1 /* glpini01.c */
2 
3 /***********************************************************************
4 *  This code is part of GLPK (GNU Linear Programming Kit).
5 *
6 *  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
7 *  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
8 *  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
9 *  E-mail: <mao@gnu.org>.
10 *
11 *  GLPK is free software: you can redistribute it and/or modify it
12 *  under the terms of the GNU General Public License as published by
13 *  the Free Software Foundation, either version 3 of the License, or
14 *  (at your option) any later version.
15 *
16 *  GLPK is distributed in the hope that it will be useful, but WITHOUT
17 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
18 *  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
19 *  License for more details.
20 *
21 *  You should have received a copy of the GNU General Public License
22 *  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
23 ***********************************************************************/
24 
25 #include "glpapi.h"
26 
27 /*----------------------------------------------------------------------
28 -- triang - find maximal triangular part of a rectangular matrix.
29 --
30 -- *Synopsis*
31 --
32 -- int triang(int m, int n,
33 --    void *info, int (*mat)(void *info, int k, int ndx[]),
34 --    int rn[], int cn[]);
35 --
36 -- *Description*
37 --
38 -- For a given rectangular (sparse) matrix A with m rows and n columns
39 -- the routine triang tries to find such permutation matrices P and Q
40 -- that the first rows and columns of the matrix B = P*A*Q form a lower
41 -- triangular submatrix of as greatest size as possible:
42 --
43 --                   1                       n
44 --                1  * . . . . . . x x x x x x
45 --                   * * . . . . . x x x x x x
46 --                   * * * . . . . x x x x x x
47 --                   * * * * . . . x x x x x x
48 --    B = P*A*Q =    * * * * * . . x x x x x x
49 --                   * * * * * * . x x x x x x
50 --                   * * * * * * * x x x x x x
51 --                   x x x x x x x x x x x x x
52 --                   x x x x x x x x x x x x x
53 --                m  x x x x x x x x x x x x x
54 --
55 -- where: '*' - elements of the lower triangular part, '.' - structural
56 -- zeros, 'x' - other (either non-zero or zero) elements.
57 --
58 -- The parameter info is a transit pointer passed to the formal routine
59 -- mat (see below).
60 --
61 -- The formal routine mat specifies the given matrix A in both row- and
62 -- column-wise formats. In order to obtain an i-th row of the matrix A
63 -- the routine triang calls the routine mat with the parameter k = +i,
64 -- 1 <= i <= m. In response the routine mat should store column indices
65 -- of (non-zero) elements of the i-th row to the locations ndx[1], ...,
66 -- ndx[len], where len is number of non-zeros in the i-th row returned
67 -- on exit. Analogously, in order to obtain a j-th column of the matrix
68 -- A, the routine mat is called with the parameter k = -j, 1 <= j <= n,
69 -- and should return pattern of the j-th column in the same way as for
70 -- row patterns. Note that the routine mat may be called more than once
71 -- for the same rows and columns.
72 --
73 -- On exit the routine computes two resultant arrays rn and cn, which
74 -- define the permutation matrices P and Q, respectively. The array rn
75 -- should have at least 1+m locations, where rn[i] = i' (1 <= i <= m)
76 -- means that i-th row of the original matrix A corresponds to i'-th row
77 -- of the matrix B = P*A*Q. Similarly, the array cn should have at least
78 -- 1+n locations, where cn[j] = j' (1 <= j <= n) means that j-th column
79 -- of the matrix A corresponds to j'-th column of the matrix B.
80 --
81 -- *Returns*
82 --
83 -- The routine triang returns the size of the lower tringular part of
84 -- the matrix B = P*A*Q (see the figure above).
85 --
86 -- *Complexity*
87 --
88 -- The time complexity of the routine triang is O(nnz), where nnz is
89 -- number of non-zeros in the given matrix A.
90 --
91 -- *Algorithm*
92 --
93 -- The routine triang starts from the matrix B = P*Q*A, where P and Q
94 -- are unity matrices, so initially B = A.
95 --
96 -- Before the next iteration B = (B1 | B2 | B3), where B1 is partially
97 -- built a lower triangular submatrix, B2 is the active submatrix, and
98 -- B3 is a submatrix that contains rejected columns. Thus, the current
99 -- matrix B looks like follows (initially k1 = 1 and k2 = n):
100 --
101 --       1         k1         k2         n
102 --    1  x . . . . . . . . . . . . . # # #
103 --       x x . . . . . . . . . . . . # # #
104 --       x x x . . . . . . . . . . # # # #
105 --       x x x x . . . . . . . . . # # # #
106 --       x x x x x . . . . . . . # # # # #
107 --    k1 x x x x x * * * * * * * # # # # #
108 --       x x x x x * * * * * * * # # # # #
109 --       x x x x x * * * * * * * # # # # #
110 --       x x x x x * * * * * * * # # # # #
111 --    m  x x x x x * * * * * * * # # # # #
112 --       <--B1---> <----B2-----> <---B3-->
113 --
114 -- On each iteartion the routine looks for a singleton row, i.e. some
115 -- row that has the only non-zero in the active submatrix B2. If such
116 -- row exists and the corresponding non-zero is b[i,j], where (by the
117 -- definition) k1 <= i <= m and k1 <= j <= k2, the routine permutes
118 -- k1-th and i-th rows and k1-th and j-th columns of the matrix B (in
119 -- order to place the element in the position b[k1,k1]), removes the
120 -- k1-th column from the active submatrix B2, and adds this column to
121 -- the submatrix B1. If no row singletons exist, but B2 is not empty
122 -- yet, the routine chooses a j-th column, which has maximal number of
123 -- non-zeros among other columns of B2, removes this column from B2 and
124 -- adds it to the submatrix B3 in the hope that new row singletons will
125 -- appear in the active submatrix. */
126 
triang(int m,int n,void * info,int (* mat)(void * info,int k,int ndx[]),int rn[],int cn[])127 static int triang(int m, int n,
128       void *info, int (*mat)(void *info, int k, int ndx[]),
129       int rn[], int cn[])
130 {     int *ndx; /* int ndx[1+max(m,n)]; */
131       /* this array is used for querying row and column patterns of the
132          given matrix A (the third parameter to the routine mat) */
133       int *rs_len; /* int rs_len[1+m]; */
134       /* rs_len[0] is not used;
135          rs_len[i], 1 <= i <= m, is number of non-zeros in the i-th row
136          of the matrix A, which (non-zeros) belong to the current active
137          submatrix */
138       int *rs_head; /* int rs_head[1+n]; */
139       /* rs_head[len], 0 <= len <= n, is the number i of the first row
140          of the matrix A, for which rs_len[i] = len */
141       int *rs_prev; /* int rs_prev[1+m]; */
142       /* rs_prev[0] is not used;
143          rs_prev[i], 1 <= i <= m, is a number i' of the previous row of
144          the matrix A, for which rs_len[i] = rs_len[i'] (zero marks the
145          end of this linked list) */
146       int *rs_next; /* int rs_next[1+m]; */
147       /* rs_next[0] is not used;
148          rs_next[i], 1 <= i <= m, is a number i' of the next row of the
149          matrix A, for which rs_len[i] = rs_len[i'] (zero marks the end
150          this linked list) */
151       int cs_head;
152       /* is a number j of the first column of the matrix A, which has
153          maximal number of non-zeros among other columns */
154       int *cs_prev; /* cs_prev[1+n]; */
155       /* cs_prev[0] is not used;
156          cs_prev[j], 1 <= j <= n, is a number of the previous column of
157          the matrix A with the same or greater number of non-zeros than
158          in the j-th column (zero marks the end of this linked list) */
159       int *cs_next; /* cs_next[1+n]; */
160       /* cs_next[0] is not used;
161          cs_next[j], 1 <= j <= n, is a number of the next column of
162          the matrix A with the same or lesser number of non-zeros than
163          in the j-th column (zero marks the end of this linked list) */
164       int i, j, ii, jj, k1, k2, len, t, size = 0;
165       int *head, *rn_inv, *cn_inv;
166       if (!(m > 0 && n > 0))
167          xerror("triang: m = %d; n = %d; invalid dimension\n", m, n);
168       /* allocate working arrays */
169       ndx = xcalloc(1+(m >= n ? m : n), sizeof(int));
170       rs_len = xcalloc(1+m, sizeof(int));
171       rs_head = xcalloc(1+n, sizeof(int));
172       rs_prev = xcalloc(1+m, sizeof(int));
173       rs_next = xcalloc(1+m, sizeof(int));
174       cs_prev = xcalloc(1+n, sizeof(int));
175       cs_next = xcalloc(1+n, sizeof(int));
176       /* build linked lists of columns of the matrix A with the same
177          number of non-zeros */
178       head = rs_len; /* currently rs_len is used as working array */
179       for (len = 0; len <= m; len ++) head[len] = 0;
180       for (j = 1; j <= n; j++)
181       {  /* obtain length of the j-th column */
182          len = mat(info, -j, ndx);
183          xassert(0 <= len && len <= m);
184          /* include the j-th column in the corresponding linked list */
185          cs_prev[j] = head[len];
186          head[len] = j;
187       }
188       /* merge all linked lists of columns in one linked list, where
189          columns are ordered by descending of their lengths */
190       cs_head = 0;
191       for (len = 0; len <= m; len++)
192       {  for (j = head[len]; j != 0; j = cs_prev[j])
193          {  cs_next[j] = cs_head;
194             cs_head = j;
195          }
196       }
197       jj = 0;
198       for (j = cs_head; j != 0; j = cs_next[j])
199       {  cs_prev[j] = jj;
200          jj = j;
201       }
202       /* build initial doubly linked lists of rows of the matrix A with
203          the same number of non-zeros */
204       for (len = 0; len <= n; len++) rs_head[len] = 0;
205       for (i = 1; i <= m; i++)
206       {  /* obtain length of the i-th row */
207          rs_len[i] = len = mat(info, +i, ndx);
208          xassert(0 <= len && len <= n);
209          /* include the i-th row in the correspondng linked list */
210          rs_prev[i] = 0;
211          rs_next[i] = rs_head[len];
212          if (rs_next[i] != 0) rs_prev[rs_next[i]] = i;
213          rs_head[len] = i;
214       }
215       /* initially all rows and columns of the matrix A are active */
216       for (i = 1; i <= m; i++) rn[i] = 0;
217       for (j = 1; j <= n; j++) cn[j] = 0;
218       /* set initial bounds of the active submatrix */
219       k1 = 1, k2 = n;
220       /* main loop starts here */
221       while (k1 <= k2)
222       {  i = rs_head[1];
223          if (i != 0)
224          {  /* the i-th row of the matrix A is a row singleton, since
225                it has the only non-zero in the active submatrix */
226             xassert(rs_len[i] == 1);
227             /* determine the number j of an active column of the matrix
228                A, in which this non-zero is placed */
229             j = 0;
230             t = mat(info, +i, ndx);
231             xassert(0 <= t && t <= n);
232             for (t = t; t >= 1; t--)
233             {  jj = ndx[t];
234                xassert(1 <= jj && jj <= n);
235                if (cn[jj] == 0)
236                {  xassert(j == 0);
237                   j = jj;
238                }
239             }
240             xassert(j != 0);
241             /* the singleton is a[i,j]; move a[i,j] to the position
242                b[k1,k1] of the matrix B */
243             rn[i] = cn[j] = k1;
244             /* shift the left bound of the active submatrix */
245             k1++;
246             /* increase the size of the lower triangular part */
247             size++;
248          }
249          else
250          {  /* the current active submatrix has no row singletons */
251             /* remove an active column with maximal number of non-zeros
252                from the active submatrix */
253             j = cs_head;
254             xassert(j != 0);
255             cn[j] = k2;
256             /* shift the right bound of the active submatrix */
257             k2--;
258          }
259          /* the j-th column of the matrix A has been removed from the
260             active submatrix */
261          /* remove the j-th column from the linked list */
262          if (cs_prev[j] == 0)
263             cs_head = cs_next[j];
264          else
265             cs_next[cs_prev[j]] = cs_next[j];
266          if (cs_next[j] == 0)
267             /* nop */;
268          else
269             cs_prev[cs_next[j]] = cs_prev[j];
270          /* go through non-zeros of the j-th columns and update active
271             lengths of the corresponding rows */
272          t = mat(info, -j, ndx);
273          xassert(0 <= t && t <= m);
274          for (t = t; t >= 1; t--)
275          {  i = ndx[t];
276             xassert(1 <= i && i <= m);
277             /* the non-zero a[i,j] has left the active submatrix */
278             len = rs_len[i];
279             xassert(len >= 1);
280             /* remove the i-th row from the linked list of rows with
281                active length len */
282             if (rs_prev[i] == 0)
283                rs_head[len] = rs_next[i];
284             else
285                rs_next[rs_prev[i]] = rs_next[i];
286             if (rs_next[i] == 0)
287                /* nop */;
288             else
289                rs_prev[rs_next[i]] = rs_prev[i];
290             /* decrease the active length of the i-th row */
291             rs_len[i] = --len;
292             /* return the i-th row to the corresponding linked list */
293             rs_prev[i] = 0;
294             rs_next[i] = rs_head[len];
295             if (rs_next[i] != 0) rs_prev[rs_next[i]] = i;
296             rs_head[len] = i;
297          }
298       }
299       /* other rows of the matrix A, which are still active, correspond
300          to rows k1, ..., m of the matrix B (in arbitrary order) */
301       for (i = 1; i <= m; i++) if (rn[i] == 0) rn[i] = k1++;
302       /* but for columns this is not needed, because now the submatrix
303          B2 has no columns */
304       for (j = 1; j <= n; j++) xassert(cn[j] != 0);
305       /* perform some optional checks */
306       /* make sure that rn is a permutation of {1, ..., m} and cn is a
307          permutation of {1, ..., n} */
308       rn_inv = rs_len; /* used as working array */
309       for (ii = 1; ii <= m; ii++) rn_inv[ii] = 0;
310       for (i = 1; i <= m; i++)
311       {  ii = rn[i];
312          xassert(1 <= ii && ii <= m);
313          xassert(rn_inv[ii] == 0);
314          rn_inv[ii] = i;
315       }
316       cn_inv = rs_head; /* used as working array */
317       for (jj = 1; jj <= n; jj++) cn_inv[jj] = 0;
318       for (j = 1; j <= n; j++)
319       {  jj = cn[j];
320          xassert(1 <= jj && jj <= n);
321          xassert(cn_inv[jj] == 0);
322          cn_inv[jj] = j;
323       }
324       /* make sure that the matrix B = P*A*Q really has the form, which
325          was declared */
326       for (ii = 1; ii <= size; ii++)
327       {  int diag = 0;
328          i = rn_inv[ii];
329          t = mat(info, +i, ndx);
330          xassert(0 <= t && t <= n);
331          for (t = t; t >= 1; t--)
332          {  j = ndx[t];
333             xassert(1 <= j && j <= n);
334             jj = cn[j];
335             if (jj <= size) xassert(jj <= ii);
336             if (jj == ii)
337             {  xassert(!diag);
338                diag = 1;
339             }
340          }
341          xassert(diag);
342       }
343       /* free working arrays */
344       xfree(ndx);
345       xfree(rs_len);
346       xfree(rs_head);
347       xfree(rs_prev);
348       xfree(rs_next);
349       xfree(cs_prev);
350       xfree(cs_next);
351       /* return to the calling program */
352       return size;
353 }
354 
355 /*----------------------------------------------------------------------
356 -- adv_basis - construct advanced initial LP basis.
357 --
358 -- *Synopsis*
359 --
360 -- #include "glpini.h"
361 -- void adv_basis(glp_prob *lp);
362 --
363 -- *Description*
364 --
365 -- The routine adv_basis constructs an advanced initial basis for an LP
366 -- problem object, which the parameter lp points to.
367 --
368 -- In order to build the initial basis the routine does the following:
369 --
370 -- 1) includes in the basis all non-fixed auxiliary variables;
371 --
372 -- 2) includes in the basis as many as possible non-fixed structural
373 --    variables preserving triangular form of the basis matrix;
374 --
375 -- 3) includes in the basis appropriate (fixed) auxiliary variables
376 --    in order to complete the basis.
377 --
378 -- As a result the initial basis has minimum of fixed variables and the
379 -- corresponding basis matrix is triangular. */
380 
mat(void * info,int k,int ndx[])381 static int mat(void *info, int k, int ndx[])
382 {     /* this auxiliary routine returns the pattern of a given row or
383          a given column of the augmented constraint matrix A~ = (I|-A),
384          in which columns of fixed variables are implicitly cleared */
385       LPX *lp = info;
386       int m = lpx_get_num_rows(lp);
387       int n = lpx_get_num_cols(lp);
388       int typx, i, j, lll, len = 0;
389       if (k > 0)
390       {  /* the pattern of the i-th row is required */
391          i = +k;
392          xassert(1 <= i && i <= m);
393 #if 0 /* 22/XII-2003 */
394          /* if the auxiliary variable x[i] is non-fixed, include its
395             element (placed in the i-th column) in the pattern */
396          lpx_get_row_bnds(lp, i, &typx, NULL, NULL);
397          if (typx != LPX_FX) ndx[++len] = i;
398          /* include in the pattern elements placed in columns, which
399             correspond to non-fixed structural varables */
400          i_beg = aa_ptr[i];
401          i_end = i_beg + aa_len[i] - 1;
402          for (i_ptr = i_beg; i_ptr <= i_end; i_ptr++)
403          {  j = m + sv_ndx[i_ptr];
404             lpx_get_col_bnds(lp, j-m, &typx, NULL, NULL);
405             if (typx != LPX_FX) ndx[++len] = j;
406          }
407 #else
408          lll = lpx_get_mat_row(lp, i, ndx, NULL);
409          for (k = 1; k <= lll; k++)
410          {  lpx_get_col_bnds(lp, ndx[k], &typx, NULL, NULL);
411             if (typx != LPX_FX) ndx[++len] = m + ndx[k];
412          }
413          lpx_get_row_bnds(lp, i, &typx, NULL, NULL);
414          if (typx != LPX_FX) ndx[++len] = i;
415 #endif
416       }
417       else
418       {  /* the pattern of the j-th column is required */
419          j = -k;
420          xassert(1 <= j && j <= m+n);
421          /* if the (auxiliary or structural) variable x[j] is fixed,
422             the pattern of its column is empty */
423          if (j <= m)
424             lpx_get_row_bnds(lp, j, &typx, NULL, NULL);
425          else
426             lpx_get_col_bnds(lp, j-m, &typx, NULL, NULL);
427          if (typx != LPX_FX)
428          {  if (j <= m)
429             {  /* x[j] is non-fixed auxiliary variable */
430                ndx[++len] = j;
431             }
432             else
433             {  /* x[j] is non-fixed structural variables */
434 #if 0 /* 22/XII-2003 */
435                j_beg = aa_ptr[j];
436                j_end = j_beg + aa_len[j] - 1;
437                for (j_ptr = j_beg; j_ptr <= j_end; j_ptr++)
438                   ndx[++len] = sv_ndx[j_ptr];
439 #else
440                len = lpx_get_mat_col(lp, j-m, ndx, NULL);
441 #endif
442             }
443          }
444       }
445       /* return the length of the row/column pattern */
446       return len;
447 }
448 
adv_basis(glp_prob * lp)449 static void adv_basis(glp_prob *lp)
450 {     int m = lpx_get_num_rows(lp);
451       int n = lpx_get_num_cols(lp);
452       int i, j, jj, k, size;
453       int *rn, *cn, *rn_inv, *cn_inv;
454       int typx, *tagx = xcalloc(1+m+n, sizeof(int));
455       double lb, ub;
456       xprintf("Constructing initial basis...\n");
457 #if 0 /* 13/V-2009 */
458       if (m == 0)
459          xerror("glp_adv_basis: problem has no rows\n");
460       if (n == 0)
461          xerror("glp_adv_basis: problem has no columns\n");
462 #else
463       if (m == 0 || n == 0)
464       {  glp_std_basis(lp);
465          return;
466       }
467 #endif
468       /* use the routine triang (see above) to find maximal triangular
469          part of the augmented constraint matrix A~ = (I|-A); in order
470          to prevent columns of fixed variables to be included in the
471          triangular part, such columns are implictly removed from the
472          matrix A~ by the routine adv_mat */
473       rn = xcalloc(1+m, sizeof(int));
474       cn = xcalloc(1+m+n, sizeof(int));
475       size = triang(m, m+n, lp, mat, rn, cn);
476       if (lpx_get_int_parm(lp, LPX_K_MSGLEV) >= 3)
477          xprintf("Size of triangular part = %d\n", size);
478       /* the first size rows and columns of the matrix P*A~*Q (where
479          P and Q are permutation matrices defined by the arrays rn and
480          cn) form a lower triangular matrix; build the arrays (rn_inv
481          and cn_inv), which define the matrices inv(P) and inv(Q) */
482       rn_inv = xcalloc(1+m, sizeof(int));
483       cn_inv = xcalloc(1+m+n, sizeof(int));
484       for (i = 1; i <= m; i++) rn_inv[rn[i]] = i;
485       for (j = 1; j <= m+n; j++) cn_inv[cn[j]] = j;
486       /* include the columns of the matrix A~, which correspond to the
487          first size columns of the matrix P*A~*Q, in the basis */
488       for (k = 1; k <= m+n; k++) tagx[k] = -1;
489       for (jj = 1; jj <= size; jj++)
490       {  j = cn_inv[jj];
491          /* the j-th column of A~ is the jj-th column of P*A~*Q */
492          tagx[j] = LPX_BS;
493       }
494       /* if size < m, we need to add appropriate columns of auxiliary
495          variables to the basis */
496       for (jj = size + 1; jj <= m; jj++)
497       {  /* the jj-th column of P*A~*Q should be replaced by the column
498             of the auxiliary variable, for which the only unity element
499             is placed in the position [jj,jj] */
500          i = rn_inv[jj];
501          /* the jj-th row of P*A~*Q is the i-th row of A~, but in the
502             i-th row of A~ the unity element belongs to the i-th column
503             of A~; therefore the disired column corresponds to the i-th
504             auxiliary variable (note that this column doesn't belong to
505             the triangular part found by the routine triang) */
506          xassert(1 <= i && i <= m);
507          xassert(cn[i] > size);
508          tagx[i] = LPX_BS;
509       }
510       /* free working arrays */
511       xfree(rn);
512       xfree(cn);
513       xfree(rn_inv);
514       xfree(cn_inv);
515       /* build tags of non-basic variables */
516       for (k = 1; k <= m+n; k++)
517       {  if (tagx[k] != LPX_BS)
518          {  if (k <= m)
519                lpx_get_row_bnds(lp, k, &typx, &lb, &ub);
520             else
521                lpx_get_col_bnds(lp, k-m, &typx, &lb, &ub);
522             switch (typx)
523             {  case LPX_FR:
524                   tagx[k] = LPX_NF; break;
525                case LPX_LO:
526                   tagx[k] = LPX_NL; break;
527                case LPX_UP:
528                   tagx[k] = LPX_NU; break;
529                case LPX_DB:
530                   tagx[k] =
531                      (fabs(lb) <= fabs(ub) ? LPX_NL : LPX_NU);
532                   break;
533                case LPX_FX:
534                   tagx[k] = LPX_NS; break;
535                default:
536                   xassert(typx != typx);
537             }
538          }
539       }
540       for (k = 1; k <= m+n; k++)
541       {  if (k <= m)
542             lpx_set_row_stat(lp, k, tagx[k]);
543          else
544             lpx_set_col_stat(lp, k-m, tagx[k]);
545       }
546       xfree(tagx);
547       return;
548 }
549 
550 /***********************************************************************
551 *  NAME
552 *
553 *  glp_adv_basis - construct advanced initial LP basis
554 *
555 *  SYNOPSIS
556 *
557 *  void glp_adv_basis(glp_prob *lp, int flags);
558 *
559 *  DESCRIPTION
560 *
561 *  The routine glp_adv_basis constructs an advanced initial basis for
562 *  the specified problem object.
563 *
564 *  The parameter flags is reserved for use in the future and must be
565 *  specified as zero. */
566 
glp_adv_basis(glp_prob * lp,int flags)567 void glp_adv_basis(glp_prob *lp, int flags)
568 {     if (flags != 0)
569          xerror("glp_adv_basis: flags = %d; invalid flags\n", flags);
570       if (lp->m == 0 || lp->n == 0)
571          glp_std_basis(lp);
572       else
573          adv_basis(lp);
574       return;
575 }
576 
577 /* eof */
578