1 use std::iter::Iterator;
2 use std::time::Duration;
3 
4 use num_rational::Ratio;
5 
6 use crate::RgbaImage;
7 use crate::error::ImageResult;
8 
9 /// An implementation dependent iterator, reading the frames as requested
10 pub struct Frames<'a> {
11     iterator: Box<dyn Iterator<Item = ImageResult<Frame>> + 'a>
12 }
13 
14 impl<'a> Frames<'a> {
15     /// Creates a new `Frames` from an implementation specific iterator.
16     pub fn new(iterator: Box<dyn Iterator<Item = ImageResult<Frame>> + 'a>) -> Self {
17         Frames { iterator }
18     }
19 
20     /// Steps through the iterator from the current frame until the end and pushes each frame into
21     /// a `Vec`.
22     /// If en error is encountered that error is returned instead.
23     ///
24     /// Note: This is equivalent to `Frames::collect::<ImageResult<Vec<Frame>>>()`
25     pub fn collect_frames(self) -> ImageResult<Vec<Frame>> {
26         self.collect()
27     }
28 }
29 
30 impl<'a> Iterator for Frames<'a> {
31     type Item = ImageResult<Frame>;
32     fn next(&mut self) -> Option<ImageResult<Frame>> {
33         self.iterator.next()
34     }
35 }
36 
37 /// A single animation frame
38 #[derive(Clone)]
39 pub struct Frame {
40     /// Delay between the frames in milliseconds
41     delay: Delay,
42     /// x offset
43     left: u32,
44     /// y offset
45     top: u32,
46     buffer: RgbaImage,
47 }
48 
49 /// The delay of a frame relative to the previous one.
50 #[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd)]
51 pub struct Delay {
52     ratio: Ratio<u32>,
53 }
54 
55 impl Frame {
56     /// Contructs a new frame without any delay.
57     pub fn new(buffer: RgbaImage) -> Frame {
58         Frame {
59             delay: Delay::from_ratio(Ratio::from_integer(0)),
60             left: 0,
61             top: 0,
62             buffer,
63         }
64     }
65 
66     /// Contructs a new frame
67     pub fn from_parts(buffer: RgbaImage, left: u32, top: u32, delay: Delay) -> Frame {
68         Frame {
69             delay,
70             left,
71             top,
72             buffer,
73         }
74     }
75 
76     /// Delay of this frame
77     pub fn delay(&self) -> Delay {
78         self.delay
79     }
80 
81     /// Returns the image buffer
82     pub fn buffer(&self) -> &RgbaImage {
83         &self.buffer
84     }
85 
86     /// Returns the image buffer
87     pub fn into_buffer(self) -> RgbaImage {
88         self.buffer
89     }
90 
91     /// Returns the x offset
92     pub fn left(&self) -> u32 {
93         self.left
94     }
95 
96     /// Returns the y offset
97     pub fn top(&self) -> u32 {
98         self.top
99     }
100 }
101 
102 impl Delay {
103     /// Create a delay from a ratio of milliseconds.
104     ///
105     /// # Examples
106     ///
107     /// ```
108     /// use image::Delay;
109     /// let delay_10ms = Delay::from_numer_denom_ms(10, 1);
110     /// ```
111     pub fn from_numer_denom_ms(numerator: u32, denominator: u32) -> Self {
112         Delay { ratio: Ratio::new_raw(numerator, denominator) }
113     }
114 
115     /// Convert from a duration, clamped between 0 and an implemented defined maximum.
116     ///
117     /// The maximum is *at least* `i32::MAX` milliseconds. It should be noted that the accuracy of
118     /// the result may be relative and very large delays have a coarse resolution.
119     ///
120     /// # Examples
121     ///
122     /// ```
123     /// use std::time::Duration;
124     /// use image::Delay;
125     ///
126     /// let duration = Duration::from_millis(20);
127     /// let delay = Delay::from_saturating_duration(duration);
128     /// ```
129     pub fn from_saturating_duration(duration: Duration) -> Self {
130         // A few notes: The largest number we can represent as a ratio is u32::MAX but we can
131         // sometimes represent much smaller numbers.
132         //
133         // We can represent duration as `millis+a/b` (where a < b, b > 0).
134         // We must thus bound b with `b·millis + (b-1) <= u32::MAX` or
135         // > `0 < b <= (u32::MAX + 1)/(millis + 1)`
136         // Corollary: millis <= u32::MAX
137 
138         const MILLIS_BOUND: u128 = u32::max_value() as u128;
139 
140         let millis = duration.as_millis().min(MILLIS_BOUND);
141         let submillis = (duration.as_nanos() % 1_000_000) as u32;
142 
143         let max_b = if millis > 0 {
144             ((MILLIS_BOUND + 1)/(millis + 1)) as u32
145         } else {
146             MILLIS_BOUND as u32
147         };
148         let millis = millis as u32;
149 
150         let (a, b) = Self::closest_bounded_fraction(max_b, submillis, 1_000_000);
151         Self::from_numer_denom_ms(a + b*millis, b)
152     }
153 
154     /// The numerator and denominator of the delay in milliseconds.
155     ///
156     /// This is guaranteed to be an exact conversion if the `Delay` was previously created with the
157     /// `from_numer_denom_ms` constructor.
158     pub fn numer_denom_ms(self) -> (u32, u32) {
159         (*self.ratio.numer(), *self.ratio.denom())
160     }
161 
162     pub(crate) fn from_ratio(ratio: Ratio<u32>) -> Self {
163         Delay { ratio }
164     }
165 
166     pub(crate) fn into_ratio(self) -> Ratio<u32> {
167         self.ratio
168     }
169 
170     /// Given some fraction, compute an approximation with denominator bounded.
171     ///
172     /// Note that `denom_bound` bounds nominator and denominator of all intermediate
173     /// approximations and the end result.
174     fn closest_bounded_fraction(denom_bound: u32, nom: u32, denom: u32) -> (u32, u32) {
175         use std::cmp::Ordering::{self, *};
176         assert!(0 < denom);
177         assert!(0 < denom_bound);
178         assert!(nom < denom);
179 
180         // Avoid a few type troubles. All intermediate results are bounded by `denom_bound` which
181         // is in turn bounded by u32::MAX. Representing with u64 allows multiplication of any two
182         // values without fears of overflow.
183 
184         // Compare two fractions whose parts fit into a u32.
185         fn compare_fraction((an, ad): (u64, u64), (bn, bd): (u64, u64)) -> Ordering {
186             (an*bd).cmp(&(bn*ad))
187         }
188 
189         // Computes the nominator of the absolute difference between two such fractions.
190         fn abs_diff_nom((an, ad): (u64, u64), (bn, bd): (u64, u64)) -> u64 {
191             let c0 = an*bd;
192             let c1 = ad*bn;
193 
194             let d0 = c0.max(c1);
195             let d1 = c0.min(c1);
196             d0 - d1
197         }
198 
199         let exact = (u64::from(nom), u64::from(denom));
200         // The lower bound fraction, numerator and denominator.
201         let mut lower = (0u64, 1u64);
202         // The upper bound fraction, numerator and denominator.
203         let mut upper = (1u64, 1u64);
204         // The closest approximation for now.
205         let mut guess = (u64::from(nom*2 > denom), 1u64);
206 
207         // loop invariant: ad, bd <= denom_bound
208         // iterates the Farey sequence.
209         loop {
210             // Break if we are done.
211             if compare_fraction(guess, exact) == Equal {
212                 break;
213             }
214 
215             // Break if next Farey number is out-of-range.
216             if u64::from(denom_bound) - lower.1 < upper.1 {
217                 break;
218             }
219 
220             // Next Farey approximation n between a and b
221             let next = (lower.0 + upper.0, lower.1 + upper.1);
222             // if F < n then replace the upper bound, else replace lower.
223             if compare_fraction(exact, next) == Less {
224                 upper = next;
225             } else {
226                 lower = next;
227             }
228 
229             // Now correct the closest guess.
230             // In other words, if |c - f| > |n - f| then replace it with the new guess.
231             // This favors the guess with smaller denominator on equality.
232 
233             // |g - f| = |g_diff_nom|/(gd*fd);
234             let g_diff_nom = abs_diff_nom(guess, exact);
235             // |n - f| = |n_diff_nom|/(nd*fd);
236             let n_diff_nom = abs_diff_nom(next, exact);
237 
238             // The difference |n - f| is smaller than |g - f| if either the integral part of the
239             // fraction |n_diff_nom|/nd is smaller than the one of |g_diff_nom|/gd or if they are
240             // the same but the fractional part is larger.
241             if match (n_diff_nom/next.1).cmp(&(g_diff_nom/guess.1)) {
242                 Less => true,
243                 Greater => false,
244                 // Note that the nominator for the fractional part is smaller than its denominator
245                 // which is smaller than u32 and can't overflow the multiplication with the other
246                 // denominator, that is we can compare these fractions by multiplication with the
247                 // respective other denominator.
248                 Equal => compare_fraction((n_diff_nom%next.1, next.1), (g_diff_nom%guess.1, guess.1)) == Less,
249             } {
250                 guess = next;
251             }
252         }
253 
254         (guess.0 as u32, guess.1 as u32)
255     }
256 }
257 
258 impl From<Delay> for Duration {
259     fn from(delay: Delay) -> Self {
260         let ratio = delay.into_ratio();
261         let ms = ratio.to_integer();
262         let rest = ratio.numer() % ratio.denom();
263         let nanos = (u64::from(rest) * 1_000_000) / u64::from(*ratio.denom());
264         Duration::from_millis(ms.into()) + Duration::from_nanos(nanos)
265     }
266 }
267 
268 #[cfg(test)]
269 mod tests {
270     use super::{Delay, Duration, Ratio};
271 
272     #[test]
273     fn simple() {
274         let second = Delay::from_numer_denom_ms(1000, 1);
275         assert_eq!(Duration::from(second), Duration::from_secs(1));
276     }
277 
278     #[test]
279     fn fps_30() {
280         let thirtieth = Delay::from_numer_denom_ms(1000, 30);
281         let duration = Duration::from(thirtieth);
282         assert_eq!(duration.as_secs(), 0);
283         assert_eq!(duration.subsec_millis(), 33);
284         assert_eq!(duration.subsec_nanos(), 33_333_333);
285     }
286 
287     #[test]
288     fn duration_outlier() {
289         let oob = Duration::from_secs(0xFFFF_FFFF);
290         let delay = Delay::from_saturating_duration(oob);
291         assert_eq!(delay.numer_denom_ms(), (0xFFFF_FFFF, 1));
292     }
293 
294     #[test]
295     fn duration_approx() {
296         let oob = Duration::from_millis(0xFFFF_FFFF) + Duration::from_micros(1);
297         let delay = Delay::from_saturating_duration(oob);
298         assert_eq!(delay.numer_denom_ms(), (0xFFFF_FFFF, 1));
299 
300         let inbounds = Duration::from_millis(0xFFFF_FFFF) - Duration::from_micros(1);
301         let delay = Delay::from_saturating_duration(inbounds);
302         assert_eq!(delay.numer_denom_ms(), (0xFFFF_FFFF, 1));
303 
304         let fine = Duration::from_millis(0xFFFF_FFFF/1000) + Duration::from_micros(0xFFFF_FFFF%1000);
305         let delay = Delay::from_saturating_duration(fine);
306         // Funnily, 0xFFFF_FFFF is divisble by 5, thus we compare with a `Ratio`.
307         assert_eq!(delay.into_ratio(), Ratio::new(0xFFFF_FFFF, 1000));
308     }
309 
310     #[test]
311     fn precise() {
312         // The ratio has only 32 bits in the numerator, too imprecise to get more than 11 digits
313         // correct. But it may be expressed as 1_000_000/3 instead.
314         let exceed = Duration::from_secs(333) + Duration::from_nanos(333_333_333);
315         let delay = Delay::from_saturating_duration(exceed);
316         assert_eq!(Duration::from(delay), exceed);
317     }
318 
319 
320     #[test]
321     fn small() {
322         // Not quite a delay of `1 ms`.
323         let delay = Delay::from_numer_denom_ms(1 << 16, (1 << 16) + 1);
324         let duration = Duration::from(delay);
325         assert_eq!(duration.as_millis(), 0);
326         // Not precisely the original but should be smaller than 0.
327         let delay = Delay::from_saturating_duration(duration);
328         assert_eq!(delay.into_ratio().to_integer(), 0);
329     }
330 }
331