1 //  ---------------------------------------------------------------------------
2 //  This file is part of reSID, a MOS6581 SID emulator engine.
3 //  Copyright (C) 2004  Dag Lem <resid@nimrod.no>
4 //
5 //  This program is free software; you can redistribute it and/or modify
6 //  it under the terms of the GNU General Public License as published by
7 //  the Free Software Foundation; either version 2 of the License, or
8 //  (at your option) any later version.
9 //
10 //  This program is distributed in the hope that it will be useful,
11 //  but WITHOUT ANY WARRANTY; without even the implied warranty of
12 //  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 //  GNU General Public License for more details.
14 //
15 //  You should have received a copy of the GNU General Public License
16 //  along with this program; if not, write to the Free Software
17 //  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18 //  ---------------------------------------------------------------------------
19 
20 #ifndef __EXTFILT_H__
21 #define __EXTFILT_H__
22 
23 #include "siddefs.h"
24 
25 // ----------------------------------------------------------------------------
26 // The audio output stage in a Commodore 64 consists of two STC networks,
27 // a low-pass filter with 3-dB frequency 16kHz followed by a high-pass
28 // filter with 3-dB frequency 16Hz (the latter provided an audio equipment
29 // input impedance of 1kOhm).
30 // The STC networks are connected with a BJT supposedly meant to act as
31 // a unity gain buffer, which is not really how it works. A more elaborate
32 // model would include the BJT, however DC circuit analysis yields BJT
33 // base-emitter and emitter-base impedances sufficiently low to produce
34 // additional low-pass and high-pass 3dB-frequencies in the order of hundreds
35 // of kHz. This calls for a sampling frequency of several MHz, which is far
36 // too high for practical use.
37 // ----------------------------------------------------------------------------
38 class ExternalFilter
39 {
40 public:
41   ExternalFilter();
42 
43   void enable_filter(bool enable);
44   void set_chip_model(chip_model model);
45 
46   RESID_INLINE void clock(sound_sample Vi);
47   RESID_INLINE void clock(cycle_count delta_t, sound_sample Vi);
48   void reset();
49 
50   // Audio output (20 bits).
51   RESID_INLINE sound_sample output();
52 
53 protected:
54   // Filter enabled.
55   bool enabled;
56 
57   // Maximum mixer DC offset.
58   sound_sample mixer_DC;
59 
60   // State of filters.
61   sound_sample Vlp; // lowpass
62   sound_sample Vhp; // highpass
63   sound_sample Vo;
64 
65   // Cutoff frequencies.
66   sound_sample w0lp;
67   sound_sample w0hp;
68 
69 friend class SID;
70 };
71 
72 
73 // ----------------------------------------------------------------------------
74 // Inline functions.
75 // The following functions are defined inline because they are called every
76 // time a sample is calculated.
77 // ----------------------------------------------------------------------------
78 
79 #if RESID_INLINING || defined(__EXTFILT_CC__)
80 
81 // ----------------------------------------------------------------------------
82 // SID clocking - 1 cycle.
83 // ----------------------------------------------------------------------------
84 RESID_INLINE
clock(sound_sample Vi)85 void ExternalFilter::clock(sound_sample Vi)
86 {
87   // This is handy for testing.
88   if (!enabled) {
89     // Remove maximum DC level since there is no filter to do it.
90     Vlp = Vhp = 0;
91     Vo = Vi - mixer_DC;
92     return;
93   }
94 
95   // delta_t is converted to seconds given a 1MHz clock by dividing
96   // with 1 000 000.
97 
98   // Calculate filter outputs.
99   // Vo  = Vlp - Vhp;
100   // Vlp = Vlp + w0lp*(Vi - Vlp)*delta_t;
101   // Vhp = Vhp + w0hp*(Vlp - Vhp)*delta_t;
102 
103   sound_sample dVlp = (w0lp >> 8)*(Vi - Vlp) >> 12;
104   sound_sample dVhp = w0hp*(Vlp - Vhp) >> 20;
105   Vo = Vlp - Vhp;
106   Vlp += dVlp;
107   Vhp += dVhp;
108 }
109 
110 // ----------------------------------------------------------------------------
111 // SID clocking - delta_t cycles.
112 // ----------------------------------------------------------------------------
113 RESID_INLINE
clock(cycle_count delta_t,sound_sample Vi)114 void ExternalFilter::clock(cycle_count delta_t,
115 			   sound_sample Vi)
116 {
117   // This is handy for testing.
118   if (!enabled) {
119     // Remove maximum DC level since there is no filter to do it.
120     Vlp = Vhp = 0;
121     Vo = Vi - mixer_DC;
122     return;
123   }
124 
125   // Maximum delta cycles for the external filter to work satisfactorily
126   // is approximately 8.
127   cycle_count delta_t_flt = 8;
128 
129   while (delta_t) {
130     if (delta_t < delta_t_flt) {
131       delta_t_flt = delta_t;
132     }
133 
134     // delta_t is converted to seconds given a 1MHz clock by dividing
135     // with 1 000 000.
136 
137     // Calculate filter outputs.
138     // Vo  = Vlp - Vhp;
139     // Vlp = Vlp + w0lp*(Vi - Vlp)*delta_t;
140     // Vhp = Vhp + w0hp*(Vlp - Vhp)*delta_t;
141 
142     sound_sample dVlp = (w0lp*delta_t_flt >> 8)*(Vi - Vlp) >> 12;
143     sound_sample dVhp = w0hp*delta_t_flt*(Vlp - Vhp) >> 20;
144     Vo = Vlp - Vhp;
145     Vlp += dVlp;
146     Vhp += dVhp;
147 
148     delta_t -= delta_t_flt;
149   }
150 }
151 
152 
153 // ----------------------------------------------------------------------------
154 // Audio output (19.5 bits).
155 // ----------------------------------------------------------------------------
156 RESID_INLINE
output()157 sound_sample ExternalFilter::output()
158 {
159   return Vo;
160 }
161 
162 #endif // RESID_INLINING || defined(__EXTFILT_CC__)
163 
164 #endif // not __EXTFILT_H__
165