1 /* K=7 r=1/2 Viterbi decoder for PowerPC G4/G5 Altivec instructions
2  * Feb 2004, Phil Karn, KA9Q
3  */
4 #include <altivec.h>
5 #include <stdio.h>
6 #include <memory.h>
7 #include <stdlib.h>
8 #include "fec.h"
9 
10 typedef union { long long p; unsigned char c[64]; vector bool char v[4]; } decision_t;
11 typedef union { long long p; unsigned char c[64]; vector unsigned char v[4]; } metric_t;
12 
13 static union branchtab27 { unsigned char c[32]; vector unsigned char v[2];} Branchtab27[2];
14 static int Init = 0;
15 
16 /* State info for instance of Viterbi decoder
17  * Don't change this without also changing references in [mmx|sse|sse2]bfly29.s!
18  */
19 struct v27 {
20   metric_t metrics1; /* path metric buffer 1 */
21   metric_t metrics2; /* path metric buffer 2 */
22   decision_t *dp;          /* Pointer to current decision */
23   metric_t *old_metrics,*new_metrics; /* Pointers to path metrics, swapped on every bit */
24   decision_t *decisions;   /* Beginning of decisions for block */
25 };
26 
27 /* Initialize Viterbi decoder for start of new frame */
init_viterbi27_av(void * p,int starting_state)28 int init_viterbi27_av(void *p,int starting_state){
29   struct v27 *vp = p;
30   int i;
31 
32   if(p == NULL)
33     return -1;
34   for(i=0;i<4;i++)
35     vp->metrics1.v[i] = (vector unsigned char){63};
36   vp->old_metrics = &vp->metrics1;
37   vp->new_metrics = &vp->metrics2;
38   vp->dp = vp->decisions;
39   vp->old_metrics->c[starting_state & 63] = 0; /* Bias known start state */
40   return 0;
41 }
42 
set_viterbi27_polynomial_av(int polys[2])43 void set_viterbi27_polynomial_av(int polys[2]){
44   int state;
45 
46   for(state=0;state < 32;state++){
47     Branchtab27[0].c[state] = (polys[0] < 0) ^ parity((2*state) & abs(polys[0])) ? 255 : 0;
48     Branchtab27[1].c[state] = (polys[1] < 0) ^ parity((2*state) & abs(polys[1])) ? 255 : 0;
49   }
50   Init++;
51 }
52 
53 /* Create a new instance of a Viterbi decoder */
create_viterbi27_av(int len)54 void *create_viterbi27_av(int len){
55   struct v27 *vp;
56 
57   if(!Init){
58     int polys[2] = { V27POLYA,V27POLYB };
59     set_viterbi27_polynomial_av(polys);
60   }
61   if((vp = (struct v27 *)malloc(sizeof(struct v27))) == NULL)
62     return NULL;
63   if((vp->decisions = (decision_t *)malloc((len+6)*sizeof(decision_t))) == NULL){
64     free(vp);
65     return NULL;
66   }
67   init_viterbi27_av(vp,0);
68   return vp;
69 }
70 
71 /* Viterbi chainback */
chainback_viterbi27_av(void * p,unsigned char * data,unsigned int nbits,unsigned int endstate)72 int chainback_viterbi27_av(
73       void *p,
74       unsigned char *data, /* Decoded output data */
75       unsigned int nbits, /* Number of data bits */
76       unsigned int endstate){ /* Terminal encoder state */
77   struct v27 *vp = p;
78   decision_t *d = (decision_t *)vp->decisions;
79 
80   if(p == NULL)
81     return -1;
82 
83   /* Make room beyond the end of the encoder register so we can
84    * accumulate a full byte of decoded data
85    */
86   endstate %= 64;
87   endstate <<= 2;
88 
89   /* The store into data[] only needs to be done every 8 bits.
90    * But this avoids a conditional branch, and the writes will
91    * combine in the cache anyway
92    */
93   d += 6; /* Look past tail */
94   while(nbits-- != 0){
95     int k;
96 
97     k = d[nbits].c[endstate>>2] & 1;
98     data[nbits>>3] = endstate = (endstate >> 1) | (k << 7);
99   }
100   return 0;
101 }
102 
103 /* Delete instance of a Viterbi decoder */
delete_viterbi27_av(void * p)104 void delete_viterbi27_av(void *p){
105   struct v27 *vp = p;
106 
107   if(vp != NULL){
108     free(vp->decisions);
109     free(vp);
110   }
111 }
112 
113 /* Process received symbols */
update_viterbi27_blk_av(void * p,unsigned char * syms,int nbits)114 int update_viterbi27_blk_av(void *p,unsigned char *syms,int nbits){
115   struct v27 *vp = p;
116   decision_t *d;
117 
118   if(p == NULL)
119     return -1;
120   d = (decision_t *)vp->dp;
121   while(nbits--){
122     vector unsigned char survivor0,survivor1,sym0v,sym1v;
123     vector bool char decision0,decision1;
124     vector unsigned char metric,m_metric,m0,m1,m2,m3;
125     void *tmp;
126 
127     /* sym0v.0 = syms[0]; sym0v.1 = syms[1] */
128     sym0v = vec_perm(vec_ld(0,syms),vec_ld(1,syms),vec_lvsl(0,syms));
129 
130     sym1v = vec_splat(sym0v,1); /* Splat syms[1] across sym1v */
131     sym0v = vec_splat(sym0v,0); /* Splat syms[0] across sym0v */
132     syms += 2;
133 
134     /* Do the 32 butterflies as two interleaved groups of 16 each to keep the pipes full */
135 
136     /* Form first set of 16 branch metrics */
137     metric = vec_avg(vec_xor(Branchtab27[0].v[0],sym0v),vec_xor(Branchtab27[1].v[0],sym1v));
138     metric = vec_sr(metric,(vector unsigned char){3});
139     m_metric = vec_sub((vector unsigned char){31},metric);
140 
141     /* Form first set of path metrics */
142     m0 = vec_adds(vp->old_metrics->v[0],metric);
143     m3 = vec_adds(vp->old_metrics->v[2],metric);
144     m1 = vec_adds(vp->old_metrics->v[2],m_metric);
145     m2 = vec_adds(vp->old_metrics->v[0],m_metric);
146 
147     /* Form second set of 16 branch metrics */
148     metric = vec_avg(vec_xor(Branchtab27[0].v[1],sym0v),vec_xor(Branchtab27[1].v[1],sym1v));
149     metric = vec_sr(metric,(vector unsigned char){3});
150     m_metric = vec_sub((vector unsigned char){31},metric);
151 
152     /* Compare and select first set */
153     decision0 = vec_cmpgt(m0,m1);
154     decision1 = vec_cmpgt(m2,m3);
155     survivor0 = vec_min(m0,m1);
156     survivor1 = vec_min(m2,m3);
157 
158     /* Compute second set of path metrics */
159     m0 = vec_adds(vp->old_metrics->v[1],metric);
160     m3 = vec_adds(vp->old_metrics->v[3],metric);
161     m1 = vec_adds(vp->old_metrics->v[3],m_metric);
162     m2 = vec_adds(vp->old_metrics->v[1],m_metric);
163 
164     /* Interleave and store first decisions and survivors */
165     d->v[0] = vec_mergeh(decision0,decision1);
166     d->v[1] = vec_mergel(decision0,decision1);
167     vp->new_metrics->v[0] = vec_mergeh(survivor0,survivor1);
168     vp->new_metrics->v[1] = vec_mergel(survivor0,survivor1);
169 
170     /* Compare and select second set */
171     decision0 = vec_cmpgt(m0,m1);
172     decision1 = vec_cmpgt(m2,m3);
173     survivor0 = vec_min(m0,m1);
174     survivor1 = vec_min(m2,m3);
175 
176     /* Interleave and store second set of decisions and survivors */
177     d->v[2] = vec_mergeh(decision0,decision1);
178     d->v[3] = vec_mergel(decision0,decision1);
179     vp->new_metrics->v[2] = vec_mergeh(survivor0,survivor1);
180     vp->new_metrics->v[3] = vec_mergel(survivor0,survivor1);
181 
182     /* renormalize if necessary */
183     if(vp->new_metrics->c[0] >= 105){
184       vector unsigned char scale0,scale1;
185 
186       /* Find smallest metric and splat */
187       scale0 = vec_min(vp->new_metrics->v[0],vp->new_metrics->v[1]);
188       scale1 = vec_min(vp->new_metrics->v[2],vp->new_metrics->v[3]);
189       scale0 = vec_min(scale0,scale1);
190       scale0 = vec_min(scale0,vec_sld(scale0,scale0,8));
191       scale0 = vec_min(scale0,vec_sld(scale0,scale0,4));
192       scale0 = vec_min(scale0,vec_sld(scale0,scale0,2));
193       scale0 = vec_min(scale0,vec_sld(scale0,scale0,1));
194 
195       /* Now subtract from all metrics */
196       vp->new_metrics->v[0] = vec_subs(vp->new_metrics->v[0],scale0);
197       vp->new_metrics->v[1] = vec_subs(vp->new_metrics->v[1],scale0);
198       vp->new_metrics->v[2] = vec_subs(vp->new_metrics->v[2],scale0);
199       vp->new_metrics->v[3] = vec_subs(vp->new_metrics->v[3],scale0);
200     }
201     d++;
202     /* Swap pointers to old and new metrics */
203     tmp = vp->old_metrics;
204     vp->old_metrics = vp->new_metrics;
205     vp->new_metrics = tmp;
206   }
207   vp->dp = d;
208 
209   return 0;
210 }
211 
212