1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // Authors: wan@google.com (Zhanyong Wan), eefacm@gmail.com (Sean Mcafee)
31 //
32 // The Google C++ Testing Framework (Google Test)
33 //
34 // This header file declares functions and macros used internally by
35 // Google Test.  They are subject to change without notice.
36 
37 #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
38 #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
39 
40 #include "gtest/internal/gtest-port.h"
41 
42 #if GTEST_OS_LINUX
43 # include <stdlib.h>
44 # include <sys/types.h>
45 # include <sys/wait.h>
46 # include <unistd.h>
47 #endif  // GTEST_OS_LINUX
48 
49 #if GTEST_HAS_EXCEPTIONS
50 # include <stdexcept>
51 #endif
52 
53 #include <ctype.h>
54 #include <float.h>
55 #include <string.h>
56 #include <iomanip>
57 #include <limits>
58 #include <set>
59 
60 #include "gtest/gtest-message.h"
61 #include "gtest/internal/gtest-string.h"
62 #include "gtest/internal/gtest-filepath.h"
63 #include "gtest/internal/gtest-type-util.h"
64 
65 // Due to C++ preprocessor weirdness, we need double indirection to
66 // concatenate two tokens when one of them is __LINE__.  Writing
67 //
68 //   foo ## __LINE__
69 //
70 // will result in the token foo__LINE__, instead of foo followed by
71 // the current line number.  For more details, see
72 // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
73 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
74 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
75 
76 class ProtocolMessage;
77 namespace proto2 { class Message; }
78 
79 namespace testing {
80 
81 // Forward declarations.
82 
83 class AssertionResult;                 // Result of an assertion.
84 class Message;                         // Represents a failure message.
85 class Test;                            // Represents a test.
86 class TestInfo;                        // Information about a test.
87 class TestPartResult;                  // Result of a test part.
88 class UnitTest;                        // A collection of test cases.
89 
90 template <typename T>
91 ::std::string PrintToString(const T& value);
92 
93 namespace internal {
94 
95 struct TraceInfo;                      // Information about a trace point.
96 class ScopedTrace;                     // Implements scoped trace.
97 class TestInfoImpl;                    // Opaque implementation of TestInfo
98 class UnitTestImpl;                    // Opaque implementation of UnitTest
99 
100 // How many times InitGoogleTest() has been called.
101 GTEST_API_ extern int g_init_gtest_count;
102 
103 // The text used in failure messages to indicate the start of the
104 // stack trace.
105 GTEST_API_ extern const char kStackTraceMarker[];
106 
107 // Two overloaded helpers for checking at compile time whether an
108 // expression is a null pointer literal (i.e. NULL or any 0-valued
109 // compile-time integral constant).  Their return values have
110 // different sizes, so we can use sizeof() to test which version is
111 // picked by the compiler.  These helpers have no implementations, as
112 // we only need their signatures.
113 //
114 // Given IsNullLiteralHelper(x), the compiler will pick the first
115 // version if x can be implicitly converted to Secret*, and pick the
116 // second version otherwise.  Since Secret is a secret and incomplete
117 // type, the only expression a user can write that has type Secret* is
118 // a null pointer literal.  Therefore, we know that x is a null
119 // pointer literal if and only if the first version is picked by the
120 // compiler.
121 char IsNullLiteralHelper(Secret* p);
122 char (&IsNullLiteralHelper(...))[2];  // NOLINT
123 
124 // A compile-time bool constant that is true if and only if x is a
125 // null pointer literal (i.e. NULL or any 0-valued compile-time
126 // integral constant).
127 #ifdef GTEST_ELLIPSIS_NEEDS_POD_
128 // We lose support for NULL detection where the compiler doesn't like
129 // passing non-POD classes through ellipsis (...).
130 # define GTEST_IS_NULL_LITERAL_(x) false
131 #else
132 # define GTEST_IS_NULL_LITERAL_(x) \
133     (sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1)
134 #endif  // GTEST_ELLIPSIS_NEEDS_POD_
135 
136 // Appends the user-supplied message to the Google-Test-generated message.
137 GTEST_API_ std::string AppendUserMessage(
138     const std::string& gtest_msg, const Message& user_msg);
139 
140 #if GTEST_HAS_EXCEPTIONS
141 
142 // This exception is thrown by (and only by) a failed Google Test
143 // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
144 // are enabled).  We derive it from std::runtime_error, which is for
145 // errors presumably detectable only at run time.  Since
146 // std::runtime_error inherits from std::exception, many testing
147 // frameworks know how to extract and print the message inside it.
148 class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
149  public:
150   explicit GoogleTestFailureException(const TestPartResult& failure);
151 };
152 
153 #endif  // GTEST_HAS_EXCEPTIONS
154 
155 // A helper class for creating scoped traces in user programs.
156 class GTEST_API_ ScopedTrace {
157  public:
158   // The c'tor pushes the given source file location and message onto
159   // a trace stack maintained by Google Test.
160   ScopedTrace(const char* file, int line, const Message& message);
161 
162   // The d'tor pops the info pushed by the c'tor.
163   //
164   // Note that the d'tor is not virtual in order to be efficient.
165   // Don't inherit from ScopedTrace!
166   ~ScopedTrace();
167 
168  private:
169   GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedTrace);
170 } GTEST_ATTRIBUTE_UNUSED_;  // A ScopedTrace object does its job in its
171                             // c'tor and d'tor.  Therefore it doesn't
172                             // need to be used otherwise.
173 
174 // Constructs and returns the message for an equality assertion
175 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
176 //
177 // The first four parameters are the expressions used in the assertion
178 // and their values, as strings.  For example, for ASSERT_EQ(foo, bar)
179 // where foo is 5 and bar is 6, we have:
180 //
181 //   expected_expression: "foo"
182 //   actual_expression:   "bar"
183 //   expected_value:      "5"
184 //   actual_value:        "6"
185 //
186 // The ignoring_case parameter is true iff the assertion is a
187 // *_STRCASEEQ*.  When it's true, the string " (ignoring case)" will
188 // be inserted into the message.
189 GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
190                                      const char* actual_expression,
191                                      const std::string& expected_value,
192                                      const std::string& actual_value,
193                                      bool ignoring_case);
194 
195 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
196 GTEST_API_ std::string GetBoolAssertionFailureMessage(
197     const AssertionResult& assertion_result,
198     const char* expression_text,
199     const char* actual_predicate_value,
200     const char* expected_predicate_value);
201 
202 // This template class represents an IEEE floating-point number
203 // (either single-precision or double-precision, depending on the
204 // template parameters).
205 //
206 // The purpose of this class is to do more sophisticated number
207 // comparison.  (Due to round-off error, etc, it's very unlikely that
208 // two floating-points will be equal exactly.  Hence a naive
209 // comparison by the == operation often doesn't work.)
210 //
211 // Format of IEEE floating-point:
212 //
213 //   The most-significant bit being the leftmost, an IEEE
214 //   floating-point looks like
215 //
216 //     sign_bit exponent_bits fraction_bits
217 //
218 //   Here, sign_bit is a single bit that designates the sign of the
219 //   number.
220 //
221 //   For float, there are 8 exponent bits and 23 fraction bits.
222 //
223 //   For double, there are 11 exponent bits and 52 fraction bits.
224 //
225 //   More details can be found at
226 //   http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
227 //
228 // Template parameter:
229 //
230 //   RawType: the raw floating-point type (either float or double)
231 template <typename RawType>
232 class FloatingPoint {
233  public:
234   // Defines the unsigned integer type that has the same size as the
235   // floating point number.
236   typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
237 
238   // Constants.
239 
240   // # of bits in a number.
241   static const size_t kBitCount = 8*sizeof(RawType);
242 
243   // # of fraction bits in a number.
244   static const size_t kFractionBitCount =
245     std::numeric_limits<RawType>::digits - 1;
246 
247   // # of exponent bits in a number.
248   static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
249 
250   // The mask for the sign bit.
251   static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
252 
253   // The mask for the fraction bits.
254   static const Bits kFractionBitMask =
255     ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
256 
257   // The mask for the exponent bits.
258   static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
259 
260   // How many ULP's (Units in the Last Place) we want to tolerate when
261   // comparing two numbers.  The larger the value, the more error we
262   // allow.  A 0 value means that two numbers must be exactly the same
263   // to be considered equal.
264   //
265   // The maximum error of a single floating-point operation is 0.5
266   // units in the last place.  On Intel CPU's, all floating-point
267   // calculations are done with 80-bit precision, while double has 64
268   // bits.  Therefore, 4 should be enough for ordinary use.
269   //
270   // See the following article for more details on ULP:
271   // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
272   static const size_t kMaxUlps = 4;
273 
274   // Constructs a FloatingPoint from a raw floating-point number.
275   //
276   // On an Intel CPU, passing a non-normalized NAN (Not a Number)
277   // around may change its bits, although the new value is guaranteed
278   // to be also a NAN.  Therefore, don't expect this constructor to
279   // preserve the bits in x when x is a NAN.
FloatingPoint(const RawType & x)280   explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
281 
282   // Static methods
283 
284   // Reinterprets a bit pattern as a floating-point number.
285   //
286   // This function is needed to test the AlmostEquals() method.
ReinterpretBits(const Bits bits)287   static RawType ReinterpretBits(const Bits bits) {
288     FloatingPoint fp(0);
289     fp.u_.bits_ = bits;
290     return fp.u_.value_;
291   }
292 
293   // Returns the floating-point number that represent positive infinity.
Infinity()294   static RawType Infinity() {
295     return ReinterpretBits(kExponentBitMask);
296   }
297 
298   // Returns the maximum representable finite floating-point number.
299   static RawType Max();
300 
301   // Non-static methods
302 
303   // Returns the bits that represents this number.
bits()304   const Bits &bits() const { return u_.bits_; }
305 
306   // Returns the exponent bits of this number.
exponent_bits()307   Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
308 
309   // Returns the fraction bits of this number.
fraction_bits()310   Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
311 
312   // Returns the sign bit of this number.
sign_bit()313   Bits sign_bit() const { return kSignBitMask & u_.bits_; }
314 
315   // Returns true iff this is NAN (not a number).
is_nan()316   bool is_nan() const {
317     // It's a NAN if the exponent bits are all ones and the fraction
318     // bits are not entirely zeros.
319     return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
320   }
321 
322   // Returns true iff this number is at most kMaxUlps ULP's away from
323   // rhs.  In particular, this function:
324   //
325   //   - returns false if either number is (or both are) NAN.
326   //   - treats really large numbers as almost equal to infinity.
327   //   - thinks +0.0 and -0.0 are 0 DLP's apart.
AlmostEquals(const FloatingPoint & rhs)328   bool AlmostEquals(const FloatingPoint& rhs) const {
329     // The IEEE standard says that any comparison operation involving
330     // a NAN must return false.
331     if (is_nan() || rhs.is_nan()) return false;
332 
333     return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
334         <= kMaxUlps;
335   }
336 
337  private:
338   // The data type used to store the actual floating-point number.
339   union FloatingPointUnion {
340     RawType value_;  // The raw floating-point number.
341     Bits bits_;      // The bits that represent the number.
342   };
343 
344   // Converts an integer from the sign-and-magnitude representation to
345   // the biased representation.  More precisely, let N be 2 to the
346   // power of (kBitCount - 1), an integer x is represented by the
347   // unsigned number x + N.
348   //
349   // For instance,
350   //
351   //   -N + 1 (the most negative number representable using
352   //          sign-and-magnitude) is represented by 1;
353   //   0      is represented by N; and
354   //   N - 1  (the biggest number representable using
355   //          sign-and-magnitude) is represented by 2N - 1.
356   //
357   // Read http://en.wikipedia.org/wiki/Signed_number_representations
358   // for more details on signed number representations.
SignAndMagnitudeToBiased(const Bits & sam)359   static Bits SignAndMagnitudeToBiased(const Bits &sam) {
360     if (kSignBitMask & sam) {
361       // sam represents a negative number.
362       return ~sam + 1;
363     } else {
364       // sam represents a positive number.
365       return kSignBitMask | sam;
366     }
367   }
368 
369   // Given two numbers in the sign-and-magnitude representation,
370   // returns the distance between them as an unsigned number.
DistanceBetweenSignAndMagnitudeNumbers(const Bits & sam1,const Bits & sam2)371   static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
372                                                      const Bits &sam2) {
373     const Bits biased1 = SignAndMagnitudeToBiased(sam1);
374     const Bits biased2 = SignAndMagnitudeToBiased(sam2);
375     return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
376   }
377 
378   FloatingPointUnion u_;
379 };
380 
381 // We cannot use std::numeric_limits<T>::max() as it clashes with the max()
382 // macro defined by <windows.h>.
383 template <>
Max()384 inline float FloatingPoint<float>::Max() { return FLT_MAX; }
385 template <>
Max()386 inline double FloatingPoint<double>::Max() { return DBL_MAX; }
387 
388 // Typedefs the instances of the FloatingPoint template class that we
389 // care to use.
390 typedef FloatingPoint<float> Float;
391 typedef FloatingPoint<double> Double;
392 
393 // In order to catch the mistake of putting tests that use different
394 // test fixture classes in the same test case, we need to assign
395 // unique IDs to fixture classes and compare them.  The TypeId type is
396 // used to hold such IDs.  The user should treat TypeId as an opaque
397 // type: the only operation allowed on TypeId values is to compare
398 // them for equality using the == operator.
399 typedef const void* TypeId;
400 
401 template <typename T>
402 class TypeIdHelper {
403  public:
404   // dummy_ must not have a const type.  Otherwise an overly eager
405   // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
406   // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
407   static bool dummy_;
408 };
409 
410 template <typename T>
411 bool TypeIdHelper<T>::dummy_ = false;
412 
413 // GetTypeId<T>() returns the ID of type T.  Different values will be
414 // returned for different types.  Calling the function twice with the
415 // same type argument is guaranteed to return the same ID.
416 template <typename T>
GetTypeId()417 TypeId GetTypeId() {
418   // The compiler is required to allocate a different
419   // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
420   // the template.  Therefore, the address of dummy_ is guaranteed to
421   // be unique.
422   return &(TypeIdHelper<T>::dummy_);
423 }
424 
425 // Returns the type ID of ::testing::Test.  Always call this instead
426 // of GetTypeId< ::testing::Test>() to get the type ID of
427 // ::testing::Test, as the latter may give the wrong result due to a
428 // suspected linker bug when compiling Google Test as a Mac OS X
429 // framework.
430 GTEST_API_ TypeId GetTestTypeId();
431 
432 // Defines the abstract factory interface that creates instances
433 // of a Test object.
434 class TestFactoryBase {
435  public:
~TestFactoryBase()436   virtual ~TestFactoryBase() {}
437 
438   // Creates a test instance to run. The instance is both created and destroyed
439   // within TestInfoImpl::Run()
440   virtual Test* CreateTest() = 0;
441 
442  protected:
TestFactoryBase()443   TestFactoryBase() {}
444 
445  private:
446   GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
447 };
448 
449 // This class provides implementation of TeastFactoryBase interface.
450 // It is used in TEST and TEST_F macros.
451 template <class TestClass>
452 class TestFactoryImpl : public TestFactoryBase {
453  public:
CreateTest()454   virtual Test* CreateTest() { return new TestClass; }
455 };
456 
457 #if GTEST_OS_WINDOWS
458 
459 // Predicate-formatters for implementing the HRESULT checking macros
460 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
461 // We pass a long instead of HRESULT to avoid causing an
462 // include dependency for the HRESULT type.
463 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
464                                             long hr);  // NOLINT
465 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
466                                             long hr);  // NOLINT
467 
468 #endif  // GTEST_OS_WINDOWS
469 
470 // Types of SetUpTestCase() and TearDownTestCase() functions.
471 typedef void (*SetUpTestCaseFunc)();
472 typedef void (*TearDownTestCaseFunc)();
473 
474 // Creates a new TestInfo object and registers it with Google Test;
475 // returns the created object.
476 //
477 // Arguments:
478 //
479 //   test_case_name:   name of the test case
480 //   name:             name of the test
481 //   type_param        the name of the test's type parameter, or NULL if
482 //                     this is not a typed or a type-parameterized test.
483 //   value_param       text representation of the test's value parameter,
484 //                     or NULL if this is not a type-parameterized test.
485 //   fixture_class_id: ID of the test fixture class
486 //   set_up_tc:        pointer to the function that sets up the test case
487 //   tear_down_tc:     pointer to the function that tears down the test case
488 //   factory:          pointer to the factory that creates a test object.
489 //                     The newly created TestInfo instance will assume
490 //                     ownership of the factory object.
491 GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
492     const char* test_case_name,
493     const char* name,
494     const char* type_param,
495     const char* value_param,
496     TypeId fixture_class_id,
497     SetUpTestCaseFunc set_up_tc,
498     TearDownTestCaseFunc tear_down_tc,
499     TestFactoryBase* factory);
500 
501 // If *pstr starts with the given prefix, modifies *pstr to be right
502 // past the prefix and returns true; otherwise leaves *pstr unchanged
503 // and returns false.  None of pstr, *pstr, and prefix can be NULL.
504 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
505 
506 #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
507 
508 // State of the definition of a type-parameterized test case.
509 class GTEST_API_ TypedTestCasePState {
510  public:
TypedTestCasePState()511   TypedTestCasePState() : registered_(false) {}
512 
513   // Adds the given test name to defined_test_names_ and return true
514   // if the test case hasn't been registered; otherwise aborts the
515   // program.
AddTestName(const char * file,int line,const char * case_name,const char * test_name)516   bool AddTestName(const char* file, int line, const char* case_name,
517                    const char* test_name) {
518     if (registered_) {
519       fprintf(stderr, "%s Test %s must be defined before "
520               "REGISTER_TYPED_TEST_CASE_P(%s, ...).\n",
521               FormatFileLocation(file, line).c_str(), test_name, case_name);
522       fflush(stderr);
523       posix::Abort();
524     }
525     defined_test_names_.insert(test_name);
526     return true;
527   }
528 
529   // Verifies that registered_tests match the test names in
530   // defined_test_names_; returns registered_tests if successful, or
531   // aborts the program otherwise.
532   const char* VerifyRegisteredTestNames(
533       const char* file, int line, const char* registered_tests);
534 
535  private:
536   bool registered_;
537   ::std::set<const char*> defined_test_names_;
538 };
539 
540 // Skips to the first non-space char after the first comma in 'str';
541 // returns NULL if no comma is found in 'str'.
SkipComma(const char * str)542 inline const char* SkipComma(const char* str) {
543   const char* comma = strchr(str, ',');
544   if (comma == NULL) {
545     return NULL;
546   }
547   while (IsSpace(*(++comma))) {}
548   return comma;
549 }
550 
551 // Returns the prefix of 'str' before the first comma in it; returns
552 // the entire string if it contains no comma.
GetPrefixUntilComma(const char * str)553 inline std::string GetPrefixUntilComma(const char* str) {
554   const char* comma = strchr(str, ',');
555   return comma == NULL ? str : std::string(str, comma);
556 }
557 
558 // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
559 // registers a list of type-parameterized tests with Google Test.  The
560 // return value is insignificant - we just need to return something
561 // such that we can call this function in a namespace scope.
562 //
563 // Implementation note: The GTEST_TEMPLATE_ macro declares a template
564 // template parameter.  It's defined in gtest-type-util.h.
565 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
566 class TypeParameterizedTest {
567  public:
568   // 'index' is the index of the test in the type list 'Types'
569   // specified in INSTANTIATE_TYPED_TEST_CASE_P(Prefix, TestCase,
570   // Types).  Valid values for 'index' are [0, N - 1] where N is the
571   // length of Types.
Register(const char * prefix,const char * case_name,const char * test_names,int index)572   static bool Register(const char* prefix, const char* case_name,
573                        const char* test_names, int index) {
574     typedef typename Types::Head Type;
575     typedef Fixture<Type> FixtureClass;
576     typedef typename GTEST_BIND_(TestSel, Type) TestClass;
577 
578     // First, registers the first type-parameterized test in the type
579     // list.
580     MakeAndRegisterTestInfo(
581         (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name + "/"
582          + StreamableToString(index)).c_str(),
583         GetPrefixUntilComma(test_names).c_str(),
584         GetTypeName<Type>().c_str(),
585         NULL,  // No value parameter.
586         GetTypeId<FixtureClass>(),
587         TestClass::SetUpTestCase,
588         TestClass::TearDownTestCase,
589         new TestFactoryImpl<TestClass>);
590 
591     // Next, recurses (at compile time) with the tail of the type list.
592     return TypeParameterizedTest<Fixture, TestSel, typename Types::Tail>
593         ::Register(prefix, case_name, test_names, index + 1);
594   }
595 };
596 
597 // The base case for the compile time recursion.
598 template <GTEST_TEMPLATE_ Fixture, class TestSel>
599 class TypeParameterizedTest<Fixture, TestSel, Types0> {
600  public:
Register(const char *,const char *,const char *,int)601   static bool Register(const char* /*prefix*/, const char* /*case_name*/,
602                        const char* /*test_names*/, int /*index*/) {
603     return true;
604   }
605 };
606 
607 // TypeParameterizedTestCase<Fixture, Tests, Types>::Register()
608 // registers *all combinations* of 'Tests' and 'Types' with Google
609 // Test.  The return value is insignificant - we just need to return
610 // something such that we can call this function in a namespace scope.
611 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
612 class TypeParameterizedTestCase {
613  public:
Register(const char * prefix,const char * case_name,const char * test_names)614   static bool Register(const char* prefix, const char* case_name,
615                        const char* test_names) {
616     typedef typename Tests::Head Head;
617 
618     // First, register the first test in 'Test' for each type in 'Types'.
619     TypeParameterizedTest<Fixture, Head, Types>::Register(
620         prefix, case_name, test_names, 0);
621 
622     // Next, recurses (at compile time) with the tail of the test list.
623     return TypeParameterizedTestCase<Fixture, typename Tests::Tail, Types>
624         ::Register(prefix, case_name, SkipComma(test_names));
625   }
626 };
627 
628 // The base case for the compile time recursion.
629 template <GTEST_TEMPLATE_ Fixture, typename Types>
630 class TypeParameterizedTestCase<Fixture, Templates0, Types> {
631  public:
Register(const char *,const char *,const char *)632   static bool Register(const char* /*prefix*/, const char* /*case_name*/,
633                        const char* /*test_names*/) {
634     return true;
635   }
636 };
637 
638 #endif  // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
639 
640 // Returns the current OS stack trace as an std::string.
641 //
642 // The maximum number of stack frames to be included is specified by
643 // the gtest_stack_trace_depth flag.  The skip_count parameter
644 // specifies the number of top frames to be skipped, which doesn't
645 // count against the number of frames to be included.
646 //
647 // For example, if Foo() calls Bar(), which in turn calls
648 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
649 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
650 GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(
651     UnitTest* unit_test, int skip_count);
652 
653 // Helpers for suppressing warnings on unreachable code or constant
654 // condition.
655 
656 // Always returns true.
657 GTEST_API_ bool AlwaysTrue();
658 
659 // Always returns false.
AlwaysFalse()660 inline bool AlwaysFalse() { return !AlwaysTrue(); }
661 
662 // Helper for suppressing false warning from Clang on a const char*
663 // variable declared in a conditional expression always being NULL in
664 // the else branch.
665 struct GTEST_API_ ConstCharPtr {
ConstCharPtrConstCharPtr666   ConstCharPtr(const char* str) : value(str) {}
667   operator bool() const { return true; }
668   const char* value;
669 };
670 
671 // A simple Linear Congruential Generator for generating random
672 // numbers with a uniform distribution.  Unlike rand() and srand(), it
673 // doesn't use global state (and therefore can't interfere with user
674 // code).  Unlike rand_r(), it's portable.  An LCG isn't very random,
675 // but it's good enough for our purposes.
676 class GTEST_API_ Random {
677  public:
678   static const UInt32 kMaxRange = 1u << 31;
679 
Random(UInt32 seed)680   explicit Random(UInt32 seed) : state_(seed) {}
681 
Reseed(UInt32 seed)682   void Reseed(UInt32 seed) { state_ = seed; }
683 
684   // Generates a random number from [0, range).  Crashes if 'range' is
685   // 0 or greater than kMaxRange.
686   UInt32 Generate(UInt32 range);
687 
688  private:
689   UInt32 state_;
690   GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
691 };
692 
693 // Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a
694 // compiler error iff T1 and T2 are different types.
695 template <typename T1, typename T2>
696 struct CompileAssertTypesEqual;
697 
698 template <typename T>
699 struct CompileAssertTypesEqual<T, T> {
700 };
701 
702 // Removes the reference from a type if it is a reference type,
703 // otherwise leaves it unchanged.  This is the same as
704 // tr1::remove_reference, which is not widely available yet.
705 template <typename T>
706 struct RemoveReference { typedef T type; };  // NOLINT
707 template <typename T>
708 struct RemoveReference<T&> { typedef T type; };  // NOLINT
709 
710 // A handy wrapper around RemoveReference that works when the argument
711 // T depends on template parameters.
712 #define GTEST_REMOVE_REFERENCE_(T) \
713     typename ::testing::internal::RemoveReference<T>::type
714 
715 // Removes const from a type if it is a const type, otherwise leaves
716 // it unchanged.  This is the same as tr1::remove_const, which is not
717 // widely available yet.
718 template <typename T>
719 struct RemoveConst { typedef T type; };  // NOLINT
720 template <typename T>
721 struct RemoveConst<const T> { typedef T type; };  // NOLINT
722 
723 // MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above
724 // definition to fail to remove the const in 'const int[3]' and 'const
725 // char[3][4]'.  The following specialization works around the bug.
726 template <typename T, size_t N>
727 struct RemoveConst<const T[N]> {
728   typedef typename RemoveConst<T>::type type[N];
729 };
730 
731 #if defined(_MSC_VER) && _MSC_VER < 1400
732 // This is the only specialization that allows VC++ 7.1 to remove const in
733 // 'const int[3] and 'const int[3][4]'.  However, it causes trouble with GCC
734 // and thus needs to be conditionally compiled.
735 template <typename T, size_t N>
736 struct RemoveConst<T[N]> {
737   typedef typename RemoveConst<T>::type type[N];
738 };
739 #endif
740 
741 // A handy wrapper around RemoveConst that works when the argument
742 // T depends on template parameters.
743 #define GTEST_REMOVE_CONST_(T) \
744     typename ::testing::internal::RemoveConst<T>::type
745 
746 // Turns const U&, U&, const U, and U all into U.
747 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
748     GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T))
749 
750 // Adds reference to a type if it is not a reference type,
751 // otherwise leaves it unchanged.  This is the same as
752 // tr1::add_reference, which is not widely available yet.
753 template <typename T>
754 struct AddReference { typedef T& type; };  // NOLINT
755 template <typename T>
756 struct AddReference<T&> { typedef T& type; };  // NOLINT
757 
758 // A handy wrapper around AddReference that works when the argument T
759 // depends on template parameters.
760 #define GTEST_ADD_REFERENCE_(T) \
761     typename ::testing::internal::AddReference<T>::type
762 
763 // Adds a reference to const on top of T as necessary.  For example,
764 // it transforms
765 //
766 //   char         ==> const char&
767 //   const char   ==> const char&
768 //   char&        ==> const char&
769 //   const char&  ==> const char&
770 //
771 // The argument T must depend on some template parameters.
772 #define GTEST_REFERENCE_TO_CONST_(T) \
773     GTEST_ADD_REFERENCE_(const GTEST_REMOVE_REFERENCE_(T))
774 
775 // ImplicitlyConvertible<From, To>::value is a compile-time bool
776 // constant that's true iff type From can be implicitly converted to
777 // type To.
778 template <typename From, typename To>
779 class ImplicitlyConvertible {
780  private:
781   // We need the following helper functions only for their types.
782   // They have no implementations.
783 
784   // MakeFrom() is an expression whose type is From.  We cannot simply
785   // use From(), as the type From may not have a public default
786   // constructor.
787   static From MakeFrom();
788 
789   // These two functions are overloaded.  Given an expression
790   // Helper(x), the compiler will pick the first version if x can be
791   // implicitly converted to type To; otherwise it will pick the
792   // second version.
793   //
794   // The first version returns a value of size 1, and the second
795   // version returns a value of size 2.  Therefore, by checking the
796   // size of Helper(x), which can be done at compile time, we can tell
797   // which version of Helper() is used, and hence whether x can be
798   // implicitly converted to type To.
799   static char Helper(To);
800   static char (&Helper(...))[2];  // NOLINT
801 
802   // We have to put the 'public' section after the 'private' section,
803   // or MSVC refuses to compile the code.
804  public:
805   // MSVC warns about implicitly converting from double to int for
806   // possible loss of data, so we need to temporarily disable the
807   // warning.
808 #ifdef _MSC_VER
809 # pragma warning(push)          // Saves the current warning state.
810 # pragma warning(disable:4244)  // Temporarily disables warning 4244.
811 
812   static const bool value =
813       sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
814 # pragma warning(pop)           // Restores the warning state.
815 #elif defined(__BORLANDC__)
816   // C++Builder cannot use member overload resolution during template
817   // instantiation.  The simplest workaround is to use its C++0x type traits
818   // functions (C++Builder 2009 and above only).
819   static const bool value = __is_convertible(From, To);
820 #else
821   static const bool value =
822       sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
823 #endif  // _MSV_VER
824 };
825 template <typename From, typename To>
826 const bool ImplicitlyConvertible<From, To>::value;
827 
828 // IsAProtocolMessage<T>::value is a compile-time bool constant that's
829 // true iff T is type ProtocolMessage, proto2::Message, or a subclass
830 // of those.
831 template <typename T>
832 struct IsAProtocolMessage
833     : public bool_constant<
834   ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value ||
835   ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> {
836 };
837 
838 // When the compiler sees expression IsContainerTest<C>(0), if C is an
839 // STL-style container class, the first overload of IsContainerTest
840 // will be viable (since both C::iterator* and C::const_iterator* are
841 // valid types and NULL can be implicitly converted to them).  It will
842 // be picked over the second overload as 'int' is a perfect match for
843 // the type of argument 0.  If C::iterator or C::const_iterator is not
844 // a valid type, the first overload is not viable, and the second
845 // overload will be picked.  Therefore, we can determine whether C is
846 // a container class by checking the type of IsContainerTest<C>(0).
847 // The value of the expression is insignificant.
848 //
849 // Note that we look for both C::iterator and C::const_iterator.  The
850 // reason is that C++ injects the name of a class as a member of the
851 // class itself (e.g. you can refer to class iterator as either
852 // 'iterator' or 'iterator::iterator').  If we look for C::iterator
853 // only, for example, we would mistakenly think that a class named
854 // iterator is an STL container.
855 //
856 // Also note that the simpler approach of overloading
857 // IsContainerTest(typename C::const_iterator*) and
858 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
859 typedef int IsContainer;
860 template <class C>
861 IsContainer IsContainerTest(int /* dummy */,
862                             typename C::iterator* /* it */ = NULL,
863                             typename C::const_iterator* /* const_it */ = NULL) {
864   return 0;
865 }
866 
867 typedef char IsNotContainer;
868 template <class C>
869 IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
870 
871 // EnableIf<condition>::type is void when 'Cond' is true, and
872 // undefined when 'Cond' is false.  To use SFINAE to make a function
873 // overload only apply when a particular expression is true, add
874 // "typename EnableIf<expression>::type* = 0" as the last parameter.
875 template<bool> struct EnableIf;
876 template<> struct EnableIf<true> { typedef void type; };  // NOLINT
877 
878 // Utilities for native arrays.
879 
880 // ArrayEq() compares two k-dimensional native arrays using the
881 // elements' operator==, where k can be any integer >= 0.  When k is
882 // 0, ArrayEq() degenerates into comparing a single pair of values.
883 
884 template <typename T, typename U>
885 bool ArrayEq(const T* lhs, size_t size, const U* rhs);
886 
887 // This generic version is used when k is 0.
888 template <typename T, typename U>
889 inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
890 
891 // This overload is used when k >= 1.
892 template <typename T, typename U, size_t N>
893 inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
894   return internal::ArrayEq(lhs, N, rhs);
895 }
896 
897 // This helper reduces code bloat.  If we instead put its logic inside
898 // the previous ArrayEq() function, arrays with different sizes would
899 // lead to different copies of the template code.
900 template <typename T, typename U>
901 bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
902   for (size_t i = 0; i != size; i++) {
903     if (!internal::ArrayEq(lhs[i], rhs[i]))
904       return false;
905   }
906   return true;
907 }
908 
909 // Finds the first element in the iterator range [begin, end) that
910 // equals elem.  Element may be a native array type itself.
911 template <typename Iter, typename Element>
912 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
913   for (Iter it = begin; it != end; ++it) {
914     if (internal::ArrayEq(*it, elem))
915       return it;
916   }
917   return end;
918 }
919 
920 // CopyArray() copies a k-dimensional native array using the elements'
921 // operator=, where k can be any integer >= 0.  When k is 0,
922 // CopyArray() degenerates into copying a single value.
923 
924 template <typename T, typename U>
925 void CopyArray(const T* from, size_t size, U* to);
926 
927 // This generic version is used when k is 0.
928 template <typename T, typename U>
929 inline void CopyArray(const T& from, U* to) { *to = from; }
930 
931 // This overload is used when k >= 1.
932 template <typename T, typename U, size_t N>
933 inline void CopyArray(const T(&from)[N], U(*to)[N]) {
934   internal::CopyArray(from, N, *to);
935 }
936 
937 // This helper reduces code bloat.  If we instead put its logic inside
938 // the previous CopyArray() function, arrays with different sizes
939 // would lead to different copies of the template code.
940 template <typename T, typename U>
941 void CopyArray(const T* from, size_t size, U* to) {
942   for (size_t i = 0; i != size; i++) {
943     internal::CopyArray(from[i], to + i);
944   }
945 }
946 
947 // The relation between an NativeArray object (see below) and the
948 // native array it represents.
949 enum RelationToSource {
950   kReference,  // The NativeArray references the native array.
951   kCopy        // The NativeArray makes a copy of the native array and
952                // owns the copy.
953 };
954 
955 // Adapts a native array to a read-only STL-style container.  Instead
956 // of the complete STL container concept, this adaptor only implements
957 // members useful for Google Mock's container matchers.  New members
958 // should be added as needed.  To simplify the implementation, we only
959 // support Element being a raw type (i.e. having no top-level const or
960 // reference modifier).  It's the client's responsibility to satisfy
961 // this requirement.  Element can be an array type itself (hence
962 // multi-dimensional arrays are supported).
963 template <typename Element>
964 class NativeArray {
965  public:
966   // STL-style container typedefs.
967   typedef Element value_type;
968   typedef Element* iterator;
969   typedef const Element* const_iterator;
970 
971   // Constructs from a native array.
972   NativeArray(const Element* array, size_t count, RelationToSource relation) {
973     Init(array, count, relation);
974   }
975 
976   // Copy constructor.
977   NativeArray(const NativeArray& rhs) {
978     Init(rhs.array_, rhs.size_, rhs.relation_to_source_);
979   }
980 
981   ~NativeArray() {
982     // Ensures that the user doesn't instantiate NativeArray with a
983     // const or reference type.
984     static_cast<void>(StaticAssertTypeEqHelper<Element,
985         GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>());
986     if (relation_to_source_ == kCopy)
987       delete[] array_;
988   }
989 
990   // STL-style container methods.
991   size_t size() const { return size_; }
992   const_iterator begin() const { return array_; }
993   const_iterator end() const { return array_ + size_; }
994   bool operator==(const NativeArray& rhs) const {
995     return size() == rhs.size() &&
996         ArrayEq(begin(), size(), rhs.begin());
997   }
998 
999  private:
1000   // Initializes this object; makes a copy of the input array if
1001   // 'relation' is kCopy.
1002   void Init(const Element* array, size_t a_size, RelationToSource relation) {
1003     if (relation == kReference) {
1004       array_ = array;
1005     } else {
1006       Element* const copy = new Element[a_size];
1007       CopyArray(array, a_size, copy);
1008       array_ = copy;
1009     }
1010     size_ = a_size;
1011     relation_to_source_ = relation;
1012   }
1013 
1014   const Element* array_;
1015   size_t size_;
1016   RelationToSource relation_to_source_;
1017 
1018   GTEST_DISALLOW_ASSIGN_(NativeArray);
1019 };
1020 
1021 }  // namespace internal
1022 }  // namespace testing
1023 
1024 #define GTEST_MESSAGE_AT_(file, line, message, result_type) \
1025   ::testing::internal::AssertHelper(result_type, file, line, message) \
1026     = ::testing::Message()
1027 
1028 #define GTEST_MESSAGE_(message, result_type) \
1029   GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
1030 
1031 #define GTEST_FATAL_FAILURE_(message) \
1032   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
1033 
1034 #define GTEST_NONFATAL_FAILURE_(message) \
1035   GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
1036 
1037 #define GTEST_SUCCESS_(message) \
1038   GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
1039 
1040 // Suppresses MSVC warnings 4072 (unreachable code) for the code following
1041 // statement if it returns or throws (or doesn't return or throw in some
1042 // situations).
1043 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
1044   if (::testing::internal::AlwaysTrue()) { statement; }
1045 
1046 #define GTEST_TEST_THROW_(statement, expected_exception, fail) \
1047   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1048   if (::testing::internal::ConstCharPtr gtest_msg = "") { \
1049     bool gtest_caught_expected = false; \
1050     try { \
1051       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1052     } \
1053     catch (expected_exception const&) { \
1054       gtest_caught_expected = true; \
1055     } \
1056     catch (...) { \
1057       gtest_msg.value = \
1058           "Expected: " #statement " throws an exception of type " \
1059           #expected_exception ".\n  Actual: it throws a different type."; \
1060       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1061     } \
1062     if (!gtest_caught_expected) { \
1063       gtest_msg.value = \
1064           "Expected: " #statement " throws an exception of type " \
1065           #expected_exception ".\n  Actual: it throws nothing."; \
1066       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1067     } \
1068   } else \
1069     GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \
1070       fail(gtest_msg.value)
1071 
1072 #define GTEST_TEST_NO_THROW_(statement, fail) \
1073   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1074   if (::testing::internal::AlwaysTrue()) { \
1075     try { \
1076       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1077     } \
1078     catch (...) { \
1079       goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1080     } \
1081   } else \
1082     GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
1083       fail("Expected: " #statement " doesn't throw an exception.\n" \
1084            "  Actual: it throws.")
1085 
1086 #define GTEST_TEST_ANY_THROW_(statement, fail) \
1087   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1088   if (::testing::internal::AlwaysTrue()) { \
1089     bool gtest_caught_any = false; \
1090     try { \
1091       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1092     } \
1093     catch (...) { \
1094       gtest_caught_any = true; \
1095     } \
1096     if (!gtest_caught_any) { \
1097       goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
1098     } \
1099   } else \
1100     GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
1101       fail("Expected: " #statement " throws an exception.\n" \
1102            "  Actual: it doesn't.")
1103 
1104 
1105 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
1106 // either a boolean expression or an AssertionResult. text is a textual
1107 // represenation of expression as it was passed into the EXPECT_TRUE.
1108 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
1109   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1110   if (const ::testing::AssertionResult gtest_ar_ = \
1111       ::testing::AssertionResult(expression)) \
1112     ; \
1113   else \
1114     fail(::testing::internal::GetBoolAssertionFailureMessage(\
1115         gtest_ar_, text, #actual, #expected).c_str())
1116 
1117 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
1118   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1119   if (::testing::internal::AlwaysTrue()) { \
1120     ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
1121     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1122     if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
1123       goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
1124     } \
1125   } else \
1126     GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
1127       fail("Expected: " #statement " doesn't generate new fatal " \
1128            "failures in the current thread.\n" \
1129            "  Actual: it does.")
1130 
1131 // Expands to the name of the class that implements the given test.
1132 #define GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \
1133   test_case_name##_##test_name##_Test
1134 
1135 // Helper macro for defining tests.
1136 #define GTEST_TEST_(test_case_name, test_name, parent_class, parent_id)\
1137 class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : public parent_class {\
1138  public:\
1139   GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {}\
1140  private:\
1141   virtual void TestBody();\
1142   static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;\
1143   GTEST_DISALLOW_COPY_AND_ASSIGN_(\
1144       GTEST_TEST_CLASS_NAME_(test_case_name, test_name));\
1145 };\
1146 \
1147 ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_case_name, test_name)\
1148   ::test_info_ =\
1149     ::testing::internal::MakeAndRegisterTestInfo(\
1150         #test_case_name, #test_name, NULL, NULL, \
1151         (parent_id), \
1152         parent_class::SetUpTestCase, \
1153         parent_class::TearDownTestCase, \
1154         new ::testing::internal::TestFactoryImpl<\
1155             GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>);\
1156 void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody()
1157 
1158 #endif  // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
1159