1 /*
2  *
3  * Copyright (c) 2004
4  * John Maddock
5  *
6  * Use, modification and distribution are subject to the
7  * Boost Software License, Version 1.0. (See accompanying file
8  * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
9  *
10  */
11 
12  /*
13   *   LOCATION:    see http://www.boost.org for most recent version.
14   *   FILE         basic_regex_creator.cpp
15   *   VERSION      see <boost/version.hpp>
16   *   DESCRIPTION: Declares template class basic_regex_creator which fills in
17   *                the data members of a regex_data object.
18   */
19 
20 #ifndef BOOST_REGEX_V4_BASIC_REGEX_CREATOR_HPP
21 #define BOOST_REGEX_V4_BASIC_REGEX_CREATOR_HPP
22 
23 #ifdef BOOST_MSVC
24 #pragma warning(push)
25 #pragma warning(disable: 4103)
26 #endif
27 #ifdef BOOST_HAS_ABI_HEADERS
28 #  include BOOST_ABI_PREFIX
29 #endif
30 #ifdef BOOST_MSVC
31 #pragma warning(pop)
32 #endif
33 
34 #ifdef BOOST_MSVC
35 #  pragma warning(push)
36 #  pragma warning(disable: 4800)
37 #endif
38 
39 namespace boost{
40 
41 namespace BOOST_REGEX_DETAIL_NS{
42 
43 template <class charT>
44 struct digraph : public std::pair<charT, charT>
45 {
digraphboost::BOOST_REGEX_DETAIL_NS::digraph46    digraph() : std::pair<charT, charT>(charT(0), charT(0)){}
digraphboost::BOOST_REGEX_DETAIL_NS::digraph47    digraph(charT c1) : std::pair<charT, charT>(c1, charT(0)){}
digraphboost::BOOST_REGEX_DETAIL_NS::digraph48    digraph(charT c1, charT c2) : std::pair<charT, charT>(c1, c2)
49    {}
digraphboost::BOOST_REGEX_DETAIL_NS::digraph50    digraph(const digraph<charT>& d) : std::pair<charT, charT>(d.first, d.second){}
51    template <class Seq>
digraphboost::BOOST_REGEX_DETAIL_NS::digraph52    digraph(const Seq& s) : std::pair<charT, charT>()
53    {
54       BOOST_ASSERT(s.size() <= 2);
55       BOOST_ASSERT(s.size());
56       this->first = s[0];
57       this->second = (s.size() > 1) ? s[1] : 0;
58    }
59 };
60 
61 template <class charT, class traits>
62 class basic_char_set
63 {
64 public:
65    typedef digraph<charT>                   digraph_type;
66    typedef typename traits::string_type     string_type;
67    typedef typename traits::char_class_type m_type;
68 
basic_char_set()69    basic_char_set()
70    {
71       m_negate = false;
72       m_has_digraphs = false;
73       m_classes = 0;
74       m_negated_classes = 0;
75       m_empty = true;
76    }
77 
add_single(const digraph_type & s)78    void add_single(const digraph_type& s)
79    {
80       m_singles.insert(s);
81       if(s.second)
82          m_has_digraphs = true;
83       m_empty = false;
84    }
add_range(const digraph_type & first,const digraph_type & end)85    void add_range(const digraph_type& first, const digraph_type& end)
86    {
87       m_ranges.push_back(first);
88       m_ranges.push_back(end);
89       if(first.second)
90       {
91          m_has_digraphs = true;
92          add_single(first);
93       }
94       if(end.second)
95       {
96          m_has_digraphs = true;
97          add_single(end);
98       }
99       m_empty = false;
100    }
add_class(m_type m)101    void add_class(m_type m)
102    {
103       m_classes |= m;
104       m_empty = false;
105    }
add_negated_class(m_type m)106    void add_negated_class(m_type m)
107    {
108       m_negated_classes |= m;
109       m_empty = false;
110    }
add_equivalent(const digraph_type & s)111    void add_equivalent(const digraph_type& s)
112    {
113       m_equivalents.insert(s);
114       if(s.second)
115       {
116          m_has_digraphs = true;
117          add_single(s);
118       }
119       m_empty = false;
120    }
negate()121    void negate()
122    {
123       m_negate = true;
124       //m_empty = false;
125    }
126 
127    //
128    // accessor functions:
129    //
has_digraphs() const130    bool has_digraphs()const
131    {
132       return m_has_digraphs;
133    }
is_negated() const134    bool is_negated()const
135    {
136       return m_negate;
137    }
138    typedef typename std::vector<digraph_type>::const_iterator  list_iterator;
139    typedef typename std::set<digraph_type>::const_iterator     set_iterator;
singles_begin() const140    set_iterator singles_begin()const
141    {
142       return m_singles.begin();
143    }
singles_end() const144    set_iterator singles_end()const
145    {
146       return m_singles.end();
147    }
ranges_begin() const148    list_iterator ranges_begin()const
149    {
150       return m_ranges.begin();
151    }
ranges_end() const152    list_iterator ranges_end()const
153    {
154       return m_ranges.end();
155    }
equivalents_begin() const156    set_iterator equivalents_begin()const
157    {
158       return m_equivalents.begin();
159    }
equivalents_end() const160    set_iterator equivalents_end()const
161    {
162       return m_equivalents.end();
163    }
classes() const164    m_type classes()const
165    {
166       return m_classes;
167    }
negated_classes() const168    m_type negated_classes()const
169    {
170       return m_negated_classes;
171    }
empty() const172    bool empty()const
173    {
174       return m_empty;
175    }
176 private:
177    std::set<digraph_type>    m_singles;         // a list of single characters to match
178    std::vector<digraph_type> m_ranges;          // a list of end points of our ranges
179    bool                      m_negate;          // true if the set is to be negated
180    bool                      m_has_digraphs;    // true if we have digraphs present
181    m_type                    m_classes;         // character classes to match
182    m_type                    m_negated_classes; // negated character classes to match
183    bool                      m_empty;           // whether we've added anything yet
184    std::set<digraph_type>    m_equivalents;     // a list of equivalence classes
185 };
186 
187 template <class charT, class traits>
188 class basic_regex_creator
189 {
190 public:
191    basic_regex_creator(regex_data<charT, traits>* data);
getoffset(void * addr)192    std::ptrdiff_t getoffset(void* addr)
193    {
194       return getoffset(addr, m_pdata->m_data.data());
195    }
getoffset(const void * addr,const void * base)196    std::ptrdiff_t getoffset(const void* addr, const void* base)
197    {
198       return static_cast<const char*>(addr) - static_cast<const char*>(base);
199    }
getaddress(std::ptrdiff_t off)200    re_syntax_base* getaddress(std::ptrdiff_t off)
201    {
202       return getaddress(off, m_pdata->m_data.data());
203    }
getaddress(std::ptrdiff_t off,void * base)204    re_syntax_base* getaddress(std::ptrdiff_t off, void* base)
205    {
206       return static_cast<re_syntax_base*>(static_cast<void*>(static_cast<char*>(base) + off));
207    }
init(unsigned l_flags)208    void init(unsigned l_flags)
209    {
210       m_pdata->m_flags = l_flags;
211       m_icase = l_flags & regex_constants::icase;
212    }
flags()213    regbase::flag_type flags()
214    {
215       return m_pdata->m_flags;
216    }
flags(regbase::flag_type f)217    void flags(regbase::flag_type f)
218    {
219       m_pdata->m_flags = f;
220       if(m_icase != static_cast<bool>(f & regbase::icase))
221       {
222          m_icase = static_cast<bool>(f & regbase::icase);
223       }
224    }
225    re_syntax_base* append_state(syntax_element_type t, std::size_t s = sizeof(re_syntax_base));
226    re_syntax_base* insert_state(std::ptrdiff_t pos, syntax_element_type t, std::size_t s = sizeof(re_syntax_base));
227    re_literal* append_literal(charT c);
228    re_syntax_base* append_set(const basic_char_set<charT, traits>& char_set);
229    re_syntax_base* append_set(const basic_char_set<charT, traits>& char_set, mpl::false_*);
230    re_syntax_base* append_set(const basic_char_set<charT, traits>& char_set, mpl::true_*);
231    void finalize(const charT* p1, const charT* p2);
232 protected:
233    regex_data<charT, traits>*    m_pdata;              // pointer to the basic_regex_data struct we are filling in
234    const ::boost::regex_traits_wrapper<traits>&
235                                  m_traits;             // convenience reference to traits class
236    re_syntax_base*               m_last_state;         // the last state we added
237    bool                          m_icase;              // true for case insensitive matches
238    unsigned                      m_repeater_id;        // the state_id of the next repeater
239    bool                          m_has_backrefs;       // true if there are actually any backrefs
240    unsigned                      m_backrefs;           // bitmask of permitted backrefs
241    boost::uintmax_t              m_bad_repeats;        // bitmask of repeats we can't deduce a startmap for;
242    bool                          m_has_recursions;     // set when we have recursive expresisons to fixup
243    std::vector<unsigned char>    m_recursion_checks;   // notes which recursions we've followed while analysing this expression
244    typename traits::char_class_type m_word_mask;       // mask used to determine if a character is a word character
245    typename traits::char_class_type m_mask_space;      // mask used to determine if a character is a word character
246    typename traits::char_class_type m_lower_mask;       // mask used to determine if a character is a lowercase character
247    typename traits::char_class_type m_upper_mask;      // mask used to determine if a character is an uppercase character
248    typename traits::char_class_type m_alpha_mask;      // mask used to determine if a character is an alphabetic character
249 private:
250    basic_regex_creator& operator=(const basic_regex_creator&);
251    basic_regex_creator(const basic_regex_creator&);
252 
253    void fixup_pointers(re_syntax_base* state);
254    void fixup_recursions(re_syntax_base* state);
255    void create_startmaps(re_syntax_base* state);
256    int calculate_backstep(re_syntax_base* state);
257    void create_startmap(re_syntax_base* state, unsigned char* l_map, unsigned int* pnull, unsigned char mask);
258    unsigned get_restart_type(re_syntax_base* state);
259    void set_all_masks(unsigned char* bits, unsigned char);
260    bool is_bad_repeat(re_syntax_base* pt);
261    void set_bad_repeat(re_syntax_base* pt);
262    syntax_element_type get_repeat_type(re_syntax_base* state);
263    void probe_leading_repeat(re_syntax_base* state);
264 };
265 
266 template <class charT, class traits>
basic_regex_creator(regex_data<charT,traits> * data)267 basic_regex_creator<charT, traits>::basic_regex_creator(regex_data<charT, traits>* data)
268    : m_pdata(data), m_traits(*(data->m_ptraits)), m_last_state(0), m_repeater_id(0), m_has_backrefs(false), m_backrefs(0), m_has_recursions(false)
269 {
270    m_pdata->m_data.clear();
271    m_pdata->m_status = ::boost::regex_constants::error_ok;
272    static const charT w = 'w';
273    static const charT s = 's';
274    static const charT l[5] = { 'l', 'o', 'w', 'e', 'r', };
275    static const charT u[5] = { 'u', 'p', 'p', 'e', 'r', };
276    static const charT a[5] = { 'a', 'l', 'p', 'h', 'a', };
277    m_word_mask = m_traits.lookup_classname(&w, &w +1);
278    m_mask_space = m_traits.lookup_classname(&s, &s +1);
279    m_lower_mask = m_traits.lookup_classname(l, l + 5);
280    m_upper_mask = m_traits.lookup_classname(u, u + 5);
281    m_alpha_mask = m_traits.lookup_classname(a, a + 5);
282    m_pdata->m_word_mask = m_word_mask;
283    BOOST_ASSERT(m_word_mask != 0);
284    BOOST_ASSERT(m_mask_space != 0);
285    BOOST_ASSERT(m_lower_mask != 0);
286    BOOST_ASSERT(m_upper_mask != 0);
287    BOOST_ASSERT(m_alpha_mask != 0);
288 }
289 
290 template <class charT, class traits>
append_state(syntax_element_type t,std::size_t s)291 re_syntax_base* basic_regex_creator<charT, traits>::append_state(syntax_element_type t, std::size_t s)
292 {
293    // if the state is a backref then make a note of it:
294    if(t == syntax_element_backref)
295       this->m_has_backrefs = true;
296    // append a new state, start by aligning our last one:
297    m_pdata->m_data.align();
298    // set the offset to the next state in our last one:
299    if(m_last_state)
300       m_last_state->next.i = m_pdata->m_data.size() - getoffset(m_last_state);
301    // now actually extent our data:
302    m_last_state = static_cast<re_syntax_base*>(m_pdata->m_data.extend(s));
303    // fill in boilerplate options in the new state:
304    m_last_state->next.i = 0;
305    m_last_state->type = t;
306    return m_last_state;
307 }
308 
309 template <class charT, class traits>
insert_state(std::ptrdiff_t pos,syntax_element_type t,std::size_t s)310 re_syntax_base* basic_regex_creator<charT, traits>::insert_state(std::ptrdiff_t pos, syntax_element_type t, std::size_t s)
311 {
312    // append a new state, start by aligning our last one:
313    m_pdata->m_data.align();
314    // set the offset to the next state in our last one:
315    if(m_last_state)
316       m_last_state->next.i = m_pdata->m_data.size() - getoffset(m_last_state);
317    // remember the last state position:
318    std::ptrdiff_t off = getoffset(m_last_state) + s;
319    // now actually insert our data:
320    re_syntax_base* new_state = static_cast<re_syntax_base*>(m_pdata->m_data.insert(pos, s));
321    // fill in boilerplate options in the new state:
322    new_state->next.i = s;
323    new_state->type = t;
324    m_last_state = getaddress(off);
325    return new_state;
326 }
327 
328 template <class charT, class traits>
append_literal(charT c)329 re_literal* basic_regex_creator<charT, traits>::append_literal(charT c)
330 {
331    re_literal* result;
332    // start by seeing if we have an existing re_literal we can extend:
333    if((0 == m_last_state) || (m_last_state->type != syntax_element_literal))
334    {
335       // no existing re_literal, create a new one:
336       result = static_cast<re_literal*>(append_state(syntax_element_literal, sizeof(re_literal) + sizeof(charT)));
337       result->length = 1;
338       *static_cast<charT*>(static_cast<void*>(result+1)) = m_traits.translate(c, m_icase);
339    }
340    else
341    {
342       // we have an existing re_literal, extend it:
343       std::ptrdiff_t off = getoffset(m_last_state);
344       m_pdata->m_data.extend(sizeof(charT));
345       m_last_state = result = static_cast<re_literal*>(getaddress(off));
346       charT* characters = static_cast<charT*>(static_cast<void*>(result+1));
347       characters[result->length] = m_traits.translate(c, m_icase);
348       result->length += 1;
349    }
350    return result;
351 }
352 
353 template <class charT, class traits>
append_set(const basic_char_set<charT,traits> & char_set)354 inline re_syntax_base* basic_regex_creator<charT, traits>::append_set(
355    const basic_char_set<charT, traits>& char_set)
356 {
357    typedef mpl::bool_< (sizeof(charT) == 1) > truth_type;
358    return char_set.has_digraphs()
359       ? append_set(char_set, static_cast<mpl::false_*>(0))
360       : append_set(char_set, static_cast<truth_type*>(0));
361 }
362 
363 template <class charT, class traits>
append_set(const basic_char_set<charT,traits> & char_set,mpl::false_ *)364 re_syntax_base* basic_regex_creator<charT, traits>::append_set(
365    const basic_char_set<charT, traits>& char_set, mpl::false_*)
366 {
367    typedef typename traits::string_type string_type;
368    typedef typename basic_char_set<charT, traits>::list_iterator item_iterator;
369    typedef typename basic_char_set<charT, traits>::set_iterator  set_iterator;
370    typedef typename traits::char_class_type m_type;
371 
372    re_set_long<m_type>* result = static_cast<re_set_long<m_type>*>(append_state(syntax_element_long_set, sizeof(re_set_long<m_type>)));
373    //
374    // fill in the basics:
375    //
376    result->csingles = static_cast<unsigned int>(::boost::BOOST_REGEX_DETAIL_NS::distance(char_set.singles_begin(), char_set.singles_end()));
377    result->cranges = static_cast<unsigned int>(::boost::BOOST_REGEX_DETAIL_NS::distance(char_set.ranges_begin(), char_set.ranges_end())) / 2;
378    result->cequivalents = static_cast<unsigned int>(::boost::BOOST_REGEX_DETAIL_NS::distance(char_set.equivalents_begin(), char_set.equivalents_end()));
379    result->cclasses = char_set.classes();
380    result->cnclasses = char_set.negated_classes();
381    if(flags() & regbase::icase)
382    {
383       // adjust classes as needed:
384       if(((result->cclasses & m_lower_mask) == m_lower_mask) || ((result->cclasses & m_upper_mask) == m_upper_mask))
385          result->cclasses |= m_alpha_mask;
386       if(((result->cnclasses & m_lower_mask) == m_lower_mask) || ((result->cnclasses & m_upper_mask) == m_upper_mask))
387          result->cnclasses |= m_alpha_mask;
388    }
389 
390    result->isnot = char_set.is_negated();
391    result->singleton = !char_set.has_digraphs();
392    //
393    // remember where the state is for later:
394    //
395    std::ptrdiff_t offset = getoffset(result);
396    //
397    // now extend with all the singles:
398    //
399    item_iterator first, last;
400    set_iterator sfirst, slast;
401    sfirst = char_set.singles_begin();
402    slast = char_set.singles_end();
403    while(sfirst != slast)
404    {
405       charT* p = static_cast<charT*>(this->m_pdata->m_data.extend(sizeof(charT) * (sfirst->first == static_cast<charT>(0) ? 1 : sfirst->second ? 3 : 2)));
406       p[0] = m_traits.translate(sfirst->first, m_icase);
407       if(sfirst->first == static_cast<charT>(0))
408       {
409          p[0] = 0;
410       }
411       else if(sfirst->second)
412       {
413          p[1] = m_traits.translate(sfirst->second, m_icase);
414          p[2] = 0;
415       }
416       else
417          p[1] = 0;
418       ++sfirst;
419    }
420    //
421    // now extend with all the ranges:
422    //
423    first = char_set.ranges_begin();
424    last = char_set.ranges_end();
425    while(first != last)
426    {
427       // first grab the endpoints of the range:
428       digraph<charT> c1 = *first;
429       c1.first = this->m_traits.translate(c1.first, this->m_icase);
430       c1.second = this->m_traits.translate(c1.second, this->m_icase);
431       ++first;
432       digraph<charT> c2 = *first;
433       c2.first = this->m_traits.translate(c2.first, this->m_icase);
434       c2.second = this->m_traits.translate(c2.second, this->m_icase);
435       ++first;
436       string_type s1, s2;
437       // different actions now depending upon whether collation is turned on:
438       if(flags() & regex_constants::collate)
439       {
440          // we need to transform our range into sort keys:
441          charT a1[3] = { c1.first, c1.second, charT(0), };
442          charT a2[3] = { c2.first, c2.second, charT(0), };
443          s1 = this->m_traits.transform(a1, (a1[1] ? a1+2 : a1+1));
444          s2 = this->m_traits.transform(a2, (a2[1] ? a2+2 : a2+1));
445          if(s1.size() == 0)
446             s1 = string_type(1, charT(0));
447          if(s2.size() == 0)
448             s2 = string_type(1, charT(0));
449       }
450       else
451       {
452          if(c1.second)
453          {
454             s1.insert(s1.end(), c1.first);
455             s1.insert(s1.end(), c1.second);
456          }
457          else
458             s1 = string_type(1, c1.first);
459          if(c2.second)
460          {
461             s2.insert(s2.end(), c2.first);
462             s2.insert(s2.end(), c2.second);
463          }
464          else
465             s2.insert(s2.end(), c2.first);
466       }
467       if(s1 > s2)
468       {
469          // Oops error:
470          return 0;
471       }
472       charT* p = static_cast<charT*>(this->m_pdata->m_data.extend(sizeof(charT) * (s1.size() + s2.size() + 2) ) );
473       BOOST_REGEX_DETAIL_NS::copy(s1.begin(), s1.end(), p);
474       p[s1.size()] = charT(0);
475       p += s1.size() + 1;
476       BOOST_REGEX_DETAIL_NS::copy(s2.begin(), s2.end(), p);
477       p[s2.size()] = charT(0);
478    }
479    //
480    // now process the equivalence classes:
481    //
482    sfirst = char_set.equivalents_begin();
483    slast = char_set.equivalents_end();
484    while(sfirst != slast)
485    {
486       string_type s;
487       if(sfirst->second)
488       {
489          charT cs[3] = { sfirst->first, sfirst->second, charT(0), };
490          s = m_traits.transform_primary(cs, cs+2);
491       }
492       else
493          s = m_traits.transform_primary(&sfirst->first, &sfirst->first+1);
494       if(s.empty())
495          return 0;  // invalid or unsupported equivalence class
496       charT* p = static_cast<charT*>(this->m_pdata->m_data.extend(sizeof(charT) * (s.size()+1) ) );
497       BOOST_REGEX_DETAIL_NS::copy(s.begin(), s.end(), p);
498       p[s.size()] = charT(0);
499       ++sfirst;
500    }
501    //
502    // finally reset the address of our last state:
503    //
504    m_last_state = result = static_cast<re_set_long<m_type>*>(getaddress(offset));
505    return result;
506 }
507 
508 template<class T>
char_less(T t1,T t2)509 inline bool char_less(T t1, T t2)
510 {
511    return t1 < t2;
512 }
char_less(char t1,char t2)513 inline bool char_less(char t1, char t2)
514 {
515    return static_cast<unsigned char>(t1) < static_cast<unsigned char>(t2);
516 }
char_less(signed char t1,signed char t2)517 inline bool char_less(signed char t1, signed char t2)
518 {
519    return static_cast<unsigned char>(t1) < static_cast<unsigned char>(t2);
520 }
521 
522 template <class charT, class traits>
append_set(const basic_char_set<charT,traits> & char_set,mpl::true_ *)523 re_syntax_base* basic_regex_creator<charT, traits>::append_set(
524    const basic_char_set<charT, traits>& char_set, mpl::true_*)
525 {
526    typedef typename traits::string_type string_type;
527    typedef typename basic_char_set<charT, traits>::list_iterator item_iterator;
528    typedef typename basic_char_set<charT, traits>::set_iterator set_iterator;
529 
530    re_set* result = static_cast<re_set*>(append_state(syntax_element_set, sizeof(re_set)));
531    bool negate = char_set.is_negated();
532    std::memset(result->_map, 0, sizeof(result->_map));
533    //
534    // handle singles first:
535    //
536    item_iterator first, last;
537    set_iterator sfirst, slast;
538    sfirst = char_set.singles_begin();
539    slast = char_set.singles_end();
540    while(sfirst != slast)
541    {
542       for(unsigned int i = 0; i < (1 << CHAR_BIT); ++i)
543       {
544          if(this->m_traits.translate(static_cast<charT>(i), this->m_icase)
545             == this->m_traits.translate(sfirst->first, this->m_icase))
546             result->_map[i] = true;
547       }
548       ++sfirst;
549    }
550    //
551    // OK now handle ranges:
552    //
553    first = char_set.ranges_begin();
554    last = char_set.ranges_end();
555    while(first != last)
556    {
557       // first grab the endpoints of the range:
558       charT c1 = this->m_traits.translate(first->first, this->m_icase);
559       ++first;
560       charT c2 = this->m_traits.translate(first->first, this->m_icase);
561       ++first;
562       // different actions now depending upon whether collation is turned on:
563       if(flags() & regex_constants::collate)
564       {
565          // we need to transform our range into sort keys:
566          charT c3[2] = { c1, charT(0), };
567          string_type s1 = this->m_traits.transform(c3, c3+1);
568          c3[0] = c2;
569          string_type s2 = this->m_traits.transform(c3, c3+1);
570          if(s1 > s2)
571          {
572             // Oops error:
573             return 0;
574          }
575          BOOST_ASSERT(c3[1] == charT(0));
576          for(unsigned i = 0; i < (1u << CHAR_BIT); ++i)
577          {
578             c3[0] = static_cast<charT>(i);
579             string_type s3 = this->m_traits.transform(c3, c3 +1);
580             if((s1 <= s3) && (s3 <= s2))
581                result->_map[i] = true;
582          }
583       }
584       else
585       {
586          if(char_less(c2, c1))
587          {
588             // Oops error:
589             return 0;
590          }
591          // everything in range matches:
592          std::memset(result->_map + static_cast<unsigned char>(c1), true, 1 + static_cast<unsigned char>(c2) - static_cast<unsigned char>(c1));
593       }
594    }
595    //
596    // and now the classes:
597    //
598    typedef typename traits::char_class_type m_type;
599    m_type m = char_set.classes();
600    if(flags() & regbase::icase)
601    {
602       // adjust m as needed:
603       if(((m & m_lower_mask) == m_lower_mask) || ((m & m_upper_mask) == m_upper_mask))
604          m |= m_alpha_mask;
605    }
606    if(m != 0)
607    {
608       for(unsigned i = 0; i < (1u << CHAR_BIT); ++i)
609       {
610          if(this->m_traits.isctype(static_cast<charT>(i), m))
611             result->_map[i] = true;
612       }
613    }
614    //
615    // and now the negated classes:
616    //
617    m = char_set.negated_classes();
618    if(flags() & regbase::icase)
619    {
620       // adjust m as needed:
621       if(((m & m_lower_mask) == m_lower_mask) || ((m & m_upper_mask) == m_upper_mask))
622          m |= m_alpha_mask;
623    }
624    if(m != 0)
625    {
626       for(unsigned i = 0; i < (1u << CHAR_BIT); ++i)
627       {
628          if(0 == this->m_traits.isctype(static_cast<charT>(i), m))
629             result->_map[i] = true;
630       }
631    }
632    //
633    // now process the equivalence classes:
634    //
635    sfirst = char_set.equivalents_begin();
636    slast = char_set.equivalents_end();
637    while(sfirst != slast)
638    {
639       string_type s;
640       BOOST_ASSERT(static_cast<charT>(0) == sfirst->second);
641       s = m_traits.transform_primary(&sfirst->first, &sfirst->first+1);
642       if(s.empty())
643          return 0;  // invalid or unsupported equivalence class
644       for(unsigned i = 0; i < (1u << CHAR_BIT); ++i)
645       {
646          charT c[2] = { (static_cast<charT>(i)), charT(0), };
647          string_type s2 = this->m_traits.transform_primary(c, c+1);
648          if(s == s2)
649             result->_map[i] = true;
650       }
651       ++sfirst;
652    }
653    if(negate)
654    {
655       for(unsigned i = 0; i < (1u << CHAR_BIT); ++i)
656       {
657          result->_map[i] = !(result->_map[i]);
658       }
659    }
660    return result;
661 }
662 
663 template <class charT, class traits>
finalize(const charT * p1,const charT * p2)664 void basic_regex_creator<charT, traits>::finalize(const charT* p1, const charT* p2)
665 {
666    if(this->m_pdata->m_status)
667       return;
668    // we've added all the states we need, now finish things off.
669    // start by adding a terminating state:
670    append_state(syntax_element_match);
671    // extend storage to store original expression:
672    std::ptrdiff_t len = p2 - p1;
673    m_pdata->m_expression_len = len;
674    charT* ps = static_cast<charT*>(m_pdata->m_data.extend(sizeof(charT) * (1 + (p2 - p1))));
675    m_pdata->m_expression = ps;
676    BOOST_REGEX_DETAIL_NS::copy(p1, p2, ps);
677    ps[p2 - p1] = 0;
678    // fill in our other data...
679    // successful parsing implies a zero status:
680    m_pdata->m_status = 0;
681    // get the first state of the machine:
682    m_pdata->m_first_state = static_cast<re_syntax_base*>(m_pdata->m_data.data());
683    // fixup pointers in the machine:
684    fixup_pointers(m_pdata->m_first_state);
685    if(m_has_recursions)
686    {
687       m_pdata->m_has_recursions = true;
688       fixup_recursions(m_pdata->m_first_state);
689       if(this->m_pdata->m_status)
690          return;
691    }
692    else
693       m_pdata->m_has_recursions = false;
694    // create nested startmaps:
695    create_startmaps(m_pdata->m_first_state);
696    // create main startmap:
697    std::memset(m_pdata->m_startmap, 0, sizeof(m_pdata->m_startmap));
698    m_pdata->m_can_be_null = 0;
699 
700    m_bad_repeats = 0;
701    if(m_has_recursions)
702       m_recursion_checks.assign(1 + m_pdata->m_mark_count, 0u);
703    create_startmap(m_pdata->m_first_state, m_pdata->m_startmap, &(m_pdata->m_can_be_null), mask_all);
704    // get the restart type:
705    m_pdata->m_restart_type = get_restart_type(m_pdata->m_first_state);
706    // optimise a leading repeat if there is one:
707    probe_leading_repeat(m_pdata->m_first_state);
708 }
709 
710 template <class charT, class traits>
fixup_pointers(re_syntax_base * state)711 void basic_regex_creator<charT, traits>::fixup_pointers(re_syntax_base* state)
712 {
713    while(state)
714    {
715       switch(state->type)
716       {
717       case syntax_element_recurse:
718          m_has_recursions = true;
719          if(state->next.i)
720             state->next.p = getaddress(state->next.i, state);
721          else
722             state->next.p = 0;
723          break;
724       case syntax_element_rep:
725       case syntax_element_dot_rep:
726       case syntax_element_char_rep:
727       case syntax_element_short_set_rep:
728       case syntax_element_long_set_rep:
729          // set the state_id of this repeat:
730          static_cast<re_repeat*>(state)->state_id = m_repeater_id++;
731          BOOST_FALLTHROUGH;
732       case syntax_element_alt:
733          std::memset(static_cast<re_alt*>(state)->_map, 0, sizeof(static_cast<re_alt*>(state)->_map));
734          static_cast<re_alt*>(state)->can_be_null = 0;
735          BOOST_FALLTHROUGH;
736       case syntax_element_jump:
737          static_cast<re_jump*>(state)->alt.p = getaddress(static_cast<re_jump*>(state)->alt.i, state);
738          BOOST_FALLTHROUGH;
739       default:
740          if(state->next.i)
741             state->next.p = getaddress(state->next.i, state);
742          else
743             state->next.p = 0;
744       }
745       state = state->next.p;
746    }
747 }
748 
749 template <class charT, class traits>
fixup_recursions(re_syntax_base * state)750 void basic_regex_creator<charT, traits>::fixup_recursions(re_syntax_base* state)
751 {
752    re_syntax_base* base = state;
753    while(state)
754    {
755       switch(state->type)
756       {
757       case syntax_element_assert_backref:
758          {
759             // just check that the index is valid:
760             int idx = static_cast<const re_brace*>(state)->index;
761             if(idx < 0)
762             {
763                idx = -idx-1;
764                if(idx >= 10000)
765                {
766                   idx = m_pdata->get_id(idx);
767                   if(idx <= 0)
768                   {
769                      // check of sub-expression that doesn't exist:
770                      if(0 == this->m_pdata->m_status) // update the error code if not already set
771                         this->m_pdata->m_status = boost::regex_constants::error_bad_pattern;
772                      //
773                      // clear the expression, we should be empty:
774                      //
775                      this->m_pdata->m_expression = 0;
776                      this->m_pdata->m_expression_len = 0;
777                      //
778                      // and throw if required:
779                      //
780                      if(0 == (this->flags() & regex_constants::no_except))
781                      {
782                         std::string message = "Encountered a forward reference to a marked sub-expression that does not exist.";
783                         boost::regex_error e(message, boost::regex_constants::error_bad_pattern, 0);
784                         e.raise();
785                      }
786                   }
787                }
788             }
789          }
790          break;
791       case syntax_element_recurse:
792          {
793             bool ok = false;
794             re_syntax_base* p = base;
795             std::ptrdiff_t idx = static_cast<re_jump*>(state)->alt.i;
796             if(idx > 10000)
797             {
798                //
799                // There may be more than one capture group with this hash, just do what Perl
800                // does and recurse to the leftmost:
801                //
802                idx = m_pdata->get_id(static_cast<int>(idx));
803             }
804             if(idx < 0)
805             {
806                ok = false;
807             }
808             else
809             {
810                while(p)
811                {
812                   if((p->type == syntax_element_startmark) && (static_cast<re_brace*>(p)->index == idx))
813                   {
814                      //
815                      // We've found the target of the recursion, set the jump target:
816                      //
817                      static_cast<re_jump*>(state)->alt.p = p;
818                      ok = true;
819                      //
820                      // Now scan the target for nested repeats:
821                      //
822                      p = p->next.p;
823                      int next_rep_id = 0;
824                      while(p)
825                      {
826                         switch(p->type)
827                         {
828                         case syntax_element_rep:
829                         case syntax_element_dot_rep:
830                         case syntax_element_char_rep:
831                         case syntax_element_short_set_rep:
832                         case syntax_element_long_set_rep:
833                            next_rep_id = static_cast<re_repeat*>(p)->state_id;
834                            break;
835                         case syntax_element_endmark:
836                            if(static_cast<const re_brace*>(p)->index == idx)
837                               next_rep_id = -1;
838                            break;
839                         default:
840                            break;
841                         }
842                         if(next_rep_id)
843                            break;
844                         p = p->next.p;
845                      }
846                      if(next_rep_id > 0)
847                      {
848                         static_cast<re_recurse*>(state)->state_id = next_rep_id - 1;
849                      }
850 
851                      break;
852                   }
853                   p = p->next.p;
854                }
855             }
856             if(!ok)
857             {
858                // recursion to sub-expression that doesn't exist:
859                if(0 == this->m_pdata->m_status) // update the error code if not already set
860                   this->m_pdata->m_status = boost::regex_constants::error_bad_pattern;
861                //
862                // clear the expression, we should be empty:
863                //
864                this->m_pdata->m_expression = 0;
865                this->m_pdata->m_expression_len = 0;
866                //
867                // and throw if required:
868                //
869                if(0 == (this->flags() & regex_constants::no_except))
870                {
871                   std::string message = "Encountered a forward reference to a recursive sub-expression that does not exist.";
872                   boost::regex_error e(message, boost::regex_constants::error_bad_pattern, 0);
873                   e.raise();
874                }
875             }
876          }
877          break;
878       default:
879          break;
880       }
881       state = state->next.p;
882    }
883 }
884 
885 template <class charT, class traits>
create_startmaps(re_syntax_base * state)886 void basic_regex_creator<charT, traits>::create_startmaps(re_syntax_base* state)
887 {
888    // non-recursive implementation:
889    // create the last map in the machine first, so that earlier maps
890    // can make use of the result...
891    //
892    // This was originally a recursive implementation, but that caused stack
893    // overflows with complex expressions on small stacks (think COM+).
894 
895    // start by saving the case setting:
896    bool l_icase = m_icase;
897    std::vector<std::pair<bool, re_syntax_base*> > v;
898 
899    while(state)
900    {
901       switch(state->type)
902       {
903       case syntax_element_toggle_case:
904          // we need to track case changes here:
905          m_icase = static_cast<re_case*>(state)->icase;
906          state = state->next.p;
907          continue;
908       case syntax_element_alt:
909       case syntax_element_rep:
910       case syntax_element_dot_rep:
911       case syntax_element_char_rep:
912       case syntax_element_short_set_rep:
913       case syntax_element_long_set_rep:
914          // just push the state onto our stack for now:
915          v.push_back(std::pair<bool, re_syntax_base*>(m_icase, state));
916          state = state->next.p;
917          break;
918       case syntax_element_backstep:
919          // we need to calculate how big the backstep is:
920          static_cast<re_brace*>(state)->index
921             = this->calculate_backstep(state->next.p);
922          if(static_cast<re_brace*>(state)->index < 0)
923          {
924             // Oops error:
925             if(0 == this->m_pdata->m_status) // update the error code if not already set
926                this->m_pdata->m_status = boost::regex_constants::error_bad_pattern;
927             //
928             // clear the expression, we should be empty:
929             //
930             this->m_pdata->m_expression = 0;
931             this->m_pdata->m_expression_len = 0;
932             //
933             // and throw if required:
934             //
935             if(0 == (this->flags() & regex_constants::no_except))
936             {
937                std::string message = "Invalid lookbehind assertion encountered in the regular expression.";
938                boost::regex_error e(message, boost::regex_constants::error_bad_pattern, 0);
939                e.raise();
940             }
941          }
942          BOOST_FALLTHROUGH;
943       default:
944          state = state->next.p;
945       }
946    }
947 
948    // now work through our list, building all the maps as we go:
949    while(v.size())
950    {
951       // Initialize m_recursion_checks if we need it:
952       if(m_has_recursions)
953          m_recursion_checks.assign(1 + m_pdata->m_mark_count, 0u);
954 
955       const std::pair<bool, re_syntax_base*>& p = v.back();
956       m_icase = p.first;
957       state = p.second;
958       v.pop_back();
959 
960       // Build maps:
961       m_bad_repeats = 0;
962       create_startmap(state->next.p, static_cast<re_alt*>(state)->_map, &static_cast<re_alt*>(state)->can_be_null, mask_take);
963       m_bad_repeats = 0;
964 
965       if(m_has_recursions)
966          m_recursion_checks.assign(1 + m_pdata->m_mark_count, 0u);
967       create_startmap(static_cast<re_alt*>(state)->alt.p, static_cast<re_alt*>(state)->_map, &static_cast<re_alt*>(state)->can_be_null, mask_skip);
968       // adjust the type of the state to allow for faster matching:
969       state->type = this->get_repeat_type(state);
970    }
971    // restore case sensitivity:
972    m_icase = l_icase;
973 }
974 
975 template <class charT, class traits>
calculate_backstep(re_syntax_base * state)976 int basic_regex_creator<charT, traits>::calculate_backstep(re_syntax_base* state)
977 {
978    typedef typename traits::char_class_type m_type;
979    int result = 0;
980    while(state)
981    {
982       switch(state->type)
983       {
984       case syntax_element_startmark:
985          if((static_cast<re_brace*>(state)->index == -1)
986             || (static_cast<re_brace*>(state)->index == -2))
987          {
988             state = static_cast<re_jump*>(state->next.p)->alt.p->next.p;
989             continue;
990          }
991          else if(static_cast<re_brace*>(state)->index == -3)
992          {
993             state = state->next.p->next.p;
994             continue;
995          }
996          break;
997       case syntax_element_endmark:
998          if((static_cast<re_brace*>(state)->index == -1)
999             || (static_cast<re_brace*>(state)->index == -2))
1000             return result;
1001          break;
1002       case syntax_element_literal:
1003          result += static_cast<re_literal*>(state)->length;
1004          break;
1005       case syntax_element_wild:
1006       case syntax_element_set:
1007          result += 1;
1008          break;
1009       case syntax_element_dot_rep:
1010       case syntax_element_char_rep:
1011       case syntax_element_short_set_rep:
1012       case syntax_element_backref:
1013       case syntax_element_rep:
1014       case syntax_element_combining:
1015       case syntax_element_long_set_rep:
1016       case syntax_element_backstep:
1017          {
1018             re_repeat* rep = static_cast<re_repeat *>(state);
1019             // adjust the type of the state to allow for faster matching:
1020             state->type = this->get_repeat_type(state);
1021             if((state->type == syntax_element_dot_rep)
1022                || (state->type == syntax_element_char_rep)
1023                || (state->type == syntax_element_short_set_rep))
1024             {
1025                if(rep->max != rep->min)
1026                   return -1;
1027                result += static_cast<int>(rep->min);
1028                state = rep->alt.p;
1029                continue;
1030             }
1031             else if(state->type == syntax_element_long_set_rep)
1032             {
1033                BOOST_ASSERT(rep->next.p->type == syntax_element_long_set);
1034                if(static_cast<re_set_long<m_type>*>(rep->next.p)->singleton == 0)
1035                   return -1;
1036                if(rep->max != rep->min)
1037                   return -1;
1038                result += static_cast<int>(rep->min);
1039                state = rep->alt.p;
1040                continue;
1041             }
1042          }
1043          return -1;
1044       case syntax_element_long_set:
1045          if(static_cast<re_set_long<m_type>*>(state)->singleton == 0)
1046             return -1;
1047          result += 1;
1048          break;
1049       case syntax_element_jump:
1050          state = static_cast<re_jump*>(state)->alt.p;
1051          continue;
1052       case syntax_element_alt:
1053          {
1054             int r1 = calculate_backstep(state->next.p);
1055             int r2 = calculate_backstep(static_cast<re_alt*>(state)->alt.p);
1056             if((r1 < 0) || (r1 != r2))
1057                return -1;
1058             return result + r1;
1059          }
1060       default:
1061          break;
1062       }
1063       state = state->next.p;
1064    }
1065    return -1;
1066 }
1067 
1068 template <class charT, class traits>
create_startmap(re_syntax_base * state,unsigned char * l_map,unsigned int * pnull,unsigned char mask)1069 void basic_regex_creator<charT, traits>::create_startmap(re_syntax_base* state, unsigned char* l_map, unsigned int* pnull, unsigned char mask)
1070 {
1071    int not_last_jump = 1;
1072    re_syntax_base* recursion_start = 0;
1073    int recursion_sub = 0;
1074    re_syntax_base* recursion_restart = 0;
1075 
1076    // track case sensitivity:
1077    bool l_icase = m_icase;
1078 
1079    while(state)
1080    {
1081       switch(state->type)
1082       {
1083       case syntax_element_toggle_case:
1084          l_icase = static_cast<re_case*>(state)->icase;
1085          state = state->next.p;
1086          break;
1087       case syntax_element_literal:
1088       {
1089          // don't set anything in *pnull, set each element in l_map
1090          // that could match the first character in the literal:
1091          if(l_map)
1092          {
1093             l_map[0] |= mask_init;
1094             charT first_char = *static_cast<charT*>(static_cast<void*>(static_cast<re_literal*>(state) + 1));
1095             for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i)
1096             {
1097                if(m_traits.translate(static_cast<charT>(i), l_icase) == first_char)
1098                   l_map[i] |= mask;
1099             }
1100          }
1101          return;
1102       }
1103       case syntax_element_end_line:
1104       {
1105          // next character must be a line separator (if there is one):
1106          if(l_map)
1107          {
1108             l_map[0] |= mask_init;
1109             l_map[static_cast<unsigned>('\n')] |= mask;
1110             l_map[static_cast<unsigned>('\r')] |= mask;
1111             l_map[static_cast<unsigned>('\f')] |= mask;
1112             l_map[0x85] |= mask;
1113          }
1114          // now figure out if we can match a NULL string at this point:
1115          if(pnull)
1116             create_startmap(state->next.p, 0, pnull, mask);
1117          return;
1118       }
1119       case syntax_element_recurse:
1120          {
1121             BOOST_ASSERT(static_cast<const re_jump*>(state)->alt.p->type == syntax_element_startmark);
1122             recursion_sub = static_cast<re_brace*>(static_cast<const re_jump*>(state)->alt.p)->index;
1123             if(m_recursion_checks[recursion_sub] & 1u)
1124             {
1125                // Infinite recursion!!
1126                if(0 == this->m_pdata->m_status) // update the error code if not already set
1127                   this->m_pdata->m_status = boost::regex_constants::error_bad_pattern;
1128                //
1129                // clear the expression, we should be empty:
1130                //
1131                this->m_pdata->m_expression = 0;
1132                this->m_pdata->m_expression_len = 0;
1133                //
1134                // and throw if required:
1135                //
1136                if(0 == (this->flags() & regex_constants::no_except))
1137                {
1138                   std::string message = "Encountered an infinite recursion.";
1139                   boost::regex_error e(message, boost::regex_constants::error_bad_pattern, 0);
1140                   e.raise();
1141                }
1142             }
1143             else if(recursion_start == 0)
1144             {
1145                recursion_start = state;
1146                recursion_restart = state->next.p;
1147                state = static_cast<re_jump*>(state)->alt.p;
1148                m_recursion_checks[recursion_sub] |= 1u;
1149                break;
1150             }
1151             m_recursion_checks[recursion_sub] |= 1u;
1152             // can't handle nested recursion here...
1153             BOOST_FALLTHROUGH;
1154          }
1155       case syntax_element_backref:
1156          // can be null, and any character can match:
1157          if(pnull)
1158             *pnull |= mask;
1159          BOOST_FALLTHROUGH;
1160       case syntax_element_wild:
1161       {
1162          // can't be null, any character can match:
1163          set_all_masks(l_map, mask);
1164          return;
1165       }
1166       case syntax_element_accept:
1167       case syntax_element_match:
1168       {
1169          // must be null, any character can match:
1170          set_all_masks(l_map, mask);
1171          if(pnull)
1172             *pnull |= mask;
1173          return;
1174       }
1175       case syntax_element_word_start:
1176       {
1177          // recurse, then AND with all the word characters:
1178          create_startmap(state->next.p, l_map, pnull, mask);
1179          if(l_map)
1180          {
1181             l_map[0] |= mask_init;
1182             for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i)
1183             {
1184                if(!m_traits.isctype(static_cast<charT>(i), m_word_mask))
1185                   l_map[i] &= static_cast<unsigned char>(~mask);
1186             }
1187          }
1188          return;
1189       }
1190       case syntax_element_word_end:
1191       {
1192          // recurse, then AND with all the word characters:
1193          create_startmap(state->next.p, l_map, pnull, mask);
1194          if(l_map)
1195          {
1196             l_map[0] |= mask_init;
1197             for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i)
1198             {
1199                if(m_traits.isctype(static_cast<charT>(i), m_word_mask))
1200                   l_map[i] &= static_cast<unsigned char>(~mask);
1201             }
1202          }
1203          return;
1204       }
1205       case syntax_element_buffer_end:
1206       {
1207          // we *must be null* :
1208          if(pnull)
1209             *pnull |= mask;
1210          return;
1211       }
1212       case syntax_element_long_set:
1213          if(l_map)
1214          {
1215             typedef typename traits::char_class_type m_type;
1216             if(static_cast<re_set_long<m_type>*>(state)->singleton)
1217             {
1218                l_map[0] |= mask_init;
1219                for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i)
1220                {
1221                   charT c = static_cast<charT>(i);
1222                   if(&c != re_is_set_member(&c, &c + 1, static_cast<re_set_long<m_type>*>(state), *m_pdata, l_icase))
1223                      l_map[i] |= mask;
1224                }
1225             }
1226             else
1227                set_all_masks(l_map, mask);
1228          }
1229          return;
1230       case syntax_element_set:
1231          if(l_map)
1232          {
1233             l_map[0] |= mask_init;
1234             for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i)
1235             {
1236                if(static_cast<re_set*>(state)->_map[
1237                   static_cast<unsigned char>(m_traits.translate(static_cast<charT>(i), l_icase))])
1238                   l_map[i] |= mask;
1239             }
1240          }
1241          return;
1242       case syntax_element_jump:
1243          // take the jump:
1244          state = static_cast<re_alt*>(state)->alt.p;
1245          not_last_jump = -1;
1246          break;
1247       case syntax_element_alt:
1248       case syntax_element_rep:
1249       case syntax_element_dot_rep:
1250       case syntax_element_char_rep:
1251       case syntax_element_short_set_rep:
1252       case syntax_element_long_set_rep:
1253          {
1254             re_alt* rep = static_cast<re_alt*>(state);
1255             if(rep->_map[0] & mask_init)
1256             {
1257                if(l_map)
1258                {
1259                   // copy previous results:
1260                   l_map[0] |= mask_init;
1261                   for(unsigned int i = 0; i <= UCHAR_MAX; ++i)
1262                   {
1263                      if(rep->_map[i] & mask_any)
1264                         l_map[i] |= mask;
1265                   }
1266                }
1267                if(pnull)
1268                {
1269                   if(rep->can_be_null & mask_any)
1270                      *pnull |= mask;
1271                }
1272             }
1273             else
1274             {
1275                // we haven't created a startmap for this alternative yet
1276                // so take the union of the two options:
1277                if(is_bad_repeat(state))
1278                {
1279                   set_all_masks(l_map, mask);
1280                   if(pnull)
1281                      *pnull |= mask;
1282                   return;
1283                }
1284                set_bad_repeat(state);
1285                create_startmap(state->next.p, l_map, pnull, mask);
1286                if((state->type == syntax_element_alt)
1287                   || (static_cast<re_repeat*>(state)->min == 0)
1288                   || (not_last_jump == 0))
1289                   create_startmap(rep->alt.p, l_map, pnull, mask);
1290             }
1291          }
1292          return;
1293       case syntax_element_soft_buffer_end:
1294          // match newline or null:
1295          if(l_map)
1296          {
1297             l_map[0] |= mask_init;
1298             l_map[static_cast<unsigned>('\n')] |= mask;
1299             l_map[static_cast<unsigned>('\r')] |= mask;
1300          }
1301          if(pnull)
1302             *pnull |= mask;
1303          return;
1304       case syntax_element_endmark:
1305          // need to handle independent subs as a special case:
1306          if(static_cast<re_brace*>(state)->index < 0)
1307          {
1308             // can be null, any character can match:
1309             set_all_masks(l_map, mask);
1310             if(pnull)
1311                *pnull |= mask;
1312             return;
1313          }
1314          else if(recursion_start && (recursion_sub != 0) && (recursion_sub == static_cast<re_brace*>(state)->index))
1315          {
1316             // recursion termination:
1317             recursion_start = 0;
1318             state = recursion_restart;
1319             break;
1320          }
1321 
1322          //
1323          // Normally we just go to the next state... but if this sub-expression is
1324          // the target of a recursion, then we might be ending a recursion, in which
1325          // case we should check whatever follows that recursion, as well as whatever
1326          // follows this state:
1327          //
1328          if(m_pdata->m_has_recursions && static_cast<re_brace*>(state)->index)
1329          {
1330             bool ok = false;
1331             re_syntax_base* p = m_pdata->m_first_state;
1332             while(p)
1333             {
1334                if(p->type == syntax_element_recurse)
1335                {
1336                   re_brace* p2 = static_cast<re_brace*>(static_cast<re_jump*>(p)->alt.p);
1337                   if((p2->type == syntax_element_startmark) && (p2->index == static_cast<re_brace*>(state)->index))
1338                   {
1339                      ok = true;
1340                      break;
1341                   }
1342                }
1343                p = p->next.p;
1344             }
1345             if(ok && ((m_recursion_checks[static_cast<re_brace*>(state)->index] & 2u) == 0))
1346             {
1347                m_recursion_checks[static_cast<re_brace*>(state)->index] |= 2u;
1348                create_startmap(p->next.p, l_map, pnull, mask);
1349             }
1350          }
1351          state = state->next.p;
1352          break;
1353 
1354       case syntax_element_commit:
1355          set_all_masks(l_map, mask);
1356          // Continue scanning so we can figure out whether we can be null:
1357          state = state->next.p;
1358          break;
1359       case syntax_element_startmark:
1360          // need to handle independent subs as a special case:
1361          if(static_cast<re_brace*>(state)->index == -3)
1362          {
1363             state = state->next.p->next.p;
1364             break;
1365          }
1366          BOOST_FALLTHROUGH;
1367       default:
1368          state = state->next.p;
1369       }
1370       ++not_last_jump;
1371    }
1372 }
1373 
1374 template <class charT, class traits>
get_restart_type(re_syntax_base * state)1375 unsigned basic_regex_creator<charT, traits>::get_restart_type(re_syntax_base* state)
1376 {
1377    //
1378    // find out how the machine starts, so we can optimise the search:
1379    //
1380    while(state)
1381    {
1382       switch(state->type)
1383       {
1384       case syntax_element_startmark:
1385       case syntax_element_endmark:
1386          state = state->next.p;
1387          continue;
1388       case syntax_element_start_line:
1389          return regbase::restart_line;
1390       case syntax_element_word_start:
1391          return regbase::restart_word;
1392       case syntax_element_buffer_start:
1393          return regbase::restart_buf;
1394       case syntax_element_restart_continue:
1395          return regbase::restart_continue;
1396       default:
1397          state = 0;
1398          continue;
1399       }
1400    }
1401    return regbase::restart_any;
1402 }
1403 
1404 template <class charT, class traits>
set_all_masks(unsigned char * bits,unsigned char mask)1405 void basic_regex_creator<charT, traits>::set_all_masks(unsigned char* bits, unsigned char mask)
1406 {
1407    //
1408    // set mask in all of bits elements,
1409    // if bits[0] has mask_init not set then we can
1410    // optimise this to a call to memset:
1411    //
1412    if(bits)
1413    {
1414       if(bits[0] == 0)
1415          (std::memset)(bits, mask, 1u << CHAR_BIT);
1416       else
1417       {
1418          for(unsigned i = 0; i < (1u << CHAR_BIT); ++i)
1419             bits[i] |= mask;
1420       }
1421       bits[0] |= mask_init;
1422    }
1423 }
1424 
1425 template <class charT, class traits>
is_bad_repeat(re_syntax_base * pt)1426 bool basic_regex_creator<charT, traits>::is_bad_repeat(re_syntax_base* pt)
1427 {
1428    switch(pt->type)
1429    {
1430    case syntax_element_rep:
1431    case syntax_element_dot_rep:
1432    case syntax_element_char_rep:
1433    case syntax_element_short_set_rep:
1434    case syntax_element_long_set_rep:
1435       {
1436          unsigned state_id = static_cast<re_repeat*>(pt)->state_id;
1437          if(state_id >= sizeof(m_bad_repeats) * CHAR_BIT)
1438             return true;  // run out of bits, assume we can't traverse this one.
1439          static const boost::uintmax_t one = 1uL;
1440          return m_bad_repeats & (one << state_id);
1441       }
1442    default:
1443       return false;
1444    }
1445 }
1446 
1447 template <class charT, class traits>
set_bad_repeat(re_syntax_base * pt)1448 void basic_regex_creator<charT, traits>::set_bad_repeat(re_syntax_base* pt)
1449 {
1450    switch(pt->type)
1451    {
1452    case syntax_element_rep:
1453    case syntax_element_dot_rep:
1454    case syntax_element_char_rep:
1455    case syntax_element_short_set_rep:
1456    case syntax_element_long_set_rep:
1457       {
1458          unsigned state_id = static_cast<re_repeat*>(pt)->state_id;
1459          static const boost::uintmax_t one = 1uL;
1460          if(state_id <= sizeof(m_bad_repeats) * CHAR_BIT)
1461             m_bad_repeats |= (one << state_id);
1462       }
1463       break;
1464    default:
1465       break;
1466    }
1467 }
1468 
1469 template <class charT, class traits>
get_repeat_type(re_syntax_base * state)1470 syntax_element_type basic_regex_creator<charT, traits>::get_repeat_type(re_syntax_base* state)
1471 {
1472    typedef typename traits::char_class_type m_type;
1473    if(state->type == syntax_element_rep)
1474    {
1475       // check to see if we are repeating a single state:
1476       if(state->next.p->next.p->next.p == static_cast<re_alt*>(state)->alt.p)
1477       {
1478          switch(state->next.p->type)
1479          {
1480          case BOOST_REGEX_DETAIL_NS::syntax_element_wild:
1481             return BOOST_REGEX_DETAIL_NS::syntax_element_dot_rep;
1482          case BOOST_REGEX_DETAIL_NS::syntax_element_literal:
1483             return BOOST_REGEX_DETAIL_NS::syntax_element_char_rep;
1484          case BOOST_REGEX_DETAIL_NS::syntax_element_set:
1485             return BOOST_REGEX_DETAIL_NS::syntax_element_short_set_rep;
1486          case BOOST_REGEX_DETAIL_NS::syntax_element_long_set:
1487             if(static_cast<BOOST_REGEX_DETAIL_NS::re_set_long<m_type>*>(state->next.p)->singleton)
1488                return BOOST_REGEX_DETAIL_NS::syntax_element_long_set_rep;
1489             break;
1490          default:
1491             break;
1492          }
1493       }
1494    }
1495    return state->type;
1496 }
1497 
1498 template <class charT, class traits>
probe_leading_repeat(re_syntax_base * state)1499 void basic_regex_creator<charT, traits>::probe_leading_repeat(re_syntax_base* state)
1500 {
1501    // enumerate our states, and see if we have a leading repeat
1502    // for which failed search restarts can be optimised;
1503    do
1504    {
1505       switch(state->type)
1506       {
1507       case syntax_element_startmark:
1508          if(static_cast<re_brace*>(state)->index >= 0)
1509          {
1510             state = state->next.p;
1511             continue;
1512          }
1513          if((static_cast<re_brace*>(state)->index == -1)
1514             || (static_cast<re_brace*>(state)->index == -2))
1515          {
1516             // skip past the zero width assertion:
1517             state = static_cast<const re_jump*>(state->next.p)->alt.p->next.p;
1518             continue;
1519          }
1520          if(static_cast<re_brace*>(state)->index == -3)
1521          {
1522             // Have to skip the leading jump state:
1523             state = state->next.p->next.p;
1524             continue;
1525          }
1526          return;
1527       case syntax_element_endmark:
1528       case syntax_element_start_line:
1529       case syntax_element_end_line:
1530       case syntax_element_word_boundary:
1531       case syntax_element_within_word:
1532       case syntax_element_word_start:
1533       case syntax_element_word_end:
1534       case syntax_element_buffer_start:
1535       case syntax_element_buffer_end:
1536       case syntax_element_restart_continue:
1537          state = state->next.p;
1538          break;
1539       case syntax_element_dot_rep:
1540       case syntax_element_char_rep:
1541       case syntax_element_short_set_rep:
1542       case syntax_element_long_set_rep:
1543          if(this->m_has_backrefs == 0)
1544             static_cast<re_repeat*>(state)->leading = true;
1545          BOOST_FALLTHROUGH;
1546       default:
1547          return;
1548       }
1549    }while(state);
1550 }
1551 
1552 
1553 } // namespace BOOST_REGEX_DETAIL_NS
1554 
1555 } // namespace boost
1556 
1557 #ifdef BOOST_MSVC
1558 #  pragma warning(pop)
1559 #endif
1560 
1561 #ifdef BOOST_MSVC
1562 #pragma warning(push)
1563 #pragma warning(disable: 4103)
1564 #endif
1565 #ifdef BOOST_HAS_ABI_HEADERS
1566 #  include BOOST_ABI_SUFFIX
1567 #endif
1568 #ifdef BOOST_MSVC
1569 #pragma warning(pop)
1570 #endif
1571 
1572 #endif
1573 
1574