1 /* Reed-Solomon decoder
2  * Copyright 2002 Phil Karn, KA9Q
3  * May be used under the terms of the GNU General Public License (GPL)
4  */
5 
6 #ifdef DEBUG
7 #include <stdio.h>
8 #endif
9 
10 #include <string.h>
11 
12 #ifndef NULL
13 #define NULL ((void*)0)
14 #endif
15 
16 #define min(a, b) ((a) < (b) ? (a) : (b))
17 
18 #ifdef FIXED
19 #include "fixed.h"
20 #elif defined(BIGSYM)
21 #include "int.h"
22 #else
23 #include "char.h"
24 #endif
25 
DECODE_RS(void * p,DTYPE * data,int * eras_pos,int no_eras)26 int DECODE_RS(
27 #ifndef FIXED
28     void* p,
29 #endif
30     DTYPE* data,
31     int* eras_pos,
32     int no_eras)
33 {
34 
35 #ifndef FIXED
36     struct rs* rs = (struct rs*)p;
37 #endif
38     int deg_lambda, el, deg_omega;
39     int i, j, r, k;
40 #ifdef MAX_ARRAY
41     DTYPE u, q, tmp, num1, num2, den, discr_r;
42     DTYPE lambda[MAX_ARRAY], s[MAX_ARRAY]; /* Err+Eras Locator poly
43                                             * and syndrome poly */
44     DTYPE b[MAX_ARRAY], t[MAX_ARRAY], omega[MAX_ARRAY];
45     DTYPE root[MAX_ARRAY], reg[MAX_ARRAY], loc[MAX_ARRAY];
46 #else
47     DTYPE u, q, tmp, num1, num2, den, discr_r;
48     DTYPE lambda[NROOTS + 1], s[NROOTS]; /* Err+Eras Locator poly
49                                           * and syndrome poly */
50     DTYPE b[NROOTS + 1], t[NROOTS + 1], omega[NROOTS + 1];
51     DTYPE root[NROOTS], reg[NROOTS + 1], loc[NROOTS];
52 #endif
53     int syn_error, count;
54 
55     /* form the syndromes; i.e., evaluate data(x) at roots of g(x) */
56     for (i = 0; (unsigned int)i < NROOTS; i++)
57         s[i] = data[0];
58 
59     for (j = 1; (unsigned int)j < NN; j++) {
60         for (i = 0; (unsigned int)i < NROOTS; i++) {
61             if (s[i] == 0) {
62                 s[i] = data[j];
63             } else {
64                 s[i] = data[j] ^ ALPHA_TO[MODNN(INDEX_OF[s[i]] + (FCR + i) * PRIM)];
65             }
66         }
67     }
68 
69     /* Convert syndromes to index form, checking for nonzero condition */
70     syn_error = 0;
71     for (i = 0; (unsigned int)i < NROOTS; i++) {
72         syn_error |= s[i];
73         s[i] = INDEX_OF[s[i]];
74     }
75 
76     if (!syn_error) {
77         /* if syndrome is zero, data[] is a codeword and there are no
78          * errors to correct. So return data[] unmodified
79          */
80         count = 0;
81         goto finish;
82     }
83     memset(&lambda[1], 0, NROOTS * sizeof(lambda[0]));
84     lambda[0] = 1;
85 
86     if (no_eras > 0) {
87         /* Init lambda to be the erasure locator polynomial */
88         lambda[1] = ALPHA_TO[MODNN(PRIM * (NN - 1 - eras_pos[0]))];
89         for (i = 1; i < no_eras; i++) {
90             u = MODNN(PRIM * (NN - 1 - eras_pos[i]));
91             for (j = i + 1; j > 0; j--) {
92                 tmp = INDEX_OF[lambda[j - 1]];
93                 if (tmp != A0)
94                     lambda[j] ^= ALPHA_TO[MODNN(u + tmp)];
95             }
96         }
97 
98 #if DEBUG >= 1
99         /* Test code that verifies the erasure locator polynomial just constructed
100            Needed only for decoder debugging. */
101 
102         /* find roots of the erasure location polynomial */
103         for (i = 1; i <= no_eras; i++)
104             reg[i] = INDEX_OF[lambda[i]];
105 
106         count = 0;
107         for (i = 1, k = IPRIM - 1; i <= NN; i++, k = MODNN(k + IPRIM)) {
108             q = 1;
109             for (j = 1; j <= no_eras; j++)
110                 if (reg[j] != A0) {
111                     reg[j] = MODNN(reg[j] + j);
112                     q ^= ALPHA_TO[reg[j]];
113                 }
114             if (q != 0)
115                 continue;
116             /* store root and error location number indices */
117             root[count] = i;
118             loc[count] = k;
119             count++;
120         }
121         if (count != no_eras) {
122             printf("count = %d no_eras = %d\n lambda(x) is WRONG\n", count, no_eras);
123             count = -1;
124             goto finish;
125         }
126 #if DEBUG >= 2
127         printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n");
128         for (i = 0; i < count; i++)
129             printf("%d ", loc[i]);
130         printf("\n");
131 #endif
132 #endif
133     }
134     for (i = 0; (unsigned int)i < NROOTS + 1; i++)
135         b[i] = INDEX_OF[lambda[i]];
136 
137     /*
138      * Begin Berlekamp-Massey algorithm to determine error+erasure
139      * locator polynomial
140      */
141     r = no_eras;
142     el = no_eras;
143     while ((unsigned int)(++r) <= NROOTS) { /* r is the step number */
144         /* Compute discrepancy at the r-th step in poly-form */
145         discr_r = 0;
146         for (i = 0; i < r; i++) {
147             if ((lambda[i] != 0) && (s[r - i - 1] != A0)) {
148                 discr_r ^= ALPHA_TO[MODNN(INDEX_OF[lambda[i]] + s[r - i - 1])];
149             }
150         }
151         discr_r = INDEX_OF[discr_r]; /* Index form */
152         if (discr_r == A0) {
153             /* 2 lines below: B(x) <-- x*B(x) */
154             memmove(&b[1], b, NROOTS * sizeof(b[0]));
155             b[0] = A0;
156         } else {
157             /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
158             t[0] = lambda[0];
159             for (i = 0; (unsigned int)i < NROOTS; i++) {
160                 if (b[i] != A0)
161                     t[i + 1] = lambda[i + 1] ^ ALPHA_TO[MODNN(discr_r + b[i])];
162                 else
163                     t[i + 1] = lambda[i + 1];
164             }
165             if (2 * el <= r + no_eras - 1) {
166                 el = r + no_eras - el;
167                 /*
168                  * 2 lines below: B(x) <-- inv(discr_r) *
169                  * lambda(x)
170                  */
171                 for (i = 0; (unsigned int)i <= NROOTS; i++)
172                     b[i] =
173                         (lambda[i] == 0) ? A0 : MODNN(INDEX_OF[lambda[i]] - discr_r + NN);
174             } else {
175                 /* 2 lines below: B(x) <-- x*B(x) */
176                 memmove(&b[1], b, NROOTS * sizeof(b[0]));
177                 b[0] = A0;
178             }
179             memcpy(lambda, t, (NROOTS + 1) * sizeof(t[0]));
180         }
181     }
182 
183     /* Convert lambda to index form and compute deg(lambda(x)) */
184     deg_lambda = 0;
185     for (i = 0; (unsigned int)i < NROOTS + 1; i++) {
186         lambda[i] = INDEX_OF[lambda[i]];
187         if (lambda[i] != A0)
188             deg_lambda = i;
189     }
190     /* Find roots of the error+erasure locator polynomial by Chien search */
191     memcpy(&reg[1], &lambda[1], NROOTS * sizeof(reg[0]));
192     count = 0; /* Number of roots of lambda(x) */
193     for (i = 1, k = IPRIM - 1; (unsigned int)i <= NN; i++, k = MODNN(k + IPRIM)) {
194         q = 1; /* lambda[0] is always 0 */
195         for (j = deg_lambda; j > 0; j--) {
196             if (reg[j] != A0) {
197                 reg[j] = MODNN(reg[j] + j);
198                 q ^= ALPHA_TO[reg[j]];
199             }
200         }
201         if (q != 0)
202             continue; /* Not a root */
203                       /* store root (index-form) and error location number */
204 #if DEBUG >= 2
205         printf("count %d root %d loc %d\n", count, i, k);
206 #endif
207         root[count] = i;
208         loc[count] = k;
209         /* If we've already found max possible roots,
210          * abort the search to save time
211          */
212         if (++count == deg_lambda)
213             break;
214     }
215     if (deg_lambda != count) {
216         /*
217          * deg(lambda) unequal to number of roots => uncorrectable
218          * error detected
219          */
220         count = -1;
221         goto finish;
222     }
223     /*
224      * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
225      * x**NROOTS). in index form. Also find deg(omega).
226      */
227     deg_omega = 0;
228     for (i = 0; (unsigned int)i < NROOTS; i++) {
229         tmp = 0;
230         j = (deg_lambda < i) ? deg_lambda : i;
231         for (; j >= 0; j--) {
232             if ((s[i - j] != A0) && (lambda[j] != A0))
233                 tmp ^= ALPHA_TO[MODNN(s[i - j] + lambda[j])];
234         }
235         if (tmp != 0)
236             deg_omega = i;
237         omega[i] = INDEX_OF[tmp];
238     }
239     omega[NROOTS] = A0;
240 
241     /*
242      * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
243      * inv(X(l))**(FCR-1) and den = lambda_pr(inv(X(l))) all in poly-form
244      */
245     for (j = count - 1; j >= 0; j--) {
246         num1 = 0;
247         for (i = deg_omega; i >= 0; i--) {
248             if (omega[i] != A0)
249                 num1 ^= ALPHA_TO[MODNN(omega[i] + i * root[j])];
250         }
251         num2 = ALPHA_TO[MODNN(root[j] * (FCR - 1) + NN)];
252         den = 0;
253 
254         /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
255         for (i = (int)min((unsigned int)deg_lambda, NROOTS - 1) & ~1; i >= 0; i -= 2) {
256             if (lambda[i + 1] != A0)
257                 den ^= ALPHA_TO[MODNN(lambda[i + 1] + i * root[j])];
258         }
259         if (den == 0) {
260 #if DEBUG >= 1
261             printf("\n ERROR: denominator = 0\n");
262 #endif
263             count = -1;
264             goto finish;
265         }
266         /* Apply error to data */
267         if (num1 != 0) {
268             data[loc[j]] ^=
269                 ALPHA_TO[MODNN(INDEX_OF[num1] + INDEX_OF[num2] + NN - INDEX_OF[den])];
270         }
271     }
272 finish:
273     if (eras_pos != NULL) {
274         for (i = 0; i < count; i++)
275             eras_pos[i] = loc[i];
276     }
277     return count;
278 }
279