n")) ;
1407         for (i = 0 ; i < n ; i++)
1408         {
1409             mark [i] = -1 ;
1410         }
1411         for (j = 0 ; j < n ; j++)
1412         {
1413             ASSERT (p [j+1] - p [j] >= 0) ;
1414             for (pp = p [j] ; pp < p [j+1] ; pp++)
1415             {
1416                 i = A [pp] ;
1417                 ASSERT (i >= 0 && i < n) ;
1418                 if (i > j && mark [i] != j)
1419                 {
1420                     /* row k of M contains column indices i and j */
1421                     M [count [i]++] = k ;
1422                     M [count [j]++] = k ;
1423                     k++ ;
1424                     mark [i] = j ;
1425                 }
1426             }
1427         }
1428         /* v2.4: free(mark) moved below */
1429     }
1430 
1431     /* count and mark no longer needed */
1432     (*release) ((void *) count) ;
1433     (*release) ((void *) mark) ;        /* v2.4: free (mark) moved here */
1434     ASSERT (k == n_row) ;
1435 
1436     /* === Adjust the knobs for M =========================================== */
1437 
1438     for (i = 0 ; i < COLAMD_KNOBS ; i++)
1439     {
1440         cknobs [i] = knobs [i] ;
1441     }
1442 
1443     /* there are no dense rows in M */
1444     cknobs [COLAMD_DENSE_ROW] = -1 ;
1445     cknobs [COLAMD_DENSE_COL] = knobs [COLAMD_DENSE_ROW] ;
1446 
1447     /* === Order the columns of M =========================================== */
1448 
1449     /* v2.4: colamd cannot fail here, so the error check is removed */
1450     (void) COLAMD_MAIN (n_row, n, (Int) Mlen, M, perm, cknobs, stats) ;
1451 
1452     /* Note that the output permutation is now in perm */
1453 
1454     /* === get the statistics for symamd from colamd ======================== */
1455 
1456     /* a dense column in colamd means a dense row and col in symamd */
1457     stats [COLAMD_DENSE_ROW] = stats [COLAMD_DENSE_COL] ;
1458 
1459     /* === Free M =========================================================== */
1460 
1461     (*release) ((void *) M) ;
1462     DEBUG0 (("symamd: done.\n")) ;
1463     return (TRUE) ;
1464 
1465 }
1466 
1467 /* ========================================================================== */
1468 /* === colamd =============================================================== */
1469 /* ========================================================================== */
1470 
1471 /*
1472     The colamd routine computes a column ordering Q of a sparse matrix
1473     A such that the LU factorization P(AQ) = LU remains sparse, where P is
1474     selected via partial pivoting.   The routine can also be viewed as
1475     providing a permutation Q such that the Cholesky factorization
1476     (AQ)'(AQ) = LL' remains sparse.
1477 */
1478 
1479 PUBLIC Int COLAMD_MAIN          /* returns TRUE if successful, FALSE otherwise*/
1480 (
1481     /* === Parameters ======================================================= */
1482 
1483     Int n_row,                  /* number of rows in A */
1484     Int n_col,                  /* number of columns in A */
1485     Int Alen,                   /* length of A */
1486     Int A [],                   /* row indices of A */
1487     Int p [],                   /* pointers to columns in A */
1488     double knobs [COLAMD_KNOBS],/* parameters (uses defaults if NULL) */
1489     Int stats [COLAMD_STATS]    /* output statistics and error codes */
1490 )
1491 {
1492     /* === Local variables ================================================== */
1493 
1494     Int i ;                     /* loop index */
1495     Int nnz ;                   /* nonzeros in A */
1496     size_t Row_size ;           /* size of Row [], in integers */
1497     size_t Col_size ;           /* size of Col [], in integers */
1498     size_t need ;               /* minimum required length of A */
1499     Colamd_Row *Row ;           /* pointer into A of Row [0..n_row] array */
1500     Colamd_Col *Col ;           /* pointer into A of Col [0..n_col] array */
1501     Int n_col2 ;                /* number of non-dense, non-empty columns */
1502     Int n_row2 ;                /* number of non-dense, non-empty rows */
1503     Int ngarbage ;              /* number of garbage collections performed */
1504     Int max_deg ;               /* maximum row degree */
1505     double default_knobs [COLAMD_KNOBS] ;       /* default knobs array */
1506     Int aggressive ;            /* do aggressive absorption */
1507     int ok ;
1508 
1509 #ifndef NDEBUG
1510     colamd_get_debug ("colamd") ;
1511 #endif /* NDEBUG */
1512 
1513     /* === Check the input arguments ======================================== */
1514 
1515     if (!stats)
1516     {
1517         DEBUG0 (("colamd: stats not present\n")) ;
1518         return (FALSE) ;
1519     }
1520     for (i = 0 ; i < COLAMD_STATS ; i++)
1521     {
1522         stats [i] = 0 ;
1523     }
1524     stats [COLAMD_STATUS] = COLAMD_OK ;
1525     stats [COLAMD_INFO1] = -1 ;
1526     stats [COLAMD_INFO2] = -1 ;
1527 
1528     if (!A)             /* A is not present */
1529     {
1530         stats [COLAMD_STATUS] = COLAMD_ERROR_A_not_present ;
1531         DEBUG0 (("colamd: A not present\n")) ;
1532         return (FALSE) ;
1533     }
1534 
1535     if (!p)             /* p is not present */
1536     {
1537         stats [COLAMD_STATUS] = COLAMD_ERROR_p_not_present ;
1538         DEBUG0 (("colamd: p not present\n")) ;
1539         return (FALSE) ;
1540     }
1541 
1542     if (n_row < 0)      /* n_row must be >= 0 */
1543     {
1544         stats [COLAMD_STATUS] = COLAMD_ERROR_nrow_negative ;
1545         stats [COLAMD_INFO1] = n_row ;
1546         DEBUG0 (("colamd: nrow negative %d\n", n_row)) ;
1547         return (FALSE) ;
1548     }
1549 
1550     if (n_col < 0)      /* n_col must be >= 0 */
1551     {
1552         stats [COLAMD_STATUS] = COLAMD_ERROR_ncol_negative ;
1553         stats [COLAMD_INFO1] = n_col ;
1554         DEBUG0 (("colamd: ncol negative %d\n", n_col)) ;
1555         return (FALSE) ;
1556     }
1557 
1558     nnz = p [n_col] ;
1559     if (nnz < 0)        /* nnz must be >= 0 */
1560     {
1561         stats [COLAMD_STATUS] = COLAMD_ERROR_nnz_negative ;
1562         stats [COLAMD_INFO1] = nnz ;
1563         DEBUG0 (("colamd: number of entries negative %d\n", nnz)) ;
1564         return (FALSE) ;
1565     }
1566 
1567     if (p [0] != 0)
1568     {
1569         stats [COLAMD_STATUS] = COLAMD_ERROR_p0_nonzero ;
1570         stats [COLAMD_INFO1] = p [0] ;
1571         DEBUG0 (("colamd: p[0] not zero %d\n", p [0])) ;
1572         return (FALSE) ;
1573     }
1574 
1575     /* === If no knobs, set default knobs =================================== */
1576 
1577     if (!knobs)
1578     {
1579         COLAMD_set_defaults (default_knobs) ;
1580         knobs = default_knobs ;
1581     }
1582 
1583     aggressive = (knobs [COLAMD_AGGRESSIVE] != FALSE) ;
1584 
1585     /* === Allocate the Row and Col arrays from array A ===================== */
1586 
1587     ok = TRUE ;
1588     Col_size = COLAMD_C (n_col, &ok) ;      /* size of Col array of structs */
1589     Row_size = COLAMD_R (n_row, &ok) ;      /* size of Row array of structs */
1590 
1591     /* need = 2*nnz + n_col + Col_size + Row_size ; */
1592     need = t_mult (nnz, 2, &ok) ;
1593     need = t_add (need, n_col, &ok) ;
1594     need = t_add (need, Col_size, &ok) ;
1595     need = t_add (need, Row_size, &ok) ;
1596 
1597     if (!ok || need > (size_t) Alen || need > Int_MAX)
1598     {
1599         /* not enough space in array A to perform the ordering */
1600         stats [COLAMD_STATUS] = COLAMD_ERROR_A_too_small ;
1601         stats [COLAMD_INFO1] = need ;
1602         stats [COLAMD_INFO2] = Alen ;
1603         DEBUG0 (("colamd: Need Alen >= %d, given only Alen = %d\n", need,Alen));
1604         return (FALSE) ;
1605     }
1606 
1607     Alen -= Col_size + Row_size ;
1608     Col = (Colamd_Col *) &A [Alen] ;
1609     Row = (Colamd_Row *) &A [Alen + Col_size] ;
1610 
1611     /* === Construct the row and column data structures ===================== */
1612 
1613     if (!init_rows_cols (n_row, n_col, Row, Col, A, p, stats))
1614     {
1615         /* input matrix is invalid */
1616         DEBUG0 (("colamd: Matrix invalid\n")) ;
1617         return (FALSE) ;
1618     }
1619 
1620     /* === Initialize scores, kill dense rows/columns ======================= */
1621 
1622     init_scoring (n_row, n_col, Row, Col, A, p, knobs,
1623         &n_row2, &n_col2, &max_deg) ;
1624 
1625     /* === Order the supercolumns =========================================== */
1626 
1627     ngarbage = find_ordering (n_row, n_col, Alen, Row, Col, A, p,
1628         n_col2, max_deg, 2*nnz, aggressive) ;
1629 
1630     /* === Order the non-principal columns ================================== */
1631 
1632     order_children (n_col, Col, p) ;
1633 
1634     /* === Return statistics in stats ======================================= */
1635 
1636     stats [COLAMD_DENSE_ROW] = n_row - n_row2 ;
1637     stats [COLAMD_DENSE_COL] = n_col - n_col2 ;
1638     stats [COLAMD_DEFRAG_COUNT] = ngarbage ;
1639     DEBUG0 (("colamd: done.\n")) ;
1640     return (TRUE) ;
1641 }
1642 
1643 
1644 /* ========================================================================== */
1645 /* === colamd_report ======================================================== */
1646 /* ========================================================================== */
1647 
1648 PUBLIC void COLAMD_report
1649 (
1650     Int stats [COLAMD_STATS]
1651 )
1652 {
1653     print_report ("colamd", stats) ;
1654 }
1655 
1656 
1657 /* ========================================================================== */
1658 /* === symamd_report ======================================================== */
1659 /* ========================================================================== */
1660 
1661 PUBLIC void SYMAMD_report
1662 (
1663     Int stats [COLAMD_STATS]
1664 )
1665 {
1666     print_report ("symamd", stats) ;
1667 }
1668 
1669 
1670 
1671 /* ========================================================================== */
1672 /* === NON-USER-CALLABLE ROUTINES: ========================================== */
1673 /* ========================================================================== */
1674 
1675 /* There are no user-callable routines beyond this point in the file */
1676 
1677 
1678 /* ========================================================================== */
1679 /* === init_rows_cols ======================================================= */
1680 /* ========================================================================== */
1681 
1682 /*
1683     Takes the column form of the matrix in A and creates the row form of the
1684     matrix.  Also, row and column attributes are stored in the Col and Row
1685     structs.  If the columns are un-sorted or contain duplicate row indices,
1686     this routine will also sort and remove duplicate row indices from the
1687     column form of the matrix.  Returns FALSE if the matrix is invalid,
1688     TRUE otherwise.  Not user-callable.
1689 */
1690 
1691 PRIVATE Int init_rows_cols      /* returns TRUE if OK, or FALSE otherwise */
1692 (
1693     /* === Parameters ======================================================= */
1694 
1695     Int n_row,                  /* number of rows of A */
1696     Int n_col,                  /* number of columns of A */
1697     Colamd_Row Row [],          /* of size n_row+1 */
1698     Colamd_Col Col [],          /* of size n_col+1 */
1699     Int A [],                   /* row indices of A, of size Alen */
1700     Int p [],                   /* pointers to columns in A, of size n_col+1 */
1701     Int stats [COLAMD_STATS]    /* colamd statistics */
1702 )
1703 {
1704     /* === Local variables ================================================== */
1705 
1706     Int col ;                   /* a column index */
1707     Int row ;                   /* a row index */
1708     Int *cp ;                   /* a column pointer */
1709     Int *cp_end ;               /* a pointer to the end of a column */
1710     Int *rp ;                   /* a row pointer */
1711     Int *rp_end ;               /* a pointer to the end of a row */
1712     Int last_row ;              /* previous row */
1713 
1714     /* === Initialize columns, and check column pointers ==================== */
1715 
1716     for (col = 0 ; col < n_col ; col++)
1717     {
1718         Col [col].start = p [col] ;
1719         Col [col].length = p [col+1] - p [col] ;
1720 
1721         if (Col [col].length < 0)
1722         {
1723             /* column pointers must be non-decreasing */
1724             stats [COLAMD_STATUS] = COLAMD_ERROR_col_length_negative ;
1725             stats [COLAMD_INFO1] = col ;
1726             stats [COLAMD_INFO2] = Col [col].length ;
1727             DEBUG0 (("colamd: col %d length %d < 0\n", col, Col [col].length)) ;
1728             return (FALSE) ;
1729         }
1730 
1731         Col [col].shared1.thickness = 1 ;
1732         Col [col].shared2.score = 0 ;
1733         Col [col].shared3.prev = EMPTY ;
1734         Col [col].shared4.degree_next = EMPTY ;
1735     }
1736 
1737     /* p [0..n_col] no longer needed, used as "head" in subsequent routines */
1738 
1739     /* === Scan columns, compute row degrees, and check row indices ========= */
1740 
1741     stats [COLAMD_INFO3] = 0 ;  /* number of duplicate or unsorted row indices*/
1742 
1743     for (row = 0 ; row < n_row ; row++)
1744     {
1745         Row [row].length = 0 ;
1746         Row [row].shared2.mark = -1 ;
1747     }
1748 
1749     for (col = 0 ; col < n_col ; col++)
1750     {
1751         last_row = -1 ;
1752 
1753         cp = &A [p [col]] ;
1754         cp_end = &A [p [col+1]] ;
1755 
1756         while (cp < cp_end)
1757         {
1758             row = *cp++ ;
1759 
1760             /* make sure row indices within range */
1761             if (row < 0 || row >= n_row)
1762             {
1763                 stats [COLAMD_STATUS] = COLAMD_ERROR_row_index_out_of_bounds ;
1764                 stats [COLAMD_INFO1] = col ;
1765                 stats [COLAMD_INFO2] = row ;
1766                 stats [COLAMD_INFO3] = n_row ;
1767                 DEBUG0 (("colamd: row %d col %d out of bounds\n", row, col)) ;
1768                 return (FALSE) ;
1769             }
1770 
1771             if (row <= last_row || Row [row].shared2.mark == col)
1772             {
1773                 /* row index are unsorted or repeated (or both), thus col */
1774                 /* is jumbled.  This is a notice, not an error condition. */
1775                 stats [COLAMD_STATUS] = COLAMD_OK_BUT_JUMBLED ;
1776                 stats [COLAMD_INFO1] = col ;
1777                 stats [COLAMD_INFO2] = row ;
1778                 (stats [COLAMD_INFO3]) ++ ;
1779                 DEBUG1 (("colamd: row %d col %d unsorted/duplicate\n",row,col));
1780             }
1781 
1782             if (Row [row].shared2.mark != col)
1783             {
1784                 Row [row].length++ ;
1785             }
1786             else
1787             {
1788                 /* this is a repeated entry in the column, */
1789                 /* it will be removed */
1790                 Col [col].length-- ;
1791             }
1792 
1793             /* mark the row as having been seen in this column */
1794             Row [row].shared2.mark = col ;
1795 
1796             last_row = row ;
1797         }
1798     }
1799 
1800     /* === Compute row pointers ============================================= */
1801 
1802     /* row form of the matrix starts directly after the column */
1803     /* form of matrix in A */
1804     Row [0].start = p [n_col] ;
1805     Row [0].shared1.p = Row [0].start ;
1806     Row [0].shared2.mark = -1 ;
1807     for (row = 1 ; row < n_row ; row++)
1808     {
1809         Row [row].start = Row [row-1].start + Row [row-1].length ;
1810         Row [row].shared1.p = Row [row].start ;
1811         Row [row].shared2.mark = -1 ;
1812     }
1813 
1814     /* === Create row form ================================================== */
1815 
1816     if (stats [COLAMD_STATUS] == COLAMD_OK_BUT_JUMBLED)
1817     {
1818         /* if cols jumbled, watch for repeated row indices */
1819         for (col = 0 ; col < n_col ; col++)
1820         {
1821             cp = &A [p [col]] ;
1822             cp_end = &A [p [col+1]] ;
1823             while (cp < cp_end)
1824             {
1825                 row = *cp++ ;
1826                 if (Row [row].shared2.mark != col)
1827                 {
1828                     A [(Row [row].shared1.p)++] = col ;
1829                     Row [row].shared2.mark = col ;
1830                 }
1831             }
1832         }
1833     }
1834     else
1835     {
1836         /* if cols not jumbled, we don't need the mark (this is faster) */
1837         for (col = 0 ; col < n_col ; col++)
1838         {
1839             cp = &A [p [col]] ;
1840             cp_end = &A [p [col+1]] ;
1841             while (cp < cp_end)
1842             {
1843                 A [(Row [*cp++].shared1.p)++] = col ;
1844             }
1845         }
1846     }
1847 
1848     /* === Clear the row marks and set row degrees ========================== */
1849 
1850     for (row = 0 ; row < n_row ; row++)
1851     {
1852         Row [row].shared2.mark = 0 ;
1853         Row [row].shared1.degree = Row [row].length ;
1854     }
1855 
1856     /* === See if we need to re-create columns ============================== */
1857 
1858     if (stats [COLAMD_STATUS] == COLAMD_OK_BUT_JUMBLED)
1859     {
1860         DEBUG0 (("colamd: reconstructing column form, matrix jumbled\n")) ;
1861 
1862 #ifndef NDEBUG
1863         /* make sure column lengths are correct */
1864         for (col = 0 ; col < n_col ; col++)
1865         {
1866             p [col] = Col [col].length ;
1867         }
1868         for (row = 0 ; row < n_row ; row++)
1869         {
1870             rp = &A [Row [row].start] ;
1871             rp_end = rp + Row [row].length ;
1872             while (rp < rp_end)
1873             {
1874                 p [*rp++]-- ;
1875             }
1876         }
1877         for (col = 0 ; col < n_col ; col++)
1878         {
1879             ASSERT (p [col] == 0) ;
1880         }
1881         /* now p is all zero (different than when debugging is turned off) */
1882 #endif /* NDEBUG */
1883 
1884         /* === Compute col pointers ========================================= */
1885 
1886         /* col form of the matrix starts at A [0]. */
1887         /* Note, we may have a gap between the col form and the row */
1888         /* form if there were duplicate entries, if so, it will be */
1889         /* removed upon the first garbage collection */
1890         Col [0].start = 0 ;
1891         p [0] = Col [0].start ;
1892         for (col = 1 ; col < n_col ; col++)
1893         {
1894             /* note that the lengths here are for pruned columns, i.e. */
1895             /* no duplicate row indices will exist for these columns */
1896             Col [col].start = Col [col-1].start + Col [col-1].length ;
1897             p [col] = Col [col].start ;
1898         }
1899 
1900         /* === Re-create col form =========================================== */
1901 
1902         for (row = 0 ; row < n_row ; row++)
1903         {
1904             rp = &A [Row [row].start] ;
1905             rp_end = rp + Row [row].length ;
1906             while (rp < rp_end)
1907             {
1908                 A [(p [*rp++])++] = row ;
1909             }
1910         }
1911     }
1912 
1913     /* === Done.  Matrix is not (or no longer) jumbled ====================== */
1914 
1915     return (TRUE) ;
1916 }
1917 
1918 
1919 /* ========================================================================== */
1920 /* === init_scoring ========================================================= */
1921 /* ========================================================================== */
1922 
1923 /*
1924     Kills dense or empty columns and rows, calculates an initial score for
1925     each column, and places all columns in the degree lists.  Not user-callable.
1926 */
1927 
1928 PRIVATE void init_scoring
1929 (
1930     /* === Parameters ======================================================= */
1931 
1932     Int n_row,                  /* number of rows of A */
1933     Int n_col,                  /* number of columns of A */
1934     Colamd_Row Row [],          /* of size n_row+1 */
1935     Colamd_Col Col [],          /* of size n_col+1 */
1936     Int A [],                   /* column form and row form of A */
1937     Int head [],                /* of size n_col+1 */
1938     double knobs [COLAMD_KNOBS],/* parameters */
1939     Int *p_n_row2,              /* number of non-dense, non-empty rows */
1940     Int *p_n_col2,              /* number of non-dense, non-empty columns */
1941     Int *p_max_deg              /* maximum row degree */
1942 )
1943 {
1944     /* === Local variables ================================================== */
1945 
1946     Int c ;                     /* a column index */
1947     Int r, row ;                /* a row index */
1948     Int *cp ;                   /* a column pointer */
1949     Int deg ;                   /* degree of a row or column */
1950     Int *cp_end ;               /* a pointer to the end of a column */
1951     Int *new_cp ;               /* new column pointer */
1952     Int col_length ;            /* length of pruned column */
1953     Int score ;                 /* current column score */
1954     Int n_col2 ;                /* number of non-dense, non-empty columns */
1955     Int n_row2 ;                /* number of non-dense, non-empty rows */
1956     Int dense_row_count ;       /* remove rows with more entries than this */
1957     Int dense_col_count ;       /* remove cols with more entries than this */
1958     Int min_score ;             /* smallest column score */
1959     Int max_deg ;               /* maximum row degree */
1960     Int next_col ;              /* Used to add to degree list.*/
1961 
1962 #ifndef NDEBUG
1963     Int debug_count ;           /* debug only. */
1964 #endif /* NDEBUG */
1965 
1966     /* === Extract knobs ==================================================== */
1967 
1968     /* Note: if knobs contains a NaN, this is undefined: */
1969     if (knobs [COLAMD_DENSE_ROW] < 0)
1970     {
1971         /* only remove completely dense rows */
1972         dense_row_count = n_col-1 ;
1973     }
1974     else
1975     {
1976         dense_row_count = DENSE_DEGREE (knobs [COLAMD_DENSE_ROW], n_col) ;
1977     }
1978     if (knobs [COLAMD_DENSE_COL] < 0)
1979     {
1980         /* only remove completely dense columns */
1981         dense_col_count = n_row-1 ;
1982     }
1983     else
1984     {
1985         dense_col_count =
1986             DENSE_DEGREE (knobs [COLAMD_DENSE_COL], MIN (n_row, n_col)) ;
1987     }
1988 
1989     DEBUG1 (("colamd: densecount: %d %d\n", dense_row_count, dense_col_count)) ;
1990     max_deg = 0 ;
1991     n_col2 = n_col ;
1992     n_row2 = n_row ;
1993 
1994     /* === Kill empty columns =============================================== */
1995 
1996     /* Put the empty columns at the end in their natural order, so that LU */
1997     /* factorization can proceed as far as possible. */
1998     for (c = n_col-1 ; c >= 0 ; c--)
1999     {
2000         deg = Col [c].length ;
2001         if (deg == 0)
2002         {
2003             /* this is a empty column, kill and order it last */
2004             Col [c].shared2.order = --n_col2 ;
2005             KILL_PRINCIPAL_COL (c) ;
2006         }
2007     }
2008     DEBUG1 (("colamd: null columns killed: %d\n", n_col - n_col2)) ;
2009 
2010     /* === Kill dense columns =============================================== */
2011 
2012     /* Put the dense columns at the end, in their natural order */
2013     for (c = n_col-1 ; c >= 0 ; c--)
2014     {
2015         /* skip any dead columns */
2016         if (COL_IS_DEAD (c))
2017         {
2018             continue ;
2019         }
2020         deg = Col [c].length ;
2021         if (deg > dense_col_count)
2022         {
2023             /* this is a dense column, kill and order it last */
2024             Col [c].shared2.order = --n_col2 ;
2025             /* decrement the row degrees */
2026             cp = &A [Col [c].start] ;
2027             cp_end = cp + Col [c].length ;
2028             while (cp < cp_end)
2029             {
2030                 Row [*cp++].shared1.degree-- ;
2031             }
2032             KILL_PRINCIPAL_COL (c) ;
2033         }
2034     }
2035     DEBUG1 (("colamd: Dense and null columns killed: %d\n", n_col - n_col2)) ;
2036 
2037     /* === Kill dense and empty rows ======================================== */
2038 
2039     for (r = 0 ; r < n_row ; r++)
2040     {
2041         deg = Row [r].shared1.degree ;
2042         ASSERT (deg >= 0 && deg <= n_col) ;
2043         if (deg > dense_row_count || deg == 0)
2044         {
2045             /* kill a dense or empty row */
2046             KILL_ROW (r) ;
2047             --n_row2 ;
2048         }
2049         else
2050         {
2051             /* keep track of max degree of remaining rows */
2052             max_deg = MAX (max_deg, deg) ;
2053         }
2054     }
2055     DEBUG1 (("colamd: Dense and null rows killed: %d\n", n_row - n_row2)) ;
2056 
2057     /* === Compute initial column scores ==================================== */
2058 
2059     /* At this point the row degrees are accurate.  They reflect the number */
2060     /* of "live" (non-dense) columns in each row.  No empty rows exist. */
2061     /* Some "live" columns may contain only dead rows, however.  These are */
2062     /* pruned in the code below. */
2063 
2064     /* now find the initial matlab score for each column */
2065     for (c = n_col-1 ; c >= 0 ; c--)
2066     {
2067         /* skip dead column */
2068         if (COL_IS_DEAD (c))
2069         {
2070             continue ;
2071         }
2072         score = 0 ;
2073         cp = &A [Col [c].start] ;
2074         new_cp = cp ;
2075         cp_end = cp + Col [c].length ;
2076         while (cp < cp_end)
2077         {
2078             /* get a row */
2079             row = *cp++ ;
2080             /* skip if dead */
2081             if (ROW_IS_DEAD (row))
2082             {
2083                 continue ;
2084             }
2085             /* compact the column */
2086             *new_cp++ = row ;
2087             /* add row's external degree */
2088             score += Row [row].shared1.degree - 1 ;
2089             /* guard against integer overflow */
2090             score = MIN (score, n_col) ;
2091         }
2092         /* determine pruned column length */
2093         col_length = (Int) (new_cp - &A [Col [c].start]) ;
2094         if (col_length == 0)
2095         {
2096             /* a newly-made null column (all rows in this col are "dense" */
2097             /* and have already been killed) */
2098             DEBUG2 (("Newly null killed: %d\n", c)) ;
2099             Col [c].shared2.order = --n_col2 ;
2100             KILL_PRINCIPAL_COL (c) ;
2101         }
2102         else
2103         {
2104             /* set column length and set score */
2105             ASSERT (score >= 0) ;
2106             ASSERT (score <= n_col) ;
2107             Col [c].length = col_length ;
2108             Col [c].shared2.score = score ;
2109         }
2110     }
2111     DEBUG1 (("colamd: Dense, null, and newly-null columns killed: %d\n",
2112         n_col-n_col2)) ;
2113 
2114     /* At this point, all empty rows and columns are dead.  All live columns */
2115     /* are "clean" (containing no dead rows) and simplicial (no supercolumns */
2116     /* yet).  Rows may contain dead columns, but all live rows contain at */
2117     /* least one live column. */
2118 
2119 #ifndef NDEBUG
2120     debug_structures (n_row, n_col, Row, Col, A, n_col2) ;
2121 #endif /* NDEBUG */
2122 
2123     /* === Initialize degree lists ========================================== */
2124 
2125 #ifndef NDEBUG
2126     debug_count = 0 ;
2127 #endif /* NDEBUG */
2128 
2129     /* clear the hash buckets */
2130     for (c = 0 ; c <= n_col ; c++)
2131     {
2132         head [c] = EMPTY ;
2133     }
2134     min_score = n_col ;
2135     /* place in reverse order, so low column indices are at the front */
2136     /* of the lists.  This is to encourage natural tie-breaking */
2137     for (c = n_col-1 ; c >= 0 ; c--)
2138     {
2139         /* only add principal columns to degree lists */
2140         if (COL_IS_ALIVE (c))
2141         {
2142             DEBUG4 (("place %d score %d minscore %d ncol %d\n",
2143                 c, Col [c].shared2.score, min_score, n_col)) ;
2144 
2145             /* === Add columns score to DList =============================== */
2146 
2147             score = Col [c].shared2.score ;
2148 
2149             ASSERT (min_score >= 0) ;
2150             ASSERT (min_score <= n_col) ;
2151             ASSERT (score >= 0) ;
2152             ASSERT (score <= n_col) ;
2153             ASSERT (head [score] >= EMPTY) ;
2154 
2155             /* now add this column to dList at proper score location */
2156             next_col = head [score] ;
2157             Col [c].shared3.prev = EMPTY ;
2158             Col [c].shared4.degree_next = next_col ;
2159 
2160             /* if there already was a column with the same score, set its */
2161             /* previous pointer to this new column */
2162             if (next_col != EMPTY)
2163             {
2164                 Col [next_col].shared3.prev = c ;
2165             }
2166             head [score] = c ;
2167 
2168             /* see if this score is less than current min */
2169             min_score = MIN (min_score, score) ;
2170 
2171 #ifndef NDEBUG
2172             debug_count++ ;
2173 #endif /* NDEBUG */
2174 
2175         }
2176     }
2177 
2178 #ifndef NDEBUG
2179     DEBUG1 (("colamd: Live cols %d out of %d, non-princ: %d\n",
2180         debug_count, n_col, n_col-debug_count)) ;
2181     ASSERT (debug_count == n_col2) ;
2182     debug_deg_lists (n_row, n_col, Row, Col, head, min_score, n_col2, max_deg) ;
2183 #endif /* NDEBUG */
2184 
2185     /* === Return number of remaining columns, and max row degree =========== */
2186 
2187     *p_n_col2 = n_col2 ;
2188     *p_n_row2 = n_row2 ;
2189     *p_max_deg = max_deg ;
2190 }
2191 
2192 
2193 /* ========================================================================== */
2194 /* === find_ordering ======================================================== */
2195 /* ========================================================================== */
2196 
2197 /*
2198     Order the principal columns of the supercolumn form of the matrix
2199     (no supercolumns on input).  Uses a minimum approximate column minimum
2200     degree ordering method.  Not user-callable.
2201 */
2202 
2203 PRIVATE Int find_ordering       /* return the number of garbage collections */
2204 (
2205     /* === Parameters ======================================================= */
2206 
2207     Int n_row,                  /* number of rows of A */
2208     Int n_col,                  /* number of columns of A */
2209     Int Alen,                   /* size of A, 2*nnz + n_col or larger */
2210     Colamd_Row Row [],          /* of size n_row+1 */
2211     Colamd_Col Col [],          /* of size n_col+1 */
2212     Int A [],                   /* column form and row form of A */
2213     Int head [],                /* of size n_col+1 */
2214     Int n_col2,                 /* Remaining columns to order */
2215     Int max_deg,                /* Maximum row degree */
2216     Int pfree,                  /* index of first free slot (2*nnz on entry) */
2217     Int aggressive
2218 )
2219 {
2220     /* === Local variables ================================================== */
2221 
2222     Int k ;                     /* current pivot ordering step */
2223     Int pivot_col ;             /* current pivot column */
2224     Int *cp ;                   /* a column pointer */
2225     Int *rp ;                   /* a row pointer */
2226     Int pivot_row ;             /* current pivot row */
2227     Int *new_cp ;               /* modified column pointer */
2228     Int *new_rp ;               /* modified row pointer */
2229     Int pivot_row_start ;       /* pointer to start of pivot row */
2230     Int pivot_row_degree ;      /* number of columns in pivot row */
2231     Int pivot_row_length ;      /* number of supercolumns in pivot row */
2232     Int pivot_col_score ;       /* score of pivot column */
2233     Int needed_memory ;         /* free space needed for pivot row */
2234     Int *cp_end ;               /* pointer to the end of a column */
2235     Int *rp_end ;               /* pointer to the end of a row */
2236     Int row ;                   /* a row index */
2237     Int col ;                   /* a column index */
2238     Int max_score ;             /* maximum possible score */
2239     Int cur_score ;             /* score of current column */
2240     unsigned Int hash ;         /* hash value for supernode detection */
2241     Int head_column ;           /* head of hash bucket */
2242     Int first_col ;             /* first column in hash bucket */
2243     Int tag_mark ;              /* marker value for mark array */
2244     Int row_mark ;              /* Row [row].shared2.mark */
2245     Int set_difference ;        /* set difference size of row with pivot row */
2246     Int min_score ;             /* smallest column score */
2247     Int col_thickness ;         /* "thickness" (no. of columns in a supercol) */
2248     Int max_mark ;              /* maximum value of tag_mark */
2249     Int pivot_col_thickness ;   /* number of columns represented by pivot col */
2250     Int prev_col ;              /* Used by Dlist operations. */
2251     Int next_col ;              /* Used by Dlist operations. */
2252     Int ngarbage ;              /* number of garbage collections performed */
2253 
2254 #ifndef NDEBUG
2255     Int debug_d ;               /* debug loop counter */
2256     Int debug_step = 0 ;        /* debug loop counter */
2257 #endif /* NDEBUG */
2258 
2259     /* === Initialization and clear mark ==================================== */
2260 
2261     max_mark = INT_MAX - n_col ;        /* INT_MAX defined in <limits.h> */
2262     tag_mark = clear_mark (0, max_mark, n_row, Row) ;
2263     min_score = 0 ;
2264     ngarbage = 0 ;
2265     DEBUG1 (("colamd: Ordering, n_col2=%d\n", n_col2)) ;
2266 
2267     /* === Order the columns ================================================ */
2268 
2269     for (k = 0 ; k < n_col2 ; /* 'k' is incremented below */)
2270     {
2271 
2272 #ifndef NDEBUG
2273         if (debug_step % 100 == 0)
2274         {
2275             DEBUG2 (("\n...       Step k: %d out of n_col2: %d\n", k, n_col2)) ;
2276         }
2277         else
2278         {
2279             DEBUG3 (("\n----------Step k: %d out of n_col2: %d\n", k, n_col2)) ;
2280         }
2281         debug_step++ ;
2282         debug_deg_lists (n_row, n_col, Row, Col, head,
2283                 min_score, n_col2-k, max_deg) ;
2284         debug_matrix (n_row, n_col, Row, Col, A) ;
2285 #endif /* NDEBUG */
2286 
2287         /* === Select pivot column, and order it ============================ */
2288 
2289         /* make sure degree list isn't empty */
2290         ASSERT (min_score >= 0) ;
2291         ASSERT (min_score <= n_col) ;
2292         ASSERT (head [min_score] >= EMPTY) ;
2293 
2294 #ifndef NDEBUG
2295         for (debug_d = 0 ; debug_d < min_score ; debug_d++)
2296         {
2297             ASSERT (head [debug_d] == EMPTY) ;
2298         }
2299 #endif /* NDEBUG */
2300 
2301         /* get pivot column from head of minimum degree list */
2302         while (head [min_score] == EMPTY && min_score < n_col)
2303         {
2304             min_score++ ;
2305         }
2306         pivot_col = head [min_score] ;
2307         ASSERT (pivot_col >= 0 && pivot_col <= n_col) ;
2308         next_col = Col [pivot_col].shared4.degree_next ;
2309         head [min_score] = next_col ;
2310         if (next_col != EMPTY)
2311         {
2312             Col [next_col].shared3.prev = EMPTY ;
2313         }
2314 
2315         ASSERT (COL_IS_ALIVE (pivot_col)) ;
2316 
2317         /* remember score for defrag check */
2318         pivot_col_score = Col [pivot_col].shared2.score ;
2319 
2320         /* the pivot column is the kth column in the pivot order */
2321         Col [pivot_col].shared2.order = k ;
2322 
2323         /* increment order count by column thickness */
2324         pivot_col_thickness = Col [pivot_col].shared1.thickness ;
2325         k += pivot_col_thickness ;
2326         ASSERT (pivot_col_thickness > 0) ;
2327         DEBUG3 (("Pivot col: %d thick %d\n", pivot_col, pivot_col_thickness)) ;
2328 
2329         /* === Garbage_collection, if necessary ============================= */
2330 
2331         needed_memory = MIN (pivot_col_score, n_col - k) ;
2332         if (pfree + needed_memory >= Alen)
2333         {
2334             pfree = garbage_collection (n_row, n_col, Row, Col, A, &A [pfree]) ;
2335             ngarbage++ ;
2336             /* after garbage collection we will have enough */
2337             ASSERT (pfree + needed_memory < Alen) ;
2338             /* garbage collection has wiped out the Row[].shared2.mark array */
2339             tag_mark = clear_mark (0, max_mark, n_row, Row) ;
2340 
2341 #ifndef NDEBUG
2342             debug_matrix (n_row, n_col, Row, Col, A) ;
2343 #endif /* NDEBUG */
2344         }
2345 
2346         /* === Compute pivot row pattern ==================================== */
2347 
2348         /* get starting location for this new merged row */
2349         pivot_row_start = pfree ;
2350 
2351         /* initialize new row counts to zero */
2352         pivot_row_degree = 0 ;
2353 
2354         /* tag pivot column as having been visited so it isn't included */
2355         /* in merged pivot row */
2356         Col [pivot_col].shared1.thickness = -pivot_col_thickness ;
2357 
2358         /* pivot row is the union of all rows in the pivot column pattern */
2359         cp = &A [Col [pivot_col].start] ;
2360         cp_end = cp + Col [pivot_col].length ;
2361         while (cp < cp_end)
2362         {
2363             /* get a row */
2364             row = *cp++ ;
2365             DEBUG4 (("Pivot col pattern %d %d\n", ROW_IS_ALIVE (row), row)) ;
2366             /* skip if row is dead */
2367             if (ROW_IS_ALIVE (row))
2368             {
2369                 rp = &A [Row [row].start] ;
2370                 rp_end = rp + Row [row].length ;
2371                 while (rp < rp_end)
2372                 {
2373                     /* get a column */
2374                     col = *rp++ ;
2375                     /* add the column, if alive and untagged */
2376                     col_thickness = Col [col].shared1.thickness ;
2377                     if (col_thickness > 0 && COL_IS_ALIVE (col))
2378                     {
2379                         /* tag column in pivot row */
2380                         Col [col].shared1.thickness = -col_thickness ;
2381                         ASSERT (pfree < Alen) ;
2382                         /* place column in pivot row */
2383                         A [pfree++] = col ;
2384                         pivot_row_degree += col_thickness ;
2385                     }
2386                 }
2387             }
2388         }
2389 
2390         /* clear tag on pivot column */
2391         Col [pivot_col].shared1.thickness = pivot_col_thickness ;
2392         max_deg = MAX (max_deg, pivot_row_degree) ;
2393 
2394 #ifndef NDEBUG
2395         DEBUG3 (("check2\n")) ;
2396         debug_mark (n_row, Row, tag_mark, max_mark) ;
2397 #endif /* NDEBUG */
2398 
2399         /* === Kill all rows used to construct pivot row ==================== */
2400 
2401         /* also kill pivot row, temporarily */
2402         cp = &A [Col [pivot_col].start] ;
2403         cp_end = cp + Col [pivot_col].length ;
2404         while (cp < cp_end)
2405         {
2406             /* may be killing an already dead row */
2407             row = *cp++ ;
2408             DEBUG3 (("Kill row in pivot col: %d\n", row)) ;
2409             KILL_ROW (row) ;
2410         }
2411 
2412         /* === Select a row index to use as the new pivot row =============== */
2413 
2414         pivot_row_length = pfree - pivot_row_start ;
2415         if (pivot_row_length > 0)
2416         {
2417             /* pick the "pivot" row arbitrarily (first row in col) */
2418             pivot_row = A [Col [pivot_col].start] ;
2419             DEBUG3 (("Pivotal row is %d\n", pivot_row)) ;
2420         }
2421         else
2422         {
2423             /* there is no pivot row, since it is of zero length */
2424             pivot_row = EMPTY ;
2425             ASSERT (pivot_row_length == 0) ;
2426         }
2427         ASSERT (Col [pivot_col].length > 0 || pivot_row_length == 0) ;
2428 
2429         /* === Approximate degree computation =============================== */
2430 
2431         /* Here begins the computation of the approximate degree.  The column */
2432         /* score is the sum of the pivot row "length", plus the size of the */
2433         /* set differences of each row in the column minus the pattern of the */
2434         /* pivot row itself.  The column ("thickness") itself is also */
2435         /* excluded from the column score (we thus use an approximate */
2436         /* external degree). */
2437 
2438         /* The time taken by the following code (compute set differences, and */
2439         /* add them up) is proportional to the size of the data structure */
2440         /* being scanned - that is, the sum of the sizes of each column in */
2441         /* the pivot row.  Thus, the amortized time to compute a column score */
2442         /* is proportional to the size of that column (where size, in this */
2443         /* context, is the column "length", or the number of row indices */
2444         /* in that column).  The number of row indices in a column is */
2445         /* monotonically non-decreasing, from the length of the original */
2446         /* column on input to colamd. */
2447 
2448         /* === Compute set differences ====================================== */
2449 
2450         DEBUG3 (("** Computing set differences phase. **\n")) ;
2451 
2452         /* pivot row is currently dead - it will be revived later. */
2453 
2454         DEBUG3 (("Pivot row: ")) ;
2455         /* for each column in pivot row */
2456         rp = &A [pivot_row_start] ;
2457         rp_end = rp + pivot_row_length ;
2458         while (rp < rp_end)
2459         {
2460             col = *rp++ ;
2461             ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ;
2462             DEBUG3 (("Col: %d\n", col)) ;
2463 
2464             /* clear tags used to construct pivot row pattern */
2465             col_thickness = -Col [col].shared1.thickness ;
2466             ASSERT (col_thickness > 0) ;
2467             Col [col].shared1.thickness = col_thickness ;
2468 
2469             /* === Remove column from degree list =========================== */
2470 
2471             cur_score = Col [col].shared2.score ;
2472             prev_col = Col [col].shared3.prev ;
2473             next_col = Col [col].shared4.degree_next ;
2474             ASSERT (cur_score >= 0) ;
2475             ASSERT (cur_score <= n_col) ;
2476             ASSERT (cur_score >= EMPTY) ;
2477             if (prev_col == EMPTY)
2478             {
2479                 head [cur_score] = next_col ;
2480             }
2481             else
2482             {
2483                 Col [prev_col].shared4.degree_next = next_col ;
2484             }
2485             if (next_col != EMPTY)
2486             {
2487                 Col [next_col].shared3.prev = prev_col ;
2488             }
2489 
2490             /* === Scan the column ========================================== */
2491 
2492             cp = &A [Col [col].start] ;
2493             cp_end = cp + Col [col].length ;
2494             while (cp < cp_end)
2495             {
2496                 /* get a row */
2497                 row = *cp++ ;
2498                 row_mark = Row [row].shared2.mark ;
2499                 /* skip if dead */
2500                 if (ROW_IS_MARKED_DEAD (row_mark))
2501                 {
2502                     continue ;
2503                 }
2504                 ASSERT (row != pivot_row) ;
2505                 set_difference = row_mark - tag_mark ;
2506                 /* check if the row has been seen yet */
2507                 if (set_difference < 0)
2508                 {
2509                     ASSERT (Row [row].shared1.degree <= max_deg) ;
2510                     set_difference = Row [row].shared1.degree ;
2511                 }
2512                 /* subtract column thickness from this row's set difference */
2513                 set_difference -= col_thickness ;
2514                 ASSERT (set_difference >= 0) ;
2515                 /* absorb this row if the set difference becomes zero */
2516                 if (set_difference == 0 && aggressive)
2517                 {
2518                     DEBUG3 (("aggressive absorption. Row: %d\n", row)) ;
2519                     KILL_ROW (row) ;
2520                 }
2521                 else
2522                 {
2523                     /* save the new mark */
2524                     Row [row].shared2.mark = set_difference + tag_mark ;
2525                 }
2526             }
2527         }
2528 
2529 #ifndef NDEBUG
2530         debug_deg_lists (n_row, n_col, Row, Col, head,
2531                 min_score, n_col2-k-pivot_row_degree, max_deg) ;
2532 #endif /* NDEBUG */
2533 
2534         /* === Add up set differences for each column ======================= */
2535 
2536         DEBUG3 (("** Adding set differences phase. **\n")) ;
2537 
2538         /* for each column in pivot row */
2539         rp = &A [pivot_row_start] ;
2540         rp_end = rp + pivot_row_length ;
2541         while (rp < rp_end)
2542         {
2543             /* get a column */
2544             col = *rp++ ;
2545             ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ;
2546             hash = 0 ;
2547             cur_score = 0 ;
2548             cp = &A [Col [col].start] ;
2549             /* compact the column */
2550             new_cp = cp ;
2551             cp_end = cp + Col [col].length ;
2552 
2553             DEBUG4 (("Adding set diffs for Col: %d.\n", col)) ;
2554 
2555             while (cp < cp_end)
2556             {
2557                 /* get a row */
2558                 row = *cp++ ;
2559                 ASSERT(row >= 0 && row < n_row) ;
2560                 row_mark = Row [row].shared2.mark ;
2561                 /* skip if dead */
2562                 if (ROW_IS_MARKED_DEAD (row_mark))
2563                 {
2564                     DEBUG4 ((" Row %d, dead\n", row)) ;
2565                     continue ;
2566                 }
2567                 DEBUG4 ((" Row %d, set diff %d\n", row, row_mark-tag_mark));
2568                 ASSERT (row_mark >= tag_mark) ;
2569                 /* compact the column */
2570                 *new_cp++ = row ;
2571                 /* compute hash function */
2572                 hash += row ;
2573                 /* add set difference */
2574                 cur_score += row_mark - tag_mark ;
2575                 /* integer overflow... */
2576                 cur_score = MIN (cur_score, n_col) ;
2577             }
2578 
2579             /* recompute the column's length */
2580             Col [col].length = (Int) (new_cp - &A [Col [col].start]) ;
2581 
2582             /* === Further mass elimination ================================= */
2583 
2584             if (Col [col].length == 0)
2585             {
2586                 DEBUG4 (("further mass elimination. Col: %d\n", col)) ;
2587                 /* nothing left but the pivot row in this column */
2588                 KILL_PRINCIPAL_COL (col) ;
2589                 pivot_row_degree -= Col [col].shared1.thickness ;
2590                 ASSERT (pivot_row_degree >= 0) ;
2591                 /* order it */
2592                 Col [col].shared2.order = k ;
2593                 /* increment order count by column thickness */
2594                 k += Col [col].shared1.thickness ;
2595             }
2596             else
2597             {
2598                 /* === Prepare for supercolumn detection ==================== */
2599 
2600                 DEBUG4 (("Preparing supercol detection for Col: %d.\n", col)) ;
2601 
2602                 /* save score so far */
2603                 Col [col].shared2.score = cur_score ;
2604 
2605                 /* add column to hash table, for supercolumn detection */
2606                 hash %= n_col + 1 ;
2607 
2608                 DEBUG4 ((" Hash = %d, n_col = %d.\n", hash, n_col)) ;
2609                 ASSERT (((Int) hash) <= n_col) ;
2610 
2611                 head_column = head [hash] ;
2612                 if (head_column > EMPTY)
2613                 {
2614                     /* degree list "hash" is non-empty, use prev (shared3) of */
2615                     /* first column in degree list as head of hash bucket */
2616                     first_col = Col [head_column].shared3.headhash ;
2617                     Col [head_column].shared3.headhash = col ;
2618                 }
2619                 else
2620                 {
2621                     /* degree list "hash" is empty, use head as hash bucket */
2622                     first_col = - (head_column + 2) ;
2623                     head [hash] = - (col + 2) ;
2624                 }
2625                 Col [col].shared4.hash_next = first_col ;
2626 
2627                 /* save hash function in Col [col].shared3.hash */
2628                 Col [col].shared3.hash = (Int) hash ;
2629                 ASSERT (COL_IS_ALIVE (col)) ;
2630             }
2631         }
2632 
2633         /* The approximate external column degree is now computed.  */
2634 
2635         /* === Supercolumn detection ======================================== */
2636 
2637         DEBUG3 (("** Supercolumn detection phase. **\n")) ;
2638 
2639         detect_super_cols (
2640 
2641 #ifndef NDEBUG
2642                 n_col, Row,
2643 #endif /* NDEBUG */
2644 
2645                 Col, A, head, pivot_row_start, pivot_row_length) ;
2646 
2647         /* === Kill the pivotal column ====================================== */
2648 
2649         KILL_PRINCIPAL_COL (pivot_col) ;
2650 
2651         /* === Clear mark =================================================== */
2652 
2653         tag_mark = clear_mark (tag_mark+max_deg+1, max_mark, n_row, Row) ;
2654 
2655 #ifndef NDEBUG
2656         DEBUG3 (("check3\n")) ;
2657         debug_mark (n_row, Row, tag_mark, max_mark) ;
2658 #endif /* NDEBUG */
2659 
2660         /* === Finalize the new pivot row, and column scores ================ */
2661 
2662         DEBUG3 (("** Finalize scores phase. **\n")) ;
2663 
2664         /* for each column in pivot row */
2665         rp = &A [pivot_row_start] ;
2666         /* compact the pivot row */
2667         new_rp = rp ;
2668         rp_end = rp + pivot_row_length ;
2669         while (rp < rp_end)
2670         {
2671             col = *rp++ ;
2672             /* skip dead columns */
2673             if (COL_IS_DEAD (col))
2674             {
2675                 continue ;
2676             }
2677             *new_rp++ = col ;
2678             /* add new pivot row to column */
2679             A [Col [col].start + (Col [col].length++)] = pivot_row ;
2680 
2681             /* retrieve score so far and add on pivot row's degree. */
2682             /* (we wait until here for this in case the pivot */
2683             /* row's degree was reduced due to mass elimination). */
2684             cur_score = Col [col].shared2.score + pivot_row_degree ;
2685 
2686             /* calculate the max possible score as the number of */
2687             /* external columns minus the 'k' value minus the */
2688             /* columns thickness */
2689             max_score = n_col - k - Col [col].shared1.thickness ;
2690 
2691             /* make the score the external degree of the union-of-rows */
2692             cur_score -= Col [col].shared1.thickness ;
2693 
2694             /* make sure score is less or equal than the max score */
2695             cur_score = MIN (cur_score, max_score) ;
2696             ASSERT (cur_score >= 0) ;
2697 
2698             /* store updated score */
2699             Col [col].shared2.score = cur_score ;
2700 
2701             /* === Place column back in degree list ========================= */
2702 
2703             ASSERT (min_score >= 0) ;
2704             ASSERT (min_score <= n_col) ;
2705             ASSERT (cur_score >= 0) ;
2706             ASSERT (cur_score <= n_col) ;
2707             ASSERT (head [cur_score] >= EMPTY) ;
2708             next_col = head [cur_score] ;
2709             Col [col].shared4.degree_next = next_col ;
2710             Col [col].shared3.prev = EMPTY ;
2711             if (next_col != EMPTY)
2712             {
2713                 Col [next_col].shared3.prev = col ;
2714             }
2715             head [cur_score] = col ;
2716 
2717             /* see if this score is less than current min */
2718             min_score = MIN (min_score, cur_score) ;
2719 
2720         }
2721 
2722 #ifndef NDEBUG
2723         debug_deg_lists (n_row, n_col, Row, Col, head,
2724                 min_score, n_col2-k, max_deg) ;
2725 #endif /* NDEBUG */
2726 
2727         /* === Resurrect the new pivot row ================================== */
2728 
2729         if (pivot_row_degree > 0)
2730         {
2731             /* update pivot row length to reflect any cols that were killed */
2732             /* during super-col detection and mass elimination */
2733             Row [pivot_row].start  = pivot_row_start ;
2734             Row [pivot_row].length = (Int) (new_rp - &A[pivot_row_start]) ;
2735             ASSERT (Row [pivot_row].length > 0) ;
2736             Row [pivot_row].shared1.degree = pivot_row_degree ;
2737             Row [pivot_row].shared2.mark = 0 ;
2738             /* pivot row is no longer dead */
2739 
2740             DEBUG1 (("Resurrect Pivot_row %d deg: %d\n",
2741                         pivot_row, pivot_row_degree)) ;
2742         }
2743     }
2744 
2745     /* === All principal columns have now been ordered ====================== */
2746 
2747     return (ngarbage) ;
2748 }
2749 
2750 
2751 /* ========================================================================== */
2752 /* === order_children ======================================================= */
2753 /* ========================================================================== */
2754 
2755 /*
2756     The find_ordering routine has ordered all of the principal columns (the
2757     representatives of the supercolumns).  The non-principal columns have not
2758     yet been ordered.  This routine orders those columns by walking up the
2759     parent tree (a column is a child of the column which absorbed it).  The
2760     final permutation vector is then placed in p [0 ... n_col-1], with p [0]
2761     being the first column, and p [n_col-1] being the last.  It doesn't look
2762     like it at first glance, but be assured that this routine takes time linear
2763     in the number of columns.  Although not immediately obvious, the time
2764     taken by this routine is O (n_col), that is, linear in the number of
2765     columns.  Not user-callable.
2766 */
2767 
2768 PRIVATE void order_children
2769 (
2770     /* === Parameters ======================================================= */
2771 
2772     Int n_col,                  /* number of columns of A */
2773     Colamd_Col Col [],          /* of size n_col+1 */
2774     Int p []                    /* p [0 ... n_col-1] is the column permutation*/
2775 )
2776 {
2777     /* === Local variables ================================================== */
2778 
2779     Int i ;                     /* loop counter for all columns */
2780     Int c ;                     /* column index */
2781     Int parent ;                /* index of column's parent */
2782     Int order ;                 /* column's order */
2783 
2784     /* === Order each non-principal column ================================== */
2785 
2786     for (i = 0 ; i < n_col ; i++)
2787     {
2788         /* find an un-ordered non-principal column */
2789         ASSERT (COL_IS_DEAD (i)) ;
2790         if (!COL_IS_DEAD_PRINCIPAL (i) && Col [i].shared2.order == EMPTY)
2791         {
2792             parent = i ;
2793             /* once found, find its principal parent */
2794             do
2795             {
2796                 parent = Col [parent].shared1.parent ;
2797             } while (!COL_IS_DEAD_PRINCIPAL (parent)) ;
2798 
2799             /* now, order all un-ordered non-principal columns along path */
2800             /* to this parent.  collapse tree at the same time */
2801             c = i ;
2802             /* get order of parent */
2803             order = Col [parent].shared2.order ;
2804 
2805             do
2806             {
2807                 ASSERT (Col [c].shared2.order == EMPTY) ;
2808 
2809                 /* order this column */
2810                 Col [c].shared2.order = order++ ;
2811                 /* collaps tree */
2812                 Col [c].shared1.parent = parent ;
2813 
2814                 /* get immediate parent of this column */
2815                 c = Col [c].shared1.parent ;
2816 
2817                 /* continue until we hit an ordered column.  There are */
2818                 /* guarranteed not to be anymore unordered columns */
2819                 /* above an ordered column */
2820             } while (Col [c].shared2.order == EMPTY) ;
2821 
2822             /* re-order the super_col parent to largest order for this group */
2823             Col [parent].shared2.order = order ;
2824         }
2825     }
2826 
2827     /* === Generate the permutation ========================================= */
2828 
2829     for (c = 0 ; c < n_col ; c++)
2830     {
2831         p [Col [c].shared2.order] = c ;
2832     }
2833 }
2834 
2835 
2836 /* ========================================================================== */
2837 /* === detect_super_cols ==================================================== */
2838 /* ========================================================================== */
2839 
2840 /*
2841     Detects supercolumns by finding matches between columns in the hash buckets.
2842     Check amongst columns in the set A [row_start ... row_start + row_length-1].
2843     The columns under consideration are currently *not* in the degree lists,
2844     and have already been placed in the hash buckets.
2845 
2846     The hash bucket for columns whose hash function is equal to h is stored
2847     as follows:
2848 
2849         if head [h] is >= 0, then head [h] contains a degree list, so:
2850 
2851                 head [h] is the first column in degree bucket h.
2852                 Col [head [h]].headhash gives the first column in hash bucket h.
2853 
2854         otherwise, the degree list is empty, and:
2855 
2856                 -(head [h] + 2) is the first column in hash bucket h.
2857 
2858     For a column c in a hash bucket, Col [c].shared3.prev is NOT a "previous
2859     column" pointer.  Col [c].shared3.hash is used instead as the hash number
2860     for that column.  The value of Col [c].shared4.hash_next is the next column
2861     in the same hash bucket.
2862 
2863     Assuming no, or "few" hash collisions, the time taken by this routine is
2864     linear in the sum of the sizes (lengths) of each column whose score has
2865     just been computed in the approximate degree computation.
2866     Not user-callable.
2867 */
2868 
2869 PRIVATE void detect_super_cols
2870 (
2871     /* === Parameters ======================================================= */
2872 
2873 #ifndef NDEBUG
2874     /* these two parameters are only needed when debugging is enabled: */
2875     Int n_col,                  /* number of columns of A */
2876     Colamd_Row Row [],          /* of size n_row+1 */
2877 #endif /* NDEBUG */
2878 
2879     Colamd_Col Col [],          /* of size n_col+1 */
2880     Int A [],                   /* row indices of A */
2881     Int head [],                /* head of degree lists and hash buckets */
2882     Int row_start,              /* pointer to set of columns to check */
2883     Int row_length              /* number of columns to check */
2884 )
2885 {
2886     /* === Local variables ================================================== */
2887 
2888     Int hash ;                  /* hash value for a column */
2889     Int *rp ;                   /* pointer to a row */
2890     Int c ;                     /* a column index */
2891     Int super_c ;               /* column index of the column to absorb into */
2892     Int *cp1 ;                  /* column pointer for column super_c */
2893     Int *cp2 ;                  /* column pointer for column c */
2894     Int length ;                /* length of column super_c */
2895     Int prev_c ;                /* column preceding c in hash bucket */
2896     Int i ;                     /* loop counter */
2897     Int *rp_end ;               /* pointer to the end of the row */
2898     Int col ;                   /* a column index in the row to check */
2899     Int head_column ;           /* first column in hash bucket or degree list */
2900     Int first_col ;             /* first column in hash bucket */
2901 
2902     /* === Consider each column in the row ================================== */
2903 
2904     rp = &A [row_start] ;
2905     rp_end = rp + row_length ;
2906     while (rp < rp_end)
2907     {
2908         col = *rp++ ;
2909         if (COL_IS_DEAD (col))
2910         {
2911             continue ;
2912         }
2913 
2914         /* get hash number for this column */
2915         hash = Col [col].shared3.hash ;
2916         ASSERT (hash <= n_col) ;
2917 
2918         /* === Get the first column in this hash bucket ===================== */
2919 
2920         head_column = head [hash] ;
2921         if (head_column > EMPTY)
2922         {
2923             first_col = Col [head_column].shared3.headhash ;
2924         }
2925         else
2926         {
2927             first_col = - (head_column + 2) ;
2928         }
2929 
2930         /* === Consider each column in the hash bucket ====================== */
2931 
2932         for (super_c = first_col ; super_c != EMPTY ;
2933             super_c = Col [super_c].shared4.hash_next)
2934         {
2935             ASSERT (COL_IS_ALIVE (super_c)) ;
2936             ASSERT (Col [super_c].shared3.hash == hash) ;
2937             length = Col [super_c].length ;
2938 
2939             /* prev_c is the column preceding column c in the hash bucket */
2940             prev_c = super_c ;
2941 
2942             /* === Compare super_c with all columns after it ================ */
2943 
2944             for (c = Col [super_c].shared4.hash_next ;
2945                  c != EMPTY ; c = Col [c].shared4.hash_next)
2946             {
2947                 ASSERT (c != super_c) ;
2948                 ASSERT (COL_IS_ALIVE (c)) ;
2949                 ASSERT (Col [c].shared3.hash == hash) ;
2950 
2951                 /* not identical if lengths or scores are different */
2952                 if (Col [c].length != length ||
2953                     Col [c].shared2.score != Col [super_c].shared2.score)
2954                 {
2955                     prev_c = c ;
2956                     continue ;
2957                 }
2958 
2959                 /* compare the two columns */
2960                 cp1 = &A [Col [super_c].start] ;
2961                 cp2 = &A [Col [c].start] ;
2962 
2963                 for (i = 0 ; i < length ; i++)
2964                 {
2965                     /* the columns are "clean" (no dead rows) */
2966                     ASSERT (ROW_IS_ALIVE (*cp1))  ;
2967                     ASSERT (ROW_IS_ALIVE (*cp2))  ;
2968                     /* row indices will same order for both supercols, */
2969                     /* no gather scatter nessasary */
2970                     if (*cp1++ != *cp2++)
2971                     {
2972                         break ;
2973                     }
2974                 }
2975 
2976                 /* the two columns are different if the for-loop "broke" */
2977                 if (i != length)
2978                 {
2979                     prev_c = c ;
2980                     continue ;
2981                 }
2982 
2983                 /* === Got it!  two columns are identical =================== */
2984 
2985                 ASSERT (Col [c].shared2.score == Col [super_c].shared2.score) ;
2986 
2987                 Col [super_c].shared1.thickness += Col [c].shared1.thickness ;
2988                 Col [c].shared1.parent = super_c ;
2989                 KILL_NON_PRINCIPAL_COL (c) ;
2990                 /* order c later, in order_children() */
2991                 Col [c].shared2.order = EMPTY ;
2992                 /* remove c from hash bucket */
2993                 Col [prev_c].shared4.hash_next = Col [c].shared4.hash_next ;
2994             }
2995         }
2996 
2997         /* === Empty this hash bucket ======================================= */
2998 
2999         if (head_column > EMPTY)
3000         {
3001             /* corresponding degree list "hash" is not empty */
3002             Col [head_column].shared3.headhash = EMPTY ;
3003         }
3004         else
3005         {
3006             /* corresponding degree list "hash" is empty */
3007             head [hash] = EMPTY ;
3008         }
3009     }
3010 }
3011 
3012 
3013 /* ========================================================================== */
3014 /* === garbage_collection =================================================== */
3015 /* ========================================================================== */
3016 
3017 /*
3018     Defragments and compacts columns and rows in the workspace A.  Used when
3019     all avaliable memory has been used while performing row merging.  Returns
3020     the index of the first free position in A, after garbage collection.  The
3021     time taken by this routine is linear is the size of the array A, which is
3022     itself linear in the number of nonzeros in the input matrix.
3023     Not user-callable.
3024 */
3025 
3026 PRIVATE Int garbage_collection  /* returns the new value of pfree */
3027 (
3028     /* === Parameters ======================================================= */
3029 
3030     Int n_row,                  /* number of rows */
3031     Int n_col,                  /* number of columns */
3032     Colamd_Row Row [],          /* row info */
3033     Colamd_Col Col [],          /* column info */
3034     Int A [],                   /* A [0 ... Alen-1] holds the matrix */
3035     Int *pfree                  /* &A [0] ... pfree is in use */
3036 )
3037 {
3038     /* === Local variables ================================================== */
3039 
3040     Int *psrc ;                 /* source pointer */
3041     Int *pdest ;                /* destination pointer */
3042     Int j ;                     /* counter */
3043     Int r ;                     /* a row index */
3044     Int c ;                     /* a column index */
3045     Int length ;                /* length of a row or column */
3046 
3047 #ifndef NDEBUG
3048     Int debug_rows ;
3049     DEBUG2 (("Defrag..\n")) ;
3050     for (psrc = &A[0] ; psrc < pfree ; psrc++) ASSERT (*psrc >= 0) ;
3051     debug_rows = 0 ;
3052 #endif /* NDEBUG */
3053 
3054     /* === Defragment the columns =========================================== */
3055 
3056     pdest = &A[0] ;
3057     for (c = 0 ; c < n_col ; c++)
3058     {
3059         if (COL_IS_ALIVE (c))
3060         {
3061             psrc = &A [Col [c].start] ;
3062 
3063             /* move and compact the column */
3064             ASSERT (pdest <= psrc) ;
3065             Col [c].start = (Int) (pdest - &A [0]) ;
3066             length = Col [c].length ;
3067             for (j = 0 ; j < length ; j++)
3068             {
3069                 r = *psrc++ ;
3070                 if (ROW_IS_ALIVE (r))
3071                 {
3072                     *pdest++ = r ;
3073                 }
3074             }
3075             Col [c].length = (Int) (pdest - &A [Col [c].start]) ;
3076         }
3077     }
3078 
3079     /* === Prepare to defragment the rows =================================== */
3080 
3081     for (r = 0 ; r < n_row ; r++)
3082     {
3083         if (ROW_IS_DEAD (r) || (Row [r].length == 0))
3084         {
3085             /* This row is already dead, or is of zero length.  Cannot compact
3086              * a row of zero length, so kill it.  NOTE: in the current version,
3087              * there are no zero-length live rows.  Kill the row (for the first
3088              * time, or again) just to be safe. */
3089             KILL_ROW (r) ;
3090         }
3091         else
3092         {
3093             /* save first column index in Row [r].shared2.first_column */
3094             psrc = &A [Row [r].start] ;
3095             Row [r].shared2.first_column = *psrc ;
3096             ASSERT (ROW_IS_ALIVE (r)) ;
3097             /* flag the start of the row with the one's complement of row */
3098             *psrc = ONES_COMPLEMENT (r) ;
3099 #ifndef NDEBUG
3100             debug_rows++ ;
3101 #endif /* NDEBUG */
3102         }
3103     }
3104 
3105     /* === Defragment the rows ============================================== */
3106 
3107     psrc = pdest ;
3108     while (psrc < pfree)
3109     {
3110         /* find a negative number ... the start of a row */
3111         if (*psrc++ < 0)
3112         {
3113             psrc-- ;
3114             /* get the row index */
3115             r = ONES_COMPLEMENT (*psrc) ;
3116             ASSERT (r >= 0 && r < n_row) ;
3117             /* restore first column index */
3118             *psrc = Row [r].shared2.first_column ;
3119             ASSERT (ROW_IS_ALIVE (r)) ;
3120             ASSERT (Row [r].length > 0) ;
3121             /* move and compact the row */
3122             ASSERT (pdest <= psrc) ;
3123             Row [r].start = (Int) (pdest - &A [0]) ;
3124             length = Row [r].length ;
3125             for (j = 0 ; j < length ; j++)
3126             {
3127                 c = *psrc++ ;
3128                 if (COL_IS_ALIVE (c))
3129                 {
3130                     *pdest++ = c ;
3131                 }
3132             }
3133             Row [r].length = (Int) (pdest - &A [Row [r].start]) ;
3134             ASSERT (Row [r].length > 0) ;
3135 #ifndef NDEBUG
3136             debug_rows-- ;
3137 #endif /* NDEBUG */
3138         }
3139     }
3140     /* ensure we found all the rows */
3141     ASSERT (debug_rows == 0) ;
3142 
3143     /* === Return the new value of pfree ==================================== */
3144 
3145     return ((Int) (pdest - &A [0])) ;
3146 }
3147 
3148 
3149 /* ========================================================================== */
3150 /* === clear_mark =========================================================== */
3151 /* ========================================================================== */
3152 
3153 /*
3154     Clears the Row [].shared2.mark array, and returns the new tag_mark.
3155     Return value is the new tag_mark.  Not user-callable.
3156 */
3157 
3158 PRIVATE Int clear_mark  /* return the new value for tag_mark */
3159 (
3160     /* === Parameters ======================================================= */
3161 
3162     Int tag_mark,       /* new value of tag_mark */
3163     Int max_mark,       /* max allowed value of tag_mark */
3164 
3165     Int n_row,          /* number of rows in A */
3166     Colamd_Row Row []   /* Row [0 ... n_row-1].shared2.mark is set to zero */
3167 )
3168 {
3169     /* === Local variables ================================================== */
3170 
3171     Int r ;
3172 
3173     if (tag_mark <= 0 || tag_mark >= max_mark)
3174     {
3175         for (r = 0 ; r < n_row ; r++)
3176         {
3177             if (ROW_IS_ALIVE (r))
3178             {
3179                 Row [r].shared2.mark = 0 ;
3180             }
3181         }
3182         tag_mark = 1 ;
3183     }
3184 
3185     return (tag_mark) ;
3186 }
3187 
3188 
3189 /* ========================================================================== */
3190 /* === print_report ========================================================= */
3191 /* ========================================================================== */
3192 
3193 PRIVATE void print_report
3194 (
3195     char *method,
3196     Int stats [COLAMD_STATS]
3197 )
3198 {
3199 
3200     Int i1, i2, i3 ;
3201 
3202     PRINTF (("\n%s version %d.%d, %s: ", method,
3203             COLAMD_MAIN_VERSION, COLAMD_SUB_VERSION, COLAMD_DATE)) ;
3204 
3205     if (!stats)
3206     {
3207         PRINTF (("No statistics available.\n")) ;
3208         return ;
3209     }
3210 
3211     i1 = stats [COLAMD_INFO1] ;
3212     i2 = stats [COLAMD_INFO2] ;
3213     i3 = stats [COLAMD_INFO3] ;
3214 
3215     if (stats [COLAMD_STATUS] >= 0)
3216     {
3217         PRINTF (("OK.  ")) ;
3218     }
3219     else
3220     {
3221         PRINTF (("ERROR.  ")) ;
3222     }
3223 
3224     switch (stats [COLAMD_STATUS])
3225     {
3226 
3227         case COLAMD_OK_BUT_JUMBLED:
3228 
3229             PRINTF(("Matrix has unsorted or duplicate row indices.\n")) ;
3230 
3231             PRINTF(("%s: number of duplicate or out-of-order row indices: %d\n",
3232             method, i3)) ;
3233 
3234             PRINTF(("%s: last seen duplicate or out-of-order row index:   %d\n",
3235             method, INDEX (i2))) ;
3236 
3237             PRINTF(("%s: last seen in column:                             %d",
3238             method, INDEX (i1))) ;
3239 
3240             /* no break - fall through to next case instead */
3241 
3242         case COLAMD_OK:
3243 
3244             PRINTF(("\n")) ;
3245 
3246             PRINTF(("%s: number of dense or empty rows ignored:           %d\n",
3247             method, stats [COLAMD_DENSE_ROW])) ;
3248 
3249             PRINTF(("%s: number of dense or empty columns ignored:        %d\n",
3250             method, stats [COLAMD_DENSE_COL])) ;
3251 
3252             PRINTF(("%s: number of garbage collections performed:         %d\n",
3253             method, stats [COLAMD_DEFRAG_COUNT])) ;
3254             break ;
3255 
3256         case COLAMD_ERROR_A_not_present:
3257 
3258             PRINTF(("Array A (row indices of matrix) not present.\n")) ;
3259             break ;
3260 
3261         case COLAMD_ERROR_p_not_present:
3262 
3263             PRINTF(("Array p (column pointers for matrix) not present.\n")) ;
3264             break ;
3265 
3266         case COLAMD_ERROR_nrow_negative:
3267 
3268             PRINTF(("Invalid number of rows (%d).\n", i1)) ;
3269             break ;
3270 
3271         case COLAMD_ERROR_ncol_negative:
3272 
3273             PRINTF(("Invalid number of columns (%d).\n", i1)) ;
3274             break ;
3275 
3276         case COLAMD_ERROR_nnz_negative:
3277 
3278             PRINTF(("Invalid number of nonzero entries (%d).\n", i1)) ;
3279             break ;
3280 
3281         case COLAMD_ERROR_p0_nonzero:
3282 
3283             PRINTF(("Invalid column pointer, p [0] = %d, must be zero.\n", i1));
3284             break ;
3285 
3286         case COLAMD_ERROR_A_too_small:
3287 
3288             PRINTF(("Array A too small.\n")) ;
3289             PRINTF(("        Need Alen >= %d, but given only Alen = %d.\n",
3290             i1, i2)) ;
3291             break ;
3292 
3293         case COLAMD_ERROR_col_length_negative:
3294 
3295             PRINTF
3296             (("Column %d has a negative number of nonzero entries (%d).\n",
3297             INDEX (i1), i2)) ;
3298             break ;
3299 
3300         case COLAMD_ERROR_row_index_out_of_bounds:
3301 
3302             PRINTF
3303             (("Row index (row %d) out of bounds (%d to %d) in column %d.\n",
3304             INDEX (i2), INDEX (0), INDEX (i3-1), INDEX (i1))) ;
3305             break ;
3306 
3307         case COLAMD_ERROR_out_of_memory:
3308 
3309             PRINTF(("Out of memory.\n")) ;
3310             break ;
3311 
3312         /* v2.4: internal-error case deleted */
3313     }
3314 }
3315 
3316 
3317 
3318 
3319 /* ========================================================================== */
3320 /* === colamd debugging routines ============================================ */
3321 /* ========================================================================== */
3322 
3323 /* When debugging is disabled, the remainder of this file is ignored. */
3324 
3325 #ifndef NDEBUG
3326 
3327 
3328 /* ========================================================================== */
3329 /* === debug_structures ===================================================== */
3330 /* ========================================================================== */
3331 
3332 /*
3333     At this point, all empty rows and columns are dead.  All live columns
3334     are "clean" (containing no dead rows) and simplicial (no supercolumns
3335     yet).  Rows may contain dead columns, but all live rows contain at
3336     least one live column.
3337 */
3338 
3339 PRIVATE void debug_structures
3340 (
3341     /* === Parameters ======================================================= */
3342 
3343     Int n_row,
3344     Int n_col,
3345     Colamd_Row Row [],
3346     Colamd_Col Col [],
3347     Int A [],
3348     Int n_col2
3349 )
3350 {
3351     /* === Local variables ================================================== */
3352 
3353     Int i ;
3354     Int c ;
3355     Int *cp ;
3356     Int *cp_end ;
3357     Int len ;
3358     Int score ;
3359     Int r ;
3360     Int *rp ;
3361     Int *rp_end ;
3362     Int deg ;
3363 
3364     /* === Check A, Row, and Col ============================================ */
3365 
3366     for (c = 0 ; c < n_col ; c++)
3367     {
3368         if (COL_IS_ALIVE (c))
3369         {
3370             len = Col [c].length ;
3371             score = Col [c].shared2.score ;
3372             DEBUG4 (("initial live col %5d %5d %5d\n", c, len, score)) ;
3373             ASSERT (len > 0) ;
3374             ASSERT (score >= 0) ;
3375             ASSERT (Col [c].shared1.thickness == 1) ;
3376             cp = &A [Col [c].start] ;
3377             cp_end = cp + len ;
3378             while (cp < cp_end)
3379             {
3380                 r = *cp++ ;
3381                 ASSERT (ROW_IS_ALIVE (r)) ;
3382             }
3383         }
3384         else
3385         {
3386             i = Col [c].shared2.order ;
3387             ASSERT (i >= n_col2 && i < n_col) ;
3388         }
3389     }
3390 
3391     for (r = 0 ; r < n_row ; r++)
3392     {
3393         if (ROW_IS_ALIVE (r))
3394         {
3395             i = 0 ;
3396             len = Row [r].length ;
3397             deg = Row [r].shared1.degree ;
3398             ASSERT (len > 0) ;
3399             ASSERT (deg > 0) ;
3400             rp = &A [Row [r].start] ;
3401             rp_end = rp + len ;
3402             while (rp < rp_end)
3403             {
3404                 c = *rp++ ;
3405                 if (COL_IS_ALIVE (c))
3406                 {
3407                     i++ ;
3408                 }
3409             }
3410             ASSERT (i > 0) ;
3411         }
3412     }
3413 }
3414 
3415 
3416 /* ========================================================================== */
3417 /* === debug_deg_lists ====================================================== */
3418 /* ========================================================================== */
3419 
3420 /*
3421     Prints the contents of the degree lists.  Counts the number of columns
3422     in the degree list and compares it to the total it should have.  Also
3423     checks the row degrees.
3424 */
3425 
3426 PRIVATE void debug_deg_lists
3427 (
3428     /* === Parameters ======================================================= */
3429 
3430     Int n_row,
3431     Int n_col,
3432     Colamd_Row Row [],
3433     Colamd_Col Col [],
3434     Int head [],
3435     Int min_score,
3436     Int should,
3437     Int max_deg
3438 )
3439 {
3440     /* === Local variables ================================================== */
3441 
3442     Int deg ;
3443     Int col ;
3444     Int have ;
3445     Int row ;
3446 
3447     /* === Check the degree lists =========================================== */
3448 
3449     if (n_col > 10000 && colamd_debug <= 0)
3450     {
3451         return ;
3452     }
3453     have = 0 ;
3454     DEBUG4 (("Degree lists: %d\n", min_score)) ;
3455     for (deg = 0 ; deg <= n_col ; deg++)
3456     {
3457         col = head [deg] ;
3458         if (col == EMPTY)
3459         {
3460             continue ;
3461         }
3462         DEBUG4 (("%d:", deg)) ;
3463         while (col != EMPTY)
3464         {
3465             DEBUG4 ((" %d", col)) ;
3466             have += Col [col].shared1.thickness ;
3467             ASSERT (COL_IS_ALIVE (col)) ;
3468             col = Col [col].shared4.degree_next ;
3469         }
3470         DEBUG4 (("\n")) ;
3471     }
3472     DEBUG4 (("should %d have %d\n", should, have)) ;
3473     ASSERT (should == have) ;
3474 
3475     /* === Check the row degrees ============================================ */
3476 
3477     if (n_row > 10000 && colamd_debug <= 0)
3478     {
3479         return ;
3480     }
3481     for (row = 0 ; row < n_row ; row++)
3482     {
3483         if (ROW_IS_ALIVE (row))
3484         {
3485             ASSERT (Row [row].shared1.degree <= max_deg) ;
3486         }
3487     }
3488 }
3489 
3490 
3491 /* ========================================================================== */
3492 /* === debug_mark =========================================================== */
3493 /* ========================================================================== */
3494 
3495 /*
3496     Ensures that the tag_mark is less that the maximum and also ensures that
3497     each entry in the mark array is less than the tag mark.
3498 */
3499 
3500 PRIVATE void debug_mark
3501 (
3502     /* === Parameters ======================================================= */
3503 
3504     Int n_row,
3505     Colamd_Row Row [],
3506     Int tag_mark,
3507     Int max_mark
3508 )
3509 {
3510     /* === Local variables ================================================== */
3511 
3512     Int r ;
3513 
3514     /* === Check the Row marks ============================================== */
3515 
3516     ASSERT (tag_mark > 0 && tag_mark <= max_mark) ;
3517     if (n_row > 10000 && colamd_debug <= 0)
3518     {
3519         return ;
3520     }
3521     for (r = 0 ; r < n_row ; r++)
3522     {
3523         ASSERT (Row [r].shared2.mark < tag_mark) ;
3524     }
3525 }
3526 
3527 
3528 /* ========================================================================== */
3529 /* === debug_matrix ========================================================= */
3530 /* ========================================================================== */
3531 
3532 /*
3533     Prints out the contents of the columns and the rows.
3534 */
3535 
3536 PRIVATE void debug_matrix
3537 (
3538     /* === Parameters ======================================================= */
3539 
3540     Int n_row,
3541     Int n_col,
3542     Colamd_Row Row [],
3543     Colamd_Col Col [],
3544     Int A []
3545 )
3546 {
3547     /* === Local variables ================================================== */
3548 
3549     Int r ;
3550     Int c ;
3551     Int *rp ;
3552     Int *rp_end ;
3553     Int *cp ;
3554     Int *cp_end ;
3555 
3556     /* === Dump the rows and columns of the matrix ========================== */
3557 
3558     if (colamd_debug < 3)
3559     {
3560         return ;
3561     }
3562     DEBUG3 (("DUMP MATRIX:\n")) ;
3563     for (r = 0 ; r < n_row ; r++)
3564     {
3565         DEBUG3 (("Row %d alive? %d\n", r, ROW_IS_ALIVE (r))) ;
3566         if (ROW_IS_DEAD (r))
3567         {
3568             continue ;
3569         }
3570         DEBUG3 (("start %d length %d degree %d\n",
3571                 Row [r].start, Row [r].length, Row [r].shared1.degree)) ;
3572         rp = &A [Row [r].start] ;
3573         rp_end = rp + Row [r].length ;
3574         while (rp < rp_end)
3575         {
3576             c = *rp++ ;
3577             DEBUG4 (("  %d col %d\n", COL_IS_ALIVE (c), c)) ;
3578         }
3579     }
3580 
3581     for (c = 0 ; c < n_col ; c++)
3582     {
3583         DEBUG3 (("Col %d alive? %d\n", c, COL_IS_ALIVE (c))) ;
3584         if (COL_IS_DEAD (c))
3585         {
3586             continue ;
3587         }
3588         DEBUG3 (("start %d length %d shared1 %d shared2 %d\n",
3589                 Col [c].start, Col [c].length,
3590                 Col [c].shared1.thickness, Col [c].shared2.score)) ;
3591         cp = &A [Col [c].start] ;
3592         cp_end = cp + Col [c].length ;
3593         while (cp < cp_end)
3594         {
3595             r = *cp++ ;
3596             DEBUG4 (("  %d row %d\n", ROW_IS_ALIVE (r), r)) ;
3597         }
3598     }
3599 }
3600 
3601 PRIVATE void colamd_get_debug
3602 (
3603     char *method
3604 )
3605 {
3606     FILE *f ;
3607     colamd_debug = 0 ;          /* no debug printing */
3608     f = fopen ("debug", "r") ;
3609     if (f == (FILE *) NULL)
3610     {
3611         colamd_debug = 0 ;
3612     }
3613     else
3614     {
3615         fscanf (f, "%d", &colamd_debug) ;
3616         fclose (f) ;
3617     }
3618     DEBUG0 (("%s: debug version, D = %d (THIS WILL BE SLOW!)\n",
3619         method, colamd_debug)) ;
3620 }
3621 
3622 #endif /* NDEBUG */
3623