1 /* boost random/uniform_smallint.hpp header file
2  *
3  * Copyright Jens Maurer 2000-2001
4  * Distributed under the Boost Software License, Version 1.0. (See
5  * accompanying file LICENSE_1_0.txt or copy at
6  * http://www.boost.org/LICENSE_1_0.txt)
7  *
8  * See http://www.boost.org for most recent version including documentation.
9  *
10  * $Id$
11  *
12  * Revision history
13  *  2001-04-08  added min<max assertion (N. Becker)
14  *  2001-02-18  moved to individual header files
15  */
16 
17 #ifndef BOOST_RANDOM_UNIFORM_SMALLINT_HPP
18 #define BOOST_RANDOM_UNIFORM_SMALLINT_HPP
19 
20 #include <istream>
21 #include <iosfwd>
22 #include <boost/assert.hpp>
23 #include <boost/config.hpp>
24 #include <boost/limits.hpp>
25 #include <boost/type_traits/is_integral.hpp>
26 #include <boost/random/detail/config.hpp>
27 #include <boost/random/detail/operators.hpp>
28 #include <boost/random/detail/signed_unsigned_tools.hpp>
29 #include <boost/random/uniform_01.hpp>
30 #include <boost/detail/workaround.hpp>
31 #include <boost/mpl/bool.hpp>
32 
33 #ifdef BOOST_NO_CXX11_EXPLICIT_CONVERSION_OPERATORS
34 #include <boost/mpl/if.hpp>
35 #endif
36 
37 namespace boost {
38 namespace random {
39 
40 // uniform integer distribution on a small range [min, max]
41 
42 /**
43  * The distribution function uniform_smallint models a \random_distribution.
44  * On each invocation, it returns a random integer value uniformly distributed
45  * in the set of integer numbers {min, min+1, min+2, ..., max}. It assumes
46  * that the desired range (max-min+1) is small compared to the range of the
47  * underlying source of random numbers and thus makes no attempt to limit
48  * quantization errors.
49  *
50  * Let \f$r_{\mathtt{out}} = (\mbox{max}-\mbox{min}+1)\f$ the desired range of
51  * integer numbers, and
52  * let \f$r_{\mathtt{base}}\f$ be the range of the underlying source of random
53  * numbers. Then, for the uniform distribution, the theoretical probability
54  * for any number i in the range \f$r_{\mathtt{out}}\f$ will be
55  * \f$\displaystyle p_{\mathtt{out}}(i) = \frac{1}{r_{\mathtt{out}}}\f$.
56  * Likewise, assume a uniform distribution on \f$r_{\mathtt{base}}\f$ for
57  * the underlying source of random numbers, i.e.
58  * \f$\displaystyle p_{\mathtt{base}}(i) = \frac{1}{r_{\mathtt{base}}}\f$.
59  * Let \f$p_{\mathtt{out\_s}}(i)\f$ denote the random
60  * distribution generated by @c uniform_smallint. Then the sum over all
61  * i in \f$r_{\mathtt{out}}\f$ of
62  * \f$\displaystyle
63  * \left(\frac{p_{\mathtt{out\_s}}(i)}{p_{\mathtt{out}}(i)} - 1\right)^2\f$
64  * shall not exceed
65  * \f$\displaystyle \frac{r_{\mathtt{out}}}{r_{\mathtt{base}}^2}
66  * (r_{\mathtt{base}} \mbox{ mod } r_{\mathtt{out}})
67  * (r_{\mathtt{out}} - r_{\mathtt{base}} \mbox{ mod } r_{\mathtt{out}})\f$.
68  *
69  * The template parameter IntType shall denote an integer-like value type.
70  *
71  * @xmlnote
72  * The property above is the square sum of the relative differences
73  * in probabilities between the desired uniform distribution
74  * \f$p_{\mathtt{out}}(i)\f$ and the generated distribution
75  * \f$p_{\mathtt{out\_s}}(i)\f$.
76  * The property can be fulfilled with the calculation
77  * \f$(\mbox{base\_rng} \mbox{ mod } r_{\mathtt{out}})\f$, as follows:
78  * Let \f$r = r_{\mathtt{base}} \mbox{ mod } r_{\mathtt{out}}\f$.
79  * The base distribution on \f$r_{\mathtt{base}}\f$ is folded onto the
80  * range \f$r_{\mathtt{out}}\f$. The numbers i < r have assigned
81  * \f$\displaystyle
82  * \left\lfloor\frac{r_{\mathtt{base}}}{r_{\mathtt{out}}}\right\rfloor+1\f$
83  * numbers of the base distribution, the rest has only \f$\displaystyle
84  * \left\lfloor\frac{r_{\mathtt{base}}}{r_{\mathtt{out}}}\right\rfloor\f$.
85  * Therefore,
86  * \f$\displaystyle p_{\mathtt{out\_s}}(i) =
87  * \left(\left\lfloor\frac{r_{\mathtt{base}}}
88  * {r_{\mathtt{out}}}\right\rfloor+1\right) /
89  * r_{\mathtt{base}}\f$ for i < r and \f$\displaystyle p_{\mathtt{out\_s}}(i) =
90  * \left\lfloor\frac{r_{\mathtt{base}}}
91  * {r_{\mathtt{out}}}\right\rfloor/r_{\mathtt{base}}\f$ otherwise.
92  * Substituting this in the
93  * above sum formula leads to the desired result.
94  * @endxmlnote
95  *
96  * Note: The upper bound for
97  * \f$(r_{\mathtt{base}} \mbox{ mod } r_{\mathtt{out}})
98  * (r_{\mathtt{out}} - r_{\mathtt{base}} \mbox{ mod } r_{\mathtt{out}})\f$ is
99  * \f$\displaystyle \frac{r_{\mathtt{out}}^2}{4}\f$.  Regarding the upper bound
100  * for the square sum of the relative quantization error of
101  * \f$\displaystyle \frac{r_\mathtt{out}^3}{4r_{\mathtt{base}}^2}\f$, it
102  * seems wise to either choose \f$r_{\mathtt{base}}\f$ so that
103  * \f$r_{\mathtt{base}} > 10r_{\mathtt{out}}^2\f$ or ensure that
104  * \f$r_{\mathtt{base}}\f$ is
105  * divisible by \f$r_{\mathtt{out}}\f$.
106  */
107 template<class IntType = int>
108 class uniform_smallint
109 {
110 public:
111     typedef IntType input_type;
112     typedef IntType result_type;
113 
114     class param_type
115     {
116     public:
117 
118         typedef uniform_smallint distribution_type;
119 
120         /** constructs the parameters of a @c uniform_smallint distribution. */
param_type(IntType min_arg=0,IntType max_arg=9)121         param_type(IntType min_arg = 0, IntType max_arg = 9)
122           : _min(min_arg), _max(max_arg)
123         {
124             BOOST_ASSERT(_min <= _max);
125         }
126 
127         /** Returns the minimum value. */
a() const128         IntType a() const { return _min; }
129         /** Returns the maximum value. */
b() const130         IntType b() const { return _max; }
131 
132 
133         /** Writes the parameters to a @c std::ostream. */
BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os,param_type,parm)134         BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, param_type, parm)
135         {
136             os << parm._min << " " << parm._max;
137             return os;
138         }
139 
140         /** Reads the parameters from a @c std::istream. */
BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is,param_type,parm)141         BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, param_type, parm)
142         {
143             is >> parm._min >> std::ws >> parm._max;
144             return is;
145         }
146 
147         /** Returns true if the two sets of parameters are equal. */
BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(param_type,lhs,rhs)148         BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(param_type, lhs, rhs)
149         { return lhs._min == rhs._min && lhs._max == rhs._max; }
150 
151         /** Returns true if the two sets of parameters are different. */
152         BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(param_type)
153 
154     private:
155         IntType _min;
156         IntType _max;
157     };
158 
159     /**
160      * Constructs a @c uniform_smallint. @c min and @c max are the
161      * lower and upper bounds of the output range, respectively.
162      */
uniform_smallint(IntType min_arg=0,IntType max_arg=9)163     explicit uniform_smallint(IntType min_arg = 0, IntType max_arg = 9)
164       : _min(min_arg), _max(max_arg) {}
165 
166     /**
167      * Constructs a @c uniform_smallint from its parameters.
168      */
uniform_smallint(const param_type & parm)169     explicit uniform_smallint(const param_type& parm)
170       : _min(parm.a()), _max(parm.b()) {}
171 
172     /** Returns the minimum value of the distribution. */
a() const173     result_type a() const { return _min; }
174     /** Returns the maximum value of the distribution. */
b() const175     result_type b() const { return _max; }
176     /** Returns the minimum value of the distribution. */
BOOST_PREVENT_MACRO_SUBSTITUTION() const177     result_type min BOOST_PREVENT_MACRO_SUBSTITUTION () const { return _min; }
178     /** Returns the maximum value of the distribution. */
BOOST_PREVENT_MACRO_SUBSTITUTION() const179     result_type max BOOST_PREVENT_MACRO_SUBSTITUTION () const { return _max; }
180 
181     /** Returns the parameters of the distribution. */
param() const182     param_type param() const { return param_type(_min, _max); }
183     /** Sets the parameters of the distribution. */
param(const param_type & parm)184     void param(const param_type& parm)
185     {
186         _min = parm.a();
187         _max = parm.b();
188     }
189 
190     /**
191      * Effects: Subsequent uses of the distribution do not depend
192      * on values produced by any engine prior to invoking reset.
193      */
reset()194     void reset() { }
195 
196     /** Returns a value uniformly distributed in the range [min(), max()]. */
197     template<class Engine>
operator ()(Engine & eng) const198     result_type operator()(Engine& eng) const
199     {
200         typedef typename Engine::result_type base_result;
201         return generate(eng, boost::random::traits::is_integral<base_result>());
202     }
203 
204     /** Returns a value uniformly distributed in the range [param.a(), param.b()]. */
205     template<class Engine>
operator ()(Engine & eng,const param_type & parm) const206     result_type operator()(Engine& eng, const param_type& parm) const
207     { return uniform_smallint(parm)(eng); }
208 
209     /** Writes the distribution to a @c std::ostream. */
BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os,uniform_smallint,ud)210     BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, uniform_smallint, ud)
211     {
212         os << ud._min << " " << ud._max;
213         return os;
214     }
215 
216     /** Reads the distribution from a @c std::istream. */
BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is,uniform_smallint,ud)217     BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, uniform_smallint, ud)
218     {
219         is >> ud._min >> std::ws >> ud._max;
220         return is;
221     }
222 
223     /**
224      * Returns true if the two distributions will produce identical
225      * sequences of values given equal generators.
226      */
BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(uniform_smallint,lhs,rhs)227     BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(uniform_smallint, lhs, rhs)
228     { return lhs._min == rhs._min && lhs._max == rhs._max; }
229 
230     /**
231      * Returns true if the two distributions may produce different
232      * sequences of values given equal generators.
233      */
234     BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(uniform_smallint)
235 
236 private:
237 
238     // \cond show_private
239     template<class Engine>
generate(Engine & eng,boost::mpl::true_) const240     result_type generate(Engine& eng, boost::mpl::true_) const
241     {
242         // equivalent to (eng() - eng.min()) % (_max - _min + 1) + _min,
243         // but guarantees no overflow.
244         typedef typename Engine::result_type base_result;
245         typedef typename boost::random::traits::make_unsigned<base_result>::type base_unsigned;
246         typedef typename boost::random::traits::make_unsigned_or_unbounded<result_type>::type range_type;
247 #ifdef BOOST_NO_CXX11_EXPLICIT_CONVERSION_OPERATORS
248         typedef typename mpl::if_c<
249            std::numeric_limits<range_type>::is_specialized && std::numeric_limits<base_unsigned>::is_specialized
250            && (std::numeric_limits<range_type>::digits >= std::numeric_limits<base_unsigned>::digits),
251            range_type, base_unsigned>::type mixed_range_type;
252 #else
253         typedef base_unsigned mixed_range_type;
254 #endif
255         range_type range = random::detail::subtract<result_type>()(_max, _min);
256         base_unsigned base_range =
257             random::detail::subtract<base_result>()((eng.max)(), (eng.min)());
258         base_unsigned val =
259             random::detail::subtract<base_result>()(eng(), (eng.min)());
260         if(range >= base_range) {
261             return boost::random::detail::add<range_type, result_type>()(
262                 static_cast<range_type>(val), _min);
263         } else {
264             // This involves mixed arithmetic between the base generators range
265             // type, and the result_type's range type.  mixed_range_type is
266             // normally the same as base_unsigned which is the most efficient
267             // option, but requires a narrowing explcit cast if result_type
268             // is a multiprecision type.  If no such casts are available then use
269             // multiprecision arithmetic throughout instead.
270             mixed_range_type modulus = static_cast<mixed_range_type>(range)+1;
271             return boost::random::detail::add<range_type, result_type>()(
272                 static_cast<mixed_range_type>(val) % modulus, _min);
273         }
274     }
275 
276     template<class Engine>
generate(Engine & eng,boost::mpl::false_) const277     result_type generate(Engine& eng, boost::mpl::false_) const
278     {
279         typedef typename Engine::result_type base_result;
280         typedef typename boost::random::traits::make_unsigned<result_type>::type range_type;
281         range_type range = random::detail::subtract<result_type>()(_max, _min);
282         base_result val = boost::uniform_01<base_result>()(eng);
283         // what is the worst that can possibly happen here?
284         // base_result may not be able to represent all the values in [0, range]
285         // exactly.  If this happens, it will cause round off error and we
286         // won't be able to produce all the values in the range.  We don't
287         // care about this because the user has already told us not to by
288         // using uniform_smallint.  However, we do need to be careful
289         // to clamp the result, or floating point rounding can produce
290         // an out of range result.
291         range_type offset = static_cast<range_type>(val * (static_cast<base_result>(range) + 1));
292         if(offset > range) return _max;
293         return boost::random::detail::add<range_type, result_type>()(offset , _min);
294     }
295     // \endcond
296 
297     result_type _min;
298     result_type _max;
299 };
300 
301 } // namespace random
302 
303 using random::uniform_smallint;
304 
305 } // namespace boost
306 
307 #endif // BOOST_RANDOM_UNIFORM_SMALLINT_HPP
308