1% This file was created with JabRef 2.8.1.
2% Encoding: Cp1252
3
4@INPROCEEDINGS{Bajpai2011,
5  author = {Ashutosh Bajpai and Tom V Mathew},
6  title = {Development of an Interface between Signal Controller and Traffic
7	Simulator},
8  booktitle = {1st Conference of Transportation Research Group of India},
9  year = {2011},
10  month = {12},
11  organization = {Transportation Research Group of India},
12  abstract = {Adaptive Traffic Control algorithm is an important strategy to manage
13	traffic at an intersection. These are an improvement of vehicle actuated
14	signal control, where explicitly strategies are formulated to compute
15	the signal timing considering the current traffic state obtained
16	from sensors. However, field evaluation of these strategies is cumbersome
17	and expensive and hence simulators which model traffic system can
18	be a good alternative. The main challenge in this is a good interface
19	between the signal control system and the traffic simulators. The
20	signal control system needs the state of the junction in terms of
21	vehicle occupancy at every instant. On the other hand, traffic simulator
22	needs information on whether the signal state has changed. This two
23	way communication requires an efficient interface which is similar
24	to client-server architecture. The simulator acts as the server where
25	as the adaptive control strategy act like client. This paper proposes
26	an efficient interface to couple adaptive control strategy and traffic
27	simulator. This interface mediates between traffic control system
28	and traffic simulator and provides online interaction to simulation
29	from the control strategy. This interface facilitates pure procedural
30	routines to communicate and is written in C language along with Python/C
31	API. Additionally, a module to estimate the vehicular delay due to
32	the control strategy is developed. This delay is estimated by defining
33	effective length of queue, which is provided as a user input.
34
35
36	This interface is tested using SUMO (Simulation for Urban Mobility),
37	which is an open source, microscopic, space continuous and time discrete
38	simulator developed by German Aerospace Centre. The traffic control
39	strategy is analogous to the HCM vehicle actuated traffic control
40	except that there is a queue prediction model which computes upper
41	limits on the maximum green time. An isolated four arm junction having
42	four phases is simulated for various flow conditions. The simulator
43	supplied the state of the downstream detector to the traffic control
44	algorithm at every simulation step and the control algorithm determines
45	the signal time strategies (phase termination, green extension, and
46	maximum green time). These strategies are communicated to the simulator.
47	These communications were facilitated by the proposed interface.
48	The average stopped delay is computed as the performance parameter.
49	The interface was also coupled with another traffic simulator (VISSIM)
50	and the results are compared. This interface justifies the concept
51	of reusability by the evaluation of number of control strategy.},
52  file = {:https\://sumo.dlr.de/pdf/CTRG_Interface-SUMO.pdf:URL},
53  keywords = {Traffic simulator, Signal controller, Procedural Interface, SUMO (Simulation
54	of Urban Mobility), VISSIM (Verkehr In St�dten - SIMulationsmodell)},
55  owner = {dkrajzew},
56  timestamp = {2012.02.07}
57}
58
59@INPROCEEDINGS{Bamberger2010,
60  author = {Walter Bamberger and Josef Schlittenlacher and Klaus Diepold},
61  title = {A Trust Model for Intervehicular Communication Based on Belief Theory},
62  booktitle = {Social Computing (SocialCom), 2010 IEEE Second International Conference
63	on},
64  year = {2010},
65  pages = {73-80},
66  publisher = {IEEE Computer Society},
67  note = {Best SocialCom Conference Paper Award},
68  abstract = {Vehicles will exchange much information in the future in order to
69	efficiently maintain their inner model of the environment. Before
70	they can belief received pieces of information, they must evaluate
71	their reliability. Trust is a mechanism to estimate this reliability
72	based on the sender. As cars often drive the same route, they meet
73	each other again and again. They can establish friendship-like relations
74	and thus are embedded in a social structure. A trust model depends
75	on this social structure. For this reason, we simulate the driving
76	pattern of a small town. Within this simulation, all cars are equipped
77	with a trust model that continuously monitors the experiences made
78	with others. The developed model focuses on direct experiences of
79	the individual and not on a system-wide reputation which would depend
80	on a central unit. It continuously evaluates the performance and
81	reputation of other cars and includes a feedback loop to faster adapt
82	to changes in the other�s behaviour. To make a decision out of the
83	collected data, the model uses the capacity of the binary error and
84	erasure channel from information theory. This capacity provides a
85	better decision criterion than the traditional expectation value.
86	The proposed trust model is an individual-level model; nonetheless
87	it can be connected to a system-wide reputation mechanism.},
88  doi = {10.1109/SocialCom.2010.20},
89  keywords = {V2X, sumo, Technische Universit�t M�nchen, Fidens, automobiles, road
90	traffic, security of data, telecommunication security, belief theory,
91	cars, driving pattern, vehicular network, social structure, trust
92	model},
93  url = {http://mediatum.ub.tum.de/node?id=997457}
94}
95
96@MASTERSTHESIS{Barber2011,
97  author = {Anthony Barber},
98  title = {SHARING THE ROADS USING ROUTE INFORMATION SHARING},
99  school = {University of Tulsa},
100  year = {2011},
101  file = {:https\://sumo.dlr.de/pdf/BarberThesis.pdf:URL},
102  keywords = {University of Tulsa, sumo},
103  owner = {dkrajzew},
104  timestamp = {2011.09.19}
105}
106
107@ARTICLE{Barlovic2001,
108  author = {R. Barlovic and Elmar Brockfeld and A. Schadschneider and M. Schreckenberg},
109  title = {Optimizing traffic lights in a cellular automaton model for city
110	traffic},
111  journal = {Physical Review E},
112  year = {2001},
113  volume = {64},
114  pages = {056132},
115  number = {64, 056132},
116  month = {Oct},
117  note = { LIDO-Berichtsjahr=2003,},
118  abstract = {We study the impact of global traffic light control strategies in
119	a recently proposed cellular automaton model for vehicular traffic
120	in city networks. The model combines basic ideas of the Biham-Middleton-Levine
121	model for city traffic and the Nagel-Schreckenberg model for highway
122	traffic. The city network has a simple square lattice geometry. All
123	streets and intersections are treated equally, i.e., there are no
124	dominant streets. Starting from a simple synchronized strategy, we
125	show that the capacity of the network strongly depends on the cycle
126	times of the traffic lights. Moreover, we point out that the optimal
127	time periods are determined by the geometric characteristics of the
128	network, i.e., the distance between the intersections. In the case
129	of synchronized traffic lights, the derivation of the optimal cycle
130	times in the network can be reduced to a simpler problem, the flow
131	optimization of a single street with one traffic light operating
132	as a bottleneck. In order to obtain an enhanced throughput in the
133	model, improved global strategies are tested, e.g., green wave and
134	random switching strategies, which lead to surprising results.},
135  doi = {10.1103/PhysRevE.64.056132},
136  keywords = {DLR/TS/VM},
137  owner = {dkrajzew},
138  timestamp = {2011.09.30},
139  url = {http://elib.dlr.de/6570/}
140}
141
142@INPROCEEDINGS{Bauza2008,
143  author = {Bauza, R. and Gozalvez, J. and Sepulcre, M.},
144  title = {Operation and Performance of Vehicular Ad-Hoc Routing Protocols in
145	Realistic Environments},
146  booktitle = {Vehicular Technology Conference, 2008. VTC 2008-Fall. IEEE 68th},
147  year = {2008},
148  pages = {1 -5},
149  month = {sept.},
150  doi = {10.1109/VETECF.2008.450},
151  issn = {1090-3038},
152  keywords = {information dissemination;multihop communications;vehicle-to-infrastructure
153	wireless communications;vehicle-to-vehicle communications;vehicular
154	ad-hoc routing protocols;ad hoc networks;mobile radio;routing protocols;,
155	V2X, UMH, sumo},
156  owner = {dkrajzew},
157  timestamp = {2011.09.19}
158}
159
160@INPROCEEDINGS{Behrisch2011,
161  author = {Michael Behrisch and Laura Bieker and Jakob Erdmann and Daniel Krajzewicz},
162  title = {SUMO - Simulation of Urban MObility: An Overview},
163  booktitle = {SIMUL 2011, The Third International Conference on Advances in System
164	Simulation},
165  year = {2011},
166  editor = {SINTEF \& University of Oslo Aida Omerovic and RTI International
167	- Research Triangle Park Diglio A. Simoni and RTI International -
168	Research Triangle Park Georgiy Bobashev},
169  pages = {63-68},
170  address = {Barcelona, Spain},
171  month = {October},
172  publisher = {ThinkMind},
173  abstract = {SUMO is an open source traffic simulation package including net import
174	and demand modeling components. We describe the current state of
175	the package as well as future developments and extensions. SUMO helps
176	to investigate several research topics e.g. route choice and traffic
177	light algorithm or simulating vehicular communication. Therefore
178	the framework is used in different projects to simulate automatic
179	driving or traffic management strategies.},
180  journal = {Proceedings of SIMUL 2011, The Third International Conference on
181	Advances in System Simulation},
182  keywords = {microscopic traffic simulation, software, open source},
183  owner = {Daniel},
184  timestamp = {2011.12.02},
185  url = {http://elib.dlr.de/71460/}
186}
187
188@INPROCEEDINGS{Behrisch2008,
189  author = {Michael Behrisch and Michael Bonert and Elmar Brockfeld and Daniel
190	Krajzewicz and Peter Wagner},
191  title = {Event traffic forecast for metropolitan areas based on microscopic
192	simulation},
193  booktitle = {Third International Symposium of Transport Simulation 2008 (ISTS08)},
194  year = {2008},
195  month = {Januar},
196  abstract = {It is shown that a traditional travel demand forecast combined with
197	a simulationbased approach can serve as a short-term forecast for
198	the traffic situation. The approach presented was developed and tested
199	during the Soccer World Cup 2006 in the city of Cologne as a service
200	for the action forces to react as fast as possible to developing
201	aberrations. This paper discusses the merits and the short-comings
202	of the approach.},
203  file = {:http\://elib.dlr.de/55176/1/eventtrafficSubmitted.pdf:URL},
204  keywords = {traffic simulation, event traffic, urban traffic},
205  owner = {Daniel},
206  timestamp = {2011.12.02},
207  url = {http://elib.dlr.de/55176/}
208}
209
210@INPROCEEDINGS{Behrisch2009a,
211  author = {Michael Behrisch and Michael Bonert and Daniel Hinkeldein and Daniel
212	Krajzewicz and G\"unter Kuhns and Yun-Pang Wang},
213  title = {DELPHI - a joint web decision support application for real time traffic
214	situation analysis and prognosis, information exchange and cooperation},
215  booktitle = {ITS World Congress 2009},
216  year = {2009},
217  abstract = {This paper describes DELPHI, a pilot version of a joint web decision
218	support application for real time traffic situation and prognosis,
219	information exchange and cooperation between the Traffic Management
220	Center, Emergency Rescue Services, the Police and the Emergency Call
221	Center. In two demonstration regions in Germany, Cologne and Munich
222	the R&D project started in 2007. The main purpose is to handle major
223	incidents that affect the transportation situation in conurbation
224	areas. The web application is intended to help task force members
225	at different stakeholders to obtain a common and joint overview.
226	DELPHI also allows to coordinate tactical measures among the task
227	forces.},
228  keywords = {decision support, TMC, Traffic Management Center, incident management,
229	ITS, Intelligent Transportation System},
230  owner = {Daniel},
231  timestamp = {2011.12.02},
232  url = {http://elib.dlr.de/62187/}
233}
234
235@INPROCEEDINGS{Behrisch2010a,
236  author = {Michael Behrisch and Jakob Erdmann and Daniel Krajzewicz},
237  title = {Adding intermodality to the microscopic simulation package SUMO},
238  booktitle = {MESM 2010},
239  year = {2010},
240  month = {Dezember},
241  abstract = {It is shown how the traffc simulation SUMO which traditionally focused
242	on individual road traffc could be extended to serve the purpose
243	of a general traffic simulation (including transport of individual
244	persons) while retaining most of in- and output formats and the performance
245	of the original system.},
246  file = {:http\://elib.dlr.de/65964/1/intermodalSumo.pdf:URL},
247  keywords = {Traffic, Microsimulation, Intermodal, SUMO},
248  owner = {Daniel},
249  timestamp = {2011.12.02},
250  url = {http://elib.dlr.de/65964/}
251}
252
253@UNPUBLISHED{dlr76186,
254  author = {Michael Behrisch and Yun-Pang Fl\"otter\"od and Daniel Krajzewicz
255	and Peter Wagner},
256  title = {Ecological User Equilibrium in Traffic Management (TM)?},
257  note = {Der Eintrag wurde auf der DTA 2012 vorgestellt.},
258  month = {Februar},
259  year = {2012},
260  abstract = {With increasing environmental sustainability awareness significant
261	attention on ecological traffic management (eco-TM) has come into
262	the focus of researchers and practitioners. While different approaches
263	have been applied to reach minimal pollutant production, the classic
264	user equilibrium calculation with the pollutant production as travel
265	costs instead of using travel times remains in the center of attention.
266	However, the validity of such a direct transformation to find a user
267	equilibrium is questionable. In this paper, a simplified analytical
268	approach to examine the above aforementioned validity has been carried
269	out, followed by a simulation approach to verify the results of the
270	analytical approach. The result shows that the pollutant production
271	function violates the usual assumption of a monotonous function (typically,
272	emission has a minimum at travel speeds around 60 km/h). It also
273	indicates that the respective algorithms to compute the user equilibrium
274	must deal with the fact, that the equilibrium solution is not unique
275	and is dependent on the initial solution. This means that substantial
276	modifications to the algorithms that compute the user equilibrium
277	have to be discussed since they do not work as intended when pollutant
278	production is used as travel costs, especially in a transportation
279	system with mixed speeds that cover a range around the minimum emission
280	speed.},
281  institution = {Institut f\"ur Verkehrssystemtechnik},
282  keywords = {ecological traffic management, traffic simulation, user equilibrium},
283  owner = {dkrajzew},
284  timestamp = {2012.09.18},
285  url = {http://elib.dlr.de/76186/}
286}
287
288@INPROCEEDINGS{dlr71870,
289  author = {Michael Behrisch and Yun-Pang Fl\"otter\"od and Daniel Krajzewicz
290	and Peter Wagner},
291  title = {Ecological User Equilibrium?},
292  booktitle = {DTA 2012},
293  year = {2011},
294  month = {November},
295  abstract = {With increasing environmental sustainability awareness significant
296	attention on ecological traffic management (eco-TM) has come into
297	the focus of researchers and practitioners. While different approaches
298	have been applied to reach minimal pollutant production, the classic
299	user equilibrium calculation with the pollutant production as travel
300	costs instead of using travel times remains in the center of attention.
301	However, the validity of such a direct transformation to find a user
302	equilibrium is questionable. In this paper, a simplified analytical
303	approach to examine the above aforementioned validity has been carried
304	out, followed by a simulation approach to verify the results of the
305	analytical approach. The initial result shows that the pollutant
306	production function violates the usual assumption of a monotonous
307	function (typically, emission has a minimum at travel speeds around
308	\unit[60]{km/h} ). This means that substantial modifications to the
309	algorithms that compute the user equilibrium have to be discussed
310	since they do not work as intended when pollutant production is used
311	as travel costs, especially in a transportation system with mixed
312	speeds that cover a range around the minimum emission speed.},
313  keywords = {eco traffic management, dynamic traffic assignment, user equilibrium},
314  owner = {dkrajzew},
315  timestamp = {2012.09.18},
316  url = {http://elib.dlr.de/71870/}
317}
318
319@INPROCEEDINGS{Behrisch2010,
320  author = {Michael Behrisch and Marc Hohloch and Marek Junghans and G\"unter
321	Kuhns and Daniel Krajzewicz and Yun-Pang Wang},
322  title = {Traffic Management Decision Support based on on-line Data},
323  booktitle = {2010 POLIS CONFERENCE - 'Innovation in transport for sustainable
324	cities and regions'},
325  year = {2010},
326  month = {November},
327  abstract = {Natural disasters, industrial accidents, technological disasters as
328	well as terrorist attacks have raised a great attention to road traffic
329	management in emergencies and disasters worldwide. The road system
330	is the essential infrastructure for mobility and accessibility. It
331	is important in daily life and especially in disasters and emergencies.
332	Therefore, a successful road traffic management in such situations
333	should minimize losses in life and goods as well as economical losses
334	and assets through incident prevention, mitigation, preparedness,
335	response and recovery.
336
337	Based on this concern, the German Aerospace Center has been continuously
338	undertaking the development of a real-time web-based decision support
339	system within four R&D projects, WJT2005, Soccer2006, DELPHI and
340	VABENE, since 2005. A pilot version of the new portal has already
341	been established in the demonstration region Munich in 2007.
342
343	This system mainly aims to - establish a shared online traffic information
344	platform and decision-making support tool for the law enforcement
345	and emergency services - use available traffic information as best
346	as possible for online traffic monitoring and evaluation, and - provide
347	accurate traffic forecasting for supporting the decision-making in
348	traffic management.},
349  keywords = {online traffic management, decision support system},
350  owner = {Daniel},
351  timestamp = {2011.12.02},
352  url = {http://elib.dlr.de/65965/}
353}
354
355@INPROCEEDINGS{Behrisch2009,
356  author = {Michael Behrisch and Daniel Krajzewicz and Ronald Nippold and Yun-Pang
357	Wang},
358  title = {Simulation of Urban MObility},
359  booktitle = {2nd NEARCTIS workshop 2009},
360  year = {2009},
361  keywords = {traffic simulation},
362  owner = {Daniel},
363  timestamp = {2011.12.02},
364  url = {http://elib.dlr.de/62188/}
365}
366
367@INCOLLECTION{dlr81244,
368  author = {Michael Behrisch and Daniel Krajzewicz and Peter Wagner and Yun-Pang
369	Wang},
370  title = {Comparing Performance and Quality of Traffic Assignments for Microscopic
371	Simulation},
372  publisher = {Edward Elgar Publishing Limited},
373  year = {2010},
374  editor = {Chris M.J. Tampere and Francesco Viti and Lambertus H. (Ben) Immers},
375  pages = {361--386},
376  journal = {New Developments in Transport Planning - Advances in Dynamic Traffic
377	Assignment},
378  keywords = {dynamic traffic assignment, traffic simulation},
379  owner = {dkrajzew},
380  timestamp = {2014.01.08},
381  url = {http://elib.dlr.de/81244/}
382}
383
384@INPROCEEDINGS{Behrisch2008b,
385  author = {Michael Behrisch and Daniel Krajzewicz and Peter Wagner and Yun-Pang
386	Wang},
387  title = {Comparison of Methods for Increasing the Performance of a DUA Computation},
388  booktitle = {DTA2008 International Symposium on Dynamic Traffic Assignment},
389  year = {2008},
390  month = {Mai},
391  abstract = {Computing realistic routes for a given road network and a known demand
392	of vehicles is one of the most important steps when preparing a road
393	traffic simulation. The approach developed by Christian Gawron in
394	1998 which we use for this purpose computes a dynamic user equilibrium
395	by iteratively performing the simulation and computing new vehicle
396	routes. The results are valid, but the computation is very time consuming
397	due to the need to perform both the complete simulation and rerouting
398	of all vehicles within each iteration step. Herein, we want to discuss
399	some approaches to reduce the needed time and memory consumption.
400	The results show that this can be achieved without reducing the algorithm?s
401	quality.},
402  journal = {Proceedings of DTA2008},
403  keywords = {microscopic simulation, traffic assignment, SUE, DUA},
404  owner = {Daniel},
405  timestamp = {2011.12.02},
406  url = {http://elib.dlr.de/55173/}
407}
408
409@INPROCEEDINGS{Behrisch2008a,
410  author = {Michael Behrisch and Daniel Krajzewicz and Yun-Pang Wang},
411  title = {Comparing performance and quality of traffic assignment techniques
412	for microscopic road traffic simulations},
413  booktitle = {DTA2008 International Symposium on Dynamic Traffic Assignment},
414  year = {2008},
415  month = {Mai},
416  abstract = {Focusing on the tradeoff between accuracy of the assignment and computation
417	time this paper proposes different traffic assignment methods targeting
418	at microscopic traffic simulation. The corresponding network-wide
419	performance indices, the generated route sets and the respective
420	significance tests are analyzed and compared. The results indicate
421	that the saving on computa-tion time is significant with use of macroscopic
422	assignments. However, the deficiency of ne-glecting turning behaviors
423	in macroscopic assignments results in worse assignment results. Moreover,
424	the used computation time of some microscopic methods (e.g. the one-shot
425	method) is competitive with that of the macroscopic assignments.
426	While the exact parameteri-zation as well as the sensitivity of the
427	methods to the size of the scenarios still need further investigation,
428	it seems favorable to employ microscopic assignment techniques or
429	hybrid methods for producing a good traffic assignment for a microscopic
430	simulation.},
431  journal = {Proceedings of DTA2008},
432  keywords = {microscopic simulation, traffic assignment, SUE, DUA, route set similarity},
433  owner = {Daniel},
434  timestamp = {2011.12.02},
435  url = {http://elib.dlr.de/55172/}
436}
437
438@INPROCEEDINGS{Bieker2011a,
439  author = {Laura Bieker},
440  title = {Emergency Vehicle Prioritization using Vehicle-To-Vehicle Communication},
441  booktitle = {Young Researchers Seminar},
442  year = {2011},
443  month = {Juni},
444  abstract = {Emergency vehicles need to reach their destination as fast as possible.
445	They deserve the highest priority at intersections. Therefore, they
446	are allowed to use bus lanes and pass red lights at traffic light
447	systems. Nevertheless, for emergency vehicles it is still quicker
448	and safer to get priority at the approaching intersection. This paper
449	analyses how the travel time of emergency vehicles can be improved
450	by using vehicle-to-infrastructure (V2I) communication. Emergency
451	vehicles are sending messages with their route information and their
452	current position. The traffic lights which have to be passed can
453	switch to green for emergency vehicles and to red for all other streets.
454	The traffic lights continue the normal operation after the emergency
455	vehicle has passed the intersection. Simulation results show that
456	emergency vehicles can reach their destination faster.},
457  keywords = {V2I communication, Emergency vehicle, traffic management, traffic
458	simulation},
459  owner = {Daniel},
460  timestamp = {2011.12.02},
461  url = {http://elib.dlr.de/70219/}
462}
463
464@INPROCEEDINGS{Bieker2011,
465  author = {Laura Bieker and Daniel Krajzewicz},
466  title = {Evaluation of opening Bus Lanes for private Traffic triggered via
467	V2X Communication},
468  booktitle = {First Forum on Integrated and Sustainable Transportation Systems
469	(FISTS)},
470  year = {2011},
471  month = {Juni},
472  abstract = {Within the EC project ?iTETRIS?, an architecture for simulating traffic
473	management applications based on vehicular communications (V2X) was
474	designed and implemented. The work was based on evaluating the needs
475	of a real city ? the city of Bologna. Applications which try to solve
476	the detected problems were defined and evaluated in subsequent steps.
477	This report describes the evaluation of one of the developed applications,
478	namely ?Bus Lane Management?. It was analyzed whether it is possible
479	to detect the traffic demand via V2X communication and open bus lanes
480	for private vehicles. It turned out that this could be done efficiently:
481	dedicating the free space on the bus lanes improves the average travel
482	times and route lengths of all vehicles. However, this is true only
483	if the penetration rates stay well below 50%. If more vehicles try
484	to benefit, the situation deteriorates readily.},
485  keywords = {traffc simulation, bus lane management, V2V communication},
486  owner = {Daniel},
487  timestamp = {2011.12.02},
488  url = {http://elib.dlr.de/70220/}
489}
490
491@INPROCEEDINGS{Bieker2010,
492  author = {Laura Bieker and Daniel Krajzewicz and Matthias R\"ockl and Hans
493	Capelle},
494  title = {Derivation of a fast, approximating 802.11p simulation model},
495  booktitle = {Intelligent Transport Systems Telecommunications (ITST2010)},
496  year = {2010},
497  month = {November},
498  abstract = {This paper gives an overview of the development of a fast, approximating
499	model of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2X)
500	communication. Large-scale traffic simulations need to be fast, and
501	the lack of supporting this feature by common communication simulators
502	makes the development of a new one necessary. In a vehicular system,
503	packet error rate can be significant; hence models that consider
504	error characteristics are desirable. Our work considers communication
505	models that approximate the radio propagation characteristics in
506	a realistic way without compromising simulation speed.},
507  keywords = {V2X communication, Traffic simulation, Radio Propagation, Packet Error
508	Rate},
509  owner = {Daniel},
510  timestamp = {2011.12.02},
511  url = {http://elib.dlr.de/66094/}
512}
513
514@INPROCEEDINGS{Blokpoel2010,
515  author = {Robbin Blokpoel and Daniel Krajzewicz and Ronald Nippold},
516  title = {Unambiguous metrics for evaluation of traffic networks},
517  booktitle = {13th International IEEE Conference on Intelligent Transportation
518	Systems (ITSC)},
519  year = {2010},
520  month = {September},
521  abstract = {This paper presents an extensive set of unambiguous metrics that can
522	be used for evaluation of new ITS applications. Currently in the
523	literature most authors define their own metrics and small differences
524	in definitions can lead to confusion when comparing the results.
525	To derive the set of metrics presented in this paper, several steps
526	have been taken. First, a list has been made with all metrics known
527	by the research partners. Afterwards, a set of base measures has
528	been defined. Using that set, clear formulas for all metrics have
529	been derived and are reported in this paper. Finally, an application
530	example about a cooperative traffic light controller is given.},
531  keywords = {simulation, performance indicators, performance metrics, traffic science,
532	traffic management},
533  owner = {Daniel},
534  timestamp = {2011.12.02},
535  url = {http://elib.dlr.de/67734/}
536}
537
538@INPROCEEDINGS{Bonert2006,
539  author = {Michael Bonert and Elmar Brockfeld and Ines Ernst and Daniel Krajzewicz
540	and Martin Ruh\'e and Peter Wagner},
541  title = {SOCCER Verkehrslageerfassung und ?prognose w\"ahrend der Fu\ssball-WM},
542  booktitle = {IMA 2006 Informationssysteme f\"ur mobile Anwendungen},
543  year = {2006},
544  month = {Oktober},
545  abstract = {W?hrend der FIFA?Fu?ballweltmeisterschaft 2006 wurde im Rahmen des
546	vom BMWi ge-f?rderten Projektes SOCCER an drei Spielst?tten (Berlin,
547	K?ln, Stuttgart) ein integriertes Sys-tem getestet, das Verkehrsdaten
548	aus unterschiedlichen Quellen zu einer Verkehrslageerfas-sung und
549	anschlie?ender Prognose fusionieren konnte. Die beiden Systeme in
550	Berlin und K?ln setzten dabei jeweils auf eine Simulation der gesamten
551	Stadt auf, w?hrend das Stuttgar-ter System im Wesentlichen auf einer
552	ganglinienbasierten Prognose basierte. Die verwendeten Inputdaten
553	waren in allen F?llen eine Kombination aus (nicht in allen St?dten
554	gleich) luft-gest?tzter Verkehrslageerfassung an ausgesuchten Brennpunkten
555	(Zeppelin in K?ln, Flugzeug in Berlin und Hubschrauber in Stuttgart),
556	vorhandenen Z?hlschleifendaten (alle Orte) und den Reisezeitinformationen
557	aus den Taxi?FCD Projekten Stuttgart und Berlin des DLR (siehe www.cityrouter.com).
558	Dieser Beitrag beschreibt den Aufbau der Systeme und stellt erste
559	Er-gebnisse dar, mit denen die Prognoseg?te beurteilt werden kann.},
560  keywords = {Verkehrsmanagement von Gro?ereignissen, Verkehrssimulation, luftgest?tzte
561	Verkehrslageerfassung},
562  owner = {Daniel},
563  timestamp = {2011.12.02},
564  url = {http://elib.dlr.de/50197/}
565}
566
567@ARTICLE{Brockfeld2003a,
568  author = {Elmar Brockfeld and Reinhart K\"uhne and Alexander Skabardonis and
569	Peter Wagner},
570  title = {Towards a benchmarking of Microscopic Traffic Flow Models},
571  journal = {Transportation Research Records},
572  year = {2003},
573  volume = {1852},
574  pages = {124--129},
575  number = {TRB2003-001164},
576  abstract = {Several microscopic traffic models have been tested with a publicly
577	available data set. The task was to predict the travel times between
578	sever observers along a one-lane rural road, given as boundary conditions
579	the flow into this road and the flow out of it. By using nonlinear
580	optimization, for each of the models the best matching set of parameters
581	have been estimated. For this particular data set, the models that
582	performed best are the ones with the smalles number of parameters.
583	The average error rate of the models is about 16 %, however, this
584	value is not very reliable: the error rate fluctuates between 2.5
585	and 25 % for different parts of the data set.},
586  booktitle = {82nd Annual Meeting Transportation Research Board},
587  editor = { Transportation Research Board},
588  keywords = {calibration, validation, simulation, models, microscopic flow models,
589	DLR/TS/VM, model calibration},
590  owner = {dkrajzew},
591  timestamp = {2011.09.30},
592  url = {http://elib.dlr.de/6646/}
593}
594
595@ARTICLE{Brockfeld2005a,
596  author = {Elmar Brockfeld and Reinhart K\"uhne and Peter Wagner},
597  title = {Calibration and Validation of Microscopic Traffic Flow Models},
598  journal = {Transportation Research Records},
599  year = {2005},
600  volume = {1934},
601  pages = {179--187},
602  month = {Januar},
603  abstract = {Since microscopic models are being heavily used in applications, the
604	appropriate calibration and validation have been a recent concern.
605	The contribution of this paper is to compare some of these models
606	by calibrating and validating them with data from double-loop detectors
607	on a multilane freeway. To simplify this task, the test of the models
608	is done by simplifying the multilane reality to a simulation of only
609	single lane. The results show that by simulating the multilane road
610	with single lane models, calibration errors (Theil?s U, root mean
611	squared error) of 14 % to 16 % can be obtained. A validation of the
612	models ?which means taking calibrated parameters of one data set
613	to reproduce the other data sets? gives additional errors of about
614	0.5 to 2.5 percentage points. This is in good agreement with other
615	calibration/validation approaches performed recently.},
616  booktitle = {Transportation Research Board 2005},
617  editor = { Transportation Research Board},
618  keywords = {microscopic traffic flow models, calibration/validation, freeway data,
619	DLR/TS/VM, model calibration},
620  owner = {dkrajzew},
621  timestamp = {2011.09.30},
622  url = {http://elib.dlr.de/20987/}
623}
624
625@INPROCEEDINGS{Brockfeld2004c,
626  author = {Elmar Brockfeld and Reinhart K\"uhne and Peter Wagner},
627  title = {Calibration and Validation of Microscopic Traffic Flow Models},
628  booktitle = {TRB Annual Meeting},
629  year = {2004},
630  editor = { Transportation Research Board},
631  volume = {1876},
632  number = {TRB2004-001743},
633  pages = {62--70},
634  abstract = {Microscopic simulation models are becoming increasingly important
635	tools in modeling transport systems. There are a large number of
636	available models used in many countries. the most difficult stage
637	in the development and use of such models is the calibration and
638	validation of the microscopic sub-models describing the traffic flow,
639	such as the car following, lane changing and gap acceptance models.
640	This difficulty is due to the lack of suitable methods for adapting
641	models to empirical data. The aim of this paper is to present recent
642	progress in calibratin a number of microscopic traffic flow models.
643	By calibrating and validating various models using the same data
644	sets, the models are directly comparable to each other. This sets
645	the basis for a transparent benchmarking of those models. Furthermore,
646	the advantages and disadvantages of each model can be analyzed better
647	to develop a more realistic behavior of the simulated vehicles In
648	this work various microscopic traffic flow models have been tested
649	from a very microscopic point of view concerning the car-follwing
650	behavior and gap-acceptance. The data used for calibration and validation
651	is from car-following experiments performed in Japan in October 2001.
652	The data have been collected by letting nine DGPS-equipped cars follow
653	a lead car driving along a 3 km test track for about 15-30 minutes.
654	So one gets the positions and speeds of each car in time intervals
655	of 0.1 seconds. The experiment was repeated eight times letting the
656	leading driver perform various driving in waves and emulating many
657	acceleations/decelerations as they are typical at intersections.
658	To minimize driver-dependent correlations between the data sets,
659	the drivers were exchanged between the cars regularly after each
660	experiment},
661  journal = {TRB 2004 Annual Meeting},
662  keywords = {calibration, validation, traffic flow models, microscopic, GPS, DGPS,
663	DLR/TS/VM, model calibration},
664  owner = {dkrajzew},
665  timestamp = {2011.09.30},
666  url = {http://elib.dlr.de/6652/}
667}
668
669@INPROCEEDINGS{Brockfeld2002a,
670  author = {Elmar Brockfeld and Reinhart K\"uhne and Peter Wagner},
671  title = {Towards Benchmarking Microscopic Traffic Flow Models},
672  booktitle = {Networks for Mobility, International Symposium},
673  year = {2002},
674  volume = {I},
675  pages = {321--331},
676  note = { LIDO-Berichtsjahr=2003,},
677  journal = {Proceedings of Networks for Mobility},
678  keywords = {microscopic simulation, benchmarking, traffic flow models, DLR/TS/VM,
679	model calibration},
680  owner = {dkrajzew},
681  timestamp = {2011.09.30},
682  url = {http://elib.dlr.de/6506/}
683}
684
685@INPROCEEDINGS{Brockfeld2004b,
686  author = {Elmar Brockfeld and Rene Kelpin and Peter Wagner},
687  title = {Performance of car following behaviour in microscopic traffic flow
688	models},
689  booktitle = {2nd International Symposium "Networks for Mobility"},
690  year = {2004},
691  editor = {W. M\"ohlenbrink and F.C. Englmann and M. Friedrich and U. Martin
692	and U. Hangleiter},
693  pages = {43--43},
694  publisher = {Universit\"at Stuttgart},
695  abstract = {Microscopic simulation models are becoming increasingly important
696	tools in modelling transport systems. They are applied in simulation
697	programs for transport planning, traffic forecasting and advanced
698	vehicle control and safety systems (AVCSS). An important part of
699	the models are the microscopic sub-models which describe the interaction
700	between adjacent vehicles. For that purpose rules and equations are
701	defined describing the car-following and lane changing behaviour
702	of the vehicles. An essential problem is the calibration and validation
703	of the parameters used in these rules. In this paper ten microscopic
704	traffic flow models of very different kind are analysed concerning
705	the correct reproduction of the car-following behaviour on single
706	lane roads. The models are calibrated and validated with data collected
707	via DGPS-equipped cars (Differential Global Positioning System) on
708	a test track in Japan. The positions of the cars are delivered every
709	0.1 second with very high accuracy, which is perfect for analysing
710	the car following behaviour. To calibrate the models, in each case
711	one driver pair is under consideration. The measured data of a leading
712	car are fed into the model under consideration and the model is used
713	to compute the behaviour of a following car. In the analysis the
714	resulting simulated time series of headways are carried out and the
715	deviations to the measured headways are calculated to calibrate the
716	models. To find the optimal parameters an automated optimisation
717	technique is used which tries to minimise the deviations. For validation
718	purposes the resulting optimal parameter sets for single data sets
719	are taken to reproduce some other data sets by simulation. At first,
720	this is done in a driver independent way, where the drivers in the
721	data set used for the calibration are different from those used for
722	the validation. Secondly, to investigate whether individual driver
723	behaviour can be reproduced better a driver-special validation is
724	conducted, where the calibrated parameter sets obtained for each
725	driver are taken to validate the behaviour of the same driver in
726	other situations. Main results of the analyses are that all models
727	produce nearly the same errors, thus sophisticated models with up
728	to 15 parameters seem not to be better than simple models with only
729	4 or 6 parameters. In total it is found that the differences in the
730	driver behaviour are much bigger than the diversity of the models.
731	At last, the validation with special driver pairs produces slightly
732	better results than the driver-independent validation. Thus, the
733	behaviour of individual drivers can be reproduced a bit more accurately
734	than trying to transfer optimal parameter results from one driver
735	to another.},
736  journal = {Networks for Mobility 2004, Proceedings - Abstracts and CD-ROM},
737  keywords = {simulation,model,microscopic models,calibration,validation,GPS,DGPS,car
738	following, DLR/TS/VM},
739  owner = {dkrajzew},
740  timestamp = {2011.09.30},
741  url = {http://elib.dlr.de/21349/}
742}
743
744@INPROCEEDINGS{Brockfeld2005,
745  author = {Elmar Brockfeld and Stefan Lorkowski},
746  title = {Calibration of car-following models using Kalman filters},
747  booktitle = {ISTTT 16},
748  year = {2005},
749  abstract = {Calibration and validation, especially of microscopic traffic flow
750	models is a challenging task. Currently, ther is a renewed interest
751	in results of those efforts [1, 2] as well as in developing the right
752	tools to actually perform the calibration. The approach developed
753	in [1] will be refined, extended and compared to an approach based
754	on the recent development of a so called unscented Kalman filter
755	[3]. These methods will be used to calibrate a couple of microscopic
756	traffic flow models to two sets of freeway data, one US-American
757	(the I-880 FSP-dataset) and an European dataset, data from the German
758	freeway A100.},
759  keywords = {calibration, validation, Kalman filter, , DLR/TS/VM, model calibration},
760  owner = {dkrajzew},
761  timestamp = {2011.09.30},
762  url = {http://elib.dlr.de/22391/}
763}
764
765@INPROCEEDINGS{Brockfeld2003,
766  author = {Elmar Brockfeld and Peter Wagner},
767  title = {Calibration and Validation of Microscopic Traffic Flow Models},
768  booktitle = {Traffic and Granular Flow '03},
769  year = {2003},
770  editor = {P. H. L. Bovy and S. P. Hoogendoorn and M. Schreckenberg and D. E.
771	Wolf},
772  publisher = {Springer},
773  abstract = {Microscopic simulation models are becoming increasingly important
774	tools in modeling transport systems. There are a large number of
775	available models used in many countries. The most difficult stage
776	in the development and use of such models is the calibration and
777	validation of the microscopic sub-models describing the traffic flow,
778	such as the car following, lane changing and gap acceptance models.
779	This difficulty is due to the lack of suitable methods for adapting
780	models to empirical data. The aim of this paper is to present recent
781	progress in calibrating a number of microscopic traffic flow models.
782	By calibrating and validating various models using the same data
783	sets, the models are directly comparable to each other. This sets
784	the basis for a transparent benchmarking of those models. Furthermore,
785	the advantages and disadvantages of each model can be analyzed better
786	to develop a more realistic behavior of the simulated vehicles.
787
788
789	In this work various microscopic traffic flow models have been tested
790	from a very microscopic point of view concerning the car-following
791	behavior and gap-acceptance. The data used for calibration and validation
792	is from car-following experiments performed in Japan in October 2001.
793	The data have been collected by letting nine DGPS-equipped cars follow
794	a lead car driving along a 3 km test track for about 15-30 minutes.
795	So one gets the positions and speeds of each car in time intervals
796	of 0.1 seconds. The experiment was repeated eight times letting the
797	leading driver perform various driving patterns as there are constant
798	speeds of 20, 40, 60 and 80 km/h for some time, driving in waves
799	and emulating many accelerations/decelerations as they are typical
800	at intersections. To minimize driver-dependent correlations between
801	the data sets, the drivers were exchanged between the cars regularly
802	after each experiment.
803
804
805	In this paper we present analyses concerning four of the experiments,
806	namely the patterns mostly with intervals of constant speeds and
807	wave-performing. For each of the four experiments one gets the ten
808	trajectories of the cars in form of the DGPS-positions and speeds.
809	From these the accelerations and distances/gaps between the cars
810	have been calculated, which are used then for the simulation runs.<br/>
811
812	The study was done analyzing the time-development of the gaps between
813	the cars. For the simulation setup only two cars are considered at
814	a time. The leading car is updated as the speeds in the recorded
815	data sets tell and the following car is updated as defined by the
816	equations and rules of the used model, respectively. The absolute
817	error a model produces is calculated via the simple quadratic distance
818	between the recorded gaps and the simulated gaps. To get a percentage
819	error it is additionally related to the mean average gap in each
820	data set. Altogether 36 vehicle pairs (4 experiments * 9 vehicle
821	pairs) were used as data sets for the analyses.
822
823
824	Each model has been calibrated with each of the 36 different constellations
825	separately gaining optimal parameter sets for each ?model - data
826	set? combination. To find the optimal parameter constellations a
827	gradient-free optimization method was used and started several times
828	with different initialization values for each ?model - data set?
829	pair. The variation in initialization is done to avoid sticking with
830	a local minimum, which of course can occur because getting a global
831	minimum can not be guaranteed by those type of optimization algorithms.
832	Subsequently, the validation was performed by determining the error
833	of a given model on all the data sets which have not been used to
834	calibrate the model.
835
836
837	By now, ten microscopic models of a very different kind using 3 to
838	14 parameters have been tested. The most basic parameters used by
839	the models are the car length, a maximum velocity, an acceleration
840	and mostly a deceleration rate. The acceleration and deceleration
841	rates are specified in more detail in some models depending on the
842	recent speed or traffic states (indicated by density for example).
843	Furthermore, some models use a parameter for random braking or another
844	kind of stochastic parameter describing individual driver behavior.
845	Finally, few models use much more parameters to describe the driver?s
846	behavior, which will be briefly described in the final paper. As
847	the time step for the models is 0.1 seconds according to the recorded
848	data, some models with a traditional time step of 1 second ? as for
849	example used for simple cellular automatons - have been modified
850	to adopt for an arbitrarily small time-step. So far the models tested
851	are as follows (more will be added): - CA (cellular automaton model
852	by K. Nagel, M. Schreckenberg), - SK-model (model by S. Krauss),
853	- OVM (?Optimal Velocity Model?, Bando, Hasebe), - IDM (?Intelligent
854	Driver Model?, Helbing), - IDMM (?Intelligent Driver Model with Memory?,
855	Helbing, Treiber), - CATauT (CA model with more variable acceleration
856	and deceleration, own development), - GIPPSLIKE (basic model by P.G.
857	Gipps), - Aerde (model used in the simulation package INTEGRATION),
858	- FRITZSCHE (model used in the british software PARAMICS; it is similar
859	to what is used in the german software VISSIM by PTV), - MitSim (model
860	by Yang, Koutsopulus, used in the software MitSim).
861
862
863	The error rates of the models in comparison to the data sets during
864	the calibration for each model reach from 9 to 24 %. But no model
865	appears to be significantly the best one since every model has the
866	same problems with distinct data sets and other data sets can be
867	simulated quite good with each model. Interestingly, it can be stated
868	that models with more parameters than others do not necessarily reproduce
869	the real data better. The results of the validation process draw
870	a similar picture. The produced errors in these cases are about 12
871	to 30 %, sometimes up to 40 or 60%, which is of course much bigger
872	than in the simple calibration cases. All in all the results after
873	the calibration agree with some results that have been obtained before.
874	But the results of the validation are in parts very bad which probably
875	calls for the development of much better models. The other way to
876	interpret the results is that ? from this microscopic point of view
877	? errors of about 12-30 % can probably not be suppressed no matter
878	what a model is used. This would be due to the different behavior
879	of each driver.},
880  journal = {Traffic and Granular Flow '03},
881  keywords = {calibration, validation, models, traffic flow models, microscopic,
882	DLR/TS/VM, model calibration},
883  owner = {dkrajzew},
884  timestamp = {2011.09.30},
885  url = {http://elib.dlr.de/6653/}
886}
887
888@INPROCEEDINGS{Brockfeld2004,
889  author = {Elmar Brockfeld and Peter Wagner},
890  title = {Testing and Benchmarking of Microscopic Traffic Flow Models},
891  booktitle = {WCTR04 - 10th World Conference on Transport Research},
892  year = {2004},
893  volume = {abstract book I},
894  number = {A-D},
895  pages = {775--776},
896  abstract = {Microscopic simulation models are becoming increasingly important
897	tools in modelling transport systems. There are large number of available
898	models used in many countries. The important difficult stage in the
899	development and use of such models is the calibration and validation
900	of the microscopic sub-models describing the traffic flow, such as
901	the car following models for example. The aim of this paper is to
902	present recent progress in calibrating more than a dozen microscopic
903	traffic flow models with very different data sets conducted by DGPS-equipped
904	cars (Differential Global Positioning System), loop detectors and
905	human observers. Different approaches to measure the errors the models
906	produce in comparison to reality are compared. It can be stated that
907	from a microscopic point of view errors of about 15-20 % in headway-
908	and travel time-estimation and about 2-7 % in speed-estimation of
909	individual vehicles in the car following process seem to be the minimal
910	reachable level. Furthermore, the larger the simulation horizon is,
911	the smaller the diversity of the analyzed models become in comparison
912	to the diversity in the driver behaviour. Most interesting, no model
913	cold be denoted to be the best and especially highly sophisticated
914	models did not produce better results than very simple ones.},
915  journal = {Proceedings of the 10th World Conference on Transport Research},
916  keywords = {traffic flow modeling, benchmarking, simulation, GPS, DLR/TS/VM, model
917	calibration},
918  owner = {dkrajzew},
919  timestamp = {2011.09.30},
920  url = {http://elib.dlr.de/6709/}
921}
922
923@UNPUBLISHED{Brockfeld2004a,
924  author = {Elmar Brockfeld and Peter Wagner},
925  title = {Kalibrierung und Validierung von mikroskopischen Verkehrsflussmodellen},
926  year = {2004},
927  abstract = {Mikroskopische Verkehrsmodelle entwickeln sich zu immer wichtigeren
928	Hilfsmitteln bei der Modellierung von Transportsystemen. Sie helfen
929	bei der Infrastrukturplanung und beim Design von kleinr?umigen Bereichen
930	wie etwa Ampelkreuzungen bis hin zu gro?en Verkehrsnetzen. Auch im
931	Bereich der Verkehrsprognose, speziell der Kurzfristprognose und
932	bei der Entwicklung von Fahrerassistenzsystemen werde sie immer h?ufiger
933	eingesetzt. Von diesen Modellen gibt es eine sehr gro?e Anzahl, die
934	in vielen verschiedenen L?ndern eingesetzt werden. Oft ist jedoch
935	nicht hinreichend klar, welches Modell welche Verkehrsph?nomene und
936	Fahrerverhalten wie genau abbildet. Der schwierigste Schritt bei
937	der Entwicklung und Nutzung solcher Modelle ist der Abgleich der
938	mikroskopischen Teilmodelle, die den Verkehrsfluss beschreiben, mit
939	realen Daten - also die Kalibrierung und Validierung. Diese Teilmodelle
940	sind z. B. Fahrzeugfolgemodelle, Spurwechselmodelle und Abstands-Akzeptanz-Modelle.
941	Die Schwierigkeit der Kalibrierung liegt vor allem darin, dass derzeit
942	noch keine Methoden etabliert sind, wie die Modell mikroskopisch
943	mit realen Daten verglichen werden sollten. Im Vortrag werden methoden
944	hierf?r vorgeschlagen und aktuelle Forschungsergebnisse bzgl. des
945	Vergleichs verschiedener Verkehrsflussmodelle anhand realer Daten
946	vorgestellt. Die Modell wurden alle mit denselben ?ffentlich zug?nglichen
947	Datens?tzen kalibriert und validiert, wodurch vor allem Vergleichbarkeit
948	und Transparenz der ERgebnisse hergestellt wird. Ein wesentliches
949	Ergebnis ist bisher, dass komplexere Modelle nicht notwendigerweise
950	besser sein m?ssen als sehr einfach strukturierte. Ferner geben die
951	Ergebnisse Hinweise auf eine bisher unzureichende Abbildung des Fahrerverhaltens
952	in den Modellen.},
953  booktitle = {Braunschweiger Verkehrskolloquium des Zentrumf f\"ur Verkehr (ZVB)},
954  keywords = {Kalibrierung, Validierung, Fahrzeugdaten, Modelle, Simulation, DLR/TS/VM,
955	model calibration},
956  owner = {dkrajzew},
957  timestamp = {2011.09.30},
958  url = {http://elib.dlr.de/6706/}
959}
960
961@INPROCEEDINGS{Brockfeld2002,
962  author = {Elmar Brockfeld and Peter Wagner},
963  title = {Testing traffic flow models},
964  booktitle = {Computional Physics Conference},
965  year = {2002},
966  note = { LIDO-Berichtsjahr=2003,},
967  journal = {Proceedings of the Computional Physics Conference},
968  keywords = {DLR/TS/VM, model calibration},
969  owner = {dkrajzew},
970  timestamp = {2011.09.30},
971  url = {http://elib.dlr.de/6505/}
972}
973
974@ARTICLE{Chao-Qun2008,
975  author = {Mei Chao-Qun and Huang Hai-Jun and Tang Tie-Qiao},
976  title = {Improving Urban Traffic by Velocity Guidance},
977  journal = {Intelligent Computation Technology and Automation, International
978	Conference on},
979  year = {2008},
980  volume = {2},
981  pages = {383-387},
982  __markedentry = {[dkrajzew:6]},
983  address = {Los Alamitos, CA, USA},
984  doi = {http://doi.ieeecomputersociety.org/10.1109/ICICTA.2008.288},
985  isbn = {978-0-7695-3357-5},
986  owner = {dkrajzew},
987  publisher = {IEEE Computer Society},
988  timestamp = {2012.01.26}
989}
990
991@ARTICLE{Chowdhury2000,
992  author = {Debashish Chowdhury and Ludger Santen and Andreas Schadschneider},
993  title = {Statistical physics of vehicular traffic and some related systems},
994  journal = {Physics Reports},
995  year = {2000},
996  volume = {329},
997  pages = {199 - 329},
998  number = {4-6},
999  doi = {10.1016/S0370-1573(99)00117-9},
1000  issn = {0370-1573},
1001  keywords = {Cellular automata, Models},
1002  owner = {dkrajzew},
1003  timestamp = {2011.09.19},
1004  url = {http://arxiv.org/abs/cond-mat/0007053}
1005}
1006
1007@INPROCEEDINGS{Cottingham2005,
1008  author = {David N. Cottingham AND Jonathan J. Davies AND Alastair R. Beresford},
1009  title = {{Congestion-Aware Vehicular Traffic Routing Using WiFi Hotspots}},
1010  booktitle = {{Communications Innovation Institute Workshop}},
1011  year = {2005},
1012  month = apr,
1013  organization = {Cambridge-MIT Institute},
1014  note = {Conference Paper},
1015  keywords = {V2X, Assignment, University of Cambridge},
1016  owner = {Jonathan Davies (jjd27)},
1017  timestamp = {2011.09.19},
1018  url = {http://www.cl.cam.ac.uk/research/dtg/www/files/publications/public/jjd27/ciiHandout.pdf}
1019}
1020
1021@MISC{Duering2011,
1022  author = {Michael D�ring},
1023  title = {Simulative Untersuchung und Bewertung Vehicle-to-Infrastructure basierter
1024	Anfahrstrategien an Lichtsignalanlagen},
1025  month = {07},
1026  year = {2011},
1027  abstract = {Das Institut f�r Verkehrssystemtechnik im Deutschen Zentrum f�r Luft-
1028	und Raumfahrt e.V.
1029
1030	(DLR) besch�ftigt sich, unter anderem, mit der Entwicklung und Evaluation
1031	von Fahrerassistenzsystemen.
1032
1033	In diesem Zusammenhang ist das DLR Mitglied im Car-2-Car Communication
1034
1035	Consortium, welches eine f�hrende Rolle bei der Erarbeitung von Standards
1036	(IEEE
1037
1038	802.11p) f�r die drahtlose �bertragung von Informationen zwischen
1039	Fahrzeugen sowie
1040
1041	Fahrzeugen und kooperativer Verkehrsinfrastruktur definiert. Erste
1042	Demonstrationen zeigen
1043
1044	den sinnvollen Einsatz dieser Technologie f�r k�nftige Fahrerassistenzsysteme.
1045	Das
1046
1047	Ziel dieser Systeme ist es die Sicherheit und die Effizienz im Stra�enverkehr
1048	weiter zu
1049
1050	erh�hen.
1051
1052
1053	Im Entwicklungsprozess von Assistenz- und Automationssystemen werden
1054	verschiedene
1055
1056	Schritte, beginnend bei Simulationsstudien zur Absch�tzung der Auswirkungen
1057	eines neuartigen
1058
1059	Systems im Verkehr bis hin zur Evaluation von Prototypen in Feldversuchen,
1060
1061	durchlaufen. In der vorliegenden Arbeit wird das Anfahrverhalten von
1062	50 Fahrzeugen simuliert,
1063
1064	die sich in einem R�ckstau vor einer Lichtsignalanlage (LSA) befinden.
1065	Der Aufbau
1066
1067	der Simulation besteht aus einer LSA gesteuerten Kreuzung, deren einzige
1068	Fahrtrichtung
1069
1070	jeweils die Geradeausfahrt ist. Als Simulationsumgebung wird SUMO
1071	verwendet.
1072
1073
1074	Das Ziel der Arbeit ist die Untersuchung und Auswertung von drei unterschiedlichen
1075	Anfahrszenarien.
1076
1077	Zum einen wird das derzeitige Anfahrverhalten abgebildet. Zum anderen
1078
1079	werden zwei Fahrerassistenzsysteme betrachtet. Ein Assistenzsystem
1080	unterst�tzt den
1081
1082	Fahrer, indem ihm die Restzeit der Rotphase angezeigt wird bzw. indem
1083	der Assistent den
1084
1085	Fahrer beim Beschleunigungsvorgang unterst�tzt. Der andere Assistent
1086	�bernimmt vollautomatisch
1087
1088	die L�ngsf�hrung der Fahrzeuge. F�r die beiden Assistenten wird die
1089	Vehicleto-
1090
1091	X Technologie mit einer Durchdringungsrate von 100% vorausgesetzt.
1092
1093
1094	Es wird gezeigt, dass durch die Variation der Anfahrstrategie sowohl
1095	eine Verringerung
1096
1097	der Aufenthaltsdauer des letzten Fahrzeugs in der Simulation (im Folgenden
1098	Simulationszeit)
1099
1100	von 25% bis 85% als auch die Reduzierung der Anzahl der Gr�nphasen
1101	der LSA zum
1102
1103	R�umen der Kreuzung von 14 auf 4 m�glich ist. Die Einsparungsm�glichkeiten
1104	hinsichtlich
1105
1106	des Kraftstoffverbrauchs liegen zwischen 21% und 94%. Weiterhin wurden
1107	mit der Gr�nphasendauer
1108
1109	und dem Beschleunigungswert zwei Parameter identifiziert, die bedeutenden
1110
1111	Einfluss auf den Ablauf der Simulation und das Potential zur Reduzierung
1112	der Simulationszeit
1113
1114	und des Kraftstoffverbrauchs bzw. der Emission haben.},
1115  file = {pdf:http\://elib.dlr.de/70524/1/Studienarbeit_Michael_D%C3%BCring_110726.pdf:URL},
1116  keywords = {Lichtsignalanlagen, Anfahren, V2X, TLS, DLR/TS/VM},
1117  owner = {dkrajzew},
1118  timestamp = {2011.11.23},
1119  url = {http://elib.dlr.de/70524/}
1120}
1121
1122@INPROCEEDINGS{Figueiredo2001,
1123  author = {Figueiredo, L. and Jesus, I. and Machado, J.A.T. and Ferreira, J.R.
1124	and Martins de Carvalho, J.L.},
1125  title = {Towards the development of intelligent transportation systems},
1126  booktitle = {Intelligent Transportation Systems, 2001. Proceedings. 2001 IEEE},
1127  year = {2001},
1128  pages = {1206 -1211},
1129  __markedentry = {[dkrajzew:6]},
1130  abstract = {This paper presents a review of the state of the art on intelligent
1131	transportation systems. ITS involves a large number of research areas
1132	and, therefore, this paper focus on those we believe to be the most
1133	relevant. The main purpose is to study the achievements attained
1134	in the last years and to give an overview of possible directions
1135	towards future research},
1136  doi = {10.1109/ITSC.2001.948835},
1137  keywords = {intelligent transportation system development;automated highways;reviews;},
1138  owner = {dkrajzew},
1139  timestamp = {2012.01.26}
1140}
1141
1142@INPROCEEDINGS{dlr65966,
1143  author = {Gunnar Fl{\"o}tter{\"o}d and Yun-Pang Fl{\"o}tter{\"o}d},
1144  title = {A method to resolve non-unique flows in deterministic macroscopic
1145	intersection models},
1146  booktitle = {Transportation Research Board 92nd Annaul Meeting},
1147  year = {2013},
1148  abstract = {The modeling of complex urban road intersections with deterministic
1149	macroscopic models of traffic flow is known to suffer from non-unique
1150	solutions. This article proposes a new method to deal with this problem.},
1151  keywords = {deterministic macroscopic traffic model, traffic simulation},
1152  owner = {dkrajzew},
1153  timestamp = {2014.01.08},
1154  url = {http://elib.dlr.de/65966/}
1155}
1156
1157@INPROCEEDINGS{dlr62189,
1158  author = {Gunnar Fl{\"o}tter{\"o}d and Daniel Krajzewicz and Yun-Pang Wang
1159	and Michael Behrisch and Peter Wagner},
1160  title = {Disaggregate route choice estimation for the SUMO traffic microsimulator
1161	with the Cadyts calibration tool for improved traffic management},
1162  booktitle = {2nd NEARCTIS workshop 2009},
1163  year = {2009},
1164  keywords = {route choice},
1165  owner = {dkrajzew},
1166  timestamp = {2014.01.08},
1167  url = {http://elib.dlr.de/62189/}
1168}
1169
1170@INPROCEEDINGS{dlr72232,
1171  author = {Gunnar Fl{\"o}tter{\"o}d and Peter Wagner and Yun-Pang Wang},
1172  title = {Identifiability and practical relevance of complex car-following
1173	models},
1174  booktitle = {Traffic And Granular Flow},
1175  year = {2011},
1176  month = {September},
1177  abstract = {This article looks at car-following models with a deliberately pragmatic
1178	perspective: What information about driver behavior can be extracted
1179	from a given data set without more or less speculative assumptions
1180	about underlying behavioral laws. The objective of this exercise
1181	is not to invalidate existing models but to obtain a better understanding
1182	of how much (complex) model structure can be revealed/validated from
1183	real data.},
1184  keywords = {car following models, ARIMA, calibration},
1185  owner = {dkrajzew},
1186  timestamp = {2014.01.08},
1187  url = {http://elib.dlr.de/72232/}
1188}
1189
1190@INPROCEEDINGS{dlr71871,
1191  author = {Yun-Pang Fl{\"o}tter{\"o}d and Laura Bieker},
1192  title = {Demand-oriented traffic management for incidents and disasters},
1193  booktitle = {ICEM 2012},
1194  year = {2012},
1195  abstract = {Traffic simulation has been extensively used as a decision support
1196	tool for efficient traffic management in daily life. During disasters
1197	and incidents, traffic simulation can further help rescue teams to
1198	understand the current traffic state and the possible impacts of
1199	proposed strategies and then to make proper decisions. At this point,
1200	the changes in traffic demand should also be considered in the simulation
1201	to reflect the latest traffic state. In this paper, a demand-oriented
1202	traffic management system for disasters and incidents with a web-based
1203	portal is introduced. In this system, not only the real-time data
1204	from loop and wireless detectors but also traffic simulation are
1205	used for reconstructing and predicting the traffic state. Furthermore,
1206	four traffic demand categories for disasters and incidents are proposed
1207	in the system. Some respective demand characteristics are collected
1208	according to historical cases, such as departure pattern and people?s
1209	perception about evacuation. Such characteristics will be used in
1210	the system, since they have a great influence on the simulated traffic
1211	state and the effectiveness of applied strategies. Finally, the approach
1212	how to generate the respective special demands for disasters and
1213	incidents with consideration of the normal traffic demand is proposed
1214	as well. },
1215  keywords = {traffic management; disaster; SUMO;VABENE; traffic simulation},
1216  owner = {dkrajzew},
1217  timestamp = {2014.01.08},
1218  url = {http://elib.dlr.de/71871/}
1219}
1220
1221@INPROCEEDINGS{dlr80610,
1222  author = {Yun-Pang Fl{\"o}tter{\"o}d and Peter Wagner and Michael Behrisch
1223	and Daniel Krajzewicz},
1224  title = {Simulated-based Validity Analysis of Ecological User Equilibrium},
1225  booktitle = {2012 Winter Simulation Conference},
1226  year = {2012},
1227  month = {Dezember},
1228  abstract = {Microscopic traffic simulation models are applied in the analysis
1229	of transportation systems for years. Nevertheless, calibration (and
1230	validation) of microscopic sub-models such as car-following and gap-acceptance
1231	models is still a recent matter. The objective of the calibration
1232	is to adapt the simulation output to empirical data by adjusting
1233	the model's parameters. However, simulation results may vary from
1234	the underlying real-world data, despite the calibration. To analyze
1235	these deviations the present paper compares two different approaches
1236	of calibration using data from a single-lane car-following experiment
1237	on a Japanese test track. It is demonstrated that the results of
1238	the two methods differ significantly. A recommendation for the more
1239	appropriate method to use is given.},
1240  journal = {Winter Simulation Conference Archive},
1241  keywords = {traffic simulation, user equilibrium, ecology},
1242  owner = {dkrajzew},
1243  timestamp = {2014.01.08},
1244  url = {http://elib.dlr.de/80610/}
1245}
1246
1247@INPROCEEDINGS{Flotterod2009,
1248  author = {Gunnar Fl\"otter\"od and Daniel Krajzewicz and Yun-Pang Wang and
1249	Michael Behrisch and Peter Wagner},
1250  title = {Disaggregate route choice estimation for the SUMO traffic microsimulator
1251	with the Cadyts calibration tool for improved traffic management},
1252  booktitle = {2nd NEARCTIS workshop 2009},
1253  year = {2009},
1254  file = {poster:http\://elib.dlr.de/62189/1/Nearctis_RouteChoiceEstimation_poster.pdf:URL},
1255  keywords = {route choice},
1256  owner = {Daniel},
1257  timestamp = {2011.12.02},
1258  url = {http://elib.dlr.de/62189/}
1259}
1260
1261@TECHREPORT{Furian2013,
1262  author = {Furian, Nikolaus and Hausberger, Stefan and Krajzewicz, Daniel},
1263  title = {Extended Simulation Tool PHEM coupled to SUMO with User Guide (Draft)},
1264  institution = {COLOMBO consortium},
1265  year = {2013},
1266  type = {Deliverable to the European Commission},
1267  month = {October},
1268  owner = {dkrajzew},
1269  timestamp = {2014.01.08}
1270}
1271
1272@PHDTHESIS{Gawron1999,
1273  author = {Gawron, Christian},
1274  title = {Simulation-Based Traffic Assignment -- Computing User Equilibria
1275	in Large Street Networks},
1276  school = {Universit\"{a}t zu K\"{o}ln},
1277  year = {1999},
1278  citeulike-article-id = {8937803},
1279  file = {:https\://sumo.dlr.de/pdf/GawronDiss.pdf:URL},
1280  institution = {Informatik, Universit\"{a}t zu K\"{o}ln},
1281  keywords = {equilibrium, learning, simulation, sumo, Assignment, ZAIK},
1282  number = {366},
1283  owner = {dkrajzew},
1284  pages = {113},
1285  posted-at = {2011-03-04 07:57:16},
1286  priority = {2},
1287  timestamp = {2011.09.19}
1288}
1289
1290@INPROCEEDINGS{GOZALVEZ2009,
1291  author = {Javier GOZALVEZ and Siebe TURKSMA and Lan LIN and Oscar LAZARO and
1292	Fabio CARTOLANO and Eric ROBERT and Daniel KRAJZEWICZ and Ramon BAUZA
1293	and Fethi FILALI and Matthias R\"OCKL and Jeremie LEGUAY and Carlo
1294	MICHELACCI and Jaap VREESWIJK and Julen MANEROS and Ainara GONZALEZ
1295	and Massimiliano LENARDI},
1296  title = {iTETRIS: the Framework for Large-Scale Research on the Impact of
1297	Cooperative Wireless Vehicular Communications Systems in Traffic
1298	Efficiency},
1299  booktitle = {ICT-MobileSummit 2009},
1300  year = {2009},
1301  abstract = {Cooperative vehicular ICT systems have been identified as an attractive
1302	technology to improve traffic management and safety, while providing
1303	Internet on the move. To achieve these objectives, cooperative vehicular
1304	communication systems allow the dynamic exchange of messages between
1305	vehicles, and between vehicles and infrastructure. To ensure the
1306	efficiency of cooperative vehicular ICT systems, it is crucial that
1307	the communication protocols are adequately designed and optimised,
1308	and that the applications using such communication capabilities are
1309	tested under realistic conditions. In this context, this paper presents
1310	the EU-funded iTETRIS platform that is being created to allow for
1311	a realistic and accurate evaluation of the design and impact of cooperative
1312	vehicular communication systems and traffic management policies under
1313	realistic large-scale scenarios.},
1314  keywords = {Cooperative vehicular ICT, wireless communications, heterogeneous
1315	systems, simulation platform, traffic management.},
1316  owner = {Daniel},
1317  timestamp = {2011.12.02},
1318  url = {http://elib.dlr.de/62037/}
1319}
1320
1321@INPROCEEDINGS{Greenwood:2009:GDT:1558109.1558322,
1322  author = {Dominic Greenwood and Branislav Burdiliak and Ivan Trencansky and
1323	Hartmut Armbruster and Christian Dannegger},
1324  title = {GreenWave distributed traffic intersection control},
1325  booktitle = {Proceedings of The 8th International Conference on Autonomous Agents
1326	and Multiagent Systems - Volume 2},
1327  year = {2009},
1328  series = {AAMAS '09},
1329  pages = {1413--1414},
1330  address = {Richland, SC},
1331  publisher = {International Foundation for Autonomous Agents and Multiagent Systems},
1332  acmid = {1558322},
1333  isbn = {978-0-9817381-7-8},
1334  keywords = {distributed multiagent traffic intersection phase control, emergent
1335	green wave, video camera sensor},
1336  location = {Budapest, Hungary},
1337  numpages = {2},
1338  url = {http://dl.acm.org/citation.cfm?id=1558109.1558322}
1339}
1340
1341@INPROCEEDINGS{Harri2011,
1342  author = {J\'er\^ome H\"arri and Pasquale Cataldi and Daniel Krajzewicz and
1343	Robbin J. Blokpoel and Yoann Lopez and Jeremie Leguay},
1344  title = {Modeling and Simulating ITS Applications with iTETRIS},
1345  booktitle = {MSWiM'11, 14th ACM International Conference on Modeling, Analysis
1346	and Simulation of Wireless and Mobile Systems},
1347  year = {2011},
1348  month = {Oktober},
1349  abstract = {his work presents the modeling methodology of the iTETRIS platform
1350	to integrate and simulate ITS applications. iTETRIS is a modular
1351	and open-source simulation platform composed of four key modules:
1352	the network simulator ns-3, the traffic simulator SUMO, an ITS (Intelligent
1353	Transportation System) application simulator, and a central federating
1354	module called iCS. Our contribution is twofold: First, we propose
1355	a methodology to model and simulate ITS applications with iTETRIS
1356	around three main mechanisms: (i) message management with generic
1357	open APIs based on subscription/result container mechanisms (ii)
1358	data management with the integration of an application facilities
1359	layer in the iCS, including a local dynamic map (LDM), (iii) application
1360	management with an ITS application simulator including one or more
1361	application logics. Second, we apply this methodology to implement
1362	the following four ITS applications: dynamic route planning, bus
1363	lane management, emergency vehicle, and contextual speed adaptation.
1364	We describe their integrations in iTETRIS, including a characterization
1365	of their interactions with the iCS, and illustrate the benefits of
1366	these ITS applications on traffic efficiency, gasoline consumption,
1367	or air pollutant emissions.},
1368  keywords = {Intelligent Transportation Systems (ITS), Simulation Platform, ITS
1369	Application, iTETRIS, Performance Evaluation},
1370  owner = {Daniel},
1371  timestamp = {2011.12.02},
1372  url = {http://elib.dlr.de/70969/}
1373}
1374
1375@INPROCEEDINGS{Hopfner2007,
1376  author = {Marcus H\"opfner and Ingmar Ehrenpfordt and Eric Nicolay and Benjamin
1377	Maier and Elmar Brockfeld and Daniel Krajzewicz},
1378  title = {Simulation und Feldtest f\"ur die Validation mobilfunkbasierter Verkehrsdaten},
1379  booktitle = {CeBIT in Motion - Forum for Telematics and Navigation},
1380  year = {2007},
1381  editor = { Deutsche Messe AG},
1382  month = {M\"arz},
1383  abstract = {Im Rahmen des vom BMBF gef?rderten Forschungsprojektes ?TrafficOnline
1384	? Online Verkehrsdatenerfassung ?ber Mobilfunknetze? wird ein Verfahren
1385	zur Erfassung von Verkehrsdaten entwickelt, welches auf der Beobachtung
1386	von im Stra?enverkehr mitgef?hrten Mobiltelefonen basiert. Hierbei
1387	wird insbesondere der im Verkehrsnetz zur?ckgelegte Weg mobiler Telefonate,
1388	welche den Bereich mehrerer Mobilfunkzellen passieren, in anonymer
1389	Art und Weise ausgewertet und daraus eine durchschnittliche Reisegeschwindigkeit
1390	ermittelt. Das Institut f?r Verkehrsf?hrung und Fahrzeugsteuerung
1391	hat eine Testmethodik aufgebaut, auf deren Basis die ?berpr?fung
1392	der Einsatzgrenzen und Qualit?t des TrafficOnline-Verfahrens erfolgt.
1393	F?r die Validation des Verfahrens fand im Gro?raum Berlin ein Feldtest
1394	statt. Hierf?r wurden im GSM-Netz spezielle Erfassungsrechner installiert,
1395	welche f?r einen l?ngeren Zeitraum s?mtliche an der Abis-Schnittstelle
1396	auflaufenden Mobilfunkdaten aufzeichneten. Das Testgebiet erstreckte
1397	sich dabei ?ber den s?dwestlichen Teil Berlins, ausgehend vom Zentrum
1398	bis zum Autobahnring BAB A10. Damit umfasste es neben den ?bergeordneten
1399	Bundesfernstra?en auch Teile des nachgeordneten Stra?ennetzes im
1400	Zentrum Berlins. Im Rahmen der Auswertung des Feldtestes erfolgt
1401	ein Abgleich der mittels des TrafficOnline-Verfahrens generierten
1402	Verkehrsdaten mit lokalen Verkehrsdetektoren. Als Referenzdaten werden
1403	dabei unter anderem die Induktionsschleifen und Passivinfrarotdetektoren
1404	der Verkehrsmanagementzentrale Berlin verwendet. Neben diesem Feldtest
1405	kommt als zweiter Teil der Validation eine Simulation zum Einsatz.
1406	Als Simulationstool wurde das Programm "Simulation of Urban MObility"
1407	(SUMO) gew?hlt. Es handelt sich dabei um eine mikroskopische Verkehrssimulation,
1408	welche vom Zentrum f?r Angewandte Informatik K?ln und dem Institut
1409	f?r Verkehrsforschung Berlin entwickelt wurde. Mit diesem Simulationstool
1410	wird vor allem die ?bertragbarkeit des TrafficOnline-Verfahrens auf
1411	verschiedenste r?umliche Gegebenheiten und unterschiedliche Mobilfunknetze
1412	gepr?ft wird. Um diese Pr?fung durchf?hren zu k?nnen, wurde das Tool
1413	SUMO an die speziellen Anforderungen angepasst und um notwendige
1414	Funktionalit?ten erg?nzt.},
1415  journal = {CeBIT in Motion - Forum for Telematics and Navigation},
1416  keywords = {Verkehrsdatenerfassung, Floating Phone Data, Verkehrssimulation},
1417  owner = {Daniel},
1418  timestamp = {2011.12.02},
1419  url = {http://elib.dlr.de/48868/}
1420}
1421
1422@MASTERSTHESIS{Heppner2010,
1423  author = {Matthias Heppner},
1424  title = {Einf�hrung von Unit Tests in das bestehende C++ Softwaresystem SUMO},
1425  school = {Humboldt-Universit�t zu Berlin},
1426  year = {2010},
1427  month = {January},
1428  owner = {behr_mi},
1429  timestamp = {2011.12.05},
1430  url = {http://www2.informatik.hu-berlin.de/swt/dipl/MatthiasHeppner.2010.pdf}
1431}
1432
1433@ARTICLE{joerer2012towards,
1434  author = {Joerer, Stefan and Sommer, Christoph and Dressler, Falko},
1435  title = {{Towards Reproducibility and Comparability of IVC Simulation Studies
1436	- A Literature Survey}},
1437  journal = {IEEE Communications Magazine},
1438  year = {2012},
1439  note = {to appear},
1440  publisher = {IEEE}
1441}
1442
1443@UNPUBLISHED{Kuhne2006,
1444  author = {Reinhart K\"uhne and Marius Schlingelhof and Daniel Krajzewicz},
1445  title = {NEW GLOBAL NAVIGATION SATELLITE SYSTEM BASED APPROACHES FOR ADVANCED
1446	DRIVER ASSISTANCE},
1447  note = {Probably duplicate},
1448  month = {Januar},
1449  year = {2006},
1450  booktitle = {TRB 2006 (85. Annual Meeting)},
1451  keywords = {Navigation, Satellite System, Driver Assistance},
1452  owner = {Daniel},
1453  timestamp = {2011.12.02},
1454  url = {http://elib.dlr.de/44423/}
1455}
1456
1457@INPROCEEDINGS{Karnadi2007,
1458  author = {Karnadi, F.K. and Zhi Hai Mo and Kun-chan Lan},
1459  title = {Rapid Generation of Realistic Mobility Models for VANET},
1460  booktitle = {Wireless Communications and Networking Conference, 2007.WCNC 2007.
1461	IEEE},
1462  year = {2007},
1463  pages = {2506 -2511},
1464  month = {march},
1465  abstract = {One emerging, new type of ad-hoc network is the vehicular ad-hoc network
1466	(VANET), in which vehicles constitute the mobile nodes in the network.
1467	Due to the prohibitive cost of deploying and implementing such a
1468	system in real world, most research in VANET relies on simulations
1469	for evaluation. A key component for VANET simulations is a realistic
1470	vehicular mobility model that ensures conclusions drawn from simulation
1471	experiments will carry through to real deployments. In this work,
1472	we introduce a tool MOVE that allows users to rapidly generate realistic
1473	mobility models for VANET simulations. MOVE is built on top of an
1474	open source micro-traffic simulator SUMO. The output of MOVE is a
1475	realistic mobility model and can be immediately used by popular network
1476	simulators such as ns-2 and qualnet. We evaluate and compare ad-hoc
1477	routing performance for vehicular nodes using MOVE to that using
1478	the random waypoint model. We show that the simulation results obtained
1479	when nodes moving according to a realistic mobility model is significantly
1480	different from that of the commonly used random waypoint model.},
1481  doi = {10.1109/WCNC.2007.467},
1482  issn = {1525-3511},
1483  keywords = {MOVE tool;SUMO;VANET simulations;ad-hoc routing performance;mobile
1484	nodes;network simulators;open source microtraffic simulator;random
1485	waypoint model;realistic vehicular mobility model;vehicular ad-hoc
1486	network;vehicular nodes;ad hoc networks;public domain software;telecommunication
1487	network routing;traffic engineering computing;, V2X, New South Wales
1488	University},
1489  owner = {dkrajzew},
1490  timestamp = {2011.09.19}
1491}
1492
1493@INPROCEEDINGS{Katsaros2011b,
1494  author = {Katsaros, Konstantinos and Dianati, Mehrdad and Tafazolli, Rahim
1495	and Kernchen, Ralf},
1496  title = {{CLWPR - A Novel Cross-Layer Optimized Position Based Routing Protocol
1497	for VANETs}},
1498  booktitle = {2011 IEEE Vehicular Networking Conference (VNC) (VNC 2011)},
1499  year = {2011},
1500  pages = {200--207},
1501  __markedentry = {[dkrajzew:]},
1502  abstract = {In this paper, we propose a novel position-based routing protocol
1503	designed to anticipate the characteristics of an urban VANET environment.
1504	The proposed algorithm utilizes the prediction of the node's position
1505	and navigation information to improve the efficiency of routing protocol
1506	in a vehicular network. In addition, we use the information about
1507	link layer quality in terms of SNIR and MAC frame error rate to further
1508	improve the efficiency of the proposed routing protocol. This in
1509	particular helps to decrease end-to-end delay. Finally, carry-n-forward
1510	mechanism is employed as a repair strategy in sparse networks. It
1511	is shown that use of this technique increases packet delivery ratio,
1512	but increases end-to-end delay as well and is not recommended for
1513	QoS constraint services. Our results suggest that compared with GPSR,
1514	our proposal demonstrates better performance in the urban environment.},
1515  file = {:http\://info.ee.surrey.ac.uk/Personal/K.Katsaros/papers/KK_CLWPR_VNC_11.pdf:URL},
1516  keywords = {vehicular ad-hoc networks, position based routing, cross-layer.},
1517  owner = {dkrajzew},
1518  timestamp = {2012.01.25}
1519}
1520
1521@INPROCEEDINGS{Katsaros2011a,
1522  author = {Katsaros, Konstantinos and Kernchen, Ralf and Dianati, Mehrdad and
1523	Rieck, David},
1524  title = {{Performance study of a Green Light Optimized Speed Advisory ( GLOSA
1525	) Application Using an Integrated Cooperative ITS Simulation Platform}},
1526  booktitle = {International Wireless Communications and Mobile Computing Conference
1527	(IWCMC)},
1528  year = {2011},
1529  pages = {918--923},
1530  __markedentry = {[dkrajzew:]},
1531  abstract = {This paper proposes a Green Light Optimized Speed Advisory (GLOSA)
1532	application implementation in a typical reference area, and presents
1533	the results of its performance analysis using an integrated cooperative
1534	ITS simulation platform. Our interest was to monitor the impacts
1535	of GLOSA on fuel and traffic efficiency by introducing metrics for
1536	average fuel consumption and average stop time behind a traffic light,
1537	respectively. For gathering the results we implemented a traffic
1538	scenario defining a single route through an urban area including
1539	two traffic lights. The simulations are varied for different penetration
1540	rates of GLOSA-equipped vehicles and traffic density. Our results
1541	indicate that GLOSA systems could improve fuel consumption and reduce
1542	traffic congestion in junctions.},
1543  doi = {10.1109/IWCMC.2011.5982524},
1544  file = {:http\://info.ee.surrey.ac.uk/Personal/K.Katsaros/papers/KK_GLOSA_IWCMC_11.pdf:URL},
1545  keywords = {GLOSA,fuel consumption,traffic congestion,traffic light advisory,vehicular
1546	communications},
1547  mendeley-tags = {GLOSA},
1548  owner = {dkrajzew},
1549  timestamp = {2012.01.25}
1550}
1551
1552@ARTICLE{Katsaros2011,
1553  author = {Katsaros, Konstantinos and Kernchen, Ralf and Dianati, Mehrdad and
1554	Rieck, David and Zinoviou, Charalambos},
1555  title = {{Application of Vehicular Communications for Improving the Efficiency
1556	of Traffic in Urban Areas}},
1557  journal = {Wireless Communications and Mobile Computing},
1558  year = {2011},
1559  volume = {11},
1560  pages = {1657--1667},
1561  number = {12},
1562  __markedentry = {[dkrajzew:]},
1563  abstract = {This paper studies the impacts of vehicular communications on efficiency
1564	of traffic in urban areas. We consider a Green Light Optimized Speed
1565	Advisory (GLOSA) application implementation in a typical reference
1566	area, and present the results of its performance analysis using an
1567	integrated cooperative ITS simulation platform. In addition, we study
1568	route alternation using Vehicle to Infrastructure (V2I) and Vehicle
1569	to Vehicle (V2V) communications. Our interest was to monitor the
1570	impacts of these applications on fuel and traffic efficiency by introducing
1571	metrics for average fuel consumption, average stop time behind a
1572	traffic light and average trip time, respectively. For gathering
1573	the results we implemented two traffic scenarios defining routes
1574	through an urban area including traffic lights. The simulations are
1575	varied for different penetration rates of application-equipped vehicles,
1576	drivers compliance to the advised speed and traffic density. Our
1577	results indicate that GLOSA systems could improve fuel consumption,
1578	reduce traffic congestion in junctions and the total trip time.},
1579  doi = {10.1002/wcm.1233},
1580  file = {:http\://info.ee.surrey.ac.uk/Personal/K.Katsaros/papers/KK_GLOSA_SI_WCMC_11.pdf:URL},
1581  keywords = {fuel consumption,traffic congestion,traffic light advisory,vehicular
1582	communications, alternative route},
1583  owner = {dkrajzew},
1584  timestamp = {2012.01.25}
1585}
1586
1587@INPROCEEDINGS{Kerekes2009,
1588  author = {{Kerekes}, J.~P. and {Presnar}, M.~D. and {Fourspring}, K.~D. and
1589	{Ninkov}, Z. and {Pogorzala}, D.~R. and {Raisanen}, A.~D. and {Rice},
1590	A.~C. and {Vasquez}, J.~R. and {Patel}, J.~P. and {MacIntyre}, R.~T.
1591	and {Brown}, S.~D.},
1592  title = {{Sensor modeling and demonstration of a multi-object spectrometer
1593	for performance-driven sensing}},
1594  booktitle = {Society of Photo-Optical Instrumentation Engineers (SPIE) Conference
1595	Series},
1596  year = {2009},
1597  volume = {7334},
1598  series = {Society of Photo-Optical Instrumentation Engineers (SPIE) Conference
1599	Series},
1600  month = may,
1601  adsnote = {Provided by the SAO/NASA Astrophysics Data System},
1602  adsurl = {http://adsabs.harvard.edu/abs/2009SPIE.7334E..17K},
1603  doi = {10.1117/12.819265},
1604  keywords = {surveillance, Numerica Corporation, Air Force Institute of Technology,
1605	Rochester Institute of Technology},
1606  owner = {dkrajzew},
1607  timestamp = {2011.09.19}
1608}
1609
1610@INBOOK{Krajzewicz2010b,
1611  pages = {269--294},
1612  title = {Traffic Simulation with SUMO - Simulation of Urban Mobility},
1613  publisher = {Springer},
1614  year = {2010},
1615  editor = {Jaume Barcel\'o},
1616  author = {Daniel Krajzewicz},
1617  series = {International Series in Operations Research and Management Science},
1618  month = {October},
1619  journal = {Fundamentals of Traffic Simulation},
1620  keywords = {traffic simulation, sumo},
1621  owner = {Daniel},
1622  timestamp = {2011.12.02},
1623  url = {http://elib.dlr.de/66135/}
1624}
1625
1626@MISC{Krajzewicz2009a,
1627  author = {Daniel Krajzewicz},
1628  title = {Kombination von taktischen und strategischen Einfl\"ussen in einer
1629	mikroskopischen Verkehrsflusssimulation},
1630  year = {2009},
1631  abstract = {Eine mikroskopische Verkehrsflusssimulation gro?er Areale kann nur
1632	realit?tsnah durchge-f?hrt werden, wenn der Algorithmus zur Spurwahl
1633	sowohl taktische als auch strategische Ent-scheidungen des Fahrers
1634	umsetzt. Innerhalb dieser Arbeit wird das aktuell (Stand Juni 2008)
1635	in der freien, mikroskopischen Verkehrsflusssimulation ?SUMO? implementierte
1636	Modell vorgestellt und besprochen, welches beide Ebenen vereint.},
1637  editor = {Thomas J\"urgensohn and Harald Kolrep},
1638  journal = {Fahrermodellierung in Wissenschaft und Wirtschaft, 2. Berliner Fachtagung
1639	f\"ur Fahrermodellierung},
1640  keywords = {mikroskopische Verkehrsflusssimulation, Spurwechsel},
1641  number = {28},
1642  owner = {Daniel},
1643  pages = {104--115},
1644  publisher = {VDI-Verlag},
1645  series = {Verein Deutscher Ingenieure [Fortschritt-Berichte VDI / 22]: Fortschritt-Berichte
1646	/ VDI ; Nr. 28 : Reihe 22, Mensch-Maschine-Systeme},
1647  timestamp = {2011.12.02},
1648  url = {http://elib.dlr.de/58663/}
1649}
1650
1651@INPROCEEDINGS{Krajzewicz2003c,
1652  author = {Daniel Krajzewicz},
1653  title = {A Cognitive Driver Model},
1654  booktitle = {ECTRI 2003 - Young Researcher Seminar},
1655  year = {2003},
1656  abstract = {many different approaches to understand the process of driving a car
1657	exist, we try to simulate it within this project. This methodology
1658	fits wll into our institute?s work where traffic simulations play
1659	an important role. We not only hope to gain some information about
1660	the most concerned topics on driver related problems - issues on
1661	ergonomics and traffic security - but also some knowledge about traffic
1662	itself. We hope this knowledge will help us to improve microscopic
1663	traffic models used for large area simulations. Herein, som basic
1664	concepts the model incorporates and the main problems during the
1665	research and implementation are described.},
1666  file = {:http\://elib.dlr.de/6718/1/YRS2003_dkrajzew_mod.pdf:URL},
1667  journal = {ECTRI Report 2003-03},
1668  keywords = {simulation, cognitive car driver model},
1669  owner = {Daniel},
1670  timestamp = {2011.12.02},
1671  url = {http://elib.dlr.de/6718/}
1672}
1673
1674@INPROCEEDINGS{Krajzewicz2010a,
1675  author = {Daniel Krajzewicz and Laura Bieker},
1676  title = {Investigating Ecological Impacts on selected Traffic Management Methods},
1677  booktitle = {NEARCTIS 3rd Workshop},
1678  year = {2010},
1679  month = {Juni},
1680  abstract = {Within the iTETRIS project, the used SUMO traffic simulation was extended
1681	by models for computing the emissions of pollutants CO, CO2, HC,
1682	PMx, and NOx, as well as for computing the fuel consumption on a
1683	microscopic, per-vehicle, base. The emission model was based on the
1684	HBEFA (?Handbuch der Emissionsfaktoren?) database which covers a
1685	large variety of vehicle types, considering differences between passenger
1686	and heavy duty vehicles, the engine displacement, the fuel type,
1687	and the EURO emission norm of the vehicles. This database was reformulated
1688	into a microscopic model which uses the vehicle class, the vehicle?s
1689	speed and the vehicle?s acceleration for computing the amount of
1690	a certain pollutant?s emission within one discrete time step. The
1691	kind of this model?s embedding within SUMO allows to collect and
1692	to evaluate the ecological impacts of traffic management strategies
1693	on per-vehicle, per-lane, and per-road base. Using this information,
1694	two sub-topics of traffic management were addressed: ecological routing
1695	and the ecological impacts of traffic lights.},
1696  keywords = {traffic management, ecological issues, navigation, traffic lights},
1697  owner = {Daniel},
1698  timestamp = {2011.12.02},
1699  url = {http://elib.dlr.de/64840/}
1700}
1701
1702@INPROCEEDINGS{Krajzewicz2011,
1703  author = {Daniel Krajzewicz and Laura Bieker and Elmar Brockfeld and Ronald
1704	Nippold and Julia Ringel},
1705  title = {\"Okologische Einfl\"usse ausgew\"ahlter Verkehrsmanagementans\"atze},
1706  booktitle = {Heureka '11},
1707  year = {2011},
1708  month = {M\"arz},
1709  abstract = {Eine der Aufgaben innerhalb des von der Europ?ischen Kommission kofinanzierten
1710	Projektes ?iTETRIS? war die Betrachtung der ?kologischen Auswirkungen
1711	von Verkehrsmanagementma?nahmen. Um diese Aufgabe erf?llen zu k?nnen
1712	wurde die innerhalb dieses Projektes benutzte Verkehrsflusssimulation
1713	SUMO um ein Modell der Schadstoffemission und des Kraftstoffverbrauchs
1714	erweitert. Mit Hilfe der so erhaltenen Anwendung wurden Versuche
1715	durchgef?hrt, die die Abh?ngigkeit zwischen konventionellen Kenngr??en
1716	des Verkehrsmanagements und den neu errechenbaren ?kologischen Kenngr??en
1717	aufdecken sollten. Innerhalb dieses Berichts werden neben dem Emissionsmodell
1718	die Ergebnisse dieser Untersuchungen vorgestellt, wobei ein starker
1719	Zusammenhang zwischen konventionellen und ?kologischen Kenngr??en
1720	festgestellt wird.},
1721  keywords = {Schadstoffemission, Routenwahl, Verkehrsmanagement},
1722  owner = {Daniel},
1723  timestamp = {2011.12.02},
1724  url = {http://elib.dlr.de/69859/}
1725}
1726
1727@ARTICLE{Krajzewicz20121482,
1728  author = {Daniel Krajzewicz and Laura Bieker and J�r�me H�rri and Robbin Blokpoel},
1729  title = {Simulation of V2X Applications with the iTETRIS System},
1730  journal = {Procedia - Social and Behavioral Sciences},
1731  year = {2012},
1732  volume = {48},
1733  pages = {1482 - 1492},
1734  number = {0},
1735  note = {<ce:title>Transport Research Arena 2012</ce:title>},
1736  abstract = {The main task of the �iTETRIS� project which was co-funded by the
1737	European Commission was the development of a software system for
1738	the simulation of large-scale traffic management solutions based
1739	on vehicular communication (V2X). Several steps were taken to assure
1740	that the developed simulation system fits the current research and
1741	engineering needs, including the evaluation of a city�s traffic problems,
1742	definition of performance metrics, development of V2X-enabled traffic
1743	management applications, and the extension of the simulators used
1744	within the developed simulation architecture. Within this report,
1745	the major results of the project will be presented. Most of these
1746	results were made freely available after the project�s end.},
1747  doi = {10.1016/j.sbspro.2012.06.1124},
1748  issn = {1877-0428},
1749  keywords = {traffic management},
1750  url = {http://www.sciencedirect.com/science/article/pii/S1877042812028601}
1751}
1752
1753@INPROCEEDINGS{Krajzewicz2010,
1754  author = {Daniel Krajzewicz and Robbin Blokpoel and Fabio Cartolano and Pasquale
1755	Cataldi and Ainara Gonzalez and Oscar Lazaro and J\'er\'emie Leguay
1756	and Lan Lin and Julen Maneros and Michele Rondinone},
1757  title = {iTETRIS - A System for the Evaluation of Cooperative Traffic Management
1758	Solutions},
1759  booktitle = {AMAA 2010},
1760  year = {2010},
1761  editor = {Gereon Meyer and J\"urgen Valldorf},
1762  series = {VDI-Buch},
1763  pages = {399--410},
1764  month = {Mai},
1765  publisher = {Springer},
1766  abstract = {V2X communication - communication between vehicles (V2V) and between
1767	vehicles and infrastructure (V2I) - promises new methods for traffic
1768	management by supplying new data and by opening new ways to inform
1769	drivers about the current situation on the roads. Currently, V2X
1770	cooperative systems are under development, forced by both the industry
1771	and by the European Commission which supports the development as
1772	a part of its Intelligent Car Initiative. Within this publication,
1773	"iTETRIS", a new system for simulating V2X-based traffic management
1774	applications is described which aims on high-quality simulations
1775	of large areas. This is achieved by coupling two well-known open
1776	source simulators. The sustainability of the project is guaranteed
1777	by making the whole also available as an open source tool.},
1778  journal = {Advanced Microsystems for Automotive Applications 2010},
1779  keywords = {V2X communication, simulation, traffic management},
1780  owner = {Daniel},
1781  timestamp = {2011.12.02},
1782  url = {http://elib.dlr.de/64340/}
1783}
1784
1785@INPROCEEDINGS{Krajzewicz2006,
1786  author = {Daniel Krajzewicz and Michael Bonert and Peter Wagner},
1787  title = {The Open Source Traffic Simulation Package SUMO},
1788  booktitle = {RoboCup 2006},
1789  year = {2006},
1790  month = {Juni},
1791  abstract = {Since the year 2000, the Institute of Transportation Research (IVF)
1792	at the German Aerospace Centre (DLR) is developing a microscopic,
1793	traffic simulation package. The complete package is offered as open
1794	source to establish the software as a common testbed for algorithms
1795	and models from traffic research. Since the year 2003 the IVF also
1796	works on a virtual traffic management centre and in conjunction with
1797	this on traffic management. Several large-scale projects have been
1798	done since this time, most importantly INVENT where modern traffic
1799	management methods have been evaluated and the online-simulation
1800	and prediction of traffic during the world youth day (Weltjugendtag)
1801	2005 in Cologne/Germany. This publication briefly describes the simulation
1802	package together with the projects mentioned above to show how SUMO
1803	can be used to simulate largescale traffic scenarios. Additionally,
1804	it is pointed out how SUMO may be used as a testbed for automatic
1805	management algorithms with minor effort in developing extensions.},
1806  journal = {RoboCup 2006},
1807  keywords = {Simulation, Traffic Management, Disaster & Event Management},
1808  owner = {Daniel},
1809  timestamp = {2011.12.02},
1810  url = {http://elib.dlr.de/46740/}
1811}
1812
1813@INPROCEEDINGS{Krajzewicz2007,
1814  author = {Daniel Krajzewicz and Danilot Teta Boyom and Peter Wagner},
1815  title = {Untersuchungen der Performanz einer auf C2C-Kommunikation basierenden,
1816	autonomen Routenwahl bei Stauszenarien},
1817  booktitle = {Heureka '08},
1818  year = {2007},
1819  month = {Juli},
1820  abstract = {Neben m?glichem Einsatz bei der Warnung und Unterst?tzung des Fahrers,
1821	der Vorbereitung des Fahrzeugs auf einen kurz bevorstehenden Unfall
1822	oder der Realisierung eines Zugangs zum Internet innerhalb von Fahrzeugen
1823	([6]) wird der Kommunikation zwischen Fahrzeugen auch die M?glichkeit
1824	Staus zu reduzieren zugesprochen. F?r diese Funktion sollen die von
1825	anderen Fahrzeugen erhaltenen Informationen ?ber den Zustand im Stra?ennetz
1826	in angepasste Navigationssysteme einflie?en, so dass diese in der
1827	Lage sind, auf realem und aktuellem Stra?enzustand basierend, Routen
1828	f?r das jeweilige, sie tragende Fahrzeug vorherzusagen. Die hier
1829	vorgestellte Untersuchung soll aufzeigen, inwiefern eine solche zwischen
1830	den Fahrzeugen innerhalb des Systems unkoordinierte Routenwahl tats?chlich
1831	in der Lage ist, die Auswirkungen von Staus zu reduzieren.
1832
1833
1834	F?r die Untersuchung wurde die freie Verkehrsflusssimulation SUMO
1835	([1, 2]) um eine C2C-Komponente erweitert. Als Datengrundlage wurde
1836	ein Stra?ennetz der Stadt Magdeburg benutzt, f?r das eine validierte
1837	Nachfrage existiert. Dieses Dokument beschreibt die Erweiterung der
1838	Simulation um die C2C-Kommunikation, den Aufbau des simulierten Stauszenarios
1839	sowie die Ergebnisse der Untersuchung.},
1840  keywords = {car2car-Kommunikation, Verkehrsmanagement, Simulation},
1841  owner = {Daniel},
1842  timestamp = {2011.12.02},
1843  url = {http://elib.dlr.de/50466/}
1844}
1845
1846@INPROCEEDINGS{Krajzewicz2007a,
1847  author = {Daniel Krajzewicz and Danilot Teta Boyom and Peter Wagner},
1848  title = {Evaluation of the Performance of city-wide, autonomous Route Choice
1849	based on Vehicle-to-vehicle-Communictaion
1850
1851	},
1852  booktitle = {TRB 2008 (87. Annual Meeting)},
1853  year = {2007},
1854  month = {Juli},
1855  abstract = {The sharing of information between vehicles via vehicle-to-vehicle
1856	communication has a great potential for future traffic surveillance
1857	and management applications. One possible use case is the communication
1858	of information about the state of the road network, for example by
1859	transferring travel times into the navigation devices enabling them
1860	to compute routes using this knowledge.
1861
1862
1863	This work reports about a set of simulation results where the benefit
1864	of using information exchanged between vehicles was evaluated for
1865	a city scenario using an extended microscopic traffic flow simulation.
1866	The scenario is based on validated real-life data for a normal weekday
1867	within a middle-sized German city. Contrary to other approaches,
1868	the used model of vehicle-to-vehicle communication was implemented
1869	directly into the traffic simulation. It was kept as simple as possible
1870	in order to allow a fast execution needed for evaluating the effects
1871	on a large scale and was calibrated using data from the real life.
1872	This simulation study evaluates the influences of the model?s parameters
1873	and of the amount of vehicles equipped with vehicle-to-vehicle devices
1874	on the mean travel time within the simulated city.},
1875  keywords = {Vehicle-to-vehicle communication, traffic management, simulation},
1876  owner = {Daniel},
1877  timestamp = {2011.12.02},
1878  url = {http://elib.dlr.de/50464/}
1879}
1880
1881@INPROCEEDINGS{Krajzewicz2007b,
1882  author = {Daniel Krajzewicz and Danilot Teta Boyom and Peter Wagner},
1883  title = {Auswirkungen einer auf Car2Car-Kommunikation basierenden, dynamischen
1884	Routenwahl bei Beeintr\"achtigungen im Stadtverkehr},
1885  booktitle = {21. Verkehrswissenschaftliche Tage},
1886  year = {2007},
1887  month = {Juli},
1888  abstract = {Die Kommunikation zwischen Fahrzeugen, die in K?rze im Rahmen des
1889	Projektes SIM-TD praxisnah demonstriert werden soll, birgt ein gro?es
1890	Potential f?r eine zuk?nftige Verkehrslageerfassung wie auch f?r
1891	neue Verfahren beim Management von Verkehrssystemen. Beispielsweise
1892	k?nnen Fahrzeuge Informationen ?ber von einem Normalfall abweichende
1893	Reisezeiten an andere Fahrzeuge weiter geben, die ihrem Fahrer dann
1894	eine neue, am Stau vorbei f?hrende, Route vorschlagen.
1895
1896
1897	Im Rahmen der hier vorgestellten Untersuchung wurde ein solches Szenario
1898	per Simulation evaluiert, um die Effizienz einer solchen Routenwahl
1899	zu demonstrieren. Ausgegangen wurde hierbei von der Simulation einer
1900	ganzen Stadt, die um Staus erweitert worden ist. Neben den Auswirkungen
1901	unterschiedlicher Ausstattungsgrade wurden auch die Einfl?sse weiterer
1902	Kommunikationsparameter untersucht.},
1903  journal = {21. Verkehrswissenschaftliche Tage},
1904  keywords = {Car2Car-Kommunikation, Verkehrsflusssimulation, Verkehrsmanagement},
1905  owner = {Daniel},
1906  timestamp = {2011.12.02},
1907  url = {http://elib.dlr.de/50463/}
1908}
1909
1910@INPROCEEDINGS{Krajzewicz2005a,
1911  author = {Daniel Krajzewicz and Elmar Brockfeld and J\"urgen Mikat and Julia
1912	Ringel and C. R\"ossel and Wolfram Tuchscheerer and Peter Wagner
1913	and Richard W\"osler},
1914  title = {Simulation of modern Traffic Lights Control Systems using the open
1915	source Traffic Simulation SUMO},
1916  booktitle = {3rd Industrial Simulation Conference 2005},
1917  year = {2005},
1918  editor = {J. Kr\"uger and A. Lisounkin and G. Schreck},
1919  pages = {299--302},
1920  month = {Juni},
1921  publisher = {EUROSIS-ETI},
1922  abstract = {Within the project ?OIS? (optical information systems) new traffic
1923	control mechanisms had to be invented and tested. One of the most
1924	important topics was to optimize the flow over a junction using information
1925	from the OIS sensors which can not be measured using normal sensors
1926	such as induct loops. For this purpose, an ?agentbased? traffic lights
1927	logic algorithm was used, which uses the length of a jam in front
1928	of a traffic light as input. As we had no possibility to test the
1929	traffic lights control within the reality, the improvement of the
1930	flow throughput of such junctions was shown using the open source
1931	traffic Simulation ?SUMO? (Simulation of Urban MObility) [1, 2].
1932	This publication describes the algorithm itself and how it was embedded
1933	within the simulation. Furthermore, the simulation results are given.},
1934  journal = {Proceedings of the 3rd Industrial Simulation Conference 2005},
1935  keywords = {Microscopic traffic simulation, open source, traffic lights, traffic
1936	research},
1937  owner = {Daniel},
1938  timestamp = {2011.12.02},
1939  url = {http://elib.dlr.de/21012/}
1940}
1941
1942@INPROCEEDINGS{dlr81834,
1943  author = {Daniel Krajzewicz and Yun-Pang Fl{\"o}tter{\"o}d},
1944  title = {Simulative Untersuchung abstrakter und realer Verkehrsmanagementans{\"a}tze
1945	zur Emissionsreduktion},
1946  booktitle = {Kolloquium "Luftqualit{\"a}t an Stra{\ss}en 2013"},
1947  year = {2013},
1948  pages = {42--57},
1949  month = {M{\"a}rz},
1950  publisher = {Bundesanstalt f{\"u}r Stra{\ss}enwesen},
1951  abstract = {Verkehrsflusssimulationen sind ein etabliertes Werkzeug des Verkehrsmanagements,
1952	die auch zur Bewertung von schadstoffreduzierenden Verkehrsmanagementma{\ss}nahmen
1953	herangezogen werden k{\"o}nnen. Vorgestellt werden abgeschlossene
1954	und laufende Arbeiten zur simulationsgest{\"u}tzten Entwicklung und
1955	Bewertung solcher Ma{\ss}nahmen.},
1956  journal = {Kolloquium Luftqualit{\"a}t an Stra{\ss}en 2013},
1957  keywords = {Simulation, Schadstoffemission, Verkehrsmanagementma{\ss}nahmen},
1958  owner = {dkrajzew},
1959  timestamp = {2014.01.08},
1960  url = {http://elib.dlr.de/81834/}
1961}
1962
1963@INPROCEEDINGS{Krajzewicz2003b,
1964  author = {Daniel Krajzewicz and Markus Hartinger and Georg Hertkorn and Peter
1965	Mieth and Christian R\"ossel and Julia Zimmer and Peter Wagner},
1966  title = {Using the Road Traffic Simulation ``SUMO'' for educational Purposes},
1967  booktitle = {Traffic and Granular Flow (TGF)},
1968  year = {2003},
1969  note = {LIDO-Berichtsjahr=2004},
1970  abstract = {Since the year 2000, the Centre of Apllied Informatics and the Institute
1971	f?r Transport Research at the German Aerospace Centre devops a microscopic
1972	road traffic simulation package named &quot;SUMO&quot; - an acronym
1973	for &quot;Simulation of Urban MObility&quot;. Meanwhile, the simulation
1974	is capable to deal with realistic scenarios such as large cities
1975	and is used for these purposes within the Institute?s projects. The
1976	idea was to support the traffic research community with a common
1977	platform to test new ideas and models without the need to reimplement
1978	a framework that handles road data, vehicle routes, traffic light
1979	steering etc. To achieve this goal, the simulation code is available
1980	as open source. Within this publication, we would like to demonstrate
1981	how most attributes of traffic flow can be simulated. This should
1982	be mainly intersting for educational purposes.},
1983  file = {:http\://elib.dlr.de/6719/1/dkrajzew_TGF03Poster_SUMOEducation.pdf:URL},
1984  keywords = {traffic simulation, road traffic, car follwing, microscopic, continous,
1985	multimodal, open source, car-driver model, traffic research, education},
1986  owner = {Daniel},
1987  timestamp = {2011.12.02},
1988  url = {http://elib.dlr.de/6719/}
1989}
1990
1991@INPROCEEDINGS{Krajzewicz2003a,
1992  author = {Daniel Krajzewicz and Markus Hartinger and Georg Hertkorn and Peter
1993	Mieth and Julia Ringel and Christian R\"ossel and Peter Wagner},
1994  title = {The "Simulation of Urban MObility" package: An open source traffic
1995	simulation},
1996  booktitle = {2003 European Simulation and Modelling Conference},
1997  year = {2003},
1998  abstract = {SUMO is the acronym for "Simulation of Urban MObility", an open source
1999	project concerned with the development and usage of a traffic simulation.
2000	The project is a part of our scientific work concerned with the verification
2001	of different microscopic models of traffic, and their comparison
2002	([1]). Further, the traffic science community often involves ideas
2003	where each of them needs a traffic simulation to be validated. Over
2004	the time, many more or less sophisticated simulations have been developed
2005	to do this job. They mostly stay unknown. This approach is not only
2006	very inefficient as a traffic simulation has many things to regard;
2007	also, the results are often not replicable or at least hard to compare.
2008	When a common platform is supplied, such problems should not occur.
2009	Within this publication, we would like to introduce our package to
2010	the public in the hope to gain some further interest.},
2011  journal = {Proceedings of the 2003 European Simulation and Modelling Conference},
2012  keywords = {traffic simulation, road traffic, open source, car-driver model, traffic
2013	research},
2014  owner = {Daniel},
2015  timestamp = {2011.12.02},
2016  url = {http://elib.dlr.de/21385/}
2017}
2018
2019@INPROCEEDINGS{Krajzewicz2004b,
2020  author = {Daniel Krajzewicz and Markus Hartinger and Georg Hertkorn and Eric
2021	Nicolay and Christian R\"ossel and Julia Ringel and Peter Wagner},
2022  title = {Recent Extensions to the open source Traffic Simulation SUMO},
2023  booktitle = {WCTR04 - 10th World Conference on Transport Research},
2024  year = {2004},
2025  abstract = {"SUMO" is the acronym for "Simulation of Urban MObility", an open
2026	source simulation package developed since 2000 at the Institute for
2027	Transportation Research at the German Aerospace Centre (DLR) and
2028	the Centre for Applied Informatics, Cologne (ZAIK). This quite ambitious
2029	project has recently entered his version 0.8 and we will describe
2030	some of the new features herein. Some of them are a new visualisation
2031	module, an extension of the junction concept, simulation of actuated
2032	traffic lights and many more. We hope this information to be interesting
2033	for the traffic science community as the software may be downloaded
2034	and extended for free.},
2035  journal = {Proceedings of the 10th World Conference on Transport Research (on
2036	CD)},
2037  keywords = {SUMO},
2038  owner = {Daniel},
2039  timestamp = {2011.12.02},
2040  url = {http://elib.dlr.de/19475/}
2041}
2042
2043@INPROCEEDINGS{Krajzewicz2002a,
2044  author = {Daniel Krajzewicz and Georg Hertkorn and C. R\"ossel and Peter Wagner},
2045  title = {SUMO (Simulation of Urban MObility) - an open-source traffic simulation},
2046  booktitle = {4th Middle East Symposium on Simulation and Modelling},
2047  year = {2002},
2048  editor = {A. Al-Akaidi},
2049  pages = {183--187},
2050  note = { LIDO-Berichtsjahr=2004,},
2051  abstract = {As no exact model of traffic flow exists due to its high complexity
2052	and chaotic organisation, researchers mainly try to predict traffic
2053	using simulations. Within this field, many simulation packages exist
2054	and differ in their software architecture paradigm as well as in
2055	the models that describe traffic itself. We will introduce yet another
2056	system which, in contrast to most of the other simulation software
2057	packages, is available as on open-source programm and may therfore
2058	be extended in order to fit a researcher?s own needs and also be
2059	used as a reference testbed for new traffic models.},
2060  journal = {Proceedings of the 4th Middle East Symposium on Simulation and Modelling
2061	(MESM20002)},
2062  keywords = {traffic simulation, microscopic, continous, multimodal, open source,
2063	car-driver model, traffic research, road traffic},
2064  owner = {Daniel},
2065  timestamp = {2011.12.02},
2066  url = {http://elib.dlr.de/6661/}
2067}
2068
2069@INPROCEEDINGS{Krajzewicz2002b,
2070  author = {Daniel Krajzewicz and Georg Hertkorn and C. R\"ossel and Peter Wagner},
2071  title = {An Example of Microscopic Car Models Validation using the open source
2072	Traffic Simulation SUMO},
2073  booktitle = {14th European Simulation Symposium},
2074  year = {2002},
2075  volume = {Jahrgang 2002},
2076  series = {SCS European Publishing House},
2077  pages = {318--322},
2078  note = { LIDO-Berichtsjahr=2004,},
2079  abstract = {In SUMO (Simulation of Urban MObility; An open-source traffic simulation)
2080	we presented an open source simulation software for road traffic
2081	simulation. Now we show one possible field of application, the validation
2082	of microscopic car/car-driver models. Our motivation is to awake
2083	the interest in using and extending the software, so this report
2084	will describe the software?s usability but will not go into depth
2085	in interpreting the results.},
2086  journal = {Proceedings of Simulation in Industry, 14th European Simulation Symposium},
2087  keywords = {traffic simulation, road traffic, car following, model validation,
2088	microscopic, continuous, multimodal, open source, car-driver-model,
2089	traffic research, validation, calibration},
2090  owner = {Daniel},
2091  timestamp = {2011.12.02},
2092  url = {http://elib.dlr.de/6657/}
2093}
2094
2095@INPROCEEDINGS{Krajzewicz2005,
2096  author = {Daniel Krajzewicz and Georg Hertkorn and Julia Ringel and Peter Wagner},
2097  title = {Preparation of Digital Maps for Traffic Simulation; Part 1: Approach
2098	and Algorithms},
2099  booktitle = {3rd Industrial Simulation Conference 2005},
2100  year = {2005},
2101  editor = {J. Kr\"uger and A. Lisounkin and G. Schreck},
2102  pages = {285--290},
2103  month = {Juni},
2104  publisher = {EUROSIS-ETI},
2105  abstract = {Traffic simulations are an accepted tool for investigations on road
2106	traffic and used widely within the traffic science community. Modern
2107	computer systems are fast enough to model and simulate traffic within
2108	large areas at a microscopic scale regarding each vehicle, replacing
2109	macroscopic simulations in most cases. Although microscopic traffic
2110	simulations offer better quality than macroscopic ones, they also
2111	need additional data to describe the modelled road networks. A street?s
2112	lanes are modelled explicitly within microscopic simulations and
2113	in most cases also the connections between their lanes over junctions.
2114	If one wants to model large areas, the best source to get the description
2115	about their road network is the usage of digital maps. Unfortunately,
2116	most of these are used for routing purposes and do not contain the
2117	fine-grained information mentioned above that is needed by microscopic
2118	simulations. This document describes an algorithm for the computation
2119	of the needed information from simple road networks.},
2120  journal = {Proceedings of the 3rd Industrial Simulation Conference 2005},
2121  keywords = {Microscopic traffic simulation, digital road maps, open source, traffic
2122	research},
2123  owner = {Daniel},
2124  timestamp = {2011.12.02},
2125  url = {http://elib.dlr.de/21013/}
2126}
2127
2128@INPROCEEDINGS{Krajzewicz2004a,
2129  author = {Daniel Krajzewicz and Reinhart K\"uhne and Peter Wagner},
2130  title = {A Car Driver's Cognition Model},
2131  booktitle = {ITS Safety and Security Conference},
2132  year = {2004},
2133  volume = {CD},
2134  abstract = {There is a basic need in transportation planning and traffic engineering
2135	for developing and testing traffic models of different granularity.
2136	Although our major intrest is the replication of traffic within larger
2137	areas, both the current research on traffic safety and the desire
2138	to improve the quality of microscopic simulations makes it necessary
2139	to deal with the car driver?s cognition on a finer scale. This paper
2140	presents our model assumptions for such sub-microscopic simulations,
2141	which are based on results from cognitive psychology. Although some
2142	preliminary work of this type is available, most of these applications
2143	are not open to the public, which makes them useless for scientific
2144	purposes. the cognition simulations availabele up to now mostly deal
2145	withmemory processes and are not easily extendable by further structures
2146	such as vehickles with their dynamics or a representation of the
2147	simulated environment. These considerations motivated us to develop
2148	the above mentioned model from scratch. The design of the model described
2149	herein includes sub-models of a human being?s perception, visual
2150	attention, internal environment representation and decision making
2151	as well as the execution of actions in a simulated vehicle. Results
2152	both from cognitive psychology and the research on human-machine
2153	interaction are incorporated. This paper reveals our premises for
2154	a driver?s cognition model and describes the model itself, followed
2155	by a discussion of the model?s restrictions. As the implementation
2156	process is not yet closed, only some basic results are presented
2157	and a look into the furture of the model is given.},
2158  file = {:http\://elib.dlr.de/6671/2/ITS_dkrajzew_ss25-29.pdf:URL},
2159  journal = {Proceedings of Intelligent Transportation Systems Safety and Security
2160	Conference},
2161  keywords = {driver modeling, cognition, sub-microscopic traffic flow modelling,
2162	model, lane-changing, Verkehrsmodellierung, Simulation, Anwendungen,
2163	Modelle, Programme, Verkehrssicherheit, Verkehrstr?ger Stra?e},
2164  owner = {Daniel},
2165  timestamp = {2011.12.02},
2166  url = {http://elib.dlr.de/6671/}
2167}
2168
2169@INPROCEEDINGS{Krajzewicz2009,
2170  author = {Daniel Krajzewicz and Ronald Nippold},
2171  title = {iTETRIS: An integrated tool set for evaluation of large-scale traffic
2172	management application based on vehicular communication},
2173  booktitle = {2nd NEARCTIS workshop 2009},
2174  year = {2009},
2175  keywords = {traffic simulation, network (communication) simulation},
2176  owner = {Daniel},
2177  timestamp = {2011.12.02},
2178  url = {http://elib.dlr.de/62588/}
2179}
2180
2181@TECHREPORT{Krajzewicz2009b,
2182  author = {Krajzewicz, Daniel and Nippold, Ronald and Lazaro, Oscar},
2183  title = {Traffic Modelling: Environmental Factors},
2184  institution = {iTETRIS consortium},
2185  year = {2009},
2186  type = {Deliverable to the European Commission},
2187  month = {February},
2188  owner = {dkrajzew},
2189  timestamp = {2014.01.08}
2190}
2191
2192@INPROCEEDINGS{Krajzewicz2002,
2193  author = {Daniel Krajzewicz and Peter Wagner},
2194  title = {ACME (A Common Mental Environment)-Driver - A Cognitive Car Driver
2195	Model},
2196  booktitle = {16th Simulation Mulitconference "Modelling and Simulation 2002"},
2197  year = {2002},
2198  editor = {Krzysztof Amborski and Hermann Meuth},
2199  pages = {689--693},
2200  note = { LIDO-Berichtsjahr=2004,},
2201  abstract = {When working on large-scale traffic observation projects very often
2202	simulations and therefore, models of the behavior of the molecular
2203	simulation elements (the car-driver-units) are needed. Most of the
2204	models for traffic simulations are based on approximations of statistical
2205	real-world data. While fast in computation, they sometimes fail to
2206	show real-world phenomena. Our project uses a different approach.
2207	We try to model a human driver?s behaviour by modelling her or his
2208	cognitive information processing in a simulated environment. While
2209	several papers about experiments concerning single phenomena exist,
2210	this approach is meant to describe the wohle information processing
2211	of a driver on a high abstraction level. This paper will show some
2212	topics of interest for a human cognition model. Possible applications
2213	are listed, too.},
2214  journal = {Proceedings of the 16th Simulation Multiconference "Modelling and
2215	Simulation 2002"},
2216  keywords = {cognitive modelling, artificial interlligence, psychology, simulation,
2217	traffic simulation, short term memory, reception},
2218  owner = {Daniel},
2219  timestamp = {2011.12.02},
2220  url = {http://elib.dlr.de/6658/}
2221}
2222
2223@INPROCEEDINGS{Krajzewicz2003,
2224  author = {Daniel Krajzewicz and Peter Wagner},
2225  title = {Gestalten, Archetypen, Symbole und Signale: Herausforderungen an
2226	und Vorteile f\"ur die Modellierung},
2227  booktitle = {Modellierung und Simulation menschlichen Verhaltens},
2228  year = {2003},
2229  editor = {H.-D. Burkhard and T. Uthmann and G. Lindemann},
2230  number = {163},
2231  series = {Informatik-Bericht},
2232  pages = {54--67},
2233  publisher = {TU-Berlin},
2234  note = {LIDO-Berichtsjahr=2004, monograph\verb1_1id=Nr. 163},
2235  abstract = {Die im Titel genannten, komplexen und abstrakten Gebilde der Psychologie
2236	wurden bislang selten modelliert und formal beschrieben. Unter Betrachtung
2237	des Themengebietes eines unserer Projekte - der Modellierung eines
2238	kognitiven Modells des Autofahrers - m?chten wir hier eine kurze
2239	?bersicht ?ber unsere Idee zu diesen Themen geben, Probleme aufdecken
2240	und einige Potentiale f?r die Modellierung der Kognition aufzeigen,
2241	die einen einfachen Umgang mit diesen Strukturen erm?glichen und
2242	sich tlw. positiv auf die Ausf?hrungsgeschwindigkeiten von Simulationen
2243	auswirken. Zus?tzlich zeigen wir Modelle, die in unsere Arbeit aufgrund
2244	ihrer hohen Ressourcenbeanspruchung, bedingt durch eine konnektionistischen
2245	Herangehensweise, nicht direkt einflie?en k?nnen.},
2246  journal = {Modellierung und Simulation menschlichen Verhaltens},
2247  keywords = {Fahrermodellierung, Kognition, Wahrnehmung, Simulation},
2248  owner = {Daniel},
2249  timestamp = {2011.12.02},
2250  url = {http://elib.dlr.de/6659/}
2251}
2252
2253@ARTICLE{Krajzewicz2004,
2254  author = {Daniel Krajzewicz and Peter Wagner},
2255  title = {Ans\"atze zur kognitiven Simulation eines Autofahrers},
2256  journal = {MMI-Interaktiv},
2257  year = {2004},
2258  pages = {84--97},
2259  number = {7},
2260  abstract = {Das Institut f?r Verkehrsforschung am Deutschen Zentrum f?r Luft-
2261	und Raumfahrt (IVF/DLR) setzt in vielen Projekten Simulationen des
2262	Stra?enverkehrs ein, z. B. um Schwachstellen in Verkehrsnetzen zu
2263	finden oder um Ger?te zur Verkehrskontrolle oder -beeinflussung w?hrend
2264	ihrer Entwicklung zu bewerten. In der Regel kommen dabei sogenannte
2265	mikroskopische Simulationen zum Einsatz, deren betrachtete Gr??e
2266	ein Fahrer-Fahrzeug-Objekt ist, das die Bewegung eines Fahrzeugs
2267	im Verkehrsnetz durch wenige Gleichungen beschreibt. Solche Modell
2268	erlauben die Simulation des Stra?enverkehrs gro?er St?dte in Echtzeit,
2269	allerdings bilden sie den Przess des Fahrzeugf?hrens nur vereinfacht
2270	ab. Innerhalb eines der Projekte des IVF soll das Verhalten eines
2271	einzelnen Autofahrers genauer untersucht und modelliert werden. W?hrend
2272	solche Modelle auch f?r andere Gebiete der Verkehrsforschung interessant
2273	sind, z. B. der Forschung zu Fahrsicherheit oder zu Fahrerassistenzsystemen,
2274	erhoffen wir uns, so R?ckschl?sse auf den Verkehrsfluss ziehen und
2275	somit die Qualit?t mikroskopischer Modell erh?hen zu k?nnen. Im Rahmen
2276	dieses Berichts sollen nach einer kurzen Einf?hrung in die Thematik
2277	&quot;Verkehrssimulation&quot; unsere ersten Ans?tze zum Aufbau einer
2278	in ein simuliertes Verkehrsgeschehen integrierten Simulation der
2279	Fahrerkognition gegeben werden.},
2280  editor = {S. Leuchter and M. C. Kindsm\"uller and D. Schulze-Kissing and L.
2281	Urbas},
2282  file = {:http\://elib.dlr.de/6721/2/zmms_krajzewicz_wagner.pdf:URL},
2283  keywords = {Fahrermodellierung, Verkehrssimulationen, Verkehrsmodelle, Kognition},
2284  owner = {Daniel},
2285  publisher = {Technische Universit\"at Berlin},
2286  series = {Modellierung und Simulation in Mensch-Maschine-Systemen},
2287  timestamp = {2011.12.02},
2288  url = {http://elib.dlr.de/6721/}
2289}
2290
2291@INPROCEEDINGS{Krajzewicz2011a,
2292  author = {Daniel Krajzewicz and Peter Wagner},
2293  title = {Large-scale Vehicle Routing Scenarios based on Pollutant Emission},
2294  booktitle = {AMAA 2011},
2295  year = {2011},
2296  editor = {Gereon Meyer and J\"urgen Valldorf},
2297  pages = {237--246},
2298  month = {Juni},
2299  publisher = {Springer},
2300  abstract = {This paper describes simulation-based investigations on route choice
2301	based on pollutant emission. A microscopic simulation enhanced by
2302	a pollutant emission model was used to evaluate whether a vehicle?s
2303	pollutant emission can be used as an edge weight during route computation
2304	and which effects can be observed in such cases. For each of the
2305	pollutants CO, CO2, NOx, PMx, and HC and for the fuel consumption,
2306	a dynamic user assignment has been performed. The investigations
2307	have been performed twice, using two scenarios of different size.
2308	Large discrepancies for route computation using pollutants have been
2309	observed when comparing inner-city and suburban traffic networks.},
2310  journal = {Advanced Microsystems for Automotive Applications 2011},
2311  keywords = {pollutant emission, traffic management, route choice, assignment},
2312  owner = {Daniel},
2313  timestamp = {2011.12.02},
2314  url = {http://elib.dlr.de/70322/}
2315}
2316
2317@PHDTHESIS{Krauss1998,
2318  author = {Stefan Krau�},
2319  title = {Microscopic Modeling of Traffic Flow: Investigation of Collision
2320	Free Vehicle Dynamics},
2321  school = {Universit\"{a}t zu K\"{o}ln},
2322  year = {1998},
2323  file = {:https\://sumo.dlr.de/pdf/KraussDiss.pdf:URL},
2324  institution = {Mathematisches Institut, Universit\"at zu K\"oln},
2325  keywords = {highway traffic, interacting random processes, statistical mechanics
2326	type modells, statistical processes; 60K30, 60K35, 90B20, Models,
2327	ZAIK},
2328  number = {319},
2329  owner = {dkrajzew},
2330  pages = {116},
2331  timestamp = {2011.09.19}
2332}
2333
2334@ARTICLE{Krauss1997,
2335  author = {Krauss, S. and Wagner, P. and Gawron, C.},
2336  title = {Metastable states in a microscopic model of traffic flow },
2337  journal = {Phys. Rev. E},
2338  year = {1997},
2339  volume = {55},
2340  pages = {5597--5602},
2341  month = {May},
2342  doi = {10.1103/PhysRevE.55.5597},
2343  file = {:https\://sumo.dlr.de/pdf/sk.pdf:URL},
2344  issue = {5},
2345  keywords = {Models, ZAIK},
2346  owner = {dkrajzew},
2347  publisher = {American Physical Society},
2348  timestamp = {2011.09.19},
2349  url = {http://link.aps.org/doi/10.1103/PhysRevE.55.5597}
2350}
2351
2352@INPROCEEDINGS{Lazaro2008,
2353  author = {Oscar Lazaro and Eric Robert and Lin Lan and Javier Gozalvez and
2354	Siebe Turksma and Fethi Filali and Fabio Cartolano and M. A. Urrutia
2355	and Daniel Krajzewicz},
2356  title = {iTETRIS: An Integrated Wireless and Traffic Platform for Real-Time
2357	Road Traffic Management Solutions},
2358  booktitle = {21st WWRF 2008},
2359  year = {2008},
2360  month = {Oktober},
2361  abstract = {Wireless vehicular cooperative systems have been identified as an
2362	attractive solution to improve road traffic management, thereby contributing
2363	to the European goal of safer, cleaner, and more efficient and sustainable
2364	traffic solutions. V2V-V2I communication technologies can improve
2365	traffic management through real-time exchange of data among vehicles
2366	and with road infrastructure. It is also of great importance to investigate
2367	the adequate combination of V2V and V2I technologies to ensure the
2368	continuous and costefficient operation of traffic management solutions
2369	based on wireless vehicular cooperative solutions. However, to adequately
2370	design and optimize these communication protocols and analyze the
2371	potential of wireless vehicular cooperative systems to improve road
2372	traffic management, adequate testbeds and field operational tests
2373	need to be conducted.
2374
2375
2376	Despite the potential of Field Operational Tests to get the first
2377	insights into the benefits and problems faced in the development
2378	of wireless vehicular cooperative systems, there is yet the need
2379	to evaluate in the long term and large dimension the true potential
2380	benefits of wireless vehicular cooperative systems to improve traffic
2381	efficiency. To this aim, iTETRIS is devoted to the development of
2382	advanced tools coupling traffic and wireless communication simulators.},
2383  keywords = {V2x communications, Simulation Platforms, Wireless Communications},
2384  owner = {Daniel},
2385  timestamp = {2011.12.02},
2386  url = {http://elib.dlr.de/62607/}
2387}
2388
2389@MASTERSTHESIS{Lehr2005,
2390  author = {Sebastian Lehr},
2391  title = {Optimierung der Kommunikation zwischen am Verkehr beteiligten Strukturen},
2392  school = {Fachhochschule f�r Technik und Wirtschaft Berlin},
2393  year = {2005},
2394  month = {January},
2395  file = {:https\://sumo.dlr.de/pdf/DiplomarbeitSebastianLehr.pdf:URL},
2396  keywords = {Fachhochschule f�r Technik und Wirtschaft Berlin, DLR/TS/VM, sumo},
2397  owner = {dkrajzew},
2398  timestamp = {2011.09.19},
2399  url = {https://sumo.dlr.de/pdf/DiplomarbeitSebastianLehr.pdf}
2400}
2401
2402@INPROCEEDINGS{Maneros2009,
2403  author = {Julen Maneros and Michele Rondinone and Ainara Gonzalez and Ramon
2404	Bauza and Daniel Krajzewicz},
2405  title = {iTETRIS Platform Architecture for the Integration of Cooperative
2406	Traffic and Wireless Simulations},
2407  booktitle = {ITS-T 2009},
2408  year = {2009},
2409  abstract = {The use of cooperative wireless communications can support driving
2410	through dynamic exchange of Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure
2411	(V2I) messages. Traffic applications based on such systems will be
2412	able to generate a safer, faster, cheaper and cleaner way for people
2413	and goods to move. In this context, the iTERIS project aims at providing
2414	the framework to combine traffic mobility and wireless communication
2415	simulations for large scale testing of traffic management solutions
2416	based on cooperative systems. This paper addresses the description
2417	and explanation of the implementation choices taken to build a modular
2418	and interoperable architecture integrating heterogeneous traffic
2419	and wireless simulators, and application algorithms supporting traffic
2420	management strategies. The functions of an ?in-between? control system
2421	for managing correct simulation executions over the platform are
2422	presented. The inter-block interaction procedures identified to ensure
2423	optimum data transfer for simulation efficiency are also introduced.},
2424  journal = {Proceedings of the 9th IEEE International Conference on ITS Telecommunications},
2425  keywords = {simulation platform, architecture, vehicular communications, traffic,
2426	modularity},
2427  owner = {Daniel},
2428  timestamp = {2011.12.02},
2429  url = {http://elib.dlr.de/62604/}
2430}
2431
2432@MASTERSTHESIS{Morenz2007,
2433  author = {Tino Morenz},
2434  title = {iTranSIM - Simulation-based Vehicle Location},
2435  school = {University of Dublin},
2436  year = {2007},
2437  keywords = {University of Dublin, sumo},
2438  owner = {dkrajzew},
2439  timestamp = {2011.09.19}
2440}
2441
2442@ARTICLE{Niebel2008,
2443  author = {Wolfgang Niebel and Michael Bonert and Elmar Brockfeld and Daniel
2444	Krajzewicz and Peter Wagner},
2445  title = {TRAFFIC SURVEILLANCE AND FORECAST FOR LARGE-SCALE EVENTS, Monitoring
2446	and Simulating the World Youth Day 2005 and the Soccer World Cup
2447	2006},
2448  journal = {PROM: list studenata Fakulteta prometnih znanosti},
2449  year = {2008},
2450  pages = {64--66},
2451  number = {21},
2452  month = {Dezember},
2453  editor = { Fakultet prometnih znanosti Zagreb},
2454  keywords = {ANTAR, Traffic Finder, SUMO, SOCCER, Weltjugendtag, Gro?ereignis,
2455	Verkehrsmanagement, K?ln, Stuttgart, Berlin},
2456  owner = {Daniel},
2457  timestamp = {2011.12.02},
2458  url = {http://elib.dlr.de/55012/}
2459}
2460
2461@INPROCEEDINGS{dlr54498,
2462  author = {Wolfgang Niebel and Gunnar Fl{\"o}tter{\"o}d},
2463  title = {SOCCER - TRAFFIC SURVEILLANCE AND FORECAST FOR LARGE-SCALE EVENTS,
2464	Monitoring and Simulating the World Youth Day 2005 and the Soccer
2465	World Cup 2006},
2466  booktitle = {6th Conference of European Students of Traffic and Transportation
2467	Sciences},
2468  year = {2008},
2469  editor = { University of {\vZ}ilina, Faculty of Operation and Economics of
2470	Tran},
2471  month = {Juni},
2472  note = {Datentr{\"a}ger CD-ROM},
2473  abstract = {It could be demonstrated, that this novel surveillance system integrating
2474	airborne traffic surveillance with traditional ground detection of
2475	traffic flow can yield valuable information needed for a better management
2476	of big events. The combination with a simulation-based ap-proach
2477	to integrate a traditional travel demand forecast and the on-line
2478	data generated during the event itself leads not only to an almost
2479	complete coverage of the traffic system, it also delivers a short-term
2480	forecast for the action forces to react fast to developing aberrations.
2481	Still the methods need to be improved, e.g., data fusion between
2482	simulation and reality.},
2483  journal = {6th Conference of European Students of Traffic and Transportation
2484	Sciences},
2485  keywords = {ANTAR, Traffic Finder, SUMO, SOCCER, Weltjugendtag, Gro{\ss}ereignis,
2486	Verkehrsmanagement, K{\"o}ln, Stuttgart, Berlin},
2487  owner = {dkrajzew},
2488  timestamp = {2014.01.08},
2489  url = {http://elib.dlr.de/54498/}
2490}
2491
2492@MASTERSTHESIS{Pereira2011,
2493  author = {Jos� Luis Ferr�s Pereira},
2494  title = {An Integrated Architecture for Autonomous Vehicles Simulation},
2495  school = {Faculdade de Engenharia da Universidade do Porto},
2496  year = {2011},
2497  month = {June},
2498  abstract = {Research on autonomous vehicles has come a long way since first findings,
2499	and its software tools
2500
2501	are increasingly acclaimed by the research community. Particularly
2502	with robotics simulators, autonomous
2503
2504	vehicles were provided with a suitable test-bed for experimentation
2505	of new methodologies
2506
2507	such as long-term navigation algorithms, map building and intelligent
2508	reasoning. However,
2509
2510	when it concerns the deployment and validation of such vehicles in
2511	a larger urban traffic scenario,
2512
2513	robotics simulators do not seem to provide the required functionality
2514	for road traffic analysis, or
2515
2516	inter-vehicular communication infrastructure as they seem present
2517	in today�s traffic simulators.
2518
2519	The improvement of such features is the key for the successful practical
2520	deployment of such a
2521
2522	critical system.
2523
2524
2525	The main objective of this dissertation is the integration of two
2526	types of simulators, namely a
2527
2528	robotics and a traffic simulator. This integration will enable autonomous
2529	vehicles to be deployed
2530
2531	in a rather realistic traffic flow as an agent entity (on the traffic
2532	simulator), at the same time it
2533
2534	simulates all its sensors and actuators (on the robotics counterpart).
2535	Also, the statistical tools
2536
2537	available in the traffic simulator will allow practitioners to infer
2538	what kind of advantages such a
2539
2540	novel technology will bring to our everyday�s lives. Furthermore,
2541	the current features and issues on
2542
2543	current robotics and traffic simulators are presented and a taxonomy
2544	for selecting these simulators
2545
2546	is proposed. An architecture for the integration of the aforementioned
2547	simulators is proposed and
2548
2549	implemented in the light of the most desired features of such software
2550	environments.
2551
2552
2553	To assess the usefulness of the platform architecture towards the
2554	expected realistic simulation
2555
2556	facility, a comprehensive system evaluation is also performed and
2557	critically reviewed, leveraging
2558
2559	the feasibility of the integration. Further developments and future
2560	perspectives are pinpointed up
2561
2562	in the end.},
2563  file = {:https\://sumo.dlr.de/pdf/mieec1.pdf:URL},
2564  keywords = {autonomous driving, SUMO, driver modelling, Universidade de Porto,
2565	Models},
2566  owner = {dkrajzew},
2567  timestamp = {2011.09.30}
2568}
2569
2570@ARTICLE{Piorkowski2008,
2571  author = {Piorkowski, Michal and Raya, Maxim and Lugo, Ada and Papadimitratos,
2572	Panos and Grossglauser, Matthias and Hubaux, Jean-Pierre},
2573  title = {Tra{NS}: {R}ealistic {J}oint {T}raffic and {N}etwork {S}imulator
2574	for {VANET}s},
2575  journal = {{ACM} {SIGMOBILE} {M}obile {C}omputing and {C}ommunications {R}eview},
2576  year = {2008},
2577  volume = {12},
2578  pages = {31--33},
2579  number = {1},
2580  abstract = {Realistic simulation is a necessary tool for the proper evaluation
2581	of newly developed protocols for Vehicular Ad Hoc Networks (VANETs).
2582	Several recent efforts focus on achieving this goal. Yet, to this
2583	date, none of the proposed solutions fulfill all the requirements
2584	of the VANET environment. This is so mainly because road traffic
2585	and communication network simulators evolve in disjoint research
2586	communities. We are developing TraNS, an open-source simulation environment,
2587	as a step towards bridging this gap. This short paper describes the
2588	TraNS architecture and our ongoing development efforts.},
2589  affiliation = {EPFL},
2590  details = {http://infoscience.epfl.ch/record/113879},
2591  documenturl = {http://infoscience.epfl.ch/record/113879/files/trans_mc2r_2007.pdf},
2592  doi = {10.1145/1374512.1374522},
2593  keywords = {VANET; Inter Vehicular Communication; Vehicular; applications; realistic
2594	mobility models; simulation; performance evaluation; NCCR-MICS; NCCR-MICS/CL3,
2595	V2X, EPFL Lausanne, sumo},
2596  oai-id = {oai:infoscience.epfl.ch:113879},
2597  oai-set = {fulltext-public},
2598  owner = {dkrajzew},
2599  review = {REVIEWED},
2600  status = {PUBLISHED},
2601  timestamp = {2011.09.19},
2602  unit = {LCA}
2603}
2604
2605@INPROCEEDINGS{Rondinone2009,
2606  author = {Michele Rondinone and Oscar Lazaro and Carlo Michelacci and Daniel
2607	Krajzewicz and Robbin Blokpoel and Julen Maneros and Lan Lin and
2608	Fatma Hrizi and J\'er\'emie Leguay and Matthias R\"ockl},
2609  title = {Investigating the Efficiency of ITS Cooperative Systems for a Better
2610	Use of Urban Transport Infrastructures: The iTETRIS Simulation Platform},
2611  booktitle = {POLIS 2009},
2612  year = {2009},
2613  month = {Dezember},
2614  abstract = {The use of cooperative ITS communication systems, supporting driving
2615	through the dynamic exchange of Vehicle-to- Vehicle (V2V) and Vehicle-to-Infrastructure
2616	(V2I) messages, is a potential candidate to improve the economical
2617	and societal welfare. The application of such systems for novel cooperative
2618	traffic management strategies can introduce a lot of beneficial effects
2619	not only for road safety, but also for the economy related to transportation
2620	systems and the environmental impact. Despite this apparent set of
2621	promising features, City Road Authorities, which hold a key-role
2622	in determining the final adoption of such systems, still look at
2623	cooperative systems without sharing a clear opinion. This is mainly
2624	due to the current lack of definitive and solid evidences of the
2625	effectiveness of such systems when applied in the real world. In
2626	order to fill this gap and let Road Authorities estimate the usefulness
2627	of such technologies in achieving the objectives dictated by cities?
2628	traffic management policies, the EU consortium iTETRIS is developing
2629	a simulation platform for large scale testing of traffic management
2630	solutions making use of cooperative ITS systems. Thanks to its own
2631	distinguishing features, iTETRIS aims at becoming a good supporting
2632	tool for Road Authorities to implement preliminary tests on the effectiveness
2633	of ITS solutions prior to investing money for the physical deployment
2634	of the communication infrastructures allowing their functioning.},
2635  journal = {Proceedings of the Polis Conference 2009 - European Cities and Regions
2636	Networking for Innovative Transport Solutions},
2637  keywords = {vehicular communication, simulation},
2638  owner = {Daniel},
2639  timestamp = {2011.12.02},
2640  url = {http://elib.dlr.de/62610/}
2641}
2642
2643@INPROCEEDINGS{Rosenbaum2011,
2644  author = {Dominik Rosenbaum and Michael Behrisch and Jens Leitloff and Franz
2645	Kurz and Oliver Meynberg and Tanja Reize and Peter Reinartz},
2646  title = {An airborne camera system for rapid mapping in case of disaster and
2647	mass events},
2648  booktitle = {EOGC 2011},
2649  year = {2011},
2650  month = {April},
2651  abstract = {Here we present an airborne optical camera system with an extended
2652	image processing unit onboard the aircraft and a radio data downlink.
2653	With all these components the system is well suited for rapid mapping
2654	applications in case of mass events and disaster. The image processing
2655	unit provides the possibility of direct orthorectification/georeferencing
2656	of the aerial images by the use of an IMU/GPS real-time navigation
2657	system without the use of ground control points. Furthermore thematic
2658	processing algorithms implemented to the image processing unit can
2659	analyse orthoimages e.g. for road traffic data content, people density
2660	and movement during mass events or DSM generation and 3D analysis
2661	directly onboard the aircraft. Resulting data and images can be transmitted
2662	to the ground via radio data downlink immediately. Road traffic data
2663	is used at the ground station in a traffic simulation for filling
2664	coverage gaps and traffic forecast. All in all, the system forms
2665	a powerful tool to operation controllers of security authorities
2666	and organizations in case of mass events or disasters.},
2667  journal = {Proceedings of the Earth Observation for Global Change 2011 - EOGC
2668	2011 (Munich, Germany, 2011-04-13 to 2011-04-15)},
2669  keywords = {Rapid Mapping, Monitoring, Recognition, Orthorectification, Georeferencing,
2670	Image, Pattern, Sequences},
2671  owner = {Daniel},
2672  timestamp = {2011.12.02},
2673  url = {http://elib.dlr.de/70510/}
2674}
2675
2676@INPROCEEDINGS{Sanchez2006,
2677  author = {Miguel Sanchez and Juan-Carlos Cano and Dongkyun Kim},
2678  title = {Predicting Traffic lights to Improve Urban Traffic Fuel Consumption},
2679  booktitle = {ITS Telecommunications Proceedings, 2006 6th International Conference
2680	on},
2681  year = {2006},
2682  pages = {331 -336},
2683  month = {june },
2684  __markedentry = {[dkrajzew:6]},
2685  abstract = {Modern traffic control systems include smart feedback into the traffic
2686	light control system. New ways of improving our transit systems fuel
2687	efficiency are now more than welcome due to global warming and oil
2688	high price. This paper presents a new approach on how drivers and
2689	traffic lights can interact to save fuel. Our preliminary results
2690	show that 25% savings are within range in urban circuits},
2691  doi = {10.1109/ITST.2006.288906},
2692  keywords = {global warming;light control system;traffic control system;urban traffic
2693	fuel consumption;road traffic;traffic control;},
2694  owner = {dkrajzew},
2695  timestamp = {2012.01.26}
2696}
2697
2698@INPROCEEDINGS{Schlingelhof2006,
2699  author = {Marius Schlingelhof and Reinhart K\"uhne and Daniel Krajzewicz},
2700  title = {NEW GNSS-BASED APPROACHES FOR ADVANCED DRIVER ASSISTANCE SYSTEMS},
2701  booktitle = {TRB 2006 (85th Annual Meeting)},
2702  year = {2006},
2703  month = {Januar},
2704  abstract = {The enhancement of road safety and traffic efficiency are the focus
2705	of many endeavours in science, economy and politics. A traditional
2706	approach is to increase vehicle safety by advanced and intelligent
2707	onboard systems using high developed sensors for the monitoring of
2708	the vehicle?s surrounding. However, these technologies are vehicle-autonomous
2709	solutions that only consider information coming from onboard sensors.
2710	These sensors are normally based on optical, ultra-sonic, radar or
2711	video camera systems and can only detect other vehicles or other
2712	objects along a line-of-sight up to the next obstacle. The view beyond
2713	a truck cruising just in front of the vehicle, for example, is not
2714	possible.
2715
2716
2717	New approaches are now dealing with co-operative technologies that
2718	enable the exchange of important information between vehicles and
2719	infrastructures for updated traffic data acquisition, recognition
2720	of traffic congestion due to accidents or other sudden incidents,
2721	local dynamic map data updates and driver warning. One key technology
2722	within such co-operative systems is the highly precise relative positioning
2723	between vehicles and the monitoring of the broader vehicle environment
2724	using ad-hoc data networks. These technologies can be primarily based
2725	on satellite systems like GPS or GALILEO supplemented by other onboard
2726	sensor data, whereby unprocessed sensor data and satellite pseudo
2727	range information will be exchanged between the vehicles within a
2728	dedicated radio range. These data, when compared with the onboard
2729	data, will finally enable the creation of virtual images of a vehicle?s
2730	surrounding using special microscopic traffic modelling algorithms.
2731	Future applications are road safety and Advanced Driver Assistance
2732	Systems (ADAS).},
2733  keywords = {GPS, Galileo, GNSS, ADAS, Road Safety, Relative Positioning, Surrounding
2734	Monitoring},
2735  owner = {Daniel},
2736  timestamp = {2011.12.02},
2737  url = {http://elib.dlr.de/21758/}
2738}
2739
2740@ARTICLE{Smilowitz1999,
2741  author = {Karen R. Smilowitz and Karen R. Smilowitz and Carlos F. Daganzo and
2742	Carlos F. Daganzo and Michael J. Cassidy and Michael J. Cassidy and
2743	Robert L. Bertini and Robert L. Bertini},
2744  title = {Some Observations of Highway Traffic in Long Queues},
2745  journal = {Transportation Research Records},
2746  year = {1999},
2747  volume = {1678},
2748  pages = {225-233},
2749  keywords = {real-world data, model calibration},
2750  owner = {dkrajzew},
2751  timestamp = {2011.09.30}
2752}
2753
2754@INPROCEEDINGS{Sommer:2008:NBC:1374688.1374697,
2755  author = {Christoph Sommer and Zheng Yao and Reinhard German and Falko Dressler},
2756  title = {On the need for bidirectional coupling of road traffic microsimulation
2757	and network simulation},
2758  booktitle = {Proceedings of the 1st ACM SIGMOBILE workshop on Mobility models},
2759  year = {2008},
2760  series = {MobilityModels '08},
2761  pages = {41--48},
2762  address = {New York, NY, USA},
2763  publisher = {ACM},
2764  acmid = {1374697},
2765  doi = {10.1145/1374688.1374697},
2766  isbn = {978-1-60558-111-8},
2767  keywords = {network simulation, road traffic microsimulation, vehicular ad hoc
2768	networks},
2769  location = {Hong Kong, Hong Kong, China},
2770  numpages = {8},
2771  url = {http://doi.acm.org/10.1145/1374688.1374697}
2772}
2773
2774@INPROCEEDINGS{Tielert2010,
2775  author = {Tielert, T. and Killat, M. and Hartenstein, H. and Luz, R. and Hausberger,
2776	S. and Benz, T.},
2777  title = {The impact of traffic-light-to-vehicle communication on fuel consumption
2778	and emissions},
2779  booktitle = {Internet of Things (IOT), 2010},
2780  year = {2010},
2781  pages = {1 -8},
2782  month = {29 2010-dec. 1},
2783  __markedentry = {[dkrajzew:6]},
2784  abstract = {#x201C;Smart #x201D; vehicles of the future are envisioned to aid
2785	their drivers in reducing fuel consumption and emissions by wirelessly
2786	receiving phase-shifting information of the traffic lights in their
2787	vicinity and computing an optimized speed in order to avoid braking
2788	and acceleration maneuvers. Previous studies have demonstrated the
2789	potential environmental benefit in small-scale simulation scenarios.
2790	To assess the overall benefit, large-scale simulations are required.
2791	In order to ensure computational feasibility, the applied simulation
2792	models need to be simplified as far as possible without sacrificing
2793	credibility. Therefore this work presents the results of a sensitivity
2794	analysis and identifies gear choice and the distance from the traffic
2795	light at which vehicles are informed as key influencing factors.
2796	Our results indicate that a suboptimal gear choice can void the benefits
2797	of the speed adaptation. Furthermore, we present first results of
2798	a scale-up simulation using a real-world inner-city road network
2799	and discuss the range in which we expect the saving in fuel consumption
2800	to be in reality.},
2801  doi = {10.1109/IOT.2010.5678454},
2802  file = {:http\://www.caad.arch.ethz.ch/noolab/files/external/conferences/IoT2010_proceedings/pdf/Conference/GreenIoT/C3.pdf:URL},
2803  keywords = {fuel consumption;phase shifting information;smart vehicles;traffic
2804	lights;traffic-light-to-vehicle communication;mobile communication;phase
2805	shifters;},
2806  owner = {dkrajzew},
2807  timestamp = {2012.01.26}
2808}
2809
2810@ARTICLE{Treiber2000,
2811  author = {Martin Treiber and Ansgar Hennecke and Dirk Helbing},
2812  title = {Congested Traffic States in Empirical Observations and Microscopic
2813	Simulations},
2814  journal = {PHYSICAL REVIEW E},
2815  year = {2000},
2816  volume = {62},
2817  pages = {1805},
2818  __markedentry = {[dkrajzew:6]},
2819  file = {:http\://arxiv.org/pdf/cond-mat/0002177v2.pdf:URL},
2820  owner = {dkrajzew},
2821  timestamp = {2012.01.26},
2822  url = {doi:10.1103/PhysRevE.62.1805}
2823}
2824
2825@INPROCEEDINGS{SandeshFiore2011,
2826  author = {Sandesh Uppoor and Marco Fiore},
2827  title = {Large-scale Urban Vehicular Mobility for Networking Research},
2828  booktitle = {IEEE Vehicular Networking Conference (VNC)},
2829  year = {2011},
2830  address = {Amsterdam, The Netherlands},
2831  month = {11},
2832  abstract = {Simulation is the tool of choice for the largescale
2833
2834	performance evaluation of upcoming telecommunication
2835
2836	networking paradigms that involve users aboard vehicles, such
2837
2838	as next-generation cellular networks for vehicular access, pure
2839
2840	vehicular ad hoc networks, and opportunistic disruption-tolerant
2841
2842	networks. The single most distinguishing feature of vehicular
2843
2844	networks simulation lies in the mobility of users, which is the
2845
2846	result of the interaction of complex macroscopic and microscopic
2847
2848	dynamics. Notwithstanding the improvements that vehicular mobility
2849
2850	modeling has undergone during the past few years, no car
2851
2852	traffic trace is available today that captures both macroscopic and
2853
2854	microscopic behaviors of drivers over a large urban region, and
2855
2856	does so with the level of detail required for networking research.
2857
2858	In this paper, we present a realistic synthetic dataset of the car
2859
2860	traffic over a typical 24 hours in a 400-km2 region around the city
2861
2862	of K�oln, in Germany. We outline how our mobility description
2863
2864	improves today�s existing traces and show the potential impact
2865
2866	that a comprehensive representation of vehicular mobility can
2867
2868	have one the evaluation of networking technologies.},
2869  file = {:http\://kolntrace.project.citi-lab.fr/data/uppoor_vnc11.pdf:URL},
2870  owner = {dkrajzew},
2871  timestamp = {2011.12.01}
2872}
2873
2874@INPROCEEDINGS{Varschen2006,
2875  author = {Christian Varschen and Peter Wagner},
2876  title = {Mikroskopische Modellierung der Personenverkehrsnachfrage auf Basis
2877	von Zeitverwendungstageb\"uchern},
2878  booktitle = {AMUS 2006 (7. Aachener Kolloqium "Mobilit\"at und Stadt")},
2879  year = {2006},
2880  editor = {Klaus J. Beckmann},
2881  volume = {81},
2882  series = {Stadt Region Land},
2883  pages = {63--69},
2884  publisher = {Institut f\"ur Stadtbauwesen und Stadtverkehr, RWTH Aachen},
2885  abstract = {Die wachsende Verkehrsleistung und die hieraus resultierenden Verkehrsprobleme
2886	f?hren verst?rkt zu der Frage, mit welchen Konzepten der zuk?nftige
2887	Verkehrsbedarf erf?llt werden kann. Wichtige Werkzeuge im Rahmen
2888	von Verkehrsplanung und Verkehrsmanagement sind Verkehrsmodelle,
2889	mit denen Prognosen des zu erwartenden Verkehrsaufkommens erstellt
2890	werden k?nnen und die damit Ansatzpunkte f?r seine verbesserte Lenkung
2891	liefern. Im Rahmen mehrerer Projekte wird das am DLR-IVF entwickelte
2892	agentenbasierte Personennachfragemodell TAPAS (Travel and Activity
2893	PAtterns Simulation) genutzt. In diesem Modell wird ein aktivit?ten-basierter
2894	Ansatz verwendet, welcher auf der Analyse von Zeitverwendungsdaten
2895	beruht. Daher sind die zur Verf?gung stehenden Aktivit?tenmuster
2896	auf die in den Zeitverwendungsdaten enthaltenen beschr?nkt, was f?r
2897	Prognosen eine starke Einschr?nkung darstellt. Die hier beschriebene
2898	Erweiterung des Modells erm?glicht das Einf?gen neuer Aktivit?tenkategorien;
2899	TAPAS beschreibt jede Aktivit?t durch vier Parameter, die sich alle
2900	aus Erhebungen sch?tzen lassen: Anteil und Umfang der Nutzung der
2901	(f?r TAPAS neuen) Aktivit?t sowie die zeitliche Variabilit?t der
2902	Aktivit?t hinsichtlich Anfangszeitpunkt und Dauer. Die ersten beiden
2903	Parameter werden direkt aus den empirischen Daten gewonnen, w?hrend
2904	die letzten beiden sich aus der statistischen Variation der Erhebungen
2905	ergeben. Die Weiterentwicklung des Modells pr?zisiert die Absch?tzung
2906	der Personenverkehrsnachfrage unter besonderer Ber?cksichtigung spezifischer
2907	wissenschaftlicher und politischer Fragestellungen. Die enge Verkn?pfung
2908	mit empirischen Daten erh?ht zudem eine hohe Zuverl?ssigkeit von
2909	Prognosen.},
2910  journal = {Integrierte Mikro-Simulation von Raum- und Verkehrsentwicklung. Theorie,
2911	Konzepte, Modelle, Praxis},
2912  keywords = {Personenverkehrsnachfrage, Modellierung, aktivit?ten-basiert, Zeitbudget,
2913	TAPAS},
2914  owner = {Daniel},
2915  timestamp = {2011.12.02},
2916  url = {http://elib.dlr.de/45058/}
2917}
2918
2919@MASTERSTHESIS{Verges2013,
2920  author = {Verg�s, Josep Tom�s},
2921  title = {Analysis and simulation of traffic management actions for traffic
2922	emission reduction},
2923  school = {TU Berlin},
2924  year = {2013},
2925  type = {Master Thesis},
2926  month = {July},
2927  owner = {dkrajzew},
2928  timestamp = {2014.01.08}
2929}
2930
2931@INPROCEEDINGS{dlr72224,
2932  author = {Peter Wagner and Gunnar Fl{\"o}tter{\"o}d and Ronald Nippold and
2933	Yun-Pang Fl{\"o}tter{\"o}d},
2934  title = {Simplified car-following models},
2935  booktitle = {Transportation Research Board 91st Annaul Meeting},
2936  year = {2012},
2937  month = {Januar},
2938  abstract = {This work presents strong evidence that human car-following behaviour
2939	can be described by a linear model with no more than three parameters
2940	to an amazing degree of precision. From this result it can be inferred
2941	that any microscopic traffic flow model can be composed of the car-following
2942	behaviour plus a couple of rules that fixes boundaries of the behaviour
2943	in terms of limitations to speed, acceleration, and safety. These
2944	limitations, however, usually have a clear physical meaning and understanding
2945	and are the only non-linearities needed to built a microscopic traffic
2946	flow model.},
2947  keywords = {car-following, simple traffic flow models, ARIMA, calibration of traffic
2948	flow models},
2949  owner = {dkrajzew},
2950  timestamp = {2014.01.08},
2951  url = {http://elib.dlr.de/72224/}
2952}
2953
2954@INPROCEEDINGS{dlr71872,
2955  author = {Yun-Pang Wang and Gunnar Fl{\"o}tter{\"o}d},
2956  title = {Route choice calibration from multi-point vehicle stream measurements},
2957  booktitle = {MT-ITS 2011},
2958  year = {2011},
2959  month = {Juni},
2960  abstract = {To better und more precisely assess different transporta-tion design
2961	alternatives and traffic management strategies, microscopic traffic
2962	simulation models are extensively applied. The respective calibration
2963	and validation works are getting more and more important. Nowadays,
2964	GPS-based systems are broadly applied. More and more route related
2965	information can be collected, which promises great improvements of
2966	calibra-tion accuracy. An approach using multi-point vehicle stream
2967	measurements is proposed in this paper and is shown to work well
2968	in synthetic experiments.},
2969  keywords = {route choice, vehicle reidentification, traffic simulation SUMO, CADYTS},
2970  owner = {dkrajzew},
2971  timestamp = {2014.01.08},
2972  url = {http://elib.dlr.de/71872/}
2973}
2974
2975@MISC{dlr56995,
2976  author = {Yun-Pang Wang and Bernhard Friedrich},
2977  title = {Optimierung der Matrixsch{\"a}tzung durch Elimination redundanter
2978	Informationen},
2979  month = {M{\"a}rz},
2980  year = {2008},
2981  abstract = {Mit den zunehmenden M{\"o}glichkeiten der automatischen Verkehrsdatenerfassung
2982	stellt sich die Frage, welchen Einfluss die Kenntnis von Abbiegestr{\"o}men
2983	und daraus folgende redun-dante Informationen auf die Sch{\"a}tzung
2984	von Herkunft-/ Zielbeziehungen haben und wie m{\"o}g-liche negative
2985	Effekte auf die G{\"u}te der Sch{\"a}tzung bei bestehenden Erfassungsstellen
2986	ver-mieden werden k{\"o}nnen. Deshalb wurde in dieser Arbeit vor
2987	allem der Einfluss redundanter Informationen analysiert. Ein geeignetes
2988	Eliminationsverfahren (MERI) wurde entwickelt. Es wurde nachgewiesen,
2989	dass die negative Auswirkung redundanter Informationen im Informa-tions-Minimierungs-Modell
2990	(IM-Modell) durch MERI beseitigt werden konnte und die Sch{\"a}tz-g{\"u}te
2991	besser als die des Verbesserten IM-Modells (VIM-Modell) ist.},
2992  booktitle = {HEUREKA 2008},
2993  editor = { Forschungsgesellschaft f{\"u}r Stra{\ss}en- und Verkehrswesen},
2994  keywords = {Matrixsch{\"a}tzung, Matrixanpassung, redundante Information},
2995  owner = {dkrajzew},
2996  timestamp = {2014.01.08},
2997  url = {http://elib.dlr.de/56995/}
2998}
2999
3000@INPROCEEDINGS{dlr62716,
3001  author = {Yun-Pang Wang and Bernhard Friedrich},
3002  title = {Improving matrix estimation pertaining to detailed traffic information
3003	and sophisticated traffic state},
3004  booktitle = {Transportation Research Board 2009 Annual Meeting},
3005  year = {2009},
3006  month = {Januar},
3007  publisher = {Transportation Research Board},
3008  abstract = {Technical innovation and extensive application of adaptive signal
3009	control at intersections have made turning flow information that
3010	provide more precise constraints for Origin-Destination matrix (O-D
3011	matrix) estimation easily available in great quantity and more accurate
3012	than ever. However, the influence of turning flow and duplication
3013	of information on the existing matrix estimation models and on the
3014	accuracy of O-D matrix estimation has not been broadly investigated.
3015	Also, traffic phenomenon in networks becomes complicated and difficult
3016	to explain with the increase in number of vehicles, variety of daily
3017	activities and sophisticated travel behaviors. As such, general congested
3018	traffic state as well as diverse travelers? perception about travel
3019	time should be taken into consideration in O-D matrix estimation
3020	models. In this paper, the influence of applying finer and duplicated
3021	flow information as well as route choice proportion estimates on
3022	the performance of the Information minimization (IM) and the modified
3023	IM models were examined. It has shown that duplicate information
3024	has adverse effect on the accuracy of matrix estimation, whereas
3025	additional turning flow information can improve estimation accuracy.
3026	Based on the examination results a methodology using the IM model,
3027	the stochastic user equilibrium (SUE) assignment and the information
3028	screening process, was proposed to optimize the goodness of estimation
3029	and enhance the IM model to deal with the traffic situation more
3030	realistically. The respective convergence and required computation
3031	time were also examined. Furthermore, an empirical route choice study
3032	was conducted in order to help determining the size of a route set
3033	used in the SUE assignment model.},
3034  journal = {Compendium of TRB 88th Annual Meeting},
3035  keywords = {matrix estimation, SUE, information minimization, entropy maximization},
3036  owner = {dkrajzew},
3037  timestamp = {2014.01.08},
3038  url = {http://elib.dlr.de/62716/}
3039}
3040
3041@INPROCEEDINGS{dlr77309,
3042  author = {Yun-Pang Wang and Peter Wagner and Michael Behrisch},
3043  title = {Ann{\"a}herung an das dynamische Systemoptimum mit Hilfe von Einzelfahrzeuginformationen},
3044  booktitle = {HEUREKA 2011},
3045  year = {2011},
3046  month = {M{\"a}rz},
3047  abstract = {Der Verkehr in einem gegebenen Untersuchungsgebiet organisiert sich
3048	selbst in eine Ann{\"a}herung an das sogenannte Nutzeroptimum. Im
3049	Widerspruch dazu steht die Forderung von Verkehrsmanagern, ein Systemoptimum
3050	zur besten Nutzung der vorhandenen verkehrlichen Ressourcen anzustreben.
3051	In der Praxis ist es wegen der sich st{\"a}ndig ver{\"a}ndernden
3052	Verkehrszust{\"a}nde schwierig, Kantenwiderstandsfunktionen zu bestimmen.
3053	Heutzutage k{\"o}nnen viele Verkehrsinformationen mittlerweile direkt
3054	von Meldefahrzeugen erfasst werden. Daraus k{\"o}nnen viele zeitabh{\"a}ngige
3055	Informationen abgeleitet werden. In dieser Arbeit wird untersucht,
3056	ob und wie man auf einfache Weise ein Systemoptimum mit Hilfe einer
3057	mikroskopischen Simulation berechnen kann und welches Ausma{\ss}
3058	an Informationen zur Ann{\"a}herung an ein Systemoptimum erforderlich
3059	ist.},
3060  keywords = {dynamische Systemoptimum, mikroskopische Verkehrssimulation},
3061  owner = {dkrajzew},
3062  timestamp = {2014.01.08},
3063  url = {http://elib.dlr.de/77309/}
3064}
3065
3066@INPROCEEDINGS{dlr65940,
3067  author = {Yun-Pang Wang and Peter Wagner and Michael Behrisch},
3068  title = {Towards a dynamic system optimum based on the simulated traffic data
3069	in the microscopic traffic simulation},
3070  booktitle = {3rd NEARCTIS workshop},
3071  year = {2010},
3072  month = {Juni},
3073  abstract = {Microscopic traffic simulation has been applied since decades in order
3074	to better describing both drivers? behaviors and interactive effects
3075	among network infrastructure, drivers and traffic control applications.
3076	Furthermore, it is also used as an evaluation tool for analyzing
3077	influences of proposed management strategies and traffic-related
3078	telematics technologies on network performances, such as efficiency
3079	and safety. Achieving a system optimum in a road network is the main
3080	concern of traffic managers at all times, although most road users
3081	tend to make the route choice decision which is best suitable for
3082	their journeys in practice. The main difference between system optimum
3083	and user equilibrium is the marginal total travel costs, i.e. travel
3084	times, which are the costs that an additional road user causes to
3085	the other road users already in the network during the analysis period.
3086
3087	Generally, travel times can be determined, i.e. approximated, by given
3088	link travel time functions, which are functions of link flows. The
3089	functional forms and respective parameters of the most travel time
3090	functions are derived from empirical data. This approach has been
3091	extensively applied in the macroscopic traffic modeling and the dynamic
3092	traffic assignment modeling. Therefore, respective marginal costs
3093	can be obtained by calculating the corresponding derivatives. However,
3094	such travel time functions and their derivates are not required and
3095	also not applied in a microscopic simulation, since the travel time,
3096	travel flows and other parameters are directly measured in a simulation.
3097	In this study, how to define and calculate marginal costs with use
3098	of the simulated data is investigated.},
3099  keywords = {system optimum, SUMO, microscopic traffic simulation},
3100  owner = {dkrajzew},
3101  timestamp = {2014.01.08},
3102  url = {http://elib.dlr.de/65940/}
3103}
3104
3105@INPROCEEDINGS{Wang2010,
3106  author = {Yun-Pang Wang and Peter Wagner and Michael Behrisch},
3107  title = {Towards a dynamic system optimum based on the simulated traffic data
3108	in the microscopic traffic simulation},
3109  booktitle = {3rd NEARCTIS workshop},
3110  year = {2010},
3111  month = {Juni},
3112  abstract = {Microscopic traffic simulation has been applied since decades in order
3113	to better describing both drivers? behaviors and interactive effects
3114	among network infrastructure, drivers and traffic control applications.
3115	Furthermore, it is also used as an evaluation tool for analyzing
3116	influences of proposed management strategies and traffic-related
3117	telematics technologies on network performances, such as efficiency
3118	and safety. Achieving a system optimum in a road network is the main
3119	concern of traffic managers at all times, although most road users
3120	tend to make the route choice decision which is best suitable for
3121	their journeys in practice. The main difference between system optimum
3122	and user equilibrium is the marginal total travel costs, i.e. travel
3123	times, which are the costs that an additional road user causes to
3124	the other road users already in the network during the analysis period.
3125
3126
3127	Generally, travel times can be determined, i.e. approximated, by given
3128	link travel time functions, which are functions of link flows. The
3129	functional forms and respective parameters of the most travel time
3130	functions are derived from empirical data. This approach has been
3131	extensively applied in the macroscopic traffic modeling and the dynamic
3132	traffic assignment modeling. Therefore, respective marginal costs
3133	can be obtained by calculating the corresponding derivatives. However,
3134	such travel time functions and their derivates are not required and
3135	also not applied in a microscopic simulation, since the travel time,
3136	travel flows and other parameters are directly measured in a simulation.
3137	In this study, how to define and calculate marginal costs with use
3138	of the simulated data is investigated.},
3139  keywords = {system optimum, SUMO, microscopic traffic simulation},
3140  owner = {Daniel},
3141  timestamp = {2011.12.02},
3142  url = {http://elib.dlr.de/65940/}
3143}
3144
3145@PHDTHESIS{Wegener2009,
3146  author = {Axel Wegener},
3147  title = {Organic-Computing-Konzepte und deren Umsetzung f�r dezentrale Anwendungen
3148	im Stra�enverkehr},
3149  school = {Universit\"at zu L\"ubeck},
3150  year = {2009},
3151  file = {:http\://d-nb.info/997885203/34:URL},
3152  owner = {dkrajzew},
3153  timestamp = {2012.01.23}
3154}
3155
3156@INPROCEEDINGS{Wegener2008,
3157  author = {Wegener, A. and Hellbr\"uck, H. and Wewetzer, C. and L\"ubke, A.},
3158  title = {VANET Simulation Environment with Feedback Loop and its Application
3159	to Traffic Light Assistance},
3160  booktitle = {GLOBECOM Workshops, 2008 IEEE},
3161  year = {2008},
3162  pages = {1 -7},
3163  month = {30 2008-dec. 4},
3164  abstract = {Traffic applications, in which vehicles are equipped with a radio
3165	interface and communicate directly with each other and the road traffic
3166	infrastructure are a promising field for ad-hoc network technology.
3167	Vehicular applications reach from entertainment to traffic information
3168	systems, including safety aspects where warning messages can inform
3169	drivers about dangerous situations in advance. As performance tests
3170	of the real system are very expensive and not comprehensive, today's
3171	evaluations are based on analysis and simulation via traffic simulators.
3172	In order to investigate the impact of traffic information systems
3173	there are two options: First, traffic simulators can be extended
3174	by application code and a simplified model for wireless communication.
3175	Second, existing network simulators can be coupled with existing
3176	traffic simulators. We favor the coupling of existing and well known
3177	simulators as we believe that the wireless communication characteristics
3178	influence the data transfer significantly and an oversimplified transmission
3179	model can lead to flawed results. In this paper we describe the feedback
3180	loop between traffic and network simulators named traffic control
3181	interface (TraCI) and outline its versatility. We explain its use
3182	to determine possible energy consumption reduction when traffic lights
3183	send their phase schedules to vehicles.},
3184  doi = {10.1109/GLOCOMW.2008.ECP.67},
3185  keywords = {TraCI;VANET simulation environment;ad-hoc network technology;feedback
3186	loop;oversimplified transmission model;radio interface;road traffic
3187	infrastructure;safety aspects;traffic control interface;traffic information
3188	systems;traffic light assistance;traffic simulators;wireless communication;ad
3189	hoc networks;mobile radio;road safety;road traffic;traffic information
3190	systems;, V2X, TU L�beck, sumo},
3191  owner = {dkrajzew},
3192  timestamp = {2011.09.19}
3193}
3194
3195@INPROCEEDINGS{Wegener2008a,
3196  author = {Axel Wegener and Micha\l Pi\'{o}rkowski and Maxim Raya and Horst
3197	Hellbr\"{u}ck and Stefan Fischer and Jean-Pierre Hubaux},
3198  title = {Tra{CI}: {A}n {I}nterface for {C}oupling {R}oad {T}raffic and {N}etwork
3199	{S}imulators},
3200  booktitle = {11{t}h {C}ommunications and {N}etworking {S}imulation {S}ymposium
3201	({CNS})},
3202  year = {2008},
3203  series = {CNS '08},
3204  pages = {155--163},
3205  address = {New York, NY, USA},
3206  publisher = {ACM},
3207  abstract = {Vehicular Ad-Hoc Networks (VANETs) enable communication among vehicles
3208	as well as between vehicles and roadside infrastructures. Currently
3209	available software tools for VANET research still lack the ability
3210	to asses the usability of vehicular applications. In this article,
3211	we present Traffic Control Interface (TraCI) a technique for interlinking
3212	road traffic and network simulators. It permits us to control the
3213	behavior of vehicles during simulation runtime, and consequently
3214	to better understand the influence of VANET applications on traffic
3215	patterns. In contrast to the existing approaches, i.e., generating
3216	mobility traces that are fed to a network simulator as static input
3217	files, the online coupling allows the adaptation of drivers' behavior
3218	during simulation runtime. This technique is not limited to a special
3219	traffic simulator or to a special network simulator. We introduce
3220	a general framework for controlling the mobility which is adaptable
3221	towards other research areas. We describe the basic concept, design
3222	decisions and the message format of this open-source architecture.
3223	Additionally, we provide implementations for non-commercial traffic
3224	and network simulators namely SUMO and ns2, respectively. This coupling
3225	enables for the first time systematic evaluations of VANET applications
3226	in realistic settings.},
3227  acmid = {1400740},
3228  affiliation = {EPFL},
3229  details = {http://infoscience.epfl.ch/record/115106},
3230  doi = {10.1145/1400713.1400740},
3231  isbn = {1-56555-318-7},
3232  keywords = {network simulation, node mobility, vehicular ad-hoc networks (VANETs)},
3233  location = {Ottawa, Canada},
3234  numpages = {9},
3235  url = {http://doi.acm.org/10.1145/1400713.1400740}
3236}
3237
3238@INPROCEEDINGS{Widodo2000,
3239  author = {Widodo, S. and Hasegawa, T. and Tsugawa, S.},
3240  title = {Vehicle fuel consumption and emission estimation in environment-adaptive
3241	driving with or without inter-vehicle communications},
3242  booktitle = {Intelligent Vehicles Symposium, 2000. IV 2000. Proceedings of the
3243	IEEE},
3244  year = {2000},
3245  pages = {382 -386},
3246  __markedentry = {[dkrajzew:6]},
3247  abstract = {In this paper, the vehicle fuel consumption and emission rates of
3248	environment-adaptive driving with or without inter-vehicle communications
3249	are estimated using an autonomous running traffic flow simulator.
3250	In this study, a microscopic fuel consumption and emission model
3251	is used. Simulation results show that environment-adaptive driving
3252	can reduce both of the average fuel consumption and vehicle emission.
3253	It also shows that inter-vehicle communications can improve these
3254	impacts under high vehicle densities and long traffic light cycle
3255	times},
3256  doi = {10.1109/IVS.2000.898373},
3257  keywords = {autonomous running traffic flow simulator;environment-adaptive driving;high
3258	vehicle densities;inter-vehicle communications;long traffic light
3259	cycle times;microscopic model;vehicle emission estimation;vehicle
3260	fuel consumption estimation;air pollution;automated highways;environmental
3261	factors;mobile communication;road vehicles;},
3262  owner = {dkrajzew},
3263  timestamp = {2012.01.26}
3264}
3265
3266@comment{jabref-meta: selector_review:}
3267
3268@comment{jabref-meta: selector_publisher:}
3269
3270@comment{jabref-meta: selector_author:}
3271
3272@comment{jabref-meta: selector_journal:}
3273
3274@comment{jabref-meta: selector_keywords:}
3275
3276@comment{jabref-meta: groupsversion:3;}
3277
3278@comment{jabref-meta: groupstree:
32790 AllEntriesGroup:;
32801 ExplicitGroup:sumo\;0\;;
32812 ExplicitGroup:used\;0\;Bajpai2011\;Barber2011\;Bauza2008\;Behrisch20
328208\;Behrisch2008a\;Behrisch2008b\;Behrisch2009a\;Behrisch2010\;Bieker2
3283010\;Bieker2011\;Bieker2011a\;Bonert2006\;Duering2011\;Flotterod2009\;
3284Hopfner2007\;Karnadi2007\;Katsaros2011\;Katsaros2011a\;Kerekes2009\;Kr
3285ajzewicz2002b\;Krajzewicz2003b\;Krajzewicz2005a\;Krajzewicz2007\;Krajz
3286ewicz2007a\;Krajzewicz2007b\;Krajzewicz2010a\;Krajzewicz2011\;Krajzewi
3287cz2011a\;Morenz2007\;Piorkowski2008\;Rosenbaum2011\;SandeshFiore2011\;
3288Wegener2008\;Wegener2008a\;Wegener2009\;;
32892 ExplicitGroup:mentioned\;0\;GOZALVEZ2009\;Harri2011\;Krajzewicz2002\
3290;Krajzewicz2003\;Krajzewicz2003c\;Krajzewicz2004\;Krajzewicz2009\;Kraj
3291zewicz2010\;Lazaro2008\;Maneros2009\;Niebel2008\;Rondinone2009\;Wang20
329210\;;
32932 ExplicitGroup:compared\;0\;;
32942 ExplicitGroup:presentation\;0\;Behrisch2009\;Behrisch2010a\;Behrisch
32952011\;Hopfner2007\;Karnadi2007\;Krajzewicz2002a\;Krajzewicz2003a\;Kraj
3296zewicz2003b\;Krajzewicz2004b\;Krajzewicz2005\;Krajzewicz2006\;Krajzewi
3297cz2009a\;Krajzewicz2009b\;Krajzewicz2010b\;;
32981 ExplicitGroup:projects\;0\;;
32992 ExplicitGroup:OIS\;0\;Krajzewicz2005a\;;
33002 ExplicitGroup:INVENT\;0\;;
33012 ExplicitGroup:TAPAS\;0\;SandeshFiore2011\;Varschen2006\;;
33022 ExplicitGroup:GF4BOS\;2\;Behrisch2010\;Niebel2008\;;
33033 ExplicitGroup:WJT2005\;0\;;
33043 ExplicitGroup:Soccer2006\;0\;Behrisch2008\;Bonert2006\;;
33053 ExplicitGroup:DELPHI\;0\;Behrisch2009a\;;
33063 ExplicitGroup:VABENE\;0\;Rosenbaum2011\;;
33072 ExplicitGroup:small\;0\;;
33083 ExplicitGroup:ACMEDriver\;0\;Krajzewicz2002\;Krajzewicz2003\;Krajzew
3309icz2003c\;Krajzewicz2004\;Krajzewicz2004a\;;
33102 ExplicitGroup:theses\;2\;;
33113 ExplicitGroup:DanilotTeteBoyom\;0\;Krajzewicz2007\;Krajzewicz2007a\;
3312Krajzewicz2007b\;;
33132 ExplicitGroup:TrafficOnline\;0\;Hopfner2007\;;
33142 ExplicitGroup:iTETRIS\;0\;Bauza2008\;Bieker2011\;Bieker2011a\;Blokpo
3315el2010\;Furian2013\;GOZALVEZ2009\;Harri2011\;Krajzewicz2009\;Krajzewic
3316z2009b\;Krajzewicz2010\;Krajzewicz2010a\;Krajzewicz2011\;Lazaro2008\;M
3317aneros2009\;Rondinone2009\;;
33182 ExplicitGroup:Pre-Drive C2X\;0\;Bieker2010\;;
33191 ExplicitGroup:topics\;0\;;
33202 ExplicitGroup:V2X\;2\;Figueiredo2001\;;
33213 ExplicitGroup:communication models\;2\;Bieker2010\;Harri2011\;Krajze
3322wicz2007\;Krajzewicz2007a\;Krajzewicz2007b\;;
33233 ExplicitGroup:applications\;2\;Krajzewicz2010\;;
33244 ExplicitGroup:emergency\;0\;Bieker2011a\;;
33254 ExplicitGroup:TLS\;0\;Bieker2011a\;Duering2011\;;
33264 ExplicitGroup:public transport\;0\;Bieker2011\;;
33274 ExplicitGroup:surveillance\;0\;Bieker2011\;Wegener2009\;;
33284 ExplicitGroup:navigation\;0\;Barber2011\;Katsaros2011\;Krajzewicz200
33297\;Krajzewicz2007a\;Krajzewicz2007b\;Wegener2009\;;
33304 ExplicitGroup:ADAS\;0\;Duering2011\;;
33314 ExplicitGroup:GLOSA\;0\;Chao-Qun2008\;Katsaros2011\;Katsaros2011a\;S
3332anchez2006\;Tielert2010\;Treiber2000\;Wegener2008\;Wegener2009\;Widodo
33332000\;;
33343 ExplicitGroup:simulation packages\;2\;Wegener2008a\;;
33354 ExplicitGroup:iTETRIS\;0\;Bauza2008\;GOZALVEZ2009\;Harri2011\;Krajze
3336wicz2009\;Krajzewicz2010\;Lazaro2008\;Maneros2009\;Rondinone2009\;;
33374 ExplicitGroup:MOVE\;0\;Karnadi2007\;;
33384 ExplicitGroup:TraNS\;0\;Piorkowski2008\;;
33394 ExplicitGroup:VSimRTI\;0\;Katsaros2011\;Katsaros2011a\;;
33403 ExplicitGroup:network simulator\;0\;;
33414 ExplicitGroup:ns-3\;0\;GOZALVEZ2009\;Harri2011\;Krajzewicz2009\;Kraj
3342zewicz2010\;Lazaro2008\;Maneros2009\;Rondinone2009\;;
33434 ExplicitGroup:own (DLR)\;0\;Bieker2010\;Krajzewicz2007\;Krajzewicz20
334407a\;Krajzewicz2007b\;;
33454 ExplicitGroup:ns-2\;0\;Karnadi2007\;Piorkowski2008\;Wegener2008\;Weg
3346ener2009\;;
33474 ExplicitGroup:JiST/SWANS\;0\;Katsaros2011\;Katsaros2011a\;;
33483 ExplicitGroup:routing protocols\;0\;Bauza2008\;Katsaros2011b\;;
33493 ExplicitGroup:connectivity\;0\;SandeshFiore2011\;;
33502 ExplicitGroup:TLS\;2\;Bajpai2011\;Barlovic2001\;Krajzewicz2005a\;Kra
3351jzewicz2010a\;Krajzewicz2011\;;
33522 ExplicitGroup:demand\;2\;;
33533 ExplicitGroup:generation\;2\;Behrisch2008\;SandeshFiore2011\;Varsche
3354n2006\;;
33553 ExplicitGroup:assignment\;2\;Behrisch2008a\;Behrisch2008b\;Gawron199
33569\;Krajzewicz2003b\;Krajzewicz2011\;Krajzewicz2011a\;SandeshFiore2011\
3357;Wang2010\;;
33583 ExplicitGroup:calibration\;2\;Flotterod2009\;;
33593 ExplicitGroup:event traffic\;2\;Behrisch2008\;;
33602 ExplicitGroup:driver modelling\;2\;;
33613 ExplicitGroup:submicro\;0\;Krajzewicz2002\;Krajzewicz2003\;Krajzewic
3362z2003c\;Krajzewicz2004\;Krajzewicz2004a\;;
33633 ExplicitGroup:car-following\;0\;Krajzewicz2003b\;Krajzewicz2010b\;Kr
3364auss1997\;Krauss1998\;;
33653 ExplicitGroup:mesoscopic\;0\;Behrisch2008\;;
33663 ExplicitGroup:lane changing\;0\;Krajzewicz2009a\;Krajzewicz2010b\;;
33672 ExplicitGroup:metrics\;2\;Blokpoel2010\;Krajzewicz2010a\;Krajzewicz2
3368011a\;;
33692 ExplicitGroup:pollution\;2\;Blokpoel2010\;Krajzewicz2009b\;Krajzewic
3370z2010a\;Krajzewicz2010b\;Krajzewicz2011\;Krajzewicz2011a\;Verges2013\;
3371dlr54498\;dlr55172\;dlr55173\;dlr56995\;dlr62187\;dlr62188\;dlr62189\;
3372dlr62716\;dlr65940\;dlr65965\;dlr65966\;dlr65967\;dlr71870\;dlr71871\;
3373dlr71872\;dlr72224\;dlr72232\;dlr76186\;dlr77309\;dlr80610\;dlr81244\;
3374dlr81834\;;
33752 ExplicitGroup:simulation packages\;2\;Behrisch2009\;Behrisch2010\;Be
3376hrisch2011\;Krajzewicz2002a\;Krajzewicz2003a\;Krajzewicz2004b\;Krajzew
3377icz2006\;Krajzewicz2010b\;;
33782 ExplicitGroup:calibration&validation\;2\;Brockfeld2002\;Brockfeld200
33792a\;Brockfeld2003\;Brockfeld2003a\;Brockfeld2004\;Brockfeld2004a\;Broc
3380kfeld2004b\;Brockfeld2004c\;Brockfeld2005\;Brockfeld2005a\;Krajzewicz2
3381002b\;Krajzewicz2003b\;Morenz2007\;;
33822 ExplicitGroup:inter-modality\;2\;Behrisch2010a\;;
33832 ExplicitGroup:surveillance\;2\;Behrisch2009a\;Behrisch2010\;Bonert20
338406\;Hopfner2007\;Kerekes2009\;Kuhne2006\;Morenz2007\;Niebel2008\;Rosen
3385baum2011\;Schlingelhof2006\;;
33863 ExplicitGroup:airborne\;0\;Behrisch2009a\;Behrisch2010\;Bonert2006\;
3387Niebel2008\;Rosenbaum2011\;;
33883 ExplicitGroup:inductive loops\;0\;;
33893 ExplicitGroup:cameras\;0\;Behrisch2009a\;Behrisch2010\;Bonert2006\;K
3390erekes2009\;Niebel2008\;Rosenbaum2011\;;
33913 ExplicitGroup:mobile phones\;0\;Hopfner2007\;;
33922 ExplicitGroup:forecast\;0\;Behrisch2008\;Behrisch2009a\;Behrisch2010
3393\;Bonert2006\;Morenz2007\;Niebel2008\;Rosenbaum2011\;;
33942 ExplicitGroup:road networks\;0\;Karnadi2007\;Krajzewicz2005\;Sandesh
3395Fiore2011\;;
33962 ExplicitGroup:TraCI\;0\;Wegener2008\;Wegener2008a\;Wegener2009\;;
33972 ExplicitGroup:public transport\;0\;Bieker2011\;Morenz2007\;;
33982 ExplicitGroup:ITS\;0\;Figueiredo2001\;;
33991 ExplicitGroup:institutions\;0\;;
34002 ExplicitGroup:DLR\;2\;Kuhne2006\;;
34013 ExplicitGroup:TS\;2\;Barlovic2001\;Behrisch2008\;Behrisch2008a\;Behr
3402isch2008b\;Behrisch2009\;Behrisch2009a\;Behrisch2010\;Behrisch2010a\;B
3403ehrisch2011\;Bieker2010\;Bieker2011\;Bieker2011a\;Blokpoel2010\;Brockf
3404eld2002\;Brockfeld2002a\;Brockfeld2003\;Brockfeld2003a\;Brockfeld2004\
3405;Brockfeld2004a\;Brockfeld2004b\;Brockfeld2004c\;Brockfeld2005\;Brockf
3406eld2005a\;Duering2011\;Flotterod2009\;GOZALVEZ2009\;Harri2011\;Hopfner
34072007\;Krajzewicz2002\;Krajzewicz2002a\;Krajzewicz2002b\;Krajzewicz2003
3408\;Krajzewicz2003a\;Krajzewicz2003b\;Krajzewicz2003c\;Krajzewicz2004\;K
3409rajzewicz2004a\;Krajzewicz2004b\;Krajzewicz2005\;Krajzewicz2005a\;Kraj
3410zewicz2006\;Krajzewicz2007\;Krajzewicz2007a\;Krajzewicz2007b\;Krajzewi
3411cz2009\;Krajzewicz2009a\;Krajzewicz2009b\;Krajzewicz2010\;Krajzewicz20
341210a\;Krajzewicz2010b\;Krajzewicz2011\;Krajzewicz2011a\;Krauss1997\;Laz
3413aro2008\;Maneros2009\;Niebel2008\;Rosenbaum2011\;Schlingelhof2006\;Var
3414schen2006\;Wang2010\;;
34153 ExplicitGroup:VF\;2\;Varschen2006\;;
34163 ExplicitGroup:MF\;2\;Rosenbaum2011\;;
34172 ExplicitGroup:Switzerland\;2\;;
34183 ExplicitGroup:EPFL\;2\;;
34194 ExplicitGroup:Transport and Mobility Laboratory\;0\;Flotterod2009\;;
34204 ExplicitGroup:LCA (Laboratory for computer Communications and Applic
3421ations)\;0\;Piorkowski2008\;Wegener2008a\;;
34222 ExplicitGroup:Netherlands\;2\;;
34233 ExplicitGroup:Peek Traffic\;0\;Blokpoel2010\;GOZALVEZ2009\;Harri2011
3424\;Krajzewicz2010\;Lazaro2008\;;
34252 ExplicitGroup:Belgium\;2\;;
34263 ExplicitGroup:IMEC\;0\;Bieker2010\;;
34272 ExplicitGroup:France\;2\;;
34283 ExplicitGroup:EURECOM\;0\;GOZALVEZ2009\;Harri2011\;Krajzewicz2010\;L
3429azaro2008\;Rondinone2009\;;
34303 ExplicitGroup:HITACHI\;0\;GOZALVEZ2009\;Krajzewicz2010\;Lazaro2008\;
3431Rondinone2009\;;
34323 ExplicitGroup:Thales\;0\;GOZALVEZ2009\;Harri2011\;Krajzewicz2010\;La
3433zaro2008\;Rondinone2009\;;
34343 ExplicitGroup:Universit�e de Lyon\;0\;;
34354 ExplicitGroup:INRIA\;0\;SandeshFiore2011\;;
34362 ExplicitGroup:Germany\;2\;;
34373 ExplicitGroup:TU BS\;2\;Duering2011\;;
34383 ExplicitGroup:VW\;0\;Wegener2008\;;
34393 ExplicitGroup:TU L\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
3440\\\\\\\\\\\\\\"ubeck\;2\;;
34414 ExplicitGroup:Institute of Telematics\;0\;Wegener2008\;Wegener2008a\
3442;Wegener2009\;;
34433 ExplicitGroup:University of Applied Sciences L\\\\\\\\\\\\\\\\\\\\\\
3444\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"ubeck\;2\;;
34454 ExplicitGroup:Department of Electrical Engineering\;0\;Wegener2008\;
3446;
34473 ExplicitGroup:Universit\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
3448\\\\\\\\\\\\\\\\\\\"at zu K\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
3449\\\\\\\\\\\\\\\\\\\\\"oln\;0\;Gawron1999\;Krauss1997\;Krauss1998\;;
34503 ExplicitGroup:Fraunhofer\;2\;;
34514 ExplicitGroup:FOKUS\;0\;Katsaros2011a\;Kerekes2009\;;
34522 ExplicitGroup:Spain\;2\;;
34533 ExplicitGroup:UMH\;0\;Bauza2008\;GOZALVEZ2009\;Krajzewicz2010\;Lazar
3454o2008\;Maneros2009\;Rondinone2009\;;
34553 ExplicitGroup:Innovalia Association\;0\;GOZALVEZ2009\;Krajzewicz2009
3456b\;Krajzewicz2010\;Lazaro2008\;Maneros2009\;Rondinone2009\;;
34573 ExplicitGroup:CBT\;0\;GOZALVEZ2009\;Krajzewicz2010\;Lazaro2008\;Mane
3458ros2009\;Rondinone2009\;;
34592 ExplicitGroup:Italy\;2\;;
34603 ExplicitGroup:COBO\;0\;GOZALVEZ2009\;Krajzewicz2010\;Lazaro2008\;Ron
3461dinone2009\;;
34622 ExplicitGroup:USA\;0\;;
34633 ExplicitGroup:University of Tulsa\;0\;Barber2011\;;
34643 ExplicitGroup:Rochester Institute of Technology\;0\;Kerekes2009\;;
34653 ExplicitGroup:Air Force Institute of Technology\;0\;Kerekes2009\;;
34663 ExplicitGroup:Numerica Corp.\;0\;Kerekes2009\;;
34672 ExplicitGroup:Australia\;2\;;
34683 ExplicitGroup:University of New South Wales\;0\;Karnadi2007\;;
34693 ExplicitGroup:National ICT Australia Ltd\;0\;Karnadi2007\;;
34702 ExplicitGroup:Ireland\;2\;;
34713 ExplicitGroup:University of Dublin\;0\;Morenz2007\;;
34722 ExplicitGroup:UK\;2\;;
34733 ExplicitGroup:University of Surrey\;0\;Katsaros2011\;Katsaros2011a\;
3474Katsaros2011b\;;
34752 ExplicitGroup:India\;2\;;
34763 ExplicitGroup:IIT Bombay\;0\;Bajpai2011\;;
34771 ExplicitGroup:meta\;0\;;
34782 ExplicitGroup:assigned2groups\;0\;Bajpai2011\;Barber2011\;Barlovic20
347901\;Bauza2008\;Behrisch2008\;Behrisch2008a\;Behrisch2008b\;Behrisch200
34809\;Behrisch2009a\;Behrisch2010\;Behrisch2010a\;Behrisch2011\;Bieker201
34810\;Bieker2011\;Bieker2011a\;Blokpoel2010\;Bonert2006\;Brockfeld2002\;B
3482rockfeld2002a\;Brockfeld2003\;Brockfeld2003a\;Brockfeld2004\;Brockfeld
34832004a\;Brockfeld2004b\;Brockfeld2004c\;Brockfeld2005\;Brockfeld2005a\;
3484Chao-Qun2008\;Duering2011\;Figueiredo2001\;Flotterod2009\;GOZALVEZ2009
3485\;Gawron1999\;Harri2011\;Hopfner2007\;Karnadi2007\;Katsaros2011\;Katsa
3486ros2011a\;Katsaros2011b\;Kerekes2009\;Krajzewicz2002\;Krajzewicz2002a\
3487;Krajzewicz2002b\;Krajzewicz2003\;Krajzewicz2003a\;Krajzewicz2003b\;Kr
3488ajzewicz2003c\;Krajzewicz2004\;Krajzewicz2004a\;Krajzewicz2004b\;Krajz
3489ewicz2005\;Krajzewicz2005a\;Krajzewicz2006\;Krajzewicz2007\;Krajzewicz
34902007a\;Krajzewicz2007b\;Krajzewicz2009\;Krajzewicz2009a\;Krajzewicz201
34910\;Krajzewicz2010a\;Krajzewicz2010b\;Krajzewicz2011\;Krajzewicz2011a\;
3492Krauss1997\;Krauss1998\;Kuhne2006\;Lazaro2008\;Maneros2009\;Morenz2007
3493\;Niebel2008\;Piorkowski2008\;Rondinone2009\;Rosenbaum2011\;Sanchez200
34946\;SandeshFiore2011\;Schlingelhof2006\;Tielert2010\;Treiber2000\;Varsc
3495hen2006\;Wang2010\;Wegener2008\;Wegener2008a\;Wegener2009\;Widodo2000\
3496;;
34972 ExplicitGroup:documentAssigned\;0\;Katsaros2011\;Katsaros2011a\;Kats
3498aros2011b\;Tielert2010\;Treiber2000\;Wegener2009\;;
3499}
3500
3501