1 /*
2  * This source code is a product of Sun Microsystems, Inc. and is provided
3  * for unrestricted use.  Users may copy or modify this source code without
4  * charge.
5  *
6  * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
7  * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
8  * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
9  *
10  * Sun source code is provided with no support and without any obligation on
11  * the part of Sun Microsystems, Inc. to assist in its use, correction,
12  * modification or enhancement.
13  *
14  * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
15  * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
16  * OR ANY PART THEREOF.
17  *
18  * In no event will Sun Microsystems, Inc. be liable for any lost revenue
19  * or profits or other special, indirect and consequential damages, even if
20  * Sun has been advised of the possibility of such damages.
21  *
22  * Sun Microsystems, Inc.
23  * 2550 Garcia Avenue
24  * Mountain View, California  94043
25  */
26 
27 /*
28  * g721.c
29  *
30  * Description:
31  *
32  * g721_encoder(), g721_decoder()
33  *
34  * These routines comprise an implementation of the CCITT G.721 ADPCM
35  * coding algorithm.  Essentially, this implementation is identical to
36  * the bit level description except for a few deviations which
37  * take advantage of work station attributes, such as hardware 2's
38  * complement arithmetic and large memory.  Specifically, certain time
39  * consuming operations such as multiplications are replaced
40  * with lookup tables and software 2's complement operations are
41  * replaced with hardware 2's complement.
42  *
43  * The deviation from the bit level specification (lookup tables)
44  * preserves the bit level performance specifications.
45  *
46  * As outlined in the G.721 Recommendation, the algorithm is broken
47  * down into modules.  Each section of code below is preceded by
48  * the name of the module which it is implementing.
49  *
50  */
51 #include "g72x.h"
52 
53 static short qtab_721[7] = {-124, 80, 178, 246, 300, 349, 400};
54 /*
55  * Maps G.721 code word to reconstructed scale factor normalized log
56  * magnitude values.
57  */
58 static short	_dqlntab[16] = {-2048, 4, 135, 213, 273, 323, 373, 425,
59 				425, 373, 323, 273, 213, 135, 4, -2048};
60 
61 /* Maps G.721 code word to log of scale factor multiplier. */
62 static short	_witab[16] = {-12, 18, 41, 64, 112, 198, 355, 1122,
63 				1122, 355, 198, 112, 64, 41, 18, -12};
64 /*
65  * Maps G.721 code words to a set of values whose long and short
66  * term averages are computed and then compared to give an indication
67  * how stationary (steady state) the signal is.
68  */
69 static short	_fitab[16] = {0, 0, 0, 0x200, 0x200, 0x200, 0x600, 0xE00,
70 				0xE00, 0x600, 0x200, 0x200, 0x200, 0, 0, 0};
71 
72 /*
73  * g721_encoder()
74  *
75  * Encodes the input vale of linear PCM, A-law or u-law data sl and returns
76  * the resulting code. -1 is returned for unknown input coding value.
77  */
78 int
g721_encoder(int sl,int in_coding,struct g72x_state * state_ptr)79 g721_encoder(
80 	int		sl,
81 	int		in_coding,
82 	struct g72x_state *state_ptr)
83 {
84 	short		sezi, se, sez;		/* ACCUM */
85 	short		d;			/* SUBTA */
86 	short		sr;			/* ADDB */
87 	short		y;			/* MIX */
88 	short		dqsez;			/* ADDC */
89 	short		dq, i;
90 
91 	switch (in_coding) {	/* linearize input sample to 14-bit PCM */
92 	case AUDIO_ENCODING_ALAW:
93 		sl = alaw2linear(sl) >> 2;
94 		break;
95 	case AUDIO_ENCODING_ULAW:
96 		sl = ulaw2linear(sl) >> 2;
97 		break;
98 	case AUDIO_ENCODING_LINEAR:
99 		sl >>= 2;			/* 14-bit dynamic range */
100 		break;
101 	default:
102 		return (-1);
103 	}
104 
105 	sezi = predictor_zero(state_ptr);
106 	sez = sezi >> 1;
107 	se = (sezi + predictor_pole(state_ptr)) >> 1;	/* estimated signal */
108 
109 	d = sl - se;				/* estimation difference */
110 
111 	/* quantize the prediction difference */
112 	y = step_size(state_ptr);		/* quantizer step size */
113 	i = quantize(d, y, qtab_721, 7);	/* i = ADPCM code */
114 
115 	dq = reconstruct(i & 8, _dqlntab[i], y);	/* quantized est diff */
116 
117 	sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq;	/* reconst. signal */
118 
119 	dqsez = sr + sez - se;			/* pole prediction diff. */
120 
121 	update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
122 
123 	return (i);
124 }
125 
126 /*
127  * g721_decoder()
128  *
129  * Description:
130  *
131  * Decodes a 4-bit code of G.721 encoded data of i and
132  * returns the resulting linear PCM, A-law or u-law value.
133  * return -1 for unknown out_coding value.
134  */
135 int
g721_decoder(int i,int out_coding,struct g72x_state * state_ptr)136 g721_decoder(
137 	int		i,
138 	int		out_coding,
139 	struct g72x_state *state_ptr)
140 {
141 	short		sezi, sei, sez, se;	/* ACCUM */
142 	short		y;			/* MIX */
143 	short		sr;			/* ADDB */
144 	short		dq;
145 	short		dqsez;
146 
147 	i &= 0x0f;			/* mask to get proper bits */
148 	sezi = predictor_zero(state_ptr);
149 	sez = sezi >> 1;
150 	sei = sezi + predictor_pole(state_ptr);
151 	se = sei >> 1;			/* se = estimated signal */
152 
153 	y = step_size(state_ptr);	/* dynamic quantizer step size */
154 
155 	dq = reconstruct(i & 0x08, _dqlntab[i], y); /* quantized diff. */
156 
157 	sr = (dq < 0) ? (se - (dq & 0x3FFF)) : se + dq;	/* reconst. signal */
158 
159 	dqsez = sr - se + sez;			/* pole prediction diff. */
160 
161 	update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
162 
163 	switch (out_coding) {
164 	case AUDIO_ENCODING_ALAW:
165 		return (tandem_adjust_alaw(sr, se, y, i, 8, qtab_721));
166 	case AUDIO_ENCODING_ULAW:
167 		return (tandem_adjust_ulaw(sr, se, y, i, 8, qtab_721));
168 	case AUDIO_ENCODING_LINEAR:
169 		return (sr << 2);	/* sr was 14-bit dynamic range */
170 	default:
171 		return (-1);
172 	}
173 }
174