1syntax = "proto2";
2
3package caffe;
4
5// Specifies the shape (dimensions) of a Blob.
6message BlobShape {
7  repeated int64 dim = 1 [packed = true];
8}
9
10message BlobProto {
11  optional BlobShape shape = 7;
12  repeated float data = 5 [packed = true];
13  repeated float diff = 6 [packed = true];
14  repeated double double_data = 8 [packed = true];
15  repeated double double_diff = 9 [packed = true];
16
17  // 4D dimensions -- deprecated.  Use "shape" instead.
18  optional int32 num = 1 [default = 0];
19  optional int32 channels = 2 [default = 0];
20  optional int32 height = 3 [default = 0];
21  optional int32 width = 4 [default = 0];
22}
23
24// The BlobProtoVector is simply a way to pass multiple blobproto instances
25// around.
26message BlobProtoVector {
27  repeated BlobProto blobs = 1;
28}
29
30message Datum {
31  optional int32 channels = 1;
32  optional int32 height = 2;
33  optional int32 width = 3;
34  // the actual image data, in bytes
35  optional bytes data = 4;
36  optional int32 label = 5;
37  // Optionally, the datum could also hold float data.
38  repeated float float_data = 6;
39  // If true data contains an encoded image that need to be decoded
40  optional bool encoded = 7 [default = false];
41}
42
43message FillerParameter {
44  // The filler type.
45  optional string type = 1 [default = 'constant'];
46  optional float value = 2 [default = 0]; // the value in constant filler
47  optional float min = 3 [default = 0]; // the min value in uniform filler
48  optional float max = 4 [default = 1]; // the max value in uniform filler
49  optional float mean = 5 [default = 0]; // the mean value in Gaussian filler
50  optional float std = 6 [default = 1]; // the std value in Gaussian filler
51  // The expected number of non-zero output weights for a given input in
52  // Gaussian filler -- the default -1 means don't perform sparsification.
53  optional int32 sparse = 7 [default = -1];
54  // Normalize the filler variance by fan_in, fan_out, or their average.
55  // Applies to 'xavier' and 'msra' fillers.
56  enum VarianceNorm {
57    FAN_IN = 0;
58    FAN_OUT = 1;
59    AVERAGE = 2;
60  }
61  optional VarianceNorm variance_norm = 8 [default = FAN_IN];
62}
63
64message NetParameter {
65  optional string name = 1; // consider giving the network a name
66  // DEPRECATED. See InputParameter. The input blobs to the network.
67  repeated string input = 3;
68  // DEPRECATED. See InputParameter. The shape of the input blobs.
69  repeated BlobShape input_shape = 8;
70
71  // 4D input dimensions -- deprecated.  Use "input_shape" instead.
72  // If specified, for each input blob there should be four
73  // values specifying the num, channels, height and width of the input blob.
74  // Thus, there should be a total of (4 * #input) numbers.
75  repeated int32 input_dim = 4;
76
77  // Whether the network will force every layer to carry out backward operation.
78  // If set False, then whether to carry out backward is determined
79  // automatically according to the net structure and learning rates.
80  optional bool force_backward = 5 [default = false];
81  // The current "state" of the network, including the phase, level, and stage.
82  // Some layers may be included/excluded depending on this state and the states
83  // specified in the layers' include and exclude fields.
84  optional NetState state = 6;
85
86  // Print debugging information about results while running Net::Forward,
87  // Net::Backward, and Net::Update.
88  optional bool debug_info = 7 [default = false];
89
90  // The layers that make up the net.  Each of their configurations, including
91  // connectivity and behavior, is specified as a LayerParameter.
92  repeated LayerParameter layer = 100;  // ID 100 so layers are printed last.
93
94  // DEPRECATED: use 'layer' instead.
95  repeated V1LayerParameter layers = 2;
96}
97
98// NOTE
99// Update the next available ID when you add a new SolverParameter field.
100//
101// SolverParameter next available ID: 41 (last added: type)
102message SolverParameter {
103  //////////////////////////////////////////////////////////////////////////////
104  // Specifying the train and test networks
105  //
106  // Exactly one train net must be specified using one of the following fields:
107  //     train_net_param, train_net, net_param, net
108  // One or more test nets may be specified using any of the following fields:
109  //     test_net_param, test_net, net_param, net
110  // If more than one test net field is specified (e.g., both net and
111  // test_net are specified), they will be evaluated in the field order given
112  // above: (1) test_net_param, (2) test_net, (3) net_param/net.
113  // A test_iter must be specified for each test_net.
114  // A test_level and/or a test_stage may also be specified for each test_net.
115  //////////////////////////////////////////////////////////////////////////////
116
117  // Proto filename for the train net, possibly combined with one or more
118  // test nets.
119  optional string net = 24;
120  // Inline train net param, possibly combined with one or more test nets.
121  optional NetParameter net_param = 25;
122
123  optional string train_net = 1; // Proto filename for the train net.
124  repeated string test_net = 2; // Proto filenames for the test nets.
125  optional NetParameter train_net_param = 21; // Inline train net params.
126  repeated NetParameter test_net_param = 22; // Inline test net params.
127
128  // The states for the train/test nets. Must be unspecified or
129  // specified once per net.
130  //
131  // By default, all states will have solver = true;
132  // train_state will have phase = TRAIN,
133  // and all test_state's will have phase = TEST.
134  // Other defaults are set according to the NetState defaults.
135  optional NetState train_state = 26;
136  repeated NetState test_state = 27;
137
138  // The number of iterations for each test net.
139  repeated int32 test_iter = 3;
140
141  // The number of iterations between two testing phases.
142  optional int32 test_interval = 4 [default = 0];
143  optional bool test_compute_loss = 19 [default = false];
144  // If true, run an initial test pass before the first iteration,
145  // ensuring memory availability and printing the starting value of the loss.
146  optional bool test_initialization = 32 [default = true];
147  optional float base_lr = 5; // The base learning rate
148  // the number of iterations between displaying info. If display = 0, no info
149  // will be displayed.
150  optional int32 display = 6;
151  // Display the loss averaged over the last average_loss iterations
152  optional int32 average_loss = 33 [default = 1];
153  optional int32 max_iter = 7; // the maximum number of iterations
154  // accumulate gradients over `iter_size` x `batch_size` instances
155  optional int32 iter_size = 36 [default = 1];
156
157  // The learning rate decay policy. The currently implemented learning rate
158  // policies are as follows:
159  //    - fixed: always return base_lr.
160  //    - step: return base_lr * gamma ^ (floor(iter / step))
161  //    - exp: return base_lr * gamma ^ iter
162  //    - inv: return base_lr * (1 + gamma * iter) ^ (- power)
163  //    - multistep: similar to step but it allows non uniform steps defined by
164  //      stepvalue
165  //    - poly: the effective learning rate follows a polynomial decay, to be
166  //      zero by the max_iter. return base_lr (1 - iter/max_iter) ^ (power)
167  //    - sigmoid: the effective learning rate follows a sigmod decay
168  //      return base_lr ( 1/(1 + exp(-gamma * (iter - stepsize))))
169  //
170  // where base_lr, max_iter, gamma, step, stepvalue and power are defined
171  // in the solver parameter protocol buffer, and iter is the current iteration.
172  optional string lr_policy = 8;
173  optional float gamma = 9; // The parameter to compute the learning rate.
174  optional float power = 10; // The parameter to compute the learning rate.
175  optional float momentum = 11; // The momentum value.
176  optional float weight_decay = 12; // The weight decay.
177  // regularization types supported: L1 and L2
178  // controlled by weight_decay
179  optional string regularization_type = 29 [default = "L2"];
180  // the stepsize for learning rate policy "step"
181  optional int32 stepsize = 13;
182  // the stepsize for learning rate policy "multistep"
183  repeated int32 stepvalue = 34;
184
185  // Set clip_gradients to >= 0 to clip parameter gradients to that L2 norm,
186  // whenever their actual L2 norm is larger.
187  optional float clip_gradients = 35 [default = -1];
188
189  optional int32 snapshot = 14 [default = 0]; // The snapshot interval
190  optional string snapshot_prefix = 15; // The prefix for the snapshot.
191  // whether to snapshot diff in the results or not. Snapshotting diff will help
192  // debugging but the final protocol buffer size will be much larger.
193  optional bool snapshot_diff = 16 [default = false];
194  enum SnapshotFormat {
195    HDF5 = 0;
196    BINARYPROTO = 1;
197  }
198  optional SnapshotFormat snapshot_format = 37 [default = BINARYPROTO];
199  // the mode solver will use: 0 for CPU and 1 for GPU. Use GPU in default.
200  enum SolverMode {
201    CPU = 0;
202    GPU = 1;
203  }
204  optional SolverMode solver_mode = 17 [default = GPU];
205  // the device_id will that be used in GPU mode. Use device_id = 0 in default.
206  optional int32 device_id = 18 [default = 0];
207  // If non-negative, the seed with which the Solver will initialize the Caffe
208  // random number generator -- useful for reproducible results. Otherwise,
209  // (and by default) initialize using a seed derived from the system clock.
210  optional int64 random_seed = 20 [default = -1];
211
212  // type of the solver
213  optional string type = 40 [default = "SGD"];
214
215  // numerical stability for RMSProp, AdaGrad and AdaDelta and Adam
216  optional float delta = 31 [default = 1e-8];
217  // parameters for the Adam solver
218  optional float momentum2 = 39 [default = 0.999];
219
220  // RMSProp decay value
221  // MeanSquare(t) = rms_decay*MeanSquare(t-1) + (1-rms_decay)*SquareGradient(t)
222  optional float rms_decay = 38;
223
224  // If true, print information about the state of the net that may help with
225  // debugging learning problems.
226  optional bool debug_info = 23 [default = false];
227
228  // If false, don't save a snapshot after training finishes.
229  optional bool snapshot_after_train = 28 [default = true];
230
231  // DEPRECATED: old solver enum types, use string instead
232  enum SolverType {
233    SGD = 0;
234    NESTEROV = 1;
235    ADAGRAD = 2;
236    RMSPROP = 3;
237    ADADELTA = 4;
238    ADAM = 5;
239  }
240  // DEPRECATED: use type instead of solver_type
241  optional SolverType solver_type = 30 [default = SGD];
242}
243
244// A message that stores the solver snapshots
245message SolverState {
246  optional int32 iter = 1; // The current iteration
247  optional string learned_net = 2; // The file that stores the learned net.
248  repeated BlobProto history = 3; // The history for sgd solvers
249  optional int32 current_step = 4 [default = 0]; // The current step for learning rate
250}
251
252enum Phase {
253   TRAIN = 0;
254   TEST = 1;
255}
256
257message NetState {
258  optional Phase phase = 1 [default = TEST];
259  optional int32 level = 2 [default = 0];
260  repeated string stage = 3;
261}
262
263message NetStateRule {
264  // Set phase to require the NetState have a particular phase (TRAIN or TEST)
265  // to meet this rule.
266  optional Phase phase = 1;
267
268  // Set the minimum and/or maximum levels in which the layer should be used.
269  // Leave undefined to meet the rule regardless of level.
270  optional int32 min_level = 2;
271  optional int32 max_level = 3;
272
273  // Customizable sets of stages to include or exclude.
274  // The net must have ALL of the specified stages and NONE of the specified
275  // "not_stage"s to meet the rule.
276  // (Use multiple NetStateRules to specify conjunctions of stages.)
277  repeated string stage = 4;
278  repeated string not_stage = 5;
279}
280
281// Specifies training parameters (multipliers on global learning constants,
282// and the name and other settings used for weight sharing).
283message ParamSpec {
284  // The names of the parameter blobs -- useful for sharing parameters among
285  // layers, but never required otherwise.  To share a parameter between two
286  // layers, give it a (non-empty) name.
287  optional string name = 1;
288
289  // Whether to require shared weights to have the same shape, or just the same
290  // count -- defaults to STRICT if unspecified.
291  optional DimCheckMode share_mode = 2;
292  enum DimCheckMode {
293    // STRICT (default) requires that num, channels, height, width each match.
294    STRICT = 0;
295    // PERMISSIVE requires only the count (num*channels*height*width) to match.
296    PERMISSIVE = 1;
297  }
298
299  // The multiplier on the global learning rate for this parameter.
300  optional float lr_mult = 3 [default = 1.0];
301
302  // The multiplier on the global weight decay for this parameter.
303  optional float decay_mult = 4 [default = 1.0];
304}
305
306// NOTE
307// Update the next available ID when you add a new LayerParameter field.
308//
309// LayerParameter next available layer-specific ID: 146 (last added: shuffle_channel_param)
310message LayerParameter {
311  optional string name = 1; // the layer name
312  optional string type = 2; // the layer type
313  repeated string bottom = 3; // the name of each bottom blob
314  repeated string top = 4; // the name of each top blob
315
316  // The train / test phase for computation.
317  optional Phase phase = 10;
318
319  // The amount of weight to assign each top blob in the objective.
320  // Each layer assigns a default value, usually of either 0 or 1,
321  // to each top blob.
322  repeated float loss_weight = 5;
323
324  // Specifies training parameters (multipliers on global learning constants,
325  // and the name and other settings used for weight sharing).
326  repeated ParamSpec param = 6;
327
328  // The blobs containing the numeric parameters of the layer.
329  repeated BlobProto blobs = 7;
330
331  // Specifies whether to backpropagate to each bottom. If unspecified,
332  // Caffe will automatically infer whether each input needs backpropagation
333  // to compute parameter gradients. If set to true for some inputs,
334  // backpropagation to those inputs is forced; if set false for some inputs,
335  // backpropagation to those inputs is skipped.
336  //
337  // The size must be either 0 or equal to the number of bottoms.
338  repeated bool propagate_down = 11;
339
340  // Rules controlling whether and when a layer is included in the network,
341  // based on the current NetState.  You may specify a non-zero number of rules
342  // to include OR exclude, but not both.  If no include or exclude rules are
343  // specified, the layer is always included.  If the current NetState meets
344  // ANY (i.e., one or more) of the specified rules, the layer is
345  // included/excluded.
346  repeated NetStateRule include = 8;
347  repeated NetStateRule exclude = 9;
348
349  // Parameters for data pre-processing.
350  optional TransformationParameter transform_param = 100;
351
352  // Parameters shared by loss layers.
353  optional LossParameter loss_param = 101;
354
355  // Layer type-specific parameters.
356  //
357  // Note: certain layers may have more than one computational engine
358  // for their implementation. These layers include an Engine type and
359  // engine parameter for selecting the implementation.
360  // The default for the engine is set by the ENGINE switch at compile-time.
361  optional AccuracyParameter accuracy_param = 102;
362  optional ArgMaxParameter argmax_param = 103;
363  optional BatchNormParameter batch_norm_param = 139;
364  optional BiasParameter bias_param = 141;
365  optional BNParameter bn_param = 45;
366  optional ConcatParameter concat_param = 104;
367  optional ContrastiveLossParameter contrastive_loss_param = 105;
368  optional ConvolutionParameter convolution_param = 106;
369  optional CropParameter crop_param = 144;
370  optional DataParameter data_param = 107;
371  optional DetectionOutputParameter detection_output_param = 204;
372  optional YoloDetectionOutputParameter yolo_detection_output_param = 601;
373  optional Yolov3DetectionOutputParameter yolov3_detection_output_param = 603;
374  optional DropoutParameter dropout_param = 108;
375  optional DummyDataParameter dummy_data_param = 109;
376  optional EltwiseParameter eltwise_param = 110;
377  optional ELUParameter elu_param = 140;
378  optional EmbedParameter embed_param = 137;
379  optional ExpParameter exp_param = 111;
380  optional FlattenParameter flatten_param = 135;
381  optional HDF5DataParameter hdf5_data_param = 112;
382  optional HDF5OutputParameter hdf5_output_param = 113;
383  optional HingeLossParameter hinge_loss_param = 114;
384  optional ImageDataParameter image_data_param = 115;
385  optional InfogainLossParameter infogain_loss_param = 116;
386  optional InnerProductParameter inner_product_param = 117;
387  optional InputParameter input_param = 143;
388  optional InterpParameter interp_param = 205;
389  optional LogParameter log_param = 134;
390  optional LRNParameter lrn_param = 118;
391  optional MemoryDataParameter memory_data_param = 119;
392  optional MVNParameter mvn_param = 120;
393  optional NormalizeParameter norm_param = 206;
394  optional PoolingParameter pooling_param = 121;
395  optional PermuteParameter permute_param = 202;
396  optional PowerParameter power_param = 122;
397  optional PReLUParameter prelu_param = 131;
398  optional PriorBoxParameter prior_box_param = 203;
399  optional PSROIPoolingParameter psroi_pooling_param = 149;
400  optional PythonParameter python_param = 130;
401  optional RecurrentParameter recurrent_param = 146;
402  optional ReductionParameter reduction_param = 136;
403  optional ReLUParameter relu_param = 123;
404  optional ReorgParameter reorg_param = 147;
405  optional ReshapeParameter reshape_param = 133;
406  optional ROIAlignParameter roi_align_param = 148;
407  optional ROIPoolingParameter roi_pooling_param = 8266711;
408  optional ScaleParameter scale_param = 142;
409  optional ShuffleChannelParameter shuffle_channel_param = 145;
410  optional SigmoidParameter sigmoid_param = 124;
411  optional SmoothL1LossParameter smooth_l1_loss_param = 8266712;
412  optional SoftmaxParameter softmax_param = 125;
413  optional SPPParameter spp_param = 132;
414  optional SliceParameter slice_param = 126;
415  optional TanHParameter tanh_param = 127;
416  optional ThresholdParameter threshold_param = 128;
417  optional TileParameter tile_param = 138;
418  optional WindowDataParameter window_data_param = 129;
419}
420
421// Message that stores parameters used to apply transformation
422// to the data layer's data
423message TransformationParameter {
424  // For data pre-processing, we can do simple scaling and subtracting the
425  // data mean, if provided. Note that the mean subtraction is always carried
426  // out before scaling.
427  optional float scale = 1 [default = 1];
428  // Specify if we want to randomly mirror data.
429  optional bool mirror = 2 [default = false];
430  // Specify if we would like to randomly crop an image.
431  optional uint32 crop_size = 3 [default = 0];
432  // mean_file and mean_value cannot be specified at the same time
433  optional string mean_file = 4;
434  // if specified can be repeated once (would substract it from all the channels)
435  // or can be repeated the same number of times as channels
436  // (would subtract them from the corresponding channel)
437  repeated float mean_value = 5;
438  // Force the decoded image to have 3 color channels.
439  optional bool force_color = 6 [default = false];
440  // Force the decoded image to have 1 color channels.
441  optional bool force_gray = 7 [default = false];
442}
443
444// Message that stores parameters used by data transformer for resize policy
445message ResizeParameter {
446  //Probability of using this resize policy
447  optional float prob = 1 [default = 1];
448
449  enum Resize_mode {
450    WARP = 1;
451    FIT_SMALL_SIZE = 2;
452    FIT_LARGE_SIZE_AND_PAD = 3;
453  }
454  optional Resize_mode resize_mode = 2 [default = WARP];
455  optional uint32 height = 3 [default = 0];
456  optional uint32 width = 4 [default = 0];
457  // A parameter used to update bbox in FIT_SMALL_SIZE mode.
458  optional uint32 height_scale = 8 [default = 0];
459  optional uint32 width_scale = 9 [default = 0];
460
461  enum Pad_mode {
462    CONSTANT = 1;
463    MIRRORED = 2;
464    REPEAT_NEAREST = 3;
465  }
466  // Padding mode for BE_SMALL_SIZE_AND_PAD mode and object centering
467  optional Pad_mode pad_mode = 5 [default = CONSTANT];
468  // if specified can be repeated once (would fill all the channels)
469  // or can be repeated the same number of times as channels
470  // (would use it them to the corresponding channel)
471  repeated float pad_value = 6;
472
473  enum Interp_mode { //Same as in OpenCV
474    LINEAR = 1;
475    AREA = 2;
476    NEAREST = 3;
477    CUBIC = 4;
478    LANCZOS4 = 5;
479  }
480  //interpolation for for resizing
481  repeated Interp_mode interp_mode = 7;
482}
483
484// Message that stores parameters shared by loss layers
485message LossParameter {
486  // If specified, ignore instances with the given label.
487  optional int32 ignore_label = 1;
488  // How to normalize the loss for loss layers that aggregate across batches,
489  // spatial dimensions, or other dimensions.  Currently only implemented in
490  // SoftmaxWithLoss layer.
491  enum NormalizationMode {
492    // Divide by the number of examples in the batch times spatial dimensions.
493    // Outputs that receive the ignore label will NOT be ignored in computing
494    // the normalization factor.
495    FULL = 0;
496    // Divide by the total number of output locations that do not take the
497    // ignore_label.  If ignore_label is not set, this behaves like FULL.
498    VALID = 1;
499    // Divide by the batch size.
500    BATCH_SIZE = 2;
501    // Do not normalize the loss.
502    NONE = 3;
503  }
504  optional NormalizationMode normalization = 3 [default = VALID];
505  // Deprecated.  Ignored if normalization is specified.  If normalization
506  // is not specified, then setting this to false will be equivalent to
507  // normalization = BATCH_SIZE to be consistent with previous behavior.
508  optional bool normalize = 2;
509}
510
511// Messages that store parameters used by individual layer types follow, in
512// alphabetical order.
513
514message AccuracyParameter {
515  // When computing accuracy, count as correct by comparing the true label to
516  // the top k scoring classes.  By default, only compare to the top scoring
517  // class (i.e. argmax).
518  optional uint32 top_k = 1 [default = 1];
519
520  // The "label" axis of the prediction blob, whose argmax corresponds to the
521  // predicted label -- may be negative to index from the end (e.g., -1 for the
522  // last axis).  For example, if axis == 1 and the predictions are
523  // (N x C x H x W), the label blob is expected to contain N*H*W ground truth
524  // labels with integer values in {0, 1, ..., C-1}.
525  optional int32 axis = 2 [default = 1];
526
527  // If specified, ignore instances with the given label.
528  optional int32 ignore_label = 3;
529}
530
531message ArgMaxParameter {
532  // If true produce pairs (argmax, maxval)
533  optional bool out_max_val = 1 [default = false];
534  optional uint32 top_k = 2 [default = 1];
535  // The axis along which to maximise -- may be negative to index from the
536  // end (e.g., -1 for the last axis).
537  // By default ArgMaxLayer maximizes over the flattened trailing dimensions
538  // for each index of the first / num dimension.
539  optional int32 axis = 3;
540}
541
542message ConcatParameter {
543  // The axis along which to concatenate -- may be negative to index from the
544  // end (e.g., -1 for the last axis).  Other axes must have the
545  // same dimension for all the bottom blobs.
546  // By default, ConcatLayer concatenates blobs along the "channels" axis (1).
547  optional int32 axis = 2 [default = 1];
548
549  // DEPRECATED: alias for "axis" -- does not support negative indexing.
550  optional uint32 concat_dim = 1 [default = 1];
551}
552
553message BatchNormParameter {
554  // If false, accumulate global mean/variance values via a moving average. If
555  // true, use those accumulated values instead of computing mean/variance
556  // across the batch.
557  optional bool use_global_stats = 1;
558  // How much does the moving average decay each iteration?
559  optional float moving_average_fraction = 2 [default = .999];
560  // Small value to add to the variance estimate so that we don't divide by
561  // zero.
562  optional float eps = 3 [default = 1e-5];
563}
564
565message BiasParameter {
566  // The first axis of bottom[0] (the first input Blob) along which to apply
567  // bottom[1] (the second input Blob).  May be negative to index from the end
568  // (e.g., -1 for the last axis).
569  //
570  // For example, if bottom[0] is 4D with shape 100x3x40x60, the output
571  // top[0] will have the same shape, and bottom[1] may have any of the
572  // following shapes (for the given value of axis):
573  //    (axis == 0 == -4) 100; 100x3; 100x3x40; 100x3x40x60
574  //    (axis == 1 == -3)          3;     3x40;     3x40x60
575  //    (axis == 2 == -2)                   40;       40x60
576  //    (axis == 3 == -1)                                60
577  // Furthermore, bottom[1] may have the empty shape (regardless of the value of
578  // "axis") -- a scalar bias.
579  optional int32 axis = 1 [default = 1];
580
581  // (num_axes is ignored unless just one bottom is given and the bias is
582  // a learned parameter of the layer.  Otherwise, num_axes is determined by the
583  // number of axes by the second bottom.)
584  // The number of axes of the input (bottom[0]) covered by the bias
585  // parameter, or -1 to cover all axes of bottom[0] starting from `axis`.
586  // Set num_axes := 0, to add a zero-axis Blob: a scalar.
587  optional int32 num_axes = 2 [default = 1];
588
589  // (filler is ignored unless just one bottom is given and the bias is
590  // a learned parameter of the layer.)
591  // The initialization for the learned bias parameter.
592  // Default is the zero (0) initialization, resulting in the BiasLayer
593  // initially performing the identity operation.
594  optional FillerParameter filler = 3;
595}
596
597// Message that stores parameters used by BN (Batch Normalization)  layer
598message BNParameter {
599  enum BNMode {
600    LEARN = 0;
601    INFERENCE = 1;
602  }
603  optional BNMode bn_mode = 3 [default = LEARN];
604  optional FillerParameter scale_filler = 1;  // The filler for the scale
605  optional FillerParameter shift_filler = 2;  // The filler for the shift
606}
607
608message ContrastiveLossParameter {
609  // margin for dissimilar pair
610  optional float margin = 1 [default = 1.0];
611  // The first implementation of this cost did not exactly match the cost of
612  // Hadsell et al 2006 -- using (margin - d^2) instead of (margin - d)^2.
613  // legacy_version = false (the default) uses (margin - d)^2 as proposed in the
614  // Hadsell paper. New models should probably use this version.
615  // legacy_version = true uses (margin - d^2). This is kept to support /
616  // reproduce existing models and results
617  optional bool legacy_version = 2 [default = false];
618}
619
620message ConvolutionParameter {
621  optional uint32 num_output = 1; // The number of outputs for the layer
622  optional bool bias_term = 2 [default = true]; // whether to have bias terms
623
624  // Pad, kernel size, and stride are all given as a single value for equal
625  // dimensions in all spatial dimensions, or once per spatial dimension.
626  repeated uint32 pad = 3; // The padding size; defaults to 0
627  repeated uint32 kernel_size = 4; // The kernel size
628  repeated uint32 stride = 6; // The stride; defaults to 1
629  // Factor used to dilate the kernel, (implicitly) zero-filling the resulting
630  // holes. (Kernel dilation is sometimes referred to by its use in the
631  // algorithme à trous from Holschneider et al. 1987.)
632  repeated uint32 dilation = 18; // The dilation; defaults to 1
633
634  // For 2D convolution only, the *_h and *_w versions may also be used to
635  // specify both spatial dimensions.
636  optional uint32 pad_h = 9 [default = 0]; // The padding height (2D only)
637  optional uint32 pad_w = 10 [default = 0]; // The padding width (2D only)
638  optional uint32 kernel_h = 11; // The kernel height (2D only)
639  optional uint32 kernel_w = 12; // The kernel width (2D only)
640  optional uint32 stride_h = 13; // The stride height (2D only)
641  optional uint32 stride_w = 14; // The stride width (2D only)
642
643  optional uint32 group = 5 [default = 1]; // The group size for group conv
644
645  optional FillerParameter weight_filler = 7; // The filler for the weight
646  optional FillerParameter bias_filler = 8; // The filler for the bias
647  enum Engine {
648    DEFAULT = 0;
649    CAFFE = 1;
650    CUDNN = 2;
651  }
652  optional Engine engine = 15 [default = DEFAULT];
653
654  // The axis to interpret as "channels" when performing convolution.
655  // Preceding dimensions are treated as independent inputs;
656  // succeeding dimensions are treated as "spatial".
657  // With (N, C, H, W) inputs, and axis == 1 (the default), we perform
658  // N independent 2D convolutions, sliding C-channel (or (C/g)-channels, for
659  // groups g>1) filters across the spatial axes (H, W) of the input.
660  // With (N, C, D, H, W) inputs, and axis == 1, we perform
661  // N independent 3D convolutions, sliding (C/g)-channels
662  // filters across the spatial axes (D, H, W) of the input.
663  optional int32 axis = 16 [default = 1];
664
665  // Whether to force use of the general ND convolution, even if a specific
666  // implementation for blobs of the appropriate number of spatial dimensions
667  // is available. (Currently, there is only a 2D-specific convolution
668  // implementation; for input blobs with num_axes != 2, this option is
669  // ignored and the ND implementation will be used.)
670  optional bool force_nd_im2col = 17 [default = false];
671}
672
673message CropParameter {
674  // To crop, elements of the first bottom are selected to fit the dimensions
675  // of the second, reference bottom. The crop is configured by
676  // - the crop `axis` to pick the dimensions for cropping
677  // - the crop `offset` to set the shift for all/each dimension
678  // to align the cropped bottom with the reference bottom.
679  // All dimensions up to but excluding `axis` are preserved, while
680  // the dimensions including and trailing `axis` are cropped.
681  // If only one `offset` is set, then all dimensions are offset by this amount.
682  // Otherwise, the number of offsets must equal the number of cropped axes to
683  // shift the crop in each dimension accordingly.
684  // Note: standard dimensions are N,C,H,W so the default is a spatial crop,
685  // and `axis` may be negative to index from the end (e.g., -1 for the last
686  // axis).
687  optional int32 axis = 1 [default = 2];
688  repeated uint32 offset = 2;
689}
690
691message DataParameter {
692  enum DB {
693    LEVELDB = 0;
694    LMDB = 1;
695  }
696  // Specify the data source.
697  optional string source = 1;
698  // Specify the batch size.
699  optional uint32 batch_size = 4;
700  // The rand_skip variable is for the data layer to skip a few data points
701  // to avoid all asynchronous sgd clients to start at the same point. The skip
702  // point would be set as rand_skip * rand(0,1). Note that rand_skip should not
703  // be larger than the number of keys in the database.
704  // DEPRECATED. Each solver accesses a different subset of the database.
705  optional uint32 rand_skip = 7 [default = 0];
706  optional DB backend = 8 [default = LEVELDB];
707  // DEPRECATED. See TransformationParameter. For data pre-processing, we can do
708  // simple scaling and subtracting the data mean, if provided. Note that the
709  // mean subtraction is always carried out before scaling.
710  optional float scale = 2 [default = 1];
711  optional string mean_file = 3;
712  // DEPRECATED. See TransformationParameter. Specify if we would like to randomly
713  // crop an image.
714  optional uint32 crop_size = 5 [default = 0];
715  // DEPRECATED. See TransformationParameter. Specify if we want to randomly mirror
716  // data.
717  optional bool mirror = 6 [default = false];
718  // Force the encoded image to have 3 color channels
719  optional bool force_encoded_color = 9 [default = false];
720  // Prefetch queue (Number of batches to prefetch to host memory, increase if
721  // data access bandwidth varies).
722  optional uint32 prefetch = 10 [default = 4];
723}
724
725message NonMaximumSuppressionParameter {
726  // Threshold to be used in nms.
727  optional float nms_threshold = 1 [default = 0.3];
728  // Maximum number of results to be kept.
729  optional int32 top_k = 2;
730  // Parameter for adaptive nms.
731  optional float eta = 3 [default = 1.0];
732}
733
734message SaveOutputParameter {
735  // Output directory. If not empty, we will save the results.
736  optional string output_directory = 1;
737  // Output name prefix.
738  optional string output_name_prefix = 2;
739  // Output format.
740  //    VOC - PASCAL VOC output format.
741  //    COCO - MS COCO output format.
742  optional string output_format = 3;
743  // If you want to output results, must also provide the following two files.
744  // Otherwise, we will ignore saving results.
745  // label map file.
746  optional string label_map_file = 4;
747  // A file which contains a list of names and sizes with same order
748  // of the input DB. The file is in the following format:
749  //    name height width
750  //    ...
751  optional string name_size_file = 5;
752  // Number of test images. It can be less than the lines specified in
753  // name_size_file. For example, when we only want to evaluate on part
754  // of the test images.
755  optional uint32 num_test_image = 6;
756  // The resize parameter used in saving the data.
757  optional ResizeParameter resize_param = 7;
758}
759
760// Message that store parameters used by DetectionOutputLayer
761message DetectionOutputParameter {
762  // Number of classes to be predicted. Required!
763  optional uint32 num_classes = 1;
764  // If true, bounding box are shared among different classes.
765  optional bool share_location = 2 [default = true];
766  // Background label id. If there is no background class,
767  // set it as -1.
768  optional int32 background_label_id = 3 [default = 0];
769  // Parameters used for non maximum suppression.
770  optional NonMaximumSuppressionParameter nms_param = 4;
771  // Parameters used for saving detection results.
772  optional SaveOutputParameter save_output_param = 5;
773  // Type of coding method for bbox.
774  optional PriorBoxParameter.CodeType code_type = 6 [default = CORNER];
775  // If true, variance is encoded in target; otherwise we need to adjust the
776  // predicted offset accordingly.
777  optional bool variance_encoded_in_target = 8 [default = false];
778  // Number of total bboxes to be kept per image after nms step.
779  // -1 means keeping all bboxes after nms step.
780  optional int32 keep_top_k = 7 [default = -1];
781  // Only consider detections whose confidences are larger than a threshold.
782  // If not provided, consider all boxes.
783  optional float confidence_threshold = 9;
784  // If true, visualize the detection results.
785  optional bool visualize = 10 [default = false];
786  // The threshold used to visualize the detection results.
787  optional float visualize_threshold = 11;
788  // If provided, save outputs to video file.
789  optional string save_file = 12;
790}
791
792message YoloDetectionOutputParameter {
793  // Yolo detection output layer
794  optional uint32 side = 1 [default = 13];
795  optional uint32 num_classes = 2 [default = 20];
796  optional uint32 num_box = 3 [default = 5];
797  optional uint32 coords = 4 [default = 4];
798  optional float confidence_threshold = 5 [default = 0.01];
799  optional float nms_threshold = 6 [default = 0.45];
800  repeated float biases = 7;
801  optional string label_map_file = 8;
802}
803message Yolov3DetectionOutputParameter {
804  // Yolov3 detection output layer
805  // Yolo detection output layer
806  optional uint32 num_classes = 1 [default = 20];
807  optional uint32 num_box = 2 [default = 3];
808  optional float confidence_threshold = 3 [default = 0.01];
809  optional float nms_threshold = 4 [default = 0.45];
810  repeated float biases = 5;
811  repeated uint32 anchors_scale = 6 ;
812  optional uint32 mask_group_num = 7 [default = 2];
813  repeated uint32 mask = 8;
814}
815message DropoutParameter {
816  optional float dropout_ratio = 1 [default = 0.5]; // dropout ratio
817  optional bool scale_train = 2 [default = true];  // scale train or test phase
818}
819
820// DummyDataLayer fills any number of arbitrarily shaped blobs with random
821// (or constant) data generated by "Fillers" (see "message FillerParameter").
822message DummyDataParameter {
823  // This layer produces N >= 1 top blobs.  DummyDataParameter must specify 1 or N
824  // shape fields, and 0, 1 or N data_fillers.
825  //
826  // If 0 data_fillers are specified, ConstantFiller with a value of 0 is used.
827  // If 1 data_filler is specified, it is applied to all top blobs.  If N are
828  // specified, the ith is applied to the ith top blob.
829  repeated FillerParameter data_filler = 1;
830  repeated BlobShape shape = 6;
831
832  // 4D dimensions -- deprecated.  Use "shape" instead.
833  repeated uint32 num = 2;
834  repeated uint32 channels = 3;
835  repeated uint32 height = 4;
836  repeated uint32 width = 5;
837}
838
839message EltwiseParameter {
840  enum EltwiseOp {
841    PROD = 0;
842    SUM = 1;
843    MAX = 2;
844  }
845  optional EltwiseOp operation = 1 [default = SUM]; // element-wise operation
846  repeated float coeff = 2; // blob-wise coefficient for SUM operation
847
848  // Whether to use an asymptotically slower (for >2 inputs) but stabler method
849  // of computing the gradient for the PROD operation. (No effect for SUM op.)
850  optional bool stable_prod_grad = 3 [default = true];
851}
852
853// Message that stores parameters used by ELULayer
854message ELUParameter {
855  // Described in:
856  // Clevert, D.-A., Unterthiner, T., & Hochreiter, S. (2015). Fast and Accurate
857  // Deep Network Learning by Exponential Linear Units (ELUs). arXiv
858  optional float alpha = 1 [default = 1];
859}
860
861// Message that stores parameters used by EmbedLayer
862message EmbedParameter {
863  optional uint32 num_output = 1; // The number of outputs for the layer
864  // The input is given as integers to be interpreted as one-hot
865  // vector indices with dimension num_input.  Hence num_input should be
866  // 1 greater than the maximum possible input value.
867  optional uint32 input_dim = 2;
868
869  optional bool bias_term = 3 [default = true]; // Whether to use a bias term
870  optional FillerParameter weight_filler = 4; // The filler for the weight
871  optional FillerParameter bias_filler = 5; // The filler for the bias
872
873}
874
875// Message that stores parameters used by ExpLayer
876message ExpParameter {
877  // ExpLayer computes outputs y = base ^ (shift + scale * x), for base > 0.
878  // Or if base is set to the default (-1), base is set to e,
879  // so y = exp(shift + scale * x).
880  optional float base = 1 [default = -1.0];
881  optional float scale = 2 [default = 1.0];
882  optional float shift = 3 [default = 0.0];
883}
884
885/// Message that stores parameters used by FlattenLayer
886message FlattenParameter {
887  // The first axis to flatten: all preceding axes are retained in the output.
888  // May be negative to index from the end (e.g., -1 for the last axis).
889  optional int32 axis = 1 [default = 1];
890
891  // The last axis to flatten: all following axes are retained in the output.
892  // May be negative to index from the end (e.g., the default -1 for the last
893  // axis).
894  optional int32 end_axis = 2 [default = -1];
895}
896
897// Message that stores parameters used by HDF5DataLayer
898message HDF5DataParameter {
899  // Specify the data source.
900  optional string source = 1;
901  // Specify the batch size.
902  optional uint32 batch_size = 2;
903
904  // Specify whether to shuffle the data.
905  // If shuffle == true, the ordering of the HDF5 files is shuffled,
906  // and the ordering of data within any given HDF5 file is shuffled,
907  // but data between different files are not interleaved; all of a file's
908  // data are output (in a random order) before moving onto another file.
909  optional bool shuffle = 3 [default = false];
910}
911
912message HDF5OutputParameter {
913  optional string file_name = 1;
914}
915
916message HingeLossParameter {
917  enum Norm {
918    L1 = 1;
919    L2 = 2;
920  }
921  // Specify the Norm to use L1 or L2
922  optional Norm norm = 1 [default = L1];
923}
924
925message ImageDataParameter {
926  // Specify the data source.
927  optional string source = 1;
928  // Specify the batch size.
929  optional uint32 batch_size = 4 [default = 1];
930  // The rand_skip variable is for the data layer to skip a few data points
931  // to avoid all asynchronous sgd clients to start at the same point. The skip
932  // point would be set as rand_skip * rand(0,1). Note that rand_skip should not
933  // be larger than the number of keys in the database.
934  optional uint32 rand_skip = 7 [default = 0];
935  // Whether or not ImageLayer should shuffle the list of files at every epoch.
936  optional bool shuffle = 8 [default = false];
937  // It will also resize images if new_height or new_width are not zero.
938  optional uint32 new_height = 9 [default = 0];
939  optional uint32 new_width = 10 [default = 0];
940  // Specify if the images are color or gray
941  optional bool is_color = 11 [default = true];
942  // DEPRECATED. See TransformationParameter. For data pre-processing, we can do
943  // simple scaling and subtracting the data mean, if provided. Note that the
944  // mean subtraction is always carried out before scaling.
945  optional float scale = 2 [default = 1];
946  optional string mean_file = 3;
947  // DEPRECATED. See TransformationParameter. Specify if we would like to randomly
948  // crop an image.
949  optional uint32 crop_size = 5 [default = 0];
950  // DEPRECATED. See TransformationParameter. Specify if we want to randomly mirror
951  // data.
952  optional bool mirror = 6 [default = false];
953  optional string root_folder = 12 [default = ""];
954}
955
956message InfogainLossParameter {
957  // Specify the infogain matrix source.
958  optional string source = 1;
959}
960
961message InnerProductParameter {
962  optional uint32 num_output = 1; // The number of outputs for the layer
963  optional bool bias_term = 2 [default = true]; // whether to have bias terms
964  optional FillerParameter weight_filler = 3; // The filler for the weight
965  optional FillerParameter bias_filler = 4; // The filler for the bias
966
967  // The first axis to be lumped into a single inner product computation;
968  // all preceding axes are retained in the output.
969  // May be negative to index from the end (e.g., -1 for the last axis).
970  optional int32 axis = 5 [default = 1];
971  // Specify whether to transpose the weight matrix or not.
972  // If transpose == true, any operations will be performed on the transpose
973  // of the weight matrix. The weight matrix itself is not going to be transposed
974  // but rather the transfer flag of operations will be toggled accordingly.
975  optional bool transpose = 6 [default = false];
976}
977
978message InputParameter {
979  // This layer produces N >= 1 top blob(s) to be assigned manually.
980  // Define N shapes to set a shape for each top.
981  // Define 1 shape to set the same shape for every top.
982  // Define no shape to defer to reshaping manually.
983  repeated BlobShape shape = 1;
984}
985message InterpParameter {
986  optional int32 height = 1 [default = 0]; // Height of output
987  optional int32 width = 2 [default = 0]; // Width of output
988  optional int32 zoom_factor = 3 [default = 1]; // zoom factor
989  optional int32 shrink_factor = 4 [default = 1]; // shrink factor
990  optional int32 pad_beg = 5 [default = 0]; // padding at begin of input
991  optional int32 pad_end = 6 [default = 0]; // padding at end of input
992}
993// Message that stores parameters used by LogLayer
994message LogParameter {
995  // LogLayer computes outputs y = log_base(shift + scale * x), for base > 0.
996  // Or if base is set to the default (-1), base is set to e,
997  // so y = ln(shift + scale * x) = log_e(shift + scale * x)
998  optional float base = 1 [default = -1.0];
999  optional float scale = 2 [default = 1.0];
1000  optional float shift = 3 [default = 0.0];
1001}
1002
1003// Message that stores parameters used by LRNLayer
1004message LRNParameter {
1005  optional uint32 local_size = 1 [default = 5];
1006  optional float alpha = 2 [default = 1.];
1007  optional float beta = 3 [default = 0.75];
1008  enum NormRegion {
1009    ACROSS_CHANNELS = 0;
1010    WITHIN_CHANNEL = 1;
1011  }
1012  optional NormRegion norm_region = 4 [default = ACROSS_CHANNELS];
1013  optional float k = 5 [default = 1.];
1014  enum Engine {
1015    DEFAULT = 0;
1016    CAFFE = 1;
1017    CUDNN = 2;
1018  }
1019  optional Engine engine = 6 [default = DEFAULT];
1020}
1021
1022message MemoryDataParameter {
1023  optional uint32 batch_size = 1;
1024  optional uint32 channels = 2;
1025  optional uint32 height = 3;
1026  optional uint32 width = 4;
1027}
1028
1029message MVNParameter {
1030  // This parameter can be set to false to normalize mean only
1031  optional bool normalize_variance = 1 [default = true];
1032
1033  // This parameter can be set to true to perform DNN-like MVN
1034  optional bool across_channels = 2 [default = false];
1035
1036  // Epsilon for not dividing by zero while normalizing variance
1037  optional float eps = 3 [default = 1e-9];
1038}
1039
1040// Message that stores parameters used by NormalizeLayer
1041message NormalizeParameter {
1042  optional bool across_spatial = 1 [default = true];
1043  // Initial value of scale. Default is 1.0 for all
1044  optional FillerParameter scale_filler = 2;
1045  // Whether or not scale parameters are shared across channels.
1046  optional bool channel_shared = 3 [default = true];
1047  // Epsilon for not dividing by zero while normalizing variance
1048  optional float eps = 4 [default = 1e-10];
1049}
1050
1051message PermuteParameter {
1052  // The new orders of the axes of data. Notice it should be with
1053  // in the same range as the input data, and it starts from 0.
1054  // Do not provide repeated order.
1055  repeated uint32 order = 1;
1056}
1057
1058message PoolingParameter {
1059  enum PoolMethod {
1060    MAX = 0;
1061    AVE = 1;
1062    STOCHASTIC = 2;
1063  }
1064  optional PoolMethod pool = 1 [default = MAX]; // The pooling method
1065  // Pad, kernel size, and stride are all given as a single value for equal
1066  // dimensions in height and width or as Y, X pairs.
1067  optional uint32 pad = 4 [default = 0]; // The padding size (equal in Y, X)
1068  optional uint32 pad_h = 9 [default = 0]; // The padding height
1069  optional uint32 pad_w = 10 [default = 0]; // The padding width
1070  optional uint32 kernel_size = 2; // The kernel size (square)
1071  optional uint32 kernel_h = 5; // The kernel height
1072  optional uint32 kernel_w = 6; // The kernel width
1073  optional uint32 stride = 3 [default = 1]; // The stride (equal in Y, X)
1074  optional uint32 stride_h = 7; // The stride height
1075  optional uint32 stride_w = 8; // The stride width
1076  enum Engine {
1077    DEFAULT = 0;
1078    CAFFE = 1;
1079    CUDNN = 2;
1080  }
1081  optional Engine engine = 11 [default = DEFAULT];
1082  // If global_pooling then it will pool over the size of the bottom by doing
1083  // kernel_h = bottom->height and kernel_w = bottom->width
1084  optional bool global_pooling = 12 [default = false];
1085}
1086
1087message PowerParameter {
1088  // PowerLayer computes outputs y = (shift + scale * x) ^ power.
1089  optional float power = 1 [default = 1.0];
1090  optional float scale = 2 [default = 1.0];
1091  optional float shift = 3 [default = 0.0];
1092}
1093
1094// Message that store parameters used by PriorBoxLayer
1095message PriorBoxParameter {
1096  // Encode/decode type.
1097  enum CodeType {
1098    CORNER = 1;
1099    CENTER_SIZE = 2;
1100    CORNER_SIZE = 3;
1101  }
1102  // Minimum box size (in pixels). Required!
1103  repeated float min_size = 1;
1104  // Maximum box size (in pixels). Required!
1105  repeated float max_size = 2;
1106  // Various of aspect ratios. Duplicate ratios will be ignored.
1107  // If none is provided, we use default ratio 1.
1108  repeated float aspect_ratio = 3;
1109  // If true, will flip each aspect ratio.
1110  // For example, if there is aspect ratio "r",
1111  // we will generate aspect ratio "1.0/r" as well.
1112  optional bool flip = 4 [default = true];
1113  // If true, will clip the prior so that it is within [0, 1]
1114  optional bool clip = 5 [default = false];
1115  // Variance for adjusting the prior bboxes.
1116  repeated float variance = 6;
1117  // By default, we calculate img_height, img_width, step_x, step_y based on
1118  // bottom[0] (feat) and bottom[1] (img). Unless these values are explicitely
1119  // provided.
1120  // Explicitly provide the img_size.
1121  optional uint32 img_size = 7;
1122  // Either img_size or img_h/img_w should be specified; not both.
1123  optional uint32 img_h = 8;
1124  optional uint32 img_w = 9;
1125
1126  // Explicitly provide the step size.
1127  optional float step = 10;
1128  // Either step or step_h/step_w should be specified; not both.
1129  optional float step_h = 11;
1130  optional float step_w = 12;
1131
1132  // Offset to the top left corner of each cell.
1133  optional float offset = 13 [default = 0.5];
1134}
1135
1136message PSROIPoolingParameter {
1137  required float spatial_scale = 1;
1138  required int32 output_dim = 2; // output channel number
1139  required int32 group_size = 3; // number of groups to encode position-sensitive score maps
1140}
1141
1142message PythonParameter {
1143  optional string module = 1;
1144  optional string layer = 2;
1145  // This value is set to the attribute `param_str` of the `PythonLayer` object
1146  // in Python before calling the `setup()` method. This could be a number,
1147  // string, dictionary in Python dict format, JSON, etc. You may parse this
1148  // string in `setup` method and use it in `forward` and `backward`.
1149  optional string param_str = 3 [default = ''];
1150  // Whether this PythonLayer is shared among worker solvers during data parallelism.
1151  // If true, each worker solver sequentially run forward from this layer.
1152  // This value should be set true if you are using it as a data layer.
1153  optional bool share_in_parallel = 4 [default = false];
1154}
1155
1156// Message that stores parameters used by RecurrentLayer
1157message RecurrentParameter {
1158  // The dimension of the output (and usually hidden state) representation --
1159  // must be explicitly set to non-zero.
1160  optional uint32 num_output = 1 [default = 0];
1161
1162  optional FillerParameter weight_filler = 2; // The filler for the weight
1163  optional FillerParameter bias_filler = 3; // The filler for the bias
1164
1165  // Whether to enable displaying debug_info in the unrolled recurrent net.
1166  optional bool debug_info = 4 [default = false];
1167
1168  // Whether to add as additional inputs (bottoms) the initial hidden state
1169  // blobs, and add as additional outputs (tops) the final timestep hidden state
1170  // blobs.  The number of additional bottom/top blobs required depends on the
1171  // recurrent architecture -- e.g., 1 for RNNs, 2 for LSTMs.
1172  optional bool expose_hidden = 5 [default = false];
1173}
1174
1175// Message that stores parameters used by ReductionLayer
1176message ReductionParameter {
1177  enum ReductionOp {
1178    SUM = 1;
1179    ASUM = 2;
1180    SUMSQ = 3;
1181    MEAN = 4;
1182  }
1183
1184  optional ReductionOp operation = 1 [default = SUM]; // reduction operation
1185
1186  // The first axis to reduce to a scalar -- may be negative to index from the
1187  // end (e.g., -1 for the last axis).
1188  // (Currently, only reduction along ALL "tail" axes is supported; reduction
1189  // of axis M through N, where N < num_axes - 1, is unsupported.)
1190  // Suppose we have an n-axis bottom Blob with shape:
1191  //     (d0, d1, d2, ..., d(m-1), dm, d(m+1), ..., d(n-1)).
1192  // If axis == m, the output Blob will have shape
1193  //     (d0, d1, d2, ..., d(m-1)),
1194  // and the ReductionOp operation is performed (d0 * d1 * d2 * ... * d(m-1))
1195  // times, each including (dm * d(m+1) * ... * d(n-1)) individual data.
1196  // If axis == 0 (the default), the output Blob always has the empty shape
1197  // (count 1), performing reduction across the entire input --
1198  // often useful for creating new loss functions.
1199  optional int32 axis = 2 [default = 0];
1200
1201  optional float coeff = 3 [default = 1.0]; // coefficient for output
1202}
1203
1204// Message that stores parameters used by ReLULayer
1205message ReLUParameter {
1206  // Allow non-zero slope for negative inputs to speed up optimization
1207  // Described in:
1208  // Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities
1209  // improve neural network acoustic models. In ICML Workshop on Deep Learning
1210  // for Audio, Speech, and Language Processing.
1211  optional float negative_slope = 1 [default = 0];
1212  enum Engine {
1213    DEFAULT = 0;
1214    CAFFE = 1;
1215    CUDNN = 2;
1216  }
1217  optional Engine engine = 2 [default = DEFAULT];
1218}
1219
1220message ReorgParameter {
1221  optional uint32 stride = 1;
1222  optional bool reverse = 2 [default = false];
1223}
1224
1225message ReshapeParameter {
1226  // Specify the output dimensions. If some of the dimensions are set to 0,
1227  // the corresponding dimension from the bottom layer is used (unchanged).
1228  // Exactly one dimension may be set to -1, in which case its value is
1229  // inferred from the count of the bottom blob and the remaining dimensions.
1230  // For example, suppose we want to reshape a 2D blob "input" with shape 2 x 8:
1231  //
1232  //   layer {
1233  //     type: "Reshape" bottom: "input" top: "output"
1234  //     reshape_param { ... }
1235  //   }
1236  //
1237  // If "input" is 2D with shape 2 x 8, then the following reshape_param
1238  // specifications are all equivalent, producing a 3D blob "output" with shape
1239  // 2 x 2 x 4:
1240  //
1241  //   reshape_param { shape { dim:  2  dim: 2  dim:  4 } }
1242  //   reshape_param { shape { dim:  0  dim: 2  dim:  4 } }
1243  //   reshape_param { shape { dim:  0  dim: 2  dim: -1 } }
1244  //   reshape_param { shape { dim: -1  dim: 0  dim:  2 } }
1245  //
1246  optional BlobShape shape = 1;
1247
1248  // axis and num_axes control the portion of the bottom blob's shape that are
1249  // replaced by (included in) the reshape. By default (axis == 0 and
1250  // num_axes == -1), the entire bottom blob shape is included in the reshape,
1251  // and hence the shape field must specify the entire output shape.
1252  //
1253  // axis may be non-zero to retain some portion of the beginning of the input
1254  // shape (and may be negative to index from the end; e.g., -1 to begin the
1255  // reshape after the last axis, including nothing in the reshape,
1256  // -2 to include only the last axis, etc.).
1257  //
1258  // For example, suppose "input" is a 2D blob with shape 2 x 8.
1259  // Then the following ReshapeLayer specifications are all equivalent,
1260  // producing a blob "output" with shape 2 x 2 x 4:
1261  //
1262  //   reshape_param { shape { dim: 2  dim: 2  dim: 4 } }
1263  //   reshape_param { shape { dim: 2  dim: 4 } axis:  1 }
1264  //   reshape_param { shape { dim: 2  dim: 4 } axis: -3 }
1265  //
1266  // num_axes specifies the extent of the reshape.
1267  // If num_axes >= 0 (and axis >= 0), the reshape will be performed only on
1268  // input axes in the range [axis, axis+num_axes].
1269  // num_axes may also be -1, the default, to include all remaining axes
1270  // (starting from axis).
1271  //
1272  // For example, suppose "input" is a 2D blob with shape 2 x 8.
1273  // Then the following ReshapeLayer specifications are equivalent,
1274  // producing a blob "output" with shape 1 x 2 x 8.
1275  //
1276  //   reshape_param { shape { dim:  1  dim: 2  dim:  8 } }
1277  //   reshape_param { shape { dim:  1  dim: 2  }  num_axes: 1 }
1278  //   reshape_param { shape { dim:  1  }  num_axes: 0 }
1279  //
1280  // On the other hand, these would produce output blob shape 2 x 1 x 8:
1281  //
1282  //   reshape_param { shape { dim: 2  dim: 1  dim: 8  }  }
1283  //   reshape_param { shape { dim: 1 }  axis: 1  num_axes: 0 }
1284  //
1285  optional int32 axis = 2 [default = 0];
1286  optional int32 num_axes = 3 [default = -1];
1287}
1288
1289message ROIAlignParameter {
1290  // Pad, kernel size, and stride are all given as a single value for equal
1291  // dimensions in height and width or as Y, X pairs.
1292  optional uint32 pooled_h = 1 [default = 0]; // The pooled output height
1293  optional uint32 pooled_w = 2 [default = 0]; // The pooled output width
1294  // Multiplicative spatial scale factor to translate ROI coords from their
1295  // input scale to the scale used when pooling
1296  optional float spatial_scale = 3 [default = 1];
1297}
1298
1299// Message that stores parameters used by ROIPoolingLayer
1300message ROIPoolingParameter {
1301  // Pad, kernel size, and stride are all given as a single value for equal
1302  // dimensions in height and width or as Y, X pairs.
1303  optional uint32 pooled_h = 1 [default = 0]; // The pooled output height
1304  optional uint32 pooled_w = 2 [default = 0]; // The pooled output width
1305  // Multiplicative spatial scale factor to translate ROI coords from their
1306  // input scale to the scale used when pooling
1307  optional float spatial_scale = 3 [default = 1];
1308}
1309
1310message ScaleParameter {
1311  // The first axis of bottom[0] (the first input Blob) along which to apply
1312  // bottom[1] (the second input Blob).  May be negative to index from the end
1313  // (e.g., -1 for the last axis).
1314  //
1315  // For example, if bottom[0] is 4D with shape 100x3x40x60, the output
1316  // top[0] will have the same shape, and bottom[1] may have any of the
1317  // following shapes (for the given value of axis):
1318  //    (axis == 0 == -4) 100; 100x3; 100x3x40; 100x3x40x60
1319  //    (axis == 1 == -3)          3;     3x40;     3x40x60
1320  //    (axis == 2 == -2)                   40;       40x60
1321  //    (axis == 3 == -1)                                60
1322  // Furthermore, bottom[1] may have the empty shape (regardless of the value of
1323  // "axis") -- a scalar multiplier.
1324  optional int32 axis = 1 [default = 1];
1325
1326  // (num_axes is ignored unless just one bottom is given and the scale is
1327  // a learned parameter of the layer.  Otherwise, num_axes is determined by the
1328  // number of axes by the second bottom.)
1329  // The number of axes of the input (bottom[0]) covered by the scale
1330  // parameter, or -1 to cover all axes of bottom[0] starting from `axis`.
1331  // Set num_axes := 0, to multiply with a zero-axis Blob: a scalar.
1332  optional int32 num_axes = 2 [default = 1];
1333
1334  // (filler is ignored unless just one bottom is given and the scale is
1335  // a learned parameter of the layer.)
1336  // The initialization for the learned scale parameter.
1337  // Default is the unit (1) initialization, resulting in the ScaleLayer
1338  // initially performing the identity operation.
1339  optional FillerParameter filler = 3;
1340
1341  // Whether to also learn a bias (equivalent to a ScaleLayer+BiasLayer, but
1342  // may be more efficient).  Initialized with bias_filler (defaults to 0).
1343  optional bool bias_term = 4 [default = false];
1344  optional FillerParameter bias_filler = 5;
1345}
1346
1347message ShuffleChannelParameter {
1348  // first introduced by
1349  // "ShuffleNet: An Extremely Efficient Convolutional Neural Network
1350  // for Mobile Devices"
1351  optional uint32 group = 1[default = 1]; // The number of group
1352}
1353
1354message SigmoidParameter {
1355  enum Engine {
1356    DEFAULT = 0;
1357    CAFFE = 1;
1358    CUDNN = 2;
1359  }
1360  optional Engine engine = 1 [default = DEFAULT];
1361}
1362
1363message SmoothL1LossParameter {
1364  // SmoothL1Loss(x) =
1365  //   0.5 * (sigma * x) ** 2    -- if x < 1.0 / sigma / sigma
1366  //   |x| - 0.5 / sigma / sigma -- otherwise
1367  optional float sigma = 1 [default = 1];
1368}
1369
1370message SliceParameter {
1371  // The axis along which to slice -- may be negative to index from the end
1372  // (e.g., -1 for the last axis).
1373  // By default, SliceLayer concatenates blobs along the "channels" axis (1).
1374  optional int32 axis = 3 [default = 1];
1375  repeated uint32 slice_point = 2;
1376
1377  // DEPRECATED: alias for "axis" -- does not support negative indexing.
1378  optional uint32 slice_dim = 1 [default = 1];
1379}
1380
1381// Message that stores parameters used by SoftmaxLayer, SoftmaxWithLossLayer
1382message SoftmaxParameter {
1383  enum Engine {
1384    DEFAULT = 0;
1385    CAFFE = 1;
1386    CUDNN = 2;
1387  }
1388  optional Engine engine = 1 [default = DEFAULT];
1389
1390  // The axis along which to perform the softmax -- may be negative to index
1391  // from the end (e.g., -1 for the last axis).
1392  // Any other axes will be evaluated as independent softmaxes.
1393  optional int32 axis = 2 [default = 1];
1394}
1395
1396message TanHParameter {
1397  enum Engine {
1398    DEFAULT = 0;
1399    CAFFE = 1;
1400    CUDNN = 2;
1401  }
1402  optional Engine engine = 1 [default = DEFAULT];
1403}
1404
1405// Message that stores parameters used by TileLayer
1406message TileParameter {
1407  // The index of the axis to tile.
1408  optional int32 axis = 1 [default = 1];
1409
1410  // The number of copies (tiles) of the blob to output.
1411  optional int32 tiles = 2;
1412}
1413
1414// Message that stores parameters used by ThresholdLayer
1415message ThresholdParameter {
1416  optional float threshold = 1 [default = 0]; // Strictly positive values
1417}
1418
1419message WindowDataParameter {
1420  // Specify the data source.
1421  optional string source = 1;
1422  // For data pre-processing, we can do simple scaling and subtracting the
1423  // data mean, if provided. Note that the mean subtraction is always carried
1424  // out before scaling.
1425  optional float scale = 2 [default = 1];
1426  optional string mean_file = 3;
1427  // Specify the batch size.
1428  optional uint32 batch_size = 4;
1429  // Specify if we would like to randomly crop an image.
1430  optional uint32 crop_size = 5 [default = 0];
1431  // Specify if we want to randomly mirror data.
1432  optional bool mirror = 6 [default = false];
1433  // Foreground (object) overlap threshold
1434  optional float fg_threshold = 7 [default = 0.5];
1435  // Background (non-object) overlap threshold
1436  optional float bg_threshold = 8 [default = 0.5];
1437  // Fraction of batch that should be foreground objects
1438  optional float fg_fraction = 9 [default = 0.25];
1439  // Amount of contextual padding to add around a window
1440  // (used only by the window_data_layer)
1441  optional uint32 context_pad = 10 [default = 0];
1442  // Mode for cropping out a detection window
1443  // warp: cropped window is warped to a fixed size and aspect ratio
1444  // square: the tightest square around the window is cropped
1445  optional string crop_mode = 11 [default = "warp"];
1446  // cache_images: will load all images in memory for faster access
1447  optional bool cache_images = 12 [default = false];
1448  // append root_folder to locate images
1449  optional string root_folder = 13 [default = ""];
1450}
1451
1452message SPPParameter {
1453  enum PoolMethod {
1454    MAX = 0;
1455    AVE = 1;
1456    STOCHASTIC = 2;
1457  }
1458  optional uint32 pyramid_height = 1;
1459  optional PoolMethod pool = 2 [default = MAX]; // The pooling method
1460  enum Engine {
1461    DEFAULT = 0;
1462    CAFFE = 1;
1463    CUDNN = 2;
1464  }
1465  optional Engine engine = 6 [default = DEFAULT];
1466}
1467
1468// DEPRECATED: use LayerParameter.
1469message V1LayerParameter {
1470  repeated string bottom = 2;
1471  repeated string top = 3;
1472  optional string name = 4;
1473  repeated NetStateRule include = 32;
1474  repeated NetStateRule exclude = 33;
1475  enum LayerType {
1476    NONE = 0;
1477    ABSVAL = 35;
1478    ACCURACY = 1;
1479    ARGMAX = 30;
1480    BNLL = 2;
1481    CONCAT = 3;
1482    CONTRASTIVE_LOSS = 37;
1483    CONVOLUTION = 4;
1484    DATA = 5;
1485    DECONVOLUTION = 39;
1486    DROPOUT = 6;
1487    DUMMY_DATA = 32;
1488    EUCLIDEAN_LOSS = 7;
1489    ELTWISE = 25;
1490    EXP = 38;
1491    FLATTEN = 8;
1492    HDF5_DATA = 9;
1493    HDF5_OUTPUT = 10;
1494    HINGE_LOSS = 28;
1495    IM2COL = 11;
1496    IMAGE_DATA = 12;
1497    INFOGAIN_LOSS = 13;
1498    INNER_PRODUCT = 14;
1499    LRN = 15;
1500    MEMORY_DATA = 29;
1501    MULTINOMIAL_LOGISTIC_LOSS = 16;
1502    MVN = 34;
1503    POOLING = 17;
1504    POWER = 26;
1505    RELU = 18;
1506    SIGMOID = 19;
1507    SIGMOID_CROSS_ENTROPY_LOSS = 27;
1508    SILENCE = 36;
1509    SOFTMAX = 20;
1510    SOFTMAX_LOSS = 21;
1511    SPLIT = 22;
1512    SLICE = 33;
1513    TANH = 23;
1514    WINDOW_DATA = 24;
1515    THRESHOLD = 31;
1516  }
1517  optional LayerType type = 5;
1518  repeated BlobProto blobs = 6;
1519  repeated string param = 1001;
1520  repeated DimCheckMode blob_share_mode = 1002;
1521  enum DimCheckMode {
1522    STRICT = 0;
1523    PERMISSIVE = 1;
1524  }
1525  repeated float blobs_lr = 7;
1526  repeated float weight_decay = 8;
1527  repeated float loss_weight = 35;
1528  optional AccuracyParameter accuracy_param = 27;
1529  optional ArgMaxParameter argmax_param = 23;
1530  optional ConcatParameter concat_param = 9;
1531  optional ContrastiveLossParameter contrastive_loss_param = 40;
1532  optional ConvolutionParameter convolution_param = 10;
1533  optional DataParameter data_param = 11;
1534  optional DropoutParameter dropout_param = 12;
1535  optional DummyDataParameter dummy_data_param = 26;
1536  optional EltwiseParameter eltwise_param = 24;
1537  optional ExpParameter exp_param = 41;
1538  optional HDF5DataParameter hdf5_data_param = 13;
1539  optional HDF5OutputParameter hdf5_output_param = 14;
1540  optional HingeLossParameter hinge_loss_param = 29;
1541  optional ImageDataParameter image_data_param = 15;
1542  optional InfogainLossParameter infogain_loss_param = 16;
1543  optional InnerProductParameter inner_product_param = 17;
1544  optional LRNParameter lrn_param = 18;
1545  optional MemoryDataParameter memory_data_param = 22;
1546  optional MVNParameter mvn_param = 34;
1547  optional PoolingParameter pooling_param = 19;
1548  optional PowerParameter power_param = 21;
1549  optional ReLUParameter relu_param = 30;
1550  optional SigmoidParameter sigmoid_param = 38;
1551  optional SoftmaxParameter softmax_param = 39;
1552  optional SliceParameter slice_param = 31;
1553  optional TanHParameter tanh_param = 37;
1554  optional ThresholdParameter threshold_param = 25;
1555  optional WindowDataParameter window_data_param = 20;
1556  optional TransformationParameter transform_param = 36;
1557  optional LossParameter loss_param = 42;
1558  optional V0LayerParameter layer = 1;
1559}
1560
1561// DEPRECATED: V0LayerParameter is the old way of specifying layer parameters
1562// in Caffe.  We keep this message type around for legacy support.
1563message V0LayerParameter {
1564  optional string name = 1; // the layer name
1565  optional string type = 2; // the string to specify the layer type
1566
1567  // Parameters to specify layers with inner products.
1568  optional uint32 num_output = 3; // The number of outputs for the layer
1569  optional bool biasterm = 4 [default = true]; // whether to have bias terms
1570  optional FillerParameter weight_filler = 5; // The filler for the weight
1571  optional FillerParameter bias_filler = 6; // The filler for the bias
1572
1573  optional uint32 pad = 7 [default = 0]; // The padding size
1574  optional uint32 kernelsize = 8; // The kernel size
1575  optional uint32 group = 9 [default = 1]; // The group size for group conv
1576  optional uint32 stride = 10 [default = 1]; // The stride
1577  enum PoolMethod {
1578    MAX = 0;
1579    AVE = 1;
1580    STOCHASTIC = 2;
1581  }
1582  optional PoolMethod pool = 11 [default = MAX]; // The pooling method
1583  optional float dropout_ratio = 12 [default = 0.5]; // dropout ratio
1584
1585  optional uint32 local_size = 13 [default = 5]; // for local response norm
1586  optional float alpha = 14 [default = 1.]; // for local response norm
1587  optional float beta = 15 [default = 0.75]; // for local response norm
1588  optional float k = 22 [default = 1.];
1589
1590  // For data layers, specify the data source
1591  optional string source = 16;
1592  // For data pre-processing, we can do simple scaling and subtracting the
1593  // data mean, if provided. Note that the mean subtraction is always carried
1594  // out before scaling.
1595  optional float scale = 17 [default = 1];
1596  optional string meanfile = 18;
1597  // For data layers, specify the batch size.
1598  optional uint32 batchsize = 19;
1599  // For data layers, specify if we would like to randomly crop an image.
1600  optional uint32 cropsize = 20 [default = 0];
1601  // For data layers, specify if we want to randomly mirror data.
1602  optional bool mirror = 21 [default = false];
1603
1604  // The blobs containing the numeric parameters of the layer
1605  repeated BlobProto blobs = 50;
1606  // The ratio that is multiplied on the global learning rate. If you want to
1607  // set the learning ratio for one blob, you need to set it for all blobs.
1608  repeated float blobs_lr = 51;
1609  // The weight decay that is multiplied on the global weight decay.
1610  repeated float weight_decay = 52;
1611
1612  // The rand_skip variable is for the data layer to skip a few data points
1613  // to avoid all asynchronous sgd clients to start at the same point. The skip
1614  // point would be set as rand_skip * rand(0,1). Note that rand_skip should not
1615  // be larger than the number of keys in the database.
1616  optional uint32 rand_skip = 53 [default = 0];
1617
1618  // Fields related to detection (det_*)
1619  // foreground (object) overlap threshold
1620  optional float det_fg_threshold = 54 [default = 0.5];
1621  // background (non-object) overlap threshold
1622  optional float det_bg_threshold = 55 [default = 0.5];
1623  // Fraction of batch that should be foreground objects
1624  optional float det_fg_fraction = 56 [default = 0.25];
1625
1626  // optional bool OBSOLETE_can_clobber = 57 [default = true];
1627
1628  // Amount of contextual padding to add around a window
1629  // (used only by the window_data_layer)
1630  optional uint32 det_context_pad = 58 [default = 0];
1631
1632  // Mode for cropping out a detection window
1633  // warp: cropped window is warped to a fixed size and aspect ratio
1634  // square: the tightest square around the window is cropped
1635  optional string det_crop_mode = 59 [default = "warp"];
1636
1637  // For ReshapeLayer, one needs to specify the new dimensions.
1638  optional int32 new_num = 60 [default = 0];
1639  optional int32 new_channels = 61 [default = 0];
1640  optional int32 new_height = 62 [default = 0];
1641  optional int32 new_width = 63 [default = 0];
1642
1643  // Whether or not ImageLayer should shuffle the list of files at every epoch.
1644  // It will also resize images if new_height or new_width are not zero.
1645  optional bool shuffle_images = 64 [default = false];
1646
1647  // For ConcatLayer, one needs to specify the dimension for concatenation, and
1648  // the other dimensions must be the same for all the bottom blobs.
1649  // By default it will concatenate blobs along the channels dimension.
1650  optional uint32 concat_dim = 65 [default = 1];
1651
1652  optional HDF5OutputParameter hdf5_output_param = 1001;
1653}
1654
1655message PReLUParameter {
1656  // Parametric ReLU described in K. He et al, Delving Deep into Rectifiers:
1657  // Surpassing Human-Level Performance on ImageNet Classification, 2015.
1658
1659  // Initial value of a_i. Default is a_i=0.25 for all i.
1660  optional FillerParameter filler = 1;
1661  // Whether or not slope paramters are shared across channels.
1662  optional bool channel_shared = 2 [default = false];
1663}
1664