1 /*
2  *
3  * Copyright (c) 2004
4  * John Maddock
5  *
6  * Use, modification and distribution are subject to the
7  * Boost Software License, Version 1.0. (See accompanying file
8  * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
9  *
10  */
11 
12  /*
13   *   LOCATION:    see http://www.boost.org for most recent version.
14   *   FILE         basic_regex_creator.cpp
15   *   VERSION      see <boost/version.hpp>
16   *   DESCRIPTION: Declares template class basic_regex_creator which fills in
17   *                the data members of a regex_data object.
18   */
19 
20 #ifndef BOOST_REGEX_V4_BASIC_REGEX_CREATOR_HPP
21 #define BOOST_REGEX_V4_BASIC_REGEX_CREATOR_HPP
22 
23 #ifdef BOOST_HAS_ABI_HEADERS
24 #  include BOOST_ABI_PREFIX
25 #endif
26 
27 namespace boost{
28 
29 namespace re_detail{
30 
31 template <class charT>
32 struct digraph : public std::pair<charT, charT>
33 {
digraphboost::re_detail::digraph34    digraph() : std::pair<charT, charT>(0, 0){}
digraphboost::re_detail::digraph35    digraph(charT c1) : std::pair<charT, charT>(c1, 0){}
digraphboost::re_detail::digraph36    digraph(charT c1, charT c2) : std::pair<charT, charT>(c1, c2)
37    {}
38 #if !BOOST_WORKAROUND(BOOST_MSVC, < 1300)
digraphboost::re_detail::digraph39    digraph(const digraph<charT>& d) : std::pair<charT, charT>(d.first, d.second){}
40 #endif
41    template <class Seq>
digraphboost::re_detail::digraph42    digraph(const Seq& s) : std::pair<charT, charT>()
43    {
44       BOOST_ASSERT(s.size() <= 2);
45       BOOST_ASSERT(s.size());
46       this->first = s[0];
47       this->second = (s.size() > 1) ? s[1] : 0;
48    }
49 };
50 
51 template <class charT, class traits>
52 class basic_char_set
53 {
54 public:
55    typedef digraph<charT>                   digraph_type;
56    typedef typename traits::string_type     string_type;
57    typedef typename traits::char_class_type mask_type;
58 
basic_char_set()59    basic_char_set()
60    {
61       m_negate = false;
62       m_has_digraphs = false;
63       m_classes = 0;
64       m_negated_classes = 0;
65       m_empty = true;
66    }
67 
add_single(const digraph_type & s)68    void add_single(const digraph_type& s)
69    {
70       m_singles.insert(m_singles.end(), s);
71       if(s.second)
72          m_has_digraphs = true;
73       m_empty = false;
74    }
add_range(const digraph_type & first,const digraph_type & end)75    void add_range(const digraph_type& first, const digraph_type& end)
76    {
77       m_ranges.insert(m_ranges.end(), first);
78       m_ranges.insert(m_ranges.end(), end);
79       if(first.second)
80       {
81          m_has_digraphs = true;
82          add_single(first);
83       }
84       if(end.second)
85       {
86          m_has_digraphs = true;
87          add_single(end);
88       }
89       m_empty = false;
90    }
add_class(mask_type m)91    void add_class(mask_type m)
92    {
93       m_classes |= m;
94       m_empty = false;
95    }
add_negated_class(mask_type m)96    void add_negated_class(mask_type m)
97    {
98       m_negated_classes |= m;
99       m_empty = false;
100    }
add_equivalent(const digraph_type & s)101    void add_equivalent(const digraph_type& s)
102    {
103       m_equivalents.insert(m_equivalents.end(), s);
104       if(s.second)
105       {
106          m_has_digraphs = true;
107          add_single(s);
108       }
109       m_empty = false;
110    }
negate()111    void negate()
112    {
113       m_negate = true;
114       //m_empty = false;
115    }
116 
117    //
118    // accessor functions:
119    //
has_digraphs() const120    bool has_digraphs()const
121    {
122       return m_has_digraphs;
123    }
is_negated() const124    bool is_negated()const
125    {
126       return m_negate;
127    }
128    typedef typename std::vector<digraph_type>::const_iterator  list_iterator;
singles_begin() const129    list_iterator singles_begin()const
130    {
131       return m_singles.begin();
132    }
singles_end() const133    list_iterator singles_end()const
134    {
135       return m_singles.end();
136    }
ranges_begin() const137    list_iterator ranges_begin()const
138    {
139       return m_ranges.begin();
140    }
ranges_end() const141    list_iterator ranges_end()const
142    {
143       return m_ranges.end();
144    }
equivalents_begin() const145    list_iterator equivalents_begin()const
146    {
147       return m_equivalents.begin();
148    }
equivalents_end() const149    list_iterator equivalents_end()const
150    {
151       return m_equivalents.end();
152    }
classes() const153    mask_type classes()const
154    {
155       return m_classes;
156    }
negated_classes() const157    mask_type negated_classes()const
158    {
159       return m_negated_classes;
160    }
empty() const161    bool empty()const
162    {
163       return m_empty;
164    }
165 private:
166    std::vector<digraph_type> m_singles;         // a list of single characters to match
167    std::vector<digraph_type> m_ranges;          // a list of end points of our ranges
168    bool                      m_negate;          // true if the set is to be negated
169    bool                      m_has_digraphs;    // true if we have digraphs present
170    mask_type                 m_classes;         // character classes to match
171    mask_type                 m_negated_classes; // negated character classes to match
172    bool                      m_empty;           // whether we've added anything yet
173    std::vector<digraph_type> m_equivalents;     // a list of equivalence classes
174 };
175 
176 template <class charT, class traits>
177 class basic_regex_creator
178 {
179 public:
180    basic_regex_creator(regex_data<charT, traits>* data);
getoffset(void * addr)181    std::ptrdiff_t getoffset(void* addr)
182    {
183       return getoffset(addr, m_pdata->m_data.data());
184    }
getoffset(const void * addr,const void * base)185    std::ptrdiff_t getoffset(const void* addr, const void* base)
186    {
187       return static_cast<const char*>(addr) - static_cast<const char*>(base);
188    }
getaddress(std::ptrdiff_t off)189    re_syntax_base* getaddress(std::ptrdiff_t off)
190    {
191       return getaddress(off, m_pdata->m_data.data());
192    }
getaddress(std::ptrdiff_t off,void * base)193    re_syntax_base* getaddress(std::ptrdiff_t off, void* base)
194    {
195       return static_cast<re_syntax_base*>(static_cast<void*>(static_cast<char*>(base) + off));
196    }
init(unsigned flags)197    void init(unsigned flags)
198    {
199       m_pdata->m_flags = flags;
200       m_icase = flags & regex_constants::icase;
201    }
flags()202    regbase::flag_type flags()
203    {
204       return m_pdata->m_flags;
205    }
flags(regbase::flag_type f)206    void flags(regbase::flag_type f)
207    {
208       m_pdata->m_flags = f;
209       if(m_icase != static_cast<bool>(f & regbase::icase))
210       {
211          m_icase = static_cast<bool>(f & regbase::icase);
212       }
213    }
214    re_syntax_base* append_state(syntax_element_type t, std::size_t s = sizeof(re_syntax_base));
215    re_syntax_base* insert_state(std::ptrdiff_t pos, syntax_element_type t, std::size_t s = sizeof(re_syntax_base));
216    re_literal* append_literal(charT c);
217    re_syntax_base* append_set(const basic_char_set<charT, traits>& char_set);
218    re_syntax_base* append_set(const basic_char_set<charT, traits>& char_set, mpl::false_*);
219    re_syntax_base* append_set(const basic_char_set<charT, traits>& char_set, mpl::true_*);
220    void finalize(const charT* p1, const charT* p2);
221 protected:
222    regex_data<charT, traits>*    m_pdata;              // pointer to the basic_regex_data struct we are filling in
223    const ::boost::regex_traits_wrapper<traits>&
224                                  m_traits;             // convenience reference to traits class
225    re_syntax_base*               m_last_state;         // the last state we added
226    bool                          m_icase;              // true for case insensitive matches
227    unsigned                      m_repeater_id;        // the id of the next repeater
228    bool                          m_has_backrefs;       // true if there are actually any backrefs
229    unsigned                      m_backrefs;           // bitmask of permitted backrefs
230    boost::uintmax_t              m_bad_repeats;        // bitmask of repeats we can't deduce a startmap for;
231    typename traits::char_class_type m_word_mask;       // mask used to determine if a character is a word character
232    typename traits::char_class_type m_mask_space;      // mask used to determine if a character is a word character
233    typename traits::char_class_type m_lower_mask;       // mask used to determine if a character is a lowercase character
234    typename traits::char_class_type m_upper_mask;      // mask used to determine if a character is an uppercase character
235    typename traits::char_class_type m_alpha_mask;      // mask used to determine if a character is an alphabetic character
236 private:
237    basic_regex_creator& operator=(const basic_regex_creator&);
238    basic_regex_creator(const basic_regex_creator&);
239 
240    void fixup_pointers(re_syntax_base* state);
241    void create_startmaps(re_syntax_base* state);
242    int calculate_backstep(re_syntax_base* state);
243    void create_startmap(re_syntax_base* state, unsigned char* l_map, unsigned int* pnull, unsigned char mask);
244    unsigned get_restart_type(re_syntax_base* state);
245    void set_all_masks(unsigned char* bits, unsigned char);
246    bool is_bad_repeat(re_syntax_base* pt);
247    void set_bad_repeat(re_syntax_base* pt);
248    syntax_element_type get_repeat_type(re_syntax_base* state);
249    void probe_leading_repeat(re_syntax_base* state);
250 };
251 
252 template <class charT, class traits>
basic_regex_creator(regex_data<charT,traits> * data)253 basic_regex_creator<charT, traits>::basic_regex_creator(regex_data<charT, traits>* data)
254    : m_pdata(data), m_traits(*(data->m_ptraits)), m_last_state(0), m_repeater_id(0), m_has_backrefs(false), m_backrefs(0)
255 {
256    m_pdata->m_data.clear();
257    m_pdata->m_status = ::boost::regex_constants::error_ok;
258    static const charT w = 'w';
259    static const charT s = 's';
260    static const charT l[5] = { 'l', 'o', 'w', 'e', 'r', };
261    static const charT u[5] = { 'u', 'p', 'p', 'e', 'r', };
262    static const charT a[5] = { 'a', 'l', 'p', 'h', 'a', };
263    m_word_mask = m_traits.lookup_classname(&w, &w +1);
264    m_mask_space = m_traits.lookup_classname(&s, &s +1);
265    m_lower_mask = m_traits.lookup_classname(l, l + 5);
266    m_upper_mask = m_traits.lookup_classname(u, u + 5);
267    m_alpha_mask = m_traits.lookup_classname(a, a + 5);
268    BOOST_ASSERT(m_word_mask != 0);
269    BOOST_ASSERT(m_mask_space != 0);
270    BOOST_ASSERT(m_lower_mask != 0);
271    BOOST_ASSERT(m_upper_mask != 0);
272    BOOST_ASSERT(m_alpha_mask != 0);
273 }
274 
275 template <class charT, class traits>
append_state(syntax_element_type t,std::size_t s)276 re_syntax_base* basic_regex_creator<charT, traits>::append_state(syntax_element_type t, std::size_t s)
277 {
278    // if the state is a backref then make a note of it:
279    if(t == syntax_element_backref)
280       this->m_has_backrefs = true;
281    // append a new state, start by aligning our last one:
282    m_pdata->m_data.align();
283    // set the offset to the next state in our last one:
284    if(m_last_state)
285       m_last_state->next.i = m_pdata->m_data.size() - getoffset(m_last_state);
286    // now actually extent our data:
287    m_last_state = static_cast<re_syntax_base*>(m_pdata->m_data.extend(s));
288    // fill in boilerplate options in the new state:
289    m_last_state->next.i = 0;
290    m_last_state->type = t;
291    return m_last_state;
292 }
293 
294 template <class charT, class traits>
insert_state(std::ptrdiff_t pos,syntax_element_type t,std::size_t s)295 re_syntax_base* basic_regex_creator<charT, traits>::insert_state(std::ptrdiff_t pos, syntax_element_type t, std::size_t s)
296 {
297    // append a new state, start by aligning our last one:
298    m_pdata->m_data.align();
299    // set the offset to the next state in our last one:
300    if(m_last_state)
301       m_last_state->next.i = m_pdata->m_data.size() - getoffset(m_last_state);
302    // remember the last state position:
303    std::ptrdiff_t off = getoffset(m_last_state) + s;
304    // now actually insert our data:
305    re_syntax_base* new_state = static_cast<re_syntax_base*>(m_pdata->m_data.insert(pos, s));
306    // fill in boilerplate options in the new state:
307    new_state->next.i = s;
308    new_state->type = t;
309    m_last_state = getaddress(off);
310    return new_state;
311 }
312 
313 template <class charT, class traits>
append_literal(charT c)314 re_literal* basic_regex_creator<charT, traits>::append_literal(charT c)
315 {
316    re_literal* result;
317    // start by seeing if we have an existing re_literal we can extend:
318    if((0 == m_last_state) || (m_last_state->type != syntax_element_literal))
319    {
320       // no existing re_literal, create a new one:
321       result = static_cast<re_literal*>(append_state(syntax_element_literal, sizeof(re_literal) + sizeof(charT)));
322       result->length = 1;
323       *static_cast<charT*>(static_cast<void*>(result+1)) = m_traits.translate(c, m_icase);
324    }
325    else
326    {
327       // we have an existing re_literal, extend it:
328       std::ptrdiff_t off = getoffset(m_last_state);
329       m_pdata->m_data.extend(sizeof(charT));
330       m_last_state = result = static_cast<re_literal*>(getaddress(off));
331       charT* characters = static_cast<charT*>(static_cast<void*>(result+1));
332       characters[result->length] = m_traits.translate(c, m_icase);
333       ++(result->length);
334    }
335    return result;
336 }
337 
338 template <class charT, class traits>
append_set(const basic_char_set<charT,traits> & char_set)339 inline re_syntax_base* basic_regex_creator<charT, traits>::append_set(
340    const basic_char_set<charT, traits>& char_set)
341 {
342    typedef mpl::bool_< (sizeof(charT) == 1) > truth_type;
343    return char_set.has_digraphs()
344       ? append_set(char_set, static_cast<mpl::false_*>(0))
345       : append_set(char_set, static_cast<truth_type*>(0));
346 }
347 
348 template <class charT, class traits>
append_set(const basic_char_set<charT,traits> & char_set,mpl::false_ *)349 re_syntax_base* basic_regex_creator<charT, traits>::append_set(
350    const basic_char_set<charT, traits>& char_set, mpl::false_*)
351 {
352    typedef typename traits::string_type string_type;
353    typedef typename basic_char_set<charT, traits>::list_iterator item_iterator;
354    typedef typename traits::char_class_type mask_type;
355 
356    re_set_long<mask_type>* result = static_cast<re_set_long<mask_type>*>(append_state(syntax_element_long_set, sizeof(re_set_long<mask_type>)));
357    //
358    // fill in the basics:
359    //
360    result->csingles = static_cast<unsigned int>(::boost::re_detail::distance(char_set.singles_begin(), char_set.singles_end()));
361    result->cranges = static_cast<unsigned int>(::boost::re_detail::distance(char_set.ranges_begin(), char_set.ranges_end())) / 2;
362    result->cequivalents = static_cast<unsigned int>(::boost::re_detail::distance(char_set.equivalents_begin(), char_set.equivalents_end()));
363    result->cclasses = char_set.classes();
364    result->cnclasses = char_set.negated_classes();
365    if(flags() & regbase::icase)
366    {
367       // adjust classes as needed:
368       if(((result->cclasses & m_lower_mask) == m_lower_mask) || ((result->cclasses & m_upper_mask) == m_upper_mask))
369          result->cclasses |= m_alpha_mask;
370       if(((result->cnclasses & m_lower_mask) == m_lower_mask) || ((result->cnclasses & m_upper_mask) == m_upper_mask))
371          result->cnclasses |= m_alpha_mask;
372    }
373 
374    result->isnot = char_set.is_negated();
375    result->singleton = !char_set.has_digraphs();
376    //
377    // remember where the state is for later:
378    //
379    std::ptrdiff_t offset = getoffset(result);
380    //
381    // now extend with all the singles:
382    //
383    item_iterator first, last;
384    first = char_set.singles_begin();
385    last = char_set.singles_end();
386    while(first != last)
387    {
388       charT* p = static_cast<charT*>(this->m_pdata->m_data.extend(sizeof(charT) * (first->second ? 3 : 2)));
389       p[0] = m_traits.translate(first->first, m_icase);
390       if(first->second)
391       {
392          p[1] = m_traits.translate(first->second, m_icase);
393          p[2] = 0;
394       }
395       else
396          p[1] = 0;
397       ++first;
398    }
399    //
400    // now extend with all the ranges:
401    //
402    first = char_set.ranges_begin();
403    last = char_set.ranges_end();
404    while(first != last)
405    {
406       // first grab the endpoints of the range:
407       digraph<charT> c1 = *first;
408       c1.first = this->m_traits.translate(c1.first, this->m_icase);
409       c1.second = this->m_traits.translate(c1.second, this->m_icase);
410       ++first;
411       digraph<charT> c2 = *first;
412       c2.first = this->m_traits.translate(c2.first, this->m_icase);
413       c2.second = this->m_traits.translate(c2.second, this->m_icase);
414       ++first;
415       string_type s1, s2;
416       // different actions now depending upon whether collation is turned on:
417       if(flags() & regex_constants::collate)
418       {
419          // we need to transform our range into sort keys:
420 #if BOOST_WORKAROUND(__GNUC__, < 3)
421          string_type in(3, charT(0));
422          in[0] = c1.first;
423          in[1] = c1.second;
424          s1 = this->m_traits.transform(in.c_str(), (in[1] ? in.c_str()+2 : in.c_str()+1));
425          in[0] = c2.first;
426          in[1] = c2.second;
427          s2 = this->m_traits.transform(in.c_str(), (in[1] ? in.c_str()+2 : in.c_str()+1));
428 #else
429          charT a1[3] = { c1.first, c1.second, charT(0), };
430          charT a2[3] = { c2.first, c2.second, charT(0), };
431          s1 = this->m_traits.transform(a1, (a1[1] ? a1+2 : a1+1));
432          s2 = this->m_traits.transform(a2, (a2[1] ? a2+2 : a2+1));
433 #endif
434          if(s1.size() == 0)
435             s1 = string_type(1, charT(0));
436          if(s2.size() == 0)
437             s2 = string_type(1, charT(0));
438       }
439       else
440       {
441          if(c1.second)
442          {
443             s1.insert(s1.end(), c1.first);
444             s1.insert(s1.end(), c1.second);
445          }
446          else
447             s1 = string_type(1, c1.first);
448          if(c2.second)
449          {
450             s2.insert(s2.end(), c2.first);
451             s2.insert(s2.end(), c2.second);
452          }
453          else
454             s2.insert(s2.end(), c2.first);
455       }
456       if(s1 > s2)
457       {
458          // Oops error:
459          return 0;
460       }
461       charT* p = static_cast<charT*>(this->m_pdata->m_data.extend(sizeof(charT) * (s1.size() + s2.size() + 2) ) );
462       re_detail::copy(s1.begin(), s1.end(), p);
463       p[s1.size()] = charT(0);
464       p += s1.size() + 1;
465       re_detail::copy(s2.begin(), s2.end(), p);
466       p[s2.size()] = charT(0);
467    }
468    //
469    // now process the equivalence classes:
470    //
471    first = char_set.equivalents_begin();
472    last = char_set.equivalents_end();
473    while(first != last)
474    {
475       string_type s;
476       if(first->second)
477       {
478 #if BOOST_WORKAROUND(__GNUC__, < 3)
479          string_type in(3, charT(0));
480          in[0] = first->first;
481          in[1] = first->second;
482          s = m_traits.transform_primary(in.c_str(), in.c_str()+2);
483 #else
484          charT cs[3] = { first->first, first->second, charT(0), };
485          s = m_traits.transform_primary(cs, cs+2);
486 #endif
487       }
488       else
489          s = m_traits.transform_primary(&first->first, &first->first+1);
490       if(s.empty())
491          return 0;  // invalid or unsupported equivalence class
492       charT* p = static_cast<charT*>(this->m_pdata->m_data.extend(sizeof(charT) * (s.size()+1) ) );
493       re_detail::copy(s.begin(), s.end(), p);
494       p[s.size()] = charT(0);
495       ++first;
496    }
497    //
498    // finally reset the address of our last state:
499    //
500    m_last_state = result = static_cast<re_set_long<mask_type>*>(getaddress(offset));
501    return result;
502 }
503 
504 namespace{
505 
506 template<class T>
char_less(T t1,T t2)507 inline bool char_less(T t1, T t2)
508 {
509    return t1 < t2;
510 }
511 template<>
char_less(char t1,char t2)512 inline bool char_less<char>(char t1, char t2)
513 {
514    return static_cast<unsigned char>(t1) < static_cast<unsigned char>(t2);
515 }
516 template<>
char_less(signed char t1,signed char t2)517 inline bool char_less<signed char>(signed char t1, signed char t2)
518 {
519    return static_cast<unsigned char>(t1) < static_cast<unsigned char>(t2);
520 }
521 }
522 
523 template <class charT, class traits>
append_set(const basic_char_set<charT,traits> & char_set,mpl::true_ *)524 re_syntax_base* basic_regex_creator<charT, traits>::append_set(
525    const basic_char_set<charT, traits>& char_set, mpl::true_*)
526 {
527    typedef typename traits::string_type string_type;
528    typedef typename basic_char_set<charT, traits>::list_iterator item_iterator;
529 
530    re_set* result = static_cast<re_set*>(append_state(syntax_element_set, sizeof(re_set)));
531    bool negate = char_set.is_negated();
532    std::memset(result->_map, 0, sizeof(result->_map));
533    //
534    // handle singles first:
535    //
536    item_iterator first, last;
537    first = char_set.singles_begin();
538    last = char_set.singles_end();
539    while(first != last)
540    {
541       for(unsigned int i = 0; i < (1 << CHAR_BIT); ++i)
542       {
543          if(this->m_traits.translate(static_cast<charT>(i), this->m_icase)
544             == this->m_traits.translate(first->first, this->m_icase))
545             result->_map[i] = true;
546       }
547       ++first;
548    }
549    //
550    // OK now handle ranges:
551    //
552    first = char_set.ranges_begin();
553    last = char_set.ranges_end();
554    while(first != last)
555    {
556       // first grab the endpoints of the range:
557       charT c1 = this->m_traits.translate(first->first, this->m_icase);
558       ++first;
559       charT c2 = this->m_traits.translate(first->first, this->m_icase);
560       ++first;
561       // different actions now depending upon whether collation is turned on:
562       if(flags() & regex_constants::collate)
563       {
564          // we need to transform our range into sort keys:
565          charT c3[2] = { c1, charT(0), };
566          string_type s1 = this->m_traits.transform(c3, c3+1);
567          c3[0] = c2;
568          string_type s2 = this->m_traits.transform(c3, c3+1);
569          if(s1 > s2)
570          {
571             // Oops error:
572             return 0;
573          }
574          for(unsigned i = 0; i < (1u << CHAR_BIT); ++i)
575          {
576             charT c3[2] = { static_cast<charT>(i), charT(0), };
577             string_type s3 = this->m_traits.transform(c3, c3 +1);
578             if((s1 <= s3) && (s3 <= s2))
579                result->_map[i] = true;
580          }
581       }
582       else
583       {
584          if(char_less<charT>(c2, c1))
585          {
586             // Oops error:
587             return 0;
588          }
589          // everything in range matches:
590          std::memset(result->_map + static_cast<unsigned char>(c1), true, 1 + static_cast<unsigned char>(c2) - static_cast<unsigned char>(c1));
591       }
592    }
593    //
594    // and now the classes:
595    //
596    typedef typename traits::char_class_type mask_type;
597    mask_type m = char_set.classes();
598    if(flags() & regbase::icase)
599    {
600       // adjust m as needed:
601       if(((m & m_lower_mask) == m_lower_mask) || ((m & m_upper_mask) == m_upper_mask))
602          m |= m_alpha_mask;
603    }
604    if(m != 0)
605    {
606       for(unsigned i = 0; i < (1u << CHAR_BIT); ++i)
607       {
608          if(this->m_traits.isctype(static_cast<charT>(i), m))
609             result->_map[i] = true;
610       }
611    }
612    //
613    // and now the negated classes:
614    //
615    m = char_set.negated_classes();
616    if(flags() & regbase::icase)
617    {
618       // adjust m as needed:
619       if(((m & m_lower_mask) == m_lower_mask) || ((m & m_upper_mask) == m_upper_mask))
620          m |= m_alpha_mask;
621    }
622    if(m != 0)
623    {
624       for(unsigned i = 0; i < (1u << CHAR_BIT); ++i)
625       {
626          if(0 == this->m_traits.isctype(static_cast<charT>(i), m))
627             result->_map[i] = true;
628       }
629    }
630    //
631    // now process the equivalence classes:
632    //
633    first = char_set.equivalents_begin();
634    last = char_set.equivalents_end();
635    while(first != last)
636    {
637       string_type s;
638       BOOST_ASSERT(static_cast<charT>(0) == first->second);
639       s = m_traits.transform_primary(&first->first, &first->first+1);
640       if(s.empty())
641          return 0;  // invalid or unsupported equivalence class
642       for(unsigned i = 0; i < (1u << CHAR_BIT); ++i)
643       {
644          charT c[2] = { (static_cast<charT>(i)), charT(0), };
645          string_type s2 = this->m_traits.transform_primary(c, c+1);
646          if(s == s2)
647             result->_map[i] = true;
648       }
649       ++first;
650    }
651    if(negate)
652    {
653       for(unsigned i = 0; i < (1u << CHAR_BIT); ++i)
654       {
655          result->_map[i] = !(result->_map[i]);
656       }
657    }
658    return result;
659 }
660 
661 template <class charT, class traits>
finalize(const charT * p1,const charT * p2)662 void basic_regex_creator<charT, traits>::finalize(const charT* p1, const charT* p2)
663 {
664    // we've added all the states we need, now finish things off.
665    // start by adding a terminating state:
666    append_state(syntax_element_match);
667    // extend storage to store original expression:
668    std::ptrdiff_t len = p2 - p1;
669    m_pdata->m_expression_len = len;
670    charT* ps = static_cast<charT*>(m_pdata->m_data.extend(sizeof(charT) * (1 + (p2 - p1))));
671    m_pdata->m_expression = ps;
672    re_detail::copy(p1, p2, ps);
673    ps[p2 - p1] = 0;
674    // fill in our other data...
675    // successful parsing implies a zero status:
676    m_pdata->m_status = 0;
677    // get the first state of the machine:
678    m_pdata->m_first_state = static_cast<re_syntax_base*>(m_pdata->m_data.data());
679    // fixup pointers in the machine:
680    fixup_pointers(m_pdata->m_first_state);
681    // create nested startmaps:
682    create_startmaps(m_pdata->m_first_state);
683    // create main startmap:
684    std::memset(m_pdata->m_startmap, 0, sizeof(m_pdata->m_startmap));
685    m_pdata->m_can_be_null = 0;
686 
687    m_bad_repeats = 0;
688    create_startmap(m_pdata->m_first_state, m_pdata->m_startmap, &(m_pdata->m_can_be_null), mask_all);
689    // get the restart type:
690    m_pdata->m_restart_type = get_restart_type(m_pdata->m_first_state);
691    // optimise a leading repeat if there is one:
692    probe_leading_repeat(m_pdata->m_first_state);
693 }
694 
695 template <class charT, class traits>
fixup_pointers(re_syntax_base * state)696 void basic_regex_creator<charT, traits>::fixup_pointers(re_syntax_base* state)
697 {
698    while(state)
699    {
700       switch(state->type)
701       {
702       case syntax_element_rep:
703       case syntax_element_dot_rep:
704       case syntax_element_char_rep:
705       case syntax_element_short_set_rep:
706       case syntax_element_long_set_rep:
707          // set the id of this repeat:
708          static_cast<re_repeat*>(state)->id = m_repeater_id++;
709          // fall through:
710       case syntax_element_alt:
711          std::memset(static_cast<re_alt*>(state)->_map, 0, sizeof(static_cast<re_alt*>(state)->_map));
712          static_cast<re_alt*>(state)->can_be_null = 0;
713          // fall through:
714       case syntax_element_jump:
715          static_cast<re_jump*>(state)->alt.p = getaddress(static_cast<re_jump*>(state)->alt.i, state);
716          // fall through again:
717       default:
718          if(state->next.i)
719             state->next.p = getaddress(state->next.i, state);
720          else
721             state->next.p = 0;
722       }
723       state = state->next.p;
724    }
725 }
726 
727 template <class charT, class traits>
create_startmaps(re_syntax_base * state)728 void basic_regex_creator<charT, traits>::create_startmaps(re_syntax_base* state)
729 {
730    // non-recursive implementation:
731    // create the last map in the machine first, so that earlier maps
732    // can make use of the result...
733    //
734    // This was originally a recursive implementation, but that caused stack
735    // overflows with complex expressions on small stacks (think COM+).
736 
737    // start by saving the case setting:
738    bool l_icase = m_icase;
739    std::vector<std::pair<bool, re_syntax_base*> > v;
740 
741    while(state)
742    {
743       switch(state->type)
744       {
745       case syntax_element_toggle_case:
746          // we need to track case changes here:
747          m_icase = static_cast<re_case*>(state)->icase;
748          state = state->next.p;
749          continue;
750       case syntax_element_alt:
751       case syntax_element_rep:
752       case syntax_element_dot_rep:
753       case syntax_element_char_rep:
754       case syntax_element_short_set_rep:
755       case syntax_element_long_set_rep:
756          // just push the state onto our stack for now:
757          v.push_back(std::pair<bool, re_syntax_base*>(m_icase, state));
758          state = state->next.p;
759          break;
760       case syntax_element_backstep:
761          // we need to calculate how big the backstep is:
762          static_cast<re_brace*>(state)->index
763             = this->calculate_backstep(state->next.p);
764          if(static_cast<re_brace*>(state)->index < 0)
765          {
766             // Oops error:
767             if(0 == this->m_pdata->m_status) // update the error code if not already set
768                this->m_pdata->m_status = boost::regex_constants::error_bad_pattern;
769             //
770             // clear the expression, we should be empty:
771             //
772             this->m_pdata->m_expression = 0;
773             this->m_pdata->m_expression_len = 0;
774             //
775             // and throw if required:
776             //
777             if(0 == (this->flags() & regex_constants::no_except))
778             {
779                std::string message = this->m_pdata->m_ptraits->error_string(boost::regex_constants::error_bad_pattern);
780                boost::regex_error e(message, boost::regex_constants::error_bad_pattern, 0);
781                e.raise();
782             }
783          }
784          // fall through:
785       default:
786          state = state->next.p;
787       }
788    }
789    // now work through our list, building all the maps as we go:
790    while(v.size())
791    {
792       const std::pair<bool, re_syntax_base*>& p = v.back();
793       m_icase = p.first;
794       state = p.second;
795       v.pop_back();
796 
797       // Build maps:
798       create_startmap(state->next.p, static_cast<re_alt*>(state)->_map, &static_cast<re_alt*>(state)->can_be_null, mask_take);
799       m_bad_repeats = 0;
800       create_startmap(static_cast<re_alt*>(state)->alt.p, static_cast<re_alt*>(state)->_map, &static_cast<re_alt*>(state)->can_be_null, mask_skip);
801       // adjust the type of the state to allow for faster matching:
802       state->type = this->get_repeat_type(state);
803    }
804    // restore case sensitivity:
805    m_icase = l_icase;
806 }
807 
808 template <class charT, class traits>
calculate_backstep(re_syntax_base * state)809 int basic_regex_creator<charT, traits>::calculate_backstep(re_syntax_base* state)
810 {
811    typedef typename traits::char_class_type mask_type;
812    int result = 0;
813    while(state)
814    {
815       switch(state->type)
816       {
817       case syntax_element_startmark:
818          if((static_cast<re_brace*>(state)->index == -1)
819             || (static_cast<re_brace*>(state)->index == -2))
820          {
821             state = static_cast<re_jump*>(state->next.p)->alt.p->next.p;
822             continue;
823          }
824          else if(static_cast<re_brace*>(state)->index == -3)
825          {
826             state = state->next.p->next.p;
827             continue;
828          }
829          break;
830       case syntax_element_endmark:
831          if((static_cast<re_brace*>(state)->index == -1)
832             || (static_cast<re_brace*>(state)->index == -2))
833             return result;
834          break;
835       case syntax_element_literal:
836          result += static_cast<re_literal*>(state)->length;
837          break;
838       case syntax_element_wild:
839       case syntax_element_set:
840          result += 1;
841          break;
842       case syntax_element_dot_rep:
843       case syntax_element_char_rep:
844       case syntax_element_short_set_rep:
845       case syntax_element_backref:
846       case syntax_element_rep:
847       case syntax_element_combining:
848       case syntax_element_long_set_rep:
849       case syntax_element_backstep:
850          {
851             re_repeat* rep = static_cast<re_repeat *>(state);
852             // adjust the type of the state to allow for faster matching:
853             state->type = this->get_repeat_type(state);
854             if((state->type == syntax_element_dot_rep)
855                || (state->type == syntax_element_char_rep)
856                || (state->type == syntax_element_short_set_rep))
857             {
858                if(rep->max != rep->min)
859                   return -1;
860                result += static_cast<int>(rep->min);
861                state = rep->alt.p;
862                continue;
863             }
864             else if((state->type == syntax_element_long_set_rep))
865             {
866                BOOST_ASSERT(rep->next.p->type == syntax_element_long_set);
867                if(static_cast<re_set_long<mask_type>*>(rep->next.p)->singleton == 0)
868                   return -1;
869                if(rep->max != rep->min)
870                   return -1;
871                result += static_cast<int>(rep->min);
872                state = rep->alt.p;
873                continue;
874             }
875          }
876          return -1;
877       case syntax_element_long_set:
878          if(static_cast<re_set_long<mask_type>*>(state)->singleton == 0)
879             return -1;
880          result += 1;
881          break;
882       case syntax_element_jump:
883          state = static_cast<re_jump*>(state)->alt.p;
884          continue;
885       default:
886          break;
887       }
888       state = state->next.p;
889    }
890    return -1;
891 }
892 
893 template <class charT, class traits>
create_startmap(re_syntax_base * state,unsigned char * l_map,unsigned int * pnull,unsigned char mask)894 void basic_regex_creator<charT, traits>::create_startmap(re_syntax_base* state, unsigned char* l_map, unsigned int* pnull, unsigned char mask)
895 {
896    int not_last_jump = 1;
897 
898    // track case sensitivity:
899    bool l_icase = m_icase;
900 
901    while(state)
902    {
903       switch(state->type)
904       {
905       case syntax_element_toggle_case:
906          l_icase = static_cast<re_case*>(state)->icase;
907          state = state->next.p;
908          break;
909       case syntax_element_literal:
910       {
911          // don't set anything in *pnull, set each element in l_map
912          // that could match the first character in the literal:
913          if(l_map)
914          {
915             l_map[0] |= mask_init;
916             charT first_char = *static_cast<charT*>(static_cast<void*>(static_cast<re_literal*>(state) + 1));
917             for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i)
918             {
919                if(m_traits.translate(static_cast<charT>(i), l_icase) == first_char)
920                   l_map[i] |= mask;
921             }
922          }
923          return;
924       }
925       case syntax_element_end_line:
926       {
927          // next character must be a line separator (if there is one):
928          if(l_map)
929          {
930             l_map[0] |= mask_init;
931             l_map['\n'] |= mask;
932             l_map['\r'] |= mask;
933             l_map['\f'] |= mask;
934             l_map[0x85] |= mask;
935          }
936          // now figure out if we can match a NULL string at this point:
937          if(pnull)
938             create_startmap(state->next.p, 0, pnull, mask);
939          return;
940       }
941       case syntax_element_backref:
942          // can be null, and any character can match:
943          if(pnull)
944             *pnull |= mask;
945          // fall through:
946       case syntax_element_wild:
947       {
948          // can't be null, any character can match:
949          set_all_masks(l_map, mask);
950          return;
951       }
952       case syntax_element_match:
953       {
954          // must be null, any character can match:
955          set_all_masks(l_map, mask);
956          if(pnull)
957             *pnull |= mask;
958          return;
959       }
960       case syntax_element_word_start:
961       {
962          // recurse, then AND with all the word characters:
963          create_startmap(state->next.p, l_map, pnull, mask);
964          if(l_map)
965          {
966             l_map[0] |= mask_init;
967             for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i)
968             {
969                if(!m_traits.isctype(static_cast<charT>(i), m_word_mask))
970                   l_map[i] &= static_cast<unsigned char>(~mask);
971             }
972          }
973          return;
974       }
975       case syntax_element_word_end:
976       {
977          // recurse, then AND with all the word characters:
978          create_startmap(state->next.p, l_map, pnull, mask);
979          if(l_map)
980          {
981             l_map[0] |= mask_init;
982             for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i)
983             {
984                if(m_traits.isctype(static_cast<charT>(i), m_word_mask))
985                   l_map[i] &= static_cast<unsigned char>(~mask);
986             }
987          }
988          return;
989       }
990       case syntax_element_buffer_end:
991       {
992          // we *must be null* :
993          if(pnull)
994             *pnull |= mask;
995          return;
996       }
997       case syntax_element_long_set:
998          if(l_map)
999          {
1000             typedef typename traits::char_class_type mask_type;
1001             if(static_cast<re_set_long<mask_type>*>(state)->singleton)
1002             {
1003                l_map[0] |= mask_init;
1004                for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i)
1005                {
1006                   charT c = static_cast<charT>(i);
1007                   if(&c != re_is_set_member(&c, &c + 1, static_cast<re_set_long<mask_type>*>(state), *m_pdata, m_icase))
1008                      l_map[i] |= mask;
1009                }
1010             }
1011             else
1012                set_all_masks(l_map, mask);
1013          }
1014          return;
1015       case syntax_element_set:
1016          if(l_map)
1017          {
1018             l_map[0] |= mask_init;
1019             for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i)
1020             {
1021                if(static_cast<re_set*>(state)->_map[
1022                   static_cast<unsigned char>(m_traits.translate(static_cast<charT>(i), l_icase))])
1023                   l_map[i] |= mask;
1024             }
1025          }
1026          return;
1027       case syntax_element_jump:
1028          // take the jump:
1029          state = static_cast<re_alt*>(state)->alt.p;
1030          not_last_jump = -1;
1031          break;
1032       case syntax_element_alt:
1033       case syntax_element_rep:
1034       case syntax_element_dot_rep:
1035       case syntax_element_char_rep:
1036       case syntax_element_short_set_rep:
1037       case syntax_element_long_set_rep:
1038          {
1039             re_alt* rep = static_cast<re_alt*>(state);
1040             if(rep->_map[0] & mask_init)
1041             {
1042                if(l_map)
1043                {
1044                   // copy previous results:
1045                   l_map[0] |= mask_init;
1046                   for(unsigned int i = 0; i <= UCHAR_MAX; ++i)
1047                   {
1048                      if(rep->_map[i] & mask_any)
1049                         l_map[i] |= mask;
1050                   }
1051                }
1052                if(pnull)
1053                {
1054                   if(rep->can_be_null & mask_any)
1055                      *pnull |= mask;
1056                }
1057             }
1058             else
1059             {
1060                // we haven't created a startmap for this alternative yet
1061                // so take the union of the two options:
1062                if(is_bad_repeat(state))
1063                {
1064                   set_all_masks(l_map, mask);
1065                   return;
1066                }
1067                set_bad_repeat(state);
1068                create_startmap(state->next.p, l_map, pnull, mask);
1069                if((state->type == syntax_element_alt)
1070                   || (static_cast<re_repeat*>(state)->min == 0)
1071                   || (not_last_jump == 0))
1072                   create_startmap(rep->alt.p, l_map, pnull, mask);
1073             }
1074          }
1075          return;
1076       case syntax_element_soft_buffer_end:
1077          // match newline or null:
1078          if(l_map)
1079          {
1080             l_map[0] |= mask_init;
1081             l_map['\n'] |= mask;
1082             l_map['\r'] |= mask;
1083          }
1084          if(pnull)
1085             *pnull |= mask;
1086          return;
1087       case syntax_element_endmark:
1088          // need to handle independent subs as a special case:
1089          if(static_cast<re_brace*>(state)->index < 0)
1090          {
1091             // can be null, any character can match:
1092             set_all_masks(l_map, mask);
1093             if(pnull)
1094                *pnull |= mask;
1095             return;
1096          }
1097          else
1098          {
1099             state = state->next.p;
1100             break;
1101          }
1102 
1103       case syntax_element_startmark:
1104          // need to handle independent subs as a special case:
1105          if(static_cast<re_brace*>(state)->index == -3)
1106          {
1107             state = state->next.p->next.p;
1108             break;
1109          }
1110          // otherwise fall through:
1111       default:
1112          state = state->next.p;
1113       }
1114       ++not_last_jump;
1115    }
1116 }
1117 
1118 template <class charT, class traits>
get_restart_type(re_syntax_base * state)1119 unsigned basic_regex_creator<charT, traits>::get_restart_type(re_syntax_base* state)
1120 {
1121    //
1122    // find out how the machine starts, so we can optimise the search:
1123    //
1124    while(state)
1125    {
1126       switch(state->type)
1127       {
1128       case syntax_element_startmark:
1129       case syntax_element_endmark:
1130          state = state->next.p;
1131          continue;
1132       case syntax_element_start_line:
1133          return regbase::restart_line;
1134       case syntax_element_word_start:
1135          return regbase::restart_word;
1136       case syntax_element_buffer_start:
1137          return regbase::restart_buf;
1138       case syntax_element_restart_continue:
1139          return regbase::restart_continue;
1140       default:
1141          state = 0;
1142          continue;
1143       }
1144    }
1145    return regbase::restart_any;
1146 }
1147 
1148 template <class charT, class traits>
set_all_masks(unsigned char * bits,unsigned char mask)1149 void basic_regex_creator<charT, traits>::set_all_masks(unsigned char* bits, unsigned char mask)
1150 {
1151    //
1152    // set mask in all of bits elements,
1153    // if bits[0] has mask_init not set then we can
1154    // optimise this to a call to memset:
1155    //
1156    if(bits)
1157    {
1158       if(bits[0] == 0)
1159          (std::memset)(bits, mask, 1u << CHAR_BIT);
1160       else
1161       {
1162          for(unsigned i = 0; i < (1u << CHAR_BIT); ++i)
1163             bits[i] |= mask;
1164       }
1165       bits[0] |= mask_init;
1166    }
1167 }
1168 
1169 template <class charT, class traits>
is_bad_repeat(re_syntax_base * pt)1170 bool basic_regex_creator<charT, traits>::is_bad_repeat(re_syntax_base* pt)
1171 {
1172    switch(pt->type)
1173    {
1174    case syntax_element_rep:
1175    case syntax_element_dot_rep:
1176    case syntax_element_char_rep:
1177    case syntax_element_short_set_rep:
1178    case syntax_element_long_set_rep:
1179       {
1180          unsigned id = static_cast<re_repeat*>(pt)->id;
1181          if(id > sizeof(m_bad_repeats) * CHAR_BIT)
1182             return true;  // run out of bits, assume we can't traverse this one.
1183          return m_bad_repeats & static_cast<boost::uintmax_t>(1uL << id);
1184       }
1185    default:
1186       return false;
1187    }
1188 }
1189 
1190 template <class charT, class traits>
set_bad_repeat(re_syntax_base * pt)1191 void basic_regex_creator<charT, traits>::set_bad_repeat(re_syntax_base* pt)
1192 {
1193    switch(pt->type)
1194    {
1195    case syntax_element_rep:
1196    case syntax_element_dot_rep:
1197    case syntax_element_char_rep:
1198    case syntax_element_short_set_rep:
1199    case syntax_element_long_set_rep:
1200       {
1201          unsigned id = static_cast<re_repeat*>(pt)->id;
1202          if(id <= sizeof(m_bad_repeats) * CHAR_BIT)
1203             m_bad_repeats |= static_cast<boost::uintmax_t>(1uL << id);
1204       }
1205    default:
1206       break;
1207    }
1208 }
1209 
1210 template <class charT, class traits>
get_repeat_type(re_syntax_base * state)1211 syntax_element_type basic_regex_creator<charT, traits>::get_repeat_type(re_syntax_base* state)
1212 {
1213    typedef typename traits::char_class_type mask_type;
1214    if(state->type == syntax_element_rep)
1215    {
1216       // check to see if we are repeating a single state:
1217       if(state->next.p->next.p->next.p == static_cast<re_alt*>(state)->alt.p)
1218       {
1219          switch(state->next.p->type)
1220          {
1221          case re_detail::syntax_element_wild:
1222             return re_detail::syntax_element_dot_rep;
1223          case re_detail::syntax_element_literal:
1224             return re_detail::syntax_element_char_rep;
1225          case re_detail::syntax_element_set:
1226             return re_detail::syntax_element_short_set_rep;
1227          case re_detail::syntax_element_long_set:
1228             if(static_cast<re_detail::re_set_long<mask_type>*>(state->next.p)->singleton)
1229                return re_detail::syntax_element_long_set_rep;
1230             break;
1231          default:
1232             break;
1233          }
1234       }
1235    }
1236    return state->type;
1237 }
1238 
1239 template <class charT, class traits>
probe_leading_repeat(re_syntax_base * state)1240 void basic_regex_creator<charT, traits>::probe_leading_repeat(re_syntax_base* state)
1241 {
1242    // enumerate our states, and see if we have a leading repeat
1243    // for which failed search restarts can be optimised;
1244    do
1245    {
1246       switch(state->type)
1247       {
1248       case syntax_element_startmark:
1249          if(static_cast<re_brace*>(state)->index >= 0)
1250          {
1251             state = state->next.p;
1252             continue;
1253          }
1254          return;
1255       case syntax_element_endmark:
1256       case syntax_element_start_line:
1257       case syntax_element_end_line:
1258       case syntax_element_word_boundary:
1259       case syntax_element_within_word:
1260       case syntax_element_word_start:
1261       case syntax_element_word_end:
1262       case syntax_element_buffer_start:
1263       case syntax_element_buffer_end:
1264       case syntax_element_restart_continue:
1265          state = state->next.p;
1266          break;
1267       case syntax_element_dot_rep:
1268       case syntax_element_char_rep:
1269       case syntax_element_short_set_rep:
1270       case syntax_element_long_set_rep:
1271          if(this->m_has_backrefs == 0)
1272             static_cast<re_repeat*>(state)->leading = true;
1273          // fall through:
1274       default:
1275          return;
1276       }
1277    }while(state);
1278 }
1279 
1280 
1281 } // namespace re_detail
1282 
1283 } // namespace boost
1284 
1285 #ifdef BOOST_HAS_ABI_HEADERS
1286 #  include BOOST_ABI_SUFFIX
1287 #endif
1288 
1289 #endif
1290