1 /*
2  * This source code is a product of Sun Microsystems, Inc. and is provided
3  * for unrestricted use.  Users may copy or modify this source code without
4  * charge.
5  *
6  * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
7  * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
8  * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
9  *
10  * Sun source code is provided with no support and without any obligation on
11  * the part of Sun Microsystems, Inc. to assist in its use, correction,
12  * modification or enhancement.
13  *
14  * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
15  * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
16  * OR ANY PART THEREOF.
17  *
18  * In no event will Sun Microsystems, Inc. be liable for any lost revenue
19  * or profits or other special, indirect and consequential damages, even if
20  * Sun has been advised of the possibility of such damages.
21  *
22  * Sun Microsystems, Inc.
23  * 2550 Garcia Avenue
24  * Mountain View, California  94043
25  */
26 
27 /*
28  * g723_40.c
29  *
30  * Description:
31  *
32  * g723_40_encoder(), g723_40_decoder()
33  *
34  * These routines comprise an implementation of the CCITT G.723 40Kbps
35  * ADPCM coding algorithm.  Essentially, this implementation is identical to
36  * the bit level description except for a few deviations which
37  * take advantage of workstation attributes, such as hardware 2's
38  * complement arithmetic.
39  *
40  * The deviation from the bit level specification (lookup tables),
41  * preserves the bit level performance specifications.
42  *
43  * As outlined in the G.723 Recommendation, the algorithm is broken
44  * down into modules.  Each section of code below is preceded by
45  * the name of the module which it is implementing.
46  *
47  */
48 #include "g72x.h"
49 
50 /*
51  * Maps G.723_40 code word to ructeconstructed scale factor normalized log
52  * magnitude values.
53  */
54 static short _dqlntab[32] = { -2048, -66, 28,  104, 169, 224, 274, 318, 358, 395,  429,
55                               459,   488, 514, 539, 566, 566, 539, 514, 488, 459,  429,
56                               395,   358, 318, 274, 224, 169, 104, 28,  -66, -2048 };
57 
58 /* Maps G.723_40 code word to log of scale factor multiplier. */
59 static short _witab[32] = { 448,   448,   768,   1248,  1280,  1312,  1856,  3200,
60                             4512,  5728,  7008,  8960,  11456, 14080, 16928, 22272,
61                             22272, 16928, 14080, 11456, 8960,  7008,  5728,  4512,
62                             3200,  1856,  1312,  1280,  1248,  768,   448,   448 };
63 
64 /*
65  * Maps G.723_40 code words to a set of values whose long and short
66  * term averages are computed and then compared to give an indication
67  * how stationary (steady state) the signal is.
68  */
69 static short _fitab[32] = { 0,     0,     0,     0,     0,     0x200, 0x200, 0x200,
70                             0x200, 0x200, 0x400, 0x600, 0x800, 0xA00, 0xC00, 0xC00,
71                             0xC00, 0xC00, 0xA00, 0x800, 0x600, 0x400, 0x200, 0x200,
72                             0x200, 0x200, 0x200, 0,     0,     0,     0,     0 };
73 
74 static short qtab_723_40[15] = { -122, -16, 68,  139, 198, 250, 298, 339,
75                                  378,  413, 445, 475, 502, 528, 553 };
76 
77 /*
78  * g723_40_encoder()
79  *
80  * Encodes a 16-bit linear PCM, A-law or u-law input sample and retuens
81  * the resulting 5-bit CCITT G.723 40Kbps code.
82  * Returns -1 if the input coding value is invalid.
83  */
g723_40_encoder(int sl,int in_coding,struct g72x_state * state_ptr)84 int g723_40_encoder(int sl, int in_coding, struct g72x_state* state_ptr)
85 {
86     short sei, sezi, se, sez; /* ACCUM */
87     short d;                  /* SUBTA */
88     short y;                  /* MIX */
89     short sr;                 /* ADDB */
90     short dqsez;              /* ADDC */
91     short dq, i;
92 
93     switch (in_coding) { /* linearize input sample to 14-bit PCM */
94     case AUDIO_ENCODING_ALAW:
95         sl = alaw2linear(sl) >> 2;
96         break;
97     case AUDIO_ENCODING_ULAW:
98         sl = ulaw2linear(sl) >> 2;
99         break;
100     case AUDIO_ENCODING_LINEAR:
101         sl >>= 2; /* sl of 14-bit dynamic range */
102         break;
103     default:
104         return (-1);
105     }
106 
107     sezi = predictor_zero(state_ptr);
108     sez = sezi >> 1;
109     sei = sezi + predictor_pole(state_ptr);
110     se = sei >> 1; /* se = estimated signal */
111 
112     d = sl - se; /* d = estimation difference */
113 
114     /* quantize prediction difference */
115     y = step_size(state_ptr);            /* adaptive quantizer step size */
116     i = quantize(d, y, qtab_723_40, 15); /* i = ADPCM code */
117 
118     dq = reconstruct(i & 0x10, _dqlntab[i], y); /* quantized diff */
119 
120     sr = (dq < 0) ? se - (dq & 0x7FFF) : se + dq; /* reconstructed signal */
121 
122     dqsez = sr + sez - se; /* dqsez = pole prediction diff. */
123 
124     update(5, y, _witab[i], _fitab[i], dq, sr, dqsez, state_ptr);
125 
126     return (i);
127 }
128 
129 /*
130  * g723_40_decoder()
131  *
132  * Decodes a 5-bit CCITT G.723 40Kbps code and returns
133  * the resulting 16-bit linear PCM, A-law or u-law sample value.
134  * -1 is returned if the output coding is unknown.
135  */
g723_40_decoder(int i,int out_coding,struct g72x_state * state_ptr)136 int g723_40_decoder(int i, int out_coding, struct g72x_state* state_ptr)
137 {
138     short sezi, sei, sez, se; /* ACCUM */
139     short y;                  /* MIX */
140     short sr;                 /* ADDB */
141     short dq;
142     short dqsez;
143 
144     i &= 0x1f; /* mask to get proper bits */
145     sezi = predictor_zero(state_ptr);
146     sez = sezi >> 1;
147     sei = sezi + predictor_pole(state_ptr);
148     se = sei >> 1; /* se = estimated signal */
149 
150     y = step_size(state_ptr);                   /* adaptive quantizer step size */
151     dq = reconstruct(i & 0x10, _dqlntab[i], y); /* estimation diff. */
152 
153     sr = (dq < 0) ? (se - (dq & 0x7FFF)) : (se + dq); /* reconst. signal */
154 
155     dqsez = sr - se + sez; /* pole prediction diff. */
156 
157     update(5, y, _witab[i], _fitab[i], dq, sr, dqsez, state_ptr);
158 
159     switch (out_coding) {
160     case AUDIO_ENCODING_ALAW:
161         return (tandem_adjust_alaw(sr, se, y, i, 0x10, qtab_723_40));
162     case AUDIO_ENCODING_ULAW:
163         return (tandem_adjust_ulaw(sr, se, y, i, 0x10, qtab_723_40));
164     case AUDIO_ENCODING_LINEAR:
165         return (sr << 2); /* sr was of 14-bit dynamic range */
166     default:
167         return (-1);
168     }
169 }
170