1 /*-------------------------------------------------------------------------
2  *
3  * clauses.c
4  *	  routines to manipulate qualification clauses
5  *
6  * Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  *	  src/backend/optimizer/util/clauses.c
12  *
13  * HISTORY
14  *	  AUTHOR			DATE			MAJOR EVENT
15  *	  Andrew Yu			Nov 3, 1994		clause.c and clauses.c combined
16  *
17  *-------------------------------------------------------------------------
18  */
19 
20 #include "postgres.h"
21 
22 #include "access/htup_details.h"
23 #include "catalog/pg_aggregate.h"
24 #include "catalog/pg_class.h"
25 #include "catalog/pg_language.h"
26 #include "catalog/pg_operator.h"
27 #include "catalog/pg_proc.h"
28 #include "catalog/pg_type.h"
29 #include "executor/executor.h"
30 #include "executor/functions.h"
31 #include "funcapi.h"
32 #include "miscadmin.h"
33 #include "nodes/makefuncs.h"
34 #include "nodes/nodeFuncs.h"
35 #include "optimizer/clauses.h"
36 #include "optimizer/cost.h"
37 #include "optimizer/planmain.h"
38 #include "optimizer/prep.h"
39 #include "optimizer/var.h"
40 #include "parser/analyze.h"
41 #include "parser/parse_agg.h"
42 #include "parser/parse_coerce.h"
43 #include "parser/parse_func.h"
44 #include "rewrite/rewriteManip.h"
45 #include "tcop/tcopprot.h"
46 #include "utils/acl.h"
47 #include "utils/builtins.h"
48 #include "utils/datum.h"
49 #include "utils/fmgroids.h"
50 #include "utils/lsyscache.h"
51 #include "utils/memutils.h"
52 #include "utils/syscache.h"
53 #include "utils/typcache.h"
54 
55 
56 typedef struct
57 {
58 	PlannerInfo *root;
59 	AggSplit	aggsplit;
60 	AggClauseCosts *costs;
61 } get_agg_clause_costs_context;
62 
63 typedef struct
64 {
65 	ParamListInfo boundParams;
66 	PlannerInfo *root;
67 	List	   *active_fns;
68 	Node	   *case_val;
69 	bool		estimate;
70 } eval_const_expressions_context;
71 
72 typedef struct
73 {
74 	int			nargs;
75 	List	   *args;
76 	int		   *usecounts;
77 } substitute_actual_parameters_context;
78 
79 typedef struct
80 {
81 	int			nargs;
82 	List	   *args;
83 	int			sublevels_up;
84 } substitute_actual_srf_parameters_context;
85 
86 typedef struct
87 {
88 	char	   *proname;
89 	char	   *prosrc;
90 } inline_error_callback_arg;
91 
92 typedef struct
93 {
94 	char		max_hazard;		/* worst proparallel hazard found so far */
95 	char		max_interesting;	/* worst proparallel hazard of interest */
96 	List	   *safe_param_ids; /* PARAM_EXEC Param IDs to treat as safe */
97 } max_parallel_hazard_context;
98 
99 static bool contain_agg_clause_walker(Node *node, void *context);
100 static bool get_agg_clause_costs_walker(Node *node,
101 							get_agg_clause_costs_context *context);
102 static bool find_window_functions_walker(Node *node, WindowFuncLists *lists);
103 static bool contain_subplans_walker(Node *node, void *context);
104 static bool contain_mutable_functions_walker(Node *node, void *context);
105 static bool contain_volatile_functions_walker(Node *node, void *context);
106 static bool contain_volatile_functions_not_nextval_walker(Node *node, void *context);
107 static bool max_parallel_hazard_walker(Node *node,
108 						   max_parallel_hazard_context *context);
109 static bool contain_nonstrict_functions_walker(Node *node, void *context);
110 static bool contain_exec_param_walker(Node *node, List *param_ids);
111 static bool contain_context_dependent_node(Node *clause);
112 static bool contain_context_dependent_node_walker(Node *node, int *flags);
113 static bool contain_leaked_vars_walker(Node *node, void *context);
114 static Relids find_nonnullable_rels_walker(Node *node, bool top_level);
115 static List *find_nonnullable_vars_walker(Node *node, bool top_level);
116 static bool is_strict_saop(ScalarArrayOpExpr *expr, bool falseOK);
117 static Node *eval_const_expressions_mutator(Node *node,
118 							   eval_const_expressions_context *context);
119 static List *simplify_or_arguments(List *args,
120 					  eval_const_expressions_context *context,
121 					  bool *haveNull, bool *forceTrue);
122 static List *simplify_and_arguments(List *args,
123 					   eval_const_expressions_context *context,
124 					   bool *haveNull, bool *forceFalse);
125 static Node *simplify_boolean_equality(Oid opno, List *args);
126 static Expr *simplify_function(Oid funcid,
127 				  Oid result_type, int32 result_typmod,
128 				  Oid result_collid, Oid input_collid, List **args_p,
129 				  bool funcvariadic, bool process_args, bool allow_non_const,
130 				  eval_const_expressions_context *context);
131 static List *expand_function_arguments(List *args, Oid result_type,
132 						  HeapTuple func_tuple);
133 static List *reorder_function_arguments(List *args, HeapTuple func_tuple);
134 static List *add_function_defaults(List *args, HeapTuple func_tuple);
135 static List *fetch_function_defaults(HeapTuple func_tuple);
136 static void recheck_cast_function_args(List *args, Oid result_type,
137 						   HeapTuple func_tuple);
138 static Expr *evaluate_function(Oid funcid, Oid result_type, int32 result_typmod,
139 				  Oid result_collid, Oid input_collid, List *args,
140 				  bool funcvariadic,
141 				  HeapTuple func_tuple,
142 				  eval_const_expressions_context *context);
143 static Expr *inline_function(Oid funcid, Oid result_type, Oid result_collid,
144 				Oid input_collid, List *args,
145 				bool funcvariadic,
146 				HeapTuple func_tuple,
147 				eval_const_expressions_context *context);
148 static Node *substitute_actual_parameters(Node *expr, int nargs, List *args,
149 							 int *usecounts);
150 static Node *substitute_actual_parameters_mutator(Node *node,
151 									 substitute_actual_parameters_context *context);
152 static void sql_inline_error_callback(void *arg);
153 static Expr *evaluate_expr(Expr *expr, Oid result_type, int32 result_typmod,
154 			  Oid result_collation);
155 static Query *substitute_actual_srf_parameters(Query *expr,
156 								 int nargs, List *args);
157 static Node *substitute_actual_srf_parameters_mutator(Node *node,
158 										 substitute_actual_srf_parameters_context *context);
159 static bool tlist_matches_coltypelist(List *tlist, List *coltypelist);
160 
161 
162 /*****************************************************************************
163  *		OPERATOR clause functions
164  *****************************************************************************/
165 
166 /*
167  * make_opclause
168  *	  Creates an operator clause given its operator info, left operand
169  *	  and right operand (pass NULL to create single-operand clause),
170  *	  and collation info.
171  */
172 Expr *
make_opclause(Oid opno,Oid opresulttype,bool opretset,Expr * leftop,Expr * rightop,Oid opcollid,Oid inputcollid)173 make_opclause(Oid opno, Oid opresulttype, bool opretset,
174 			  Expr *leftop, Expr *rightop,
175 			  Oid opcollid, Oid inputcollid)
176 {
177 	OpExpr	   *expr = makeNode(OpExpr);
178 
179 	expr->opno = opno;
180 	expr->opfuncid = InvalidOid;
181 	expr->opresulttype = opresulttype;
182 	expr->opretset = opretset;
183 	expr->opcollid = opcollid;
184 	expr->inputcollid = inputcollid;
185 	if (rightop)
186 		expr->args = list_make2(leftop, rightop);
187 	else
188 		expr->args = list_make1(leftop);
189 	expr->location = -1;
190 	return (Expr *) expr;
191 }
192 
193 /*
194  * get_leftop
195  *
196  * Returns the left operand of a clause of the form (op expr expr)
197  *		or (op expr)
198  */
199 Node *
get_leftop(const Expr * clause)200 get_leftop(const Expr *clause)
201 {
202 	const OpExpr *expr = (const OpExpr *) clause;
203 
204 	if (expr->args != NIL)
205 		return linitial(expr->args);
206 	else
207 		return NULL;
208 }
209 
210 /*
211  * get_rightop
212  *
213  * Returns the right operand in a clause of the form (op expr expr).
214  * NB: result will be NULL if applied to a unary op clause.
215  */
216 Node *
get_rightop(const Expr * clause)217 get_rightop(const Expr *clause)
218 {
219 	const OpExpr *expr = (const OpExpr *) clause;
220 
221 	if (list_length(expr->args) >= 2)
222 		return lsecond(expr->args);
223 	else
224 		return NULL;
225 }
226 
227 /*****************************************************************************
228  *		NOT clause functions
229  *****************************************************************************/
230 
231 /*
232  * not_clause
233  *
234  * Returns t iff this is a 'not' clause: (NOT expr).
235  */
236 bool
not_clause(Node * clause)237 not_clause(Node *clause)
238 {
239 	return (clause != NULL &&
240 			IsA(clause, BoolExpr) &&
241 			((BoolExpr *) clause)->boolop == NOT_EXPR);
242 }
243 
244 /*
245  * make_notclause
246  *
247  * Create a 'not' clause given the expression to be negated.
248  */
249 Expr *
make_notclause(Expr * notclause)250 make_notclause(Expr *notclause)
251 {
252 	BoolExpr   *expr = makeNode(BoolExpr);
253 
254 	expr->boolop = NOT_EXPR;
255 	expr->args = list_make1(notclause);
256 	expr->location = -1;
257 	return (Expr *) expr;
258 }
259 
260 /*
261  * get_notclausearg
262  *
263  * Retrieve the clause within a 'not' clause
264  */
265 Expr *
get_notclausearg(Expr * notclause)266 get_notclausearg(Expr *notclause)
267 {
268 	return linitial(((BoolExpr *) notclause)->args);
269 }
270 
271 /*****************************************************************************
272  *		OR clause functions
273  *****************************************************************************/
274 
275 /*
276  * or_clause
277  *
278  * Returns t iff the clause is an 'or' clause: (OR { expr }).
279  */
280 bool
or_clause(Node * clause)281 or_clause(Node *clause)
282 {
283 	return (clause != NULL &&
284 			IsA(clause, BoolExpr) &&
285 			((BoolExpr *) clause)->boolop == OR_EXPR);
286 }
287 
288 /*
289  * make_orclause
290  *
291  * Creates an 'or' clause given a list of its subclauses.
292  */
293 Expr *
make_orclause(List * orclauses)294 make_orclause(List *orclauses)
295 {
296 	BoolExpr   *expr = makeNode(BoolExpr);
297 
298 	expr->boolop = OR_EXPR;
299 	expr->args = orclauses;
300 	expr->location = -1;
301 	return (Expr *) expr;
302 }
303 
304 /*****************************************************************************
305  *		AND clause functions
306  *****************************************************************************/
307 
308 
309 /*
310  * and_clause
311  *
312  * Returns t iff its argument is an 'and' clause: (AND { expr }).
313  */
314 bool
and_clause(Node * clause)315 and_clause(Node *clause)
316 {
317 	return (clause != NULL &&
318 			IsA(clause, BoolExpr) &&
319 			((BoolExpr *) clause)->boolop == AND_EXPR);
320 }
321 
322 /*
323  * make_andclause
324  *
325  * Creates an 'and' clause given a list of its subclauses.
326  */
327 Expr *
make_andclause(List * andclauses)328 make_andclause(List *andclauses)
329 {
330 	BoolExpr   *expr = makeNode(BoolExpr);
331 
332 	expr->boolop = AND_EXPR;
333 	expr->args = andclauses;
334 	expr->location = -1;
335 	return (Expr *) expr;
336 }
337 
338 /*
339  * make_and_qual
340  *
341  * Variant of make_andclause for ANDing two qual conditions together.
342  * Qual conditions have the property that a NULL nodetree is interpreted
343  * as 'true'.
344  *
345  * NB: this makes no attempt to preserve AND/OR flatness; so it should not
346  * be used on a qual that has already been run through prepqual.c.
347  */
348 Node *
make_and_qual(Node * qual1,Node * qual2)349 make_and_qual(Node *qual1, Node *qual2)
350 {
351 	if (qual1 == NULL)
352 		return qual2;
353 	if (qual2 == NULL)
354 		return qual1;
355 	return (Node *) make_andclause(list_make2(qual1, qual2));
356 }
357 
358 /*
359  * The planner frequently prefers to represent qualification expressions
360  * as lists of boolean expressions with implicit AND semantics.
361  *
362  * These functions convert between an AND-semantics expression list and the
363  * ordinary representation of a boolean expression.
364  *
365  * Note that an empty list is considered equivalent to TRUE.
366  */
367 Expr *
make_ands_explicit(List * andclauses)368 make_ands_explicit(List *andclauses)
369 {
370 	if (andclauses == NIL)
371 		return (Expr *) makeBoolConst(true, false);
372 	else if (list_length(andclauses) == 1)
373 		return (Expr *) linitial(andclauses);
374 	else
375 		return make_andclause(andclauses);
376 }
377 
378 List *
make_ands_implicit(Expr * clause)379 make_ands_implicit(Expr *clause)
380 {
381 	/*
382 	 * NB: because the parser sets the qual field to NULL in a query that has
383 	 * no WHERE clause, we must consider a NULL input clause as TRUE, even
384 	 * though one might more reasonably think it FALSE.  Grumble. If this
385 	 * causes trouble, consider changing the parser's behavior.
386 	 */
387 	if (clause == NULL)
388 		return NIL;				/* NULL -> NIL list == TRUE */
389 	else if (and_clause((Node *) clause))
390 		return ((BoolExpr *) clause)->args;
391 	else if (IsA(clause, Const) &&
392 			 !((Const *) clause)->constisnull &&
393 			 DatumGetBool(((Const *) clause)->constvalue))
394 		return NIL;				/* constant TRUE input -> NIL list */
395 	else
396 		return list_make1(clause);
397 }
398 
399 
400 /*****************************************************************************
401  *		Aggregate-function clause manipulation
402  *****************************************************************************/
403 
404 /*
405  * contain_agg_clause
406  *	  Recursively search for Aggref/GroupingFunc nodes within a clause.
407  *
408  *	  Returns true if any aggregate found.
409  *
410  * This does not descend into subqueries, and so should be used only after
411  * reduction of sublinks to subplans, or in contexts where it's known there
412  * are no subqueries.  There mustn't be outer-aggregate references either.
413  *
414  * (If you want something like this but able to deal with subqueries,
415  * see rewriteManip.c's contain_aggs_of_level().)
416  */
417 bool
contain_agg_clause(Node * clause)418 contain_agg_clause(Node *clause)
419 {
420 	return contain_agg_clause_walker(clause, NULL);
421 }
422 
423 static bool
contain_agg_clause_walker(Node * node,void * context)424 contain_agg_clause_walker(Node *node, void *context)
425 {
426 	if (node == NULL)
427 		return false;
428 	if (IsA(node, Aggref))
429 	{
430 		Assert(((Aggref *) node)->agglevelsup == 0);
431 		return true;			/* abort the tree traversal and return true */
432 	}
433 	if (IsA(node, GroupingFunc))
434 	{
435 		Assert(((GroupingFunc *) node)->agglevelsup == 0);
436 		return true;			/* abort the tree traversal and return true */
437 	}
438 	Assert(!IsA(node, SubLink));
439 	return expression_tree_walker(node, contain_agg_clause_walker, context);
440 }
441 
442 /*
443  * get_agg_clause_costs
444  *	  Recursively find the Aggref nodes in an expression tree, and
445  *	  accumulate cost information about them.
446  *
447  * 'aggsplit' tells us the expected partial-aggregation mode, which affects
448  * the cost estimates.
449  *
450  * NOTE that the counts/costs are ADDED to those already in *costs ... so
451  * the caller is responsible for zeroing the struct initially.
452  *
453  * We count the nodes, estimate their execution costs, and estimate the total
454  * space needed for their transition state values if all are evaluated in
455  * parallel (as would be done in a HashAgg plan).  Also, we check whether
456  * partial aggregation is feasible.  See AggClauseCosts for the exact set
457  * of statistics collected.
458  *
459  * In addition, we mark Aggref nodes with the correct aggtranstype, so
460  * that that doesn't need to be done repeatedly.  (That makes this function's
461  * name a bit of a misnomer.)
462  *
463  * This does not descend into subqueries, and so should be used only after
464  * reduction of sublinks to subplans, or in contexts where it's known there
465  * are no subqueries.  There mustn't be outer-aggregate references either.
466  */
467 void
get_agg_clause_costs(PlannerInfo * root,Node * clause,AggSplit aggsplit,AggClauseCosts * costs)468 get_agg_clause_costs(PlannerInfo *root, Node *clause, AggSplit aggsplit,
469 					 AggClauseCosts *costs)
470 {
471 	get_agg_clause_costs_context context;
472 
473 	context.root = root;
474 	context.aggsplit = aggsplit;
475 	context.costs = costs;
476 	(void) get_agg_clause_costs_walker(clause, &context);
477 }
478 
479 static bool
get_agg_clause_costs_walker(Node * node,get_agg_clause_costs_context * context)480 get_agg_clause_costs_walker(Node *node, get_agg_clause_costs_context *context)
481 {
482 	if (node == NULL)
483 		return false;
484 	if (IsA(node, Aggref))
485 	{
486 		Aggref	   *aggref = (Aggref *) node;
487 		AggClauseCosts *costs = context->costs;
488 		HeapTuple	aggTuple;
489 		Form_pg_aggregate aggform;
490 		Oid			aggtransfn;
491 		Oid			aggfinalfn;
492 		Oid			aggcombinefn;
493 		Oid			aggserialfn;
494 		Oid			aggdeserialfn;
495 		Oid			aggtranstype;
496 		int32		aggtransspace;
497 		QualCost	argcosts;
498 
499 		Assert(aggref->agglevelsup == 0);
500 
501 		/*
502 		 * Fetch info about aggregate from pg_aggregate.  Note it's correct to
503 		 * ignore the moving-aggregate variant, since what we're concerned
504 		 * with here is aggregates not window functions.
505 		 */
506 		aggTuple = SearchSysCache1(AGGFNOID,
507 								   ObjectIdGetDatum(aggref->aggfnoid));
508 		if (!HeapTupleIsValid(aggTuple))
509 			elog(ERROR, "cache lookup failed for aggregate %u",
510 				 aggref->aggfnoid);
511 		aggform = (Form_pg_aggregate) GETSTRUCT(aggTuple);
512 		aggtransfn = aggform->aggtransfn;
513 		aggfinalfn = aggform->aggfinalfn;
514 		aggcombinefn = aggform->aggcombinefn;
515 		aggserialfn = aggform->aggserialfn;
516 		aggdeserialfn = aggform->aggdeserialfn;
517 		aggtranstype = aggform->aggtranstype;
518 		aggtransspace = aggform->aggtransspace;
519 		ReleaseSysCache(aggTuple);
520 
521 		/*
522 		 * Resolve the possibly-polymorphic aggregate transition type, unless
523 		 * already done in a previous pass over the expression.
524 		 */
525 		if (OidIsValid(aggref->aggtranstype))
526 			aggtranstype = aggref->aggtranstype;
527 		else
528 		{
529 			Oid			inputTypes[FUNC_MAX_ARGS];
530 			int			numArguments;
531 
532 			/* extract argument types (ignoring any ORDER BY expressions) */
533 			numArguments = get_aggregate_argtypes(aggref, inputTypes);
534 
535 			/* resolve actual type of transition state, if polymorphic */
536 			aggtranstype = resolve_aggregate_transtype(aggref->aggfnoid,
537 													   aggtranstype,
538 													   inputTypes,
539 													   numArguments);
540 			aggref->aggtranstype = aggtranstype;
541 		}
542 
543 		/*
544 		 * Count it, and check for cases requiring ordered input.  Note that
545 		 * ordered-set aggs always have nonempty aggorder.  Any ordered-input
546 		 * case also defeats partial aggregation.
547 		 */
548 		costs->numAggs++;
549 		if (aggref->aggorder != NIL || aggref->aggdistinct != NIL)
550 		{
551 			costs->numOrderedAggs++;
552 			costs->hasNonPartial = true;
553 		}
554 
555 		/*
556 		 * Check whether partial aggregation is feasible, unless we already
557 		 * found out that we can't do it.
558 		 */
559 		if (!costs->hasNonPartial)
560 		{
561 			/*
562 			 * If there is no combine function, then partial aggregation is
563 			 * not possible.
564 			 */
565 			if (!OidIsValid(aggcombinefn))
566 				costs->hasNonPartial = true;
567 
568 			/*
569 			 * If we have any aggs with transtype INTERNAL then we must check
570 			 * whether they have serialization/deserialization functions; if
571 			 * not, we can't serialize partial-aggregation results.
572 			 */
573 			else if (aggtranstype == INTERNALOID &&
574 					 (!OidIsValid(aggserialfn) || !OidIsValid(aggdeserialfn)))
575 				costs->hasNonSerial = true;
576 		}
577 
578 		/*
579 		 * Add the appropriate component function execution costs to
580 		 * appropriate totals.
581 		 */
582 		if (DO_AGGSPLIT_COMBINE(context->aggsplit))
583 		{
584 			/* charge for combining previously aggregated states */
585 			costs->transCost.per_tuple += get_func_cost(aggcombinefn) * cpu_operator_cost;
586 		}
587 		else
588 			costs->transCost.per_tuple += get_func_cost(aggtransfn) * cpu_operator_cost;
589 		if (DO_AGGSPLIT_DESERIALIZE(context->aggsplit) &&
590 			OidIsValid(aggdeserialfn))
591 			costs->transCost.per_tuple += get_func_cost(aggdeserialfn) * cpu_operator_cost;
592 		if (DO_AGGSPLIT_SERIALIZE(context->aggsplit) &&
593 			OidIsValid(aggserialfn))
594 			costs->finalCost += get_func_cost(aggserialfn) * cpu_operator_cost;
595 		if (!DO_AGGSPLIT_SKIPFINAL(context->aggsplit) &&
596 			OidIsValid(aggfinalfn))
597 			costs->finalCost += get_func_cost(aggfinalfn) * cpu_operator_cost;
598 
599 		/*
600 		 * These costs are incurred only by the initial aggregate node, so we
601 		 * mustn't include them again at upper levels.
602 		 */
603 		if (!DO_AGGSPLIT_COMBINE(context->aggsplit))
604 		{
605 			/* add the input expressions' cost to per-input-row costs */
606 			cost_qual_eval_node(&argcosts, (Node *) aggref->args, context->root);
607 			costs->transCost.startup += argcosts.startup;
608 			costs->transCost.per_tuple += argcosts.per_tuple;
609 
610 			/*
611 			 * Add any filter's cost to per-input-row costs.
612 			 *
613 			 * XXX Ideally we should reduce input expression costs according
614 			 * to filter selectivity, but it's not clear it's worth the
615 			 * trouble.
616 			 */
617 			if (aggref->aggfilter)
618 			{
619 				cost_qual_eval_node(&argcosts, (Node *) aggref->aggfilter,
620 									context->root);
621 				costs->transCost.startup += argcosts.startup;
622 				costs->transCost.per_tuple += argcosts.per_tuple;
623 			}
624 		}
625 
626 		/*
627 		 * If there are direct arguments, treat their evaluation cost like the
628 		 * cost of the finalfn.
629 		 */
630 		if (aggref->aggdirectargs)
631 		{
632 			cost_qual_eval_node(&argcosts, (Node *) aggref->aggdirectargs,
633 								context->root);
634 			costs->transCost.startup += argcosts.startup;
635 			costs->finalCost += argcosts.per_tuple;
636 		}
637 
638 		/*
639 		 * If the transition type is pass-by-value then it doesn't add
640 		 * anything to the required size of the hashtable.  If it is
641 		 * pass-by-reference then we have to add the estimated size of the
642 		 * value itself, plus palloc overhead.
643 		 */
644 		if (!get_typbyval(aggtranstype))
645 		{
646 			int32		avgwidth;
647 
648 			/* Use average width if aggregate definition gave one */
649 			if (aggtransspace > 0)
650 				avgwidth = aggtransspace;
651 			else if (aggtransfn == F_ARRAY_APPEND)
652 			{
653 				/*
654 				 * If the transition function is array_append(), it'll use an
655 				 * expanded array as transvalue, which will occupy at least
656 				 * ALLOCSET_SMALL_INITSIZE and possibly more.  Use that as the
657 				 * estimate for lack of a better idea.
658 				 */
659 				avgwidth = ALLOCSET_SMALL_INITSIZE;
660 			}
661 			else
662 			{
663 				/*
664 				 * If transition state is of same type as first aggregated
665 				 * input, assume it's the same typmod (same width) as well.
666 				 * This works for cases like MAX/MIN and is probably somewhat
667 				 * reasonable otherwise.
668 				 */
669 				int32		aggtranstypmod = -1;
670 
671 				if (aggref->args)
672 				{
673 					TargetEntry *tle = (TargetEntry *) linitial(aggref->args);
674 
675 					if (aggtranstype == exprType((Node *) tle->expr))
676 						aggtranstypmod = exprTypmod((Node *) tle->expr);
677 				}
678 
679 				avgwidth = get_typavgwidth(aggtranstype, aggtranstypmod);
680 			}
681 
682 			avgwidth = MAXALIGN(avgwidth);
683 			costs->transitionSpace += avgwidth + 2 * sizeof(void *);
684 		}
685 		else if (aggtranstype == INTERNALOID)
686 		{
687 			/*
688 			 * INTERNAL transition type is a special case: although INTERNAL
689 			 * is pass-by-value, it's almost certainly being used as a pointer
690 			 * to some large data structure.  The aggregate definition can
691 			 * provide an estimate of the size.  If it doesn't, then we assume
692 			 * ALLOCSET_DEFAULT_INITSIZE, which is a good guess if the data is
693 			 * being kept in a private memory context, as is done by
694 			 * array_agg() for instance.
695 			 */
696 			if (aggtransspace > 0)
697 				costs->transitionSpace += aggtransspace;
698 			else
699 				costs->transitionSpace += ALLOCSET_DEFAULT_INITSIZE;
700 		}
701 
702 		/*
703 		 * We assume that the parser checked that there are no aggregates (of
704 		 * this level anyway) in the aggregated arguments, direct arguments,
705 		 * or filter clause.  Hence, we need not recurse into any of them.
706 		 */
707 		return false;
708 	}
709 	Assert(!IsA(node, SubLink));
710 	return expression_tree_walker(node, get_agg_clause_costs_walker,
711 								  (void *) context);
712 }
713 
714 
715 /*****************************************************************************
716  *		Window-function clause manipulation
717  *****************************************************************************/
718 
719 /*
720  * contain_window_function
721  *	  Recursively search for WindowFunc nodes within a clause.
722  *
723  * Since window functions don't have level fields, but are hard-wired to
724  * be associated with the current query level, this is just the same as
725  * rewriteManip.c's function.
726  */
727 bool
contain_window_function(Node * clause)728 contain_window_function(Node *clause)
729 {
730 	return contain_windowfuncs(clause);
731 }
732 
733 /*
734  * find_window_functions
735  *	  Locate all the WindowFunc nodes in an expression tree, and organize
736  *	  them by winref ID number.
737  *
738  * Caller must provide an upper bound on the winref IDs expected in the tree.
739  */
740 WindowFuncLists *
find_window_functions(Node * clause,Index maxWinRef)741 find_window_functions(Node *clause, Index maxWinRef)
742 {
743 	WindowFuncLists *lists = palloc(sizeof(WindowFuncLists));
744 
745 	lists->numWindowFuncs = 0;
746 	lists->maxWinRef = maxWinRef;
747 	lists->windowFuncs = (List **) palloc0((maxWinRef + 1) * sizeof(List *));
748 	(void) find_window_functions_walker(clause, lists);
749 	return lists;
750 }
751 
752 static bool
find_window_functions_walker(Node * node,WindowFuncLists * lists)753 find_window_functions_walker(Node *node, WindowFuncLists *lists)
754 {
755 	if (node == NULL)
756 		return false;
757 	if (IsA(node, WindowFunc))
758 	{
759 		WindowFunc *wfunc = (WindowFunc *) node;
760 
761 		/* winref is unsigned, so one-sided test is OK */
762 		if (wfunc->winref > lists->maxWinRef)
763 			elog(ERROR, "WindowFunc contains out-of-range winref %u",
764 				 wfunc->winref);
765 		/* eliminate duplicates, so that we avoid repeated computation */
766 		if (!list_member(lists->windowFuncs[wfunc->winref], wfunc))
767 		{
768 			lists->windowFuncs[wfunc->winref] =
769 				lappend(lists->windowFuncs[wfunc->winref], wfunc);
770 			lists->numWindowFuncs++;
771 		}
772 
773 		/*
774 		 * We assume that the parser checked that there are no window
775 		 * functions in the arguments or filter clause.  Hence, we need not
776 		 * recurse into them.  (If either the parser or the planner screws up
777 		 * on this point, the executor will still catch it; see ExecInitExpr.)
778 		 */
779 		return false;
780 	}
781 	Assert(!IsA(node, SubLink));
782 	return expression_tree_walker(node, find_window_functions_walker,
783 								  (void *) lists);
784 }
785 
786 
787 /*****************************************************************************
788  *		Support for expressions returning sets
789  *****************************************************************************/
790 
791 /*
792  * expression_returns_set_rows
793  *	  Estimate the number of rows returned by a set-returning expression.
794  *	  The result is 1 if it's not a set-returning expression.
795  *
796  * We should only examine the top-level function or operator; it used to be
797  * appropriate to recurse, but not anymore.  (Even if there are more SRFs in
798  * the function's inputs, their multipliers are accounted for separately.)
799  *
800  * Note: keep this in sync with expression_returns_set() in nodes/nodeFuncs.c.
801  */
802 double
expression_returns_set_rows(Node * clause)803 expression_returns_set_rows(Node *clause)
804 {
805 	if (clause == NULL)
806 		return 1.0;
807 	if (IsA(clause, FuncExpr))
808 	{
809 		FuncExpr   *expr = (FuncExpr *) clause;
810 
811 		if (expr->funcretset)
812 			return clamp_row_est(get_func_rows(expr->funcid));
813 	}
814 	if (IsA(clause, OpExpr))
815 	{
816 		OpExpr	   *expr = (OpExpr *) clause;
817 
818 		if (expr->opretset)
819 		{
820 			set_opfuncid(expr);
821 			return clamp_row_est(get_func_rows(expr->opfuncid));
822 		}
823 	}
824 	return 1.0;
825 }
826 
827 
828 /*****************************************************************************
829  *		Subplan clause manipulation
830  *****************************************************************************/
831 
832 /*
833  * contain_subplans
834  *	  Recursively search for subplan nodes within a clause.
835  *
836  * If we see a SubLink node, we will return TRUE.  This is only possible if
837  * the expression tree hasn't yet been transformed by subselect.c.  We do not
838  * know whether the node will produce a true subplan or just an initplan,
839  * but we make the conservative assumption that it will be a subplan.
840  *
841  * Returns true if any subplan found.
842  */
843 bool
contain_subplans(Node * clause)844 contain_subplans(Node *clause)
845 {
846 	return contain_subplans_walker(clause, NULL);
847 }
848 
849 static bool
contain_subplans_walker(Node * node,void * context)850 contain_subplans_walker(Node *node, void *context)
851 {
852 	if (node == NULL)
853 		return false;
854 	if (IsA(node, SubPlan) ||
855 		IsA(node, AlternativeSubPlan) ||
856 		IsA(node, SubLink))
857 		return true;			/* abort the tree traversal and return true */
858 	return expression_tree_walker(node, contain_subplans_walker, context);
859 }
860 
861 
862 /*****************************************************************************
863  *		Check clauses for mutable functions
864  *****************************************************************************/
865 
866 /*
867  * contain_mutable_functions
868  *	  Recursively search for mutable functions within a clause.
869  *
870  * Returns true if any mutable function (or operator implemented by a
871  * mutable function) is found.  This test is needed so that we don't
872  * mistakenly think that something like "WHERE random() < 0.5" can be treated
873  * as a constant qualification.
874  *
875  * We will recursively look into Query nodes (i.e., SubLink sub-selects)
876  * but not into SubPlans.  See comments for contain_volatile_functions().
877  */
878 bool
contain_mutable_functions(Node * clause)879 contain_mutable_functions(Node *clause)
880 {
881 	return contain_mutable_functions_walker(clause, NULL);
882 }
883 
884 static bool
contain_mutable_functions_checker(Oid func_id,void * context)885 contain_mutable_functions_checker(Oid func_id, void *context)
886 {
887 	return (func_volatile(func_id) != PROVOLATILE_IMMUTABLE);
888 }
889 
890 static bool
contain_mutable_functions_walker(Node * node,void * context)891 contain_mutable_functions_walker(Node *node, void *context)
892 {
893 	if (node == NULL)
894 		return false;
895 	/* Check for mutable functions in node itself */
896 	if (check_functions_in_node(node, contain_mutable_functions_checker,
897 								context))
898 		return true;
899 
900 	if (IsA(node, SQLValueFunction))
901 	{
902 		/* all variants of SQLValueFunction are stable */
903 		return true;
904 	}
905 
906 	if (IsA(node, NextValueExpr))
907 	{
908 		/* NextValueExpr is volatile */
909 		return true;
910 	}
911 
912 	/*
913 	 * It should be safe to treat MinMaxExpr as immutable, because it will
914 	 * depend on a non-cross-type btree comparison function, and those should
915 	 * always be immutable.  Treating XmlExpr as immutable is more dubious,
916 	 * and treating CoerceToDomain as immutable is outright dangerous.  But we
917 	 * have done so historically, and changing this would probably cause more
918 	 * problems than it would fix.  In practice, if you have a non-immutable
919 	 * domain constraint you are in for pain anyhow.
920 	 */
921 
922 	/* Recurse to check arguments */
923 	if (IsA(node, Query))
924 	{
925 		/* Recurse into subselects */
926 		return query_tree_walker((Query *) node,
927 								 contain_mutable_functions_walker,
928 								 context, 0);
929 	}
930 	return expression_tree_walker(node, contain_mutable_functions_walker,
931 								  context);
932 }
933 
934 
935 /*****************************************************************************
936  *		Check clauses for volatile functions
937  *****************************************************************************/
938 
939 /*
940  * contain_volatile_functions
941  *	  Recursively search for volatile functions within a clause.
942  *
943  * Returns true if any volatile function (or operator implemented by a
944  * volatile function) is found. This test prevents, for example,
945  * invalid conversions of volatile expressions into indexscan quals.
946  *
947  * We will recursively look into Query nodes (i.e., SubLink sub-selects)
948  * but not into SubPlans.  This is a bit odd, but intentional.  If we are
949  * looking at a SubLink, we are probably deciding whether a query tree
950  * transformation is safe, and a contained sub-select should affect that;
951  * for example, duplicating a sub-select containing a volatile function
952  * would be bad.  However, once we've got to the stage of having SubPlans,
953  * subsequent planning need not consider volatility within those, since
954  * the executor won't change its evaluation rules for a SubPlan based on
955  * volatility.
956  */
957 bool
contain_volatile_functions(Node * clause)958 contain_volatile_functions(Node *clause)
959 {
960 	return contain_volatile_functions_walker(clause, NULL);
961 }
962 
963 static bool
contain_volatile_functions_checker(Oid func_id,void * context)964 contain_volatile_functions_checker(Oid func_id, void *context)
965 {
966 	return (func_volatile(func_id) == PROVOLATILE_VOLATILE);
967 }
968 
969 static bool
contain_volatile_functions_walker(Node * node,void * context)970 contain_volatile_functions_walker(Node *node, void *context)
971 {
972 	if (node == NULL)
973 		return false;
974 	/* Check for volatile functions in node itself */
975 	if (check_functions_in_node(node, contain_volatile_functions_checker,
976 								context))
977 		return true;
978 
979 	if (IsA(node, NextValueExpr))
980 	{
981 		/* NextValueExpr is volatile */
982 		return true;
983 	}
984 
985 	/*
986 	 * See notes in contain_mutable_functions_walker about why we treat
987 	 * MinMaxExpr, XmlExpr, and CoerceToDomain as immutable, while
988 	 * SQLValueFunction is stable.  Hence, none of them are of interest here.
989 	 */
990 
991 	/* Recurse to check arguments */
992 	if (IsA(node, Query))
993 	{
994 		/* Recurse into subselects */
995 		return query_tree_walker((Query *) node,
996 								 contain_volatile_functions_walker,
997 								 context, 0);
998 	}
999 	return expression_tree_walker(node, contain_volatile_functions_walker,
1000 								  context);
1001 }
1002 
1003 /*
1004  * Special purpose version of contain_volatile_functions() for use in COPY:
1005  * ignore nextval(), but treat all other functions normally.
1006  */
1007 bool
contain_volatile_functions_not_nextval(Node * clause)1008 contain_volatile_functions_not_nextval(Node *clause)
1009 {
1010 	return contain_volatile_functions_not_nextval_walker(clause, NULL);
1011 }
1012 
1013 static bool
contain_volatile_functions_not_nextval_checker(Oid func_id,void * context)1014 contain_volatile_functions_not_nextval_checker(Oid func_id, void *context)
1015 {
1016 	return (func_id != F_NEXTVAL_OID &&
1017 			func_volatile(func_id) == PROVOLATILE_VOLATILE);
1018 }
1019 
1020 static bool
contain_volatile_functions_not_nextval_walker(Node * node,void * context)1021 contain_volatile_functions_not_nextval_walker(Node *node, void *context)
1022 {
1023 	if (node == NULL)
1024 		return false;
1025 	/* Check for volatile functions in node itself */
1026 	if (check_functions_in_node(node,
1027 								contain_volatile_functions_not_nextval_checker,
1028 								context))
1029 		return true;
1030 
1031 	/*
1032 	 * See notes in contain_mutable_functions_walker about why we treat
1033 	 * MinMaxExpr, XmlExpr, and CoerceToDomain as immutable, while
1034 	 * SQLValueFunction is stable.  Hence, none of them are of interest here.
1035 	 * Also, since we're intentionally ignoring nextval(), presumably we
1036 	 * should ignore NextValueExpr.
1037 	 */
1038 
1039 	/* Recurse to check arguments */
1040 	if (IsA(node, Query))
1041 	{
1042 		/* Recurse into subselects */
1043 		return query_tree_walker((Query *) node,
1044 								 contain_volatile_functions_not_nextval_walker,
1045 								 context, 0);
1046 	}
1047 	return expression_tree_walker(node,
1048 								  contain_volatile_functions_not_nextval_walker,
1049 								  context);
1050 }
1051 
1052 
1053 /*****************************************************************************
1054  *		Check queries for parallel unsafe and/or restricted constructs
1055  *****************************************************************************/
1056 
1057 /*
1058  * max_parallel_hazard
1059  *		Find the worst parallel-hazard level in the given query
1060  *
1061  * Returns the worst function hazard property (the earliest in this list:
1062  * PROPARALLEL_UNSAFE, PROPARALLEL_RESTRICTED, PROPARALLEL_SAFE) that can
1063  * be found in the given parsetree.  We use this to find out whether the query
1064  * can be parallelized at all.  The caller will also save the result in
1065  * PlannerGlobal so as to short-circuit checks of portions of the querytree
1066  * later, in the common case where everything is SAFE.
1067  */
1068 char
max_parallel_hazard(Query * parse)1069 max_parallel_hazard(Query *parse)
1070 {
1071 	max_parallel_hazard_context context;
1072 
1073 	context.max_hazard = PROPARALLEL_SAFE;
1074 	context.max_interesting = PROPARALLEL_UNSAFE;
1075 	context.safe_param_ids = NIL;
1076 	(void) max_parallel_hazard_walker((Node *) parse, &context);
1077 	return context.max_hazard;
1078 }
1079 
1080 /*
1081  * is_parallel_safe
1082  *		Detect whether the given expr contains only parallel-safe functions
1083  *
1084  * root->glob->maxParallelHazard must previously have been set to the
1085  * result of max_parallel_hazard() on the whole query.
1086  */
1087 bool
is_parallel_safe(PlannerInfo * root,Node * node)1088 is_parallel_safe(PlannerInfo *root, Node *node)
1089 {
1090 	max_parallel_hazard_context context;
1091 
1092 	/*
1093 	 * Even if the original querytree contained nothing unsafe, we need to
1094 	 * search the expression if we have generated any PARAM_EXEC Params while
1095 	 * planning, because those are parallel-restricted and there might be one
1096 	 * in this expression.  But otherwise we don't need to look.
1097 	 */
1098 	if (root->glob->maxParallelHazard == PROPARALLEL_SAFE &&
1099 		root->glob->nParamExec == 0)
1100 		return true;
1101 	/* Else use max_parallel_hazard's search logic, but stop on RESTRICTED */
1102 	context.max_hazard = PROPARALLEL_SAFE;
1103 	context.max_interesting = PROPARALLEL_RESTRICTED;
1104 	context.safe_param_ids = NIL;
1105 	return !max_parallel_hazard_walker(node, &context);
1106 }
1107 
1108 /* core logic for all parallel-hazard checks */
1109 static bool
max_parallel_hazard_test(char proparallel,max_parallel_hazard_context * context)1110 max_parallel_hazard_test(char proparallel, max_parallel_hazard_context *context)
1111 {
1112 	switch (proparallel)
1113 	{
1114 		case PROPARALLEL_SAFE:
1115 			/* nothing to see here, move along */
1116 			break;
1117 		case PROPARALLEL_RESTRICTED:
1118 			/* increase max_hazard to RESTRICTED */
1119 			Assert(context->max_hazard != PROPARALLEL_UNSAFE);
1120 			context->max_hazard = proparallel;
1121 			/* done if we are not expecting any unsafe functions */
1122 			if (context->max_interesting == proparallel)
1123 				return true;
1124 			break;
1125 		case PROPARALLEL_UNSAFE:
1126 			context->max_hazard = proparallel;
1127 			/* we're always done at the first unsafe construct */
1128 			return true;
1129 		default:
1130 			elog(ERROR, "unrecognized proparallel value \"%c\"", proparallel);
1131 			break;
1132 	}
1133 	return false;
1134 }
1135 
1136 /* check_functions_in_node callback */
1137 static bool
max_parallel_hazard_checker(Oid func_id,void * context)1138 max_parallel_hazard_checker(Oid func_id, void *context)
1139 {
1140 	return max_parallel_hazard_test(func_parallel(func_id),
1141 									(max_parallel_hazard_context *) context);
1142 }
1143 
1144 static bool
max_parallel_hazard_walker(Node * node,max_parallel_hazard_context * context)1145 max_parallel_hazard_walker(Node *node, max_parallel_hazard_context *context)
1146 {
1147 	if (node == NULL)
1148 		return false;
1149 
1150 	/* Check for hazardous functions in node itself */
1151 	if (check_functions_in_node(node, max_parallel_hazard_checker,
1152 								context))
1153 		return true;
1154 
1155 	/*
1156 	 * It should be OK to treat MinMaxExpr as parallel-safe, since btree
1157 	 * opclass support functions are generally parallel-safe.  XmlExpr is a
1158 	 * bit more dubious but we can probably get away with it.  We err on the
1159 	 * side of caution by treating CoerceToDomain as parallel-restricted.
1160 	 * (Note: in principle that's wrong because a domain constraint could
1161 	 * contain a parallel-unsafe function; but useful constraints probably
1162 	 * never would have such, and assuming they do would cripple use of
1163 	 * parallel query in the presence of domain types.)  SQLValueFunction
1164 	 * should be safe in all cases.  NextValueExpr is parallel-unsafe.
1165 	 */
1166 	if (IsA(node, CoerceToDomain))
1167 	{
1168 		if (max_parallel_hazard_test(PROPARALLEL_RESTRICTED, context))
1169 			return true;
1170 	}
1171 
1172 	else if (IsA(node, NextValueExpr))
1173 	{
1174 		if (max_parallel_hazard_test(PROPARALLEL_UNSAFE, context))
1175 			return true;
1176 	}
1177 
1178 	/*
1179 	 * Treat window functions as parallel-restricted because we aren't sure
1180 	 * whether the input row ordering is fully deterministic, and the output
1181 	 * of window functions might vary across workers if not.  (In some cases,
1182 	 * like where the window frame orders by a primary key, we could relax
1183 	 * this restriction.  But it doesn't currently seem worth expending extra
1184 	 * effort to do so.)
1185 	 */
1186 	else if (IsA(node, WindowFunc))
1187 	{
1188 		if (max_parallel_hazard_test(PROPARALLEL_RESTRICTED, context))
1189 			return true;
1190 	}
1191 
1192 	/*
1193 	 * As a notational convenience for callers, look through RestrictInfo.
1194 	 */
1195 	else if (IsA(node, RestrictInfo))
1196 	{
1197 		RestrictInfo *rinfo = (RestrictInfo *) node;
1198 
1199 		return max_parallel_hazard_walker((Node *) rinfo->clause, context);
1200 	}
1201 
1202 	/*
1203 	 * Really we should not see SubLink during a max_interesting == restricted
1204 	 * scan, but if we do, return true.
1205 	 */
1206 	else if (IsA(node, SubLink))
1207 	{
1208 		if (max_parallel_hazard_test(PROPARALLEL_RESTRICTED, context))
1209 			return true;
1210 	}
1211 
1212 	/*
1213 	 * Only parallel-safe SubPlans can be sent to workers.  Within the
1214 	 * testexpr of the SubPlan, Params representing the output columns of the
1215 	 * subplan can be treated as parallel-safe, so temporarily add their IDs
1216 	 * to the safe_param_ids list while examining the testexpr.
1217 	 */
1218 	else if (IsA(node, SubPlan))
1219 	{
1220 		SubPlan    *subplan = (SubPlan *) node;
1221 		List	   *save_safe_param_ids;
1222 
1223 		if (!subplan->parallel_safe &&
1224 			max_parallel_hazard_test(PROPARALLEL_RESTRICTED, context))
1225 			return true;
1226 		save_safe_param_ids = context->safe_param_ids;
1227 		context->safe_param_ids = list_concat(list_copy(subplan->paramIds),
1228 											  context->safe_param_ids);
1229 		if (max_parallel_hazard_walker(subplan->testexpr, context))
1230 			return true;		/* no need to restore safe_param_ids */
1231 		context->safe_param_ids = save_safe_param_ids;
1232 		/* we must also check args, but no special Param treatment there */
1233 		if (max_parallel_hazard_walker((Node *) subplan->args, context))
1234 			return true;
1235 		/* don't want to recurse normally, so we're done */
1236 		return false;
1237 	}
1238 
1239 	/*
1240 	 * We can't pass Params to workers at the moment either, so they are also
1241 	 * parallel-restricted, unless they are PARAM_EXTERN Params or are
1242 	 * PARAM_EXEC Params listed in safe_param_ids, meaning they could be
1243 	 * generated within the worker.
1244 	 */
1245 	else if (IsA(node, Param))
1246 	{
1247 		Param	   *param = (Param *) node;
1248 
1249 		if (param->paramkind == PARAM_EXTERN)
1250 			return false;
1251 
1252 		if (param->paramkind != PARAM_EXEC ||
1253 			!list_member_int(context->safe_param_ids, param->paramid))
1254 		{
1255 			if (max_parallel_hazard_test(PROPARALLEL_RESTRICTED, context))
1256 				return true;
1257 		}
1258 		return false;			/* nothing to recurse to */
1259 	}
1260 
1261 	/*
1262 	 * When we're first invoked on a completely unplanned tree, we must
1263 	 * recurse into subqueries so to as to locate parallel-unsafe constructs
1264 	 * anywhere in the tree.
1265 	 */
1266 	else if (IsA(node, Query))
1267 	{
1268 		Query	   *query = (Query *) node;
1269 
1270 		/* SELECT FOR UPDATE/SHARE must be treated as unsafe */
1271 		if (query->rowMarks != NULL)
1272 		{
1273 			context->max_hazard = PROPARALLEL_UNSAFE;
1274 			return true;
1275 		}
1276 
1277 		/* Recurse into subselects */
1278 		return query_tree_walker(query,
1279 								 max_parallel_hazard_walker,
1280 								 context, 0);
1281 	}
1282 
1283 	/* Recurse to check arguments */
1284 	return expression_tree_walker(node,
1285 								  max_parallel_hazard_walker,
1286 								  context);
1287 }
1288 
1289 
1290 /*****************************************************************************
1291  *		Check clauses for nonstrict functions
1292  *****************************************************************************/
1293 
1294 /*
1295  * contain_nonstrict_functions
1296  *	  Recursively search for nonstrict functions within a clause.
1297  *
1298  * Returns true if any nonstrict construct is found --- ie, anything that
1299  * could produce non-NULL output with a NULL input.
1300  *
1301  * The idea here is that the caller has verified that the expression contains
1302  * one or more Var or Param nodes (as appropriate for the caller's need), and
1303  * now wishes to prove that the expression result will be NULL if any of these
1304  * inputs is NULL.  If we return false, then the proof succeeded.
1305  */
1306 bool
contain_nonstrict_functions(Node * clause)1307 contain_nonstrict_functions(Node *clause)
1308 {
1309 	return contain_nonstrict_functions_walker(clause, NULL);
1310 }
1311 
1312 static bool
contain_nonstrict_functions_checker(Oid func_id,void * context)1313 contain_nonstrict_functions_checker(Oid func_id, void *context)
1314 {
1315 	return !func_strict(func_id);
1316 }
1317 
1318 static bool
contain_nonstrict_functions_walker(Node * node,void * context)1319 contain_nonstrict_functions_walker(Node *node, void *context)
1320 {
1321 	if (node == NULL)
1322 		return false;
1323 	if (IsA(node, Aggref))
1324 	{
1325 		/* an aggregate could return non-null with null input */
1326 		return true;
1327 	}
1328 	if (IsA(node, GroupingFunc))
1329 	{
1330 		/*
1331 		 * A GroupingFunc doesn't evaluate its arguments, and therefore must
1332 		 * be treated as nonstrict.
1333 		 */
1334 		return true;
1335 	}
1336 	if (IsA(node, WindowFunc))
1337 	{
1338 		/* a window function could return non-null with null input */
1339 		return true;
1340 	}
1341 	if (IsA(node, ArrayRef))
1342 	{
1343 		/* array assignment is nonstrict, but subscripting is strict */
1344 		if (((ArrayRef *) node)->refassgnexpr != NULL)
1345 			return true;
1346 		/* else fall through to check args */
1347 	}
1348 	if (IsA(node, DistinctExpr))
1349 	{
1350 		/* IS DISTINCT FROM is inherently non-strict */
1351 		return true;
1352 	}
1353 	if (IsA(node, NullIfExpr))
1354 	{
1355 		/* NULLIF is inherently non-strict */
1356 		return true;
1357 	}
1358 	if (IsA(node, BoolExpr))
1359 	{
1360 		BoolExpr   *expr = (BoolExpr *) node;
1361 
1362 		switch (expr->boolop)
1363 		{
1364 			case AND_EXPR:
1365 			case OR_EXPR:
1366 				/* AND, OR are inherently non-strict */
1367 				return true;
1368 			default:
1369 				break;
1370 		}
1371 	}
1372 	if (IsA(node, SubLink))
1373 	{
1374 		/* In some cases a sublink might be strict, but in general not */
1375 		return true;
1376 	}
1377 	if (IsA(node, SubPlan))
1378 		return true;
1379 	if (IsA(node, AlternativeSubPlan))
1380 		return true;
1381 	if (IsA(node, FieldStore))
1382 		return true;
1383 	if (IsA(node, CaseExpr))
1384 		return true;
1385 	if (IsA(node, ArrayExpr))
1386 		return true;
1387 	if (IsA(node, RowExpr))
1388 		return true;
1389 	if (IsA(node, RowCompareExpr))
1390 		return true;
1391 	if (IsA(node, CoalesceExpr))
1392 		return true;
1393 	if (IsA(node, MinMaxExpr))
1394 		return true;
1395 	if (IsA(node, XmlExpr))
1396 		return true;
1397 	if (IsA(node, NullTest))
1398 		return true;
1399 	if (IsA(node, BooleanTest))
1400 		return true;
1401 
1402 	/*
1403 	 * Check other function-containing nodes; but ArrayCoerceExpr is strict at
1404 	 * the array level, regardless of elemfunc.
1405 	 */
1406 	if (!IsA(node, ArrayCoerceExpr) &&
1407 		check_functions_in_node(node, contain_nonstrict_functions_checker,
1408 								context))
1409 		return true;
1410 	return expression_tree_walker(node, contain_nonstrict_functions_walker,
1411 								  context);
1412 }
1413 
1414 /*****************************************************************************
1415  *		Check clauses for Params
1416  *****************************************************************************/
1417 
1418 /*
1419  * contain_exec_param
1420  *	  Recursively search for PARAM_EXEC Params within a clause.
1421  *
1422  * Returns true if the clause contains any PARAM_EXEC Param with a paramid
1423  * appearing in the given list of Param IDs.  Does not descend into
1424  * subqueries!
1425  */
1426 bool
contain_exec_param(Node * clause,List * param_ids)1427 contain_exec_param(Node *clause, List *param_ids)
1428 {
1429 	return contain_exec_param_walker(clause, param_ids);
1430 }
1431 
1432 static bool
contain_exec_param_walker(Node * node,List * param_ids)1433 contain_exec_param_walker(Node *node, List *param_ids)
1434 {
1435 	if (node == NULL)
1436 		return false;
1437 	if (IsA(node, Param))
1438 	{
1439 		Param	   *p = (Param *) node;
1440 
1441 		if (p->paramkind == PARAM_EXEC &&
1442 			list_member_int(param_ids, p->paramid))
1443 			return true;
1444 	}
1445 	return expression_tree_walker(node, contain_exec_param_walker, param_ids);
1446 }
1447 
1448 /*****************************************************************************
1449  *		Check clauses for context-dependent nodes
1450  *****************************************************************************/
1451 
1452 /*
1453  * contain_context_dependent_node
1454  *	  Recursively search for context-dependent nodes within a clause.
1455  *
1456  * CaseTestExpr nodes must appear directly within the corresponding CaseExpr,
1457  * not nested within another one, or they'll see the wrong test value.  If one
1458  * appears "bare" in the arguments of a SQL function, then we can't inline the
1459  * SQL function for fear of creating such a situation.
1460  *
1461  * CoerceToDomainValue would have the same issue if domain CHECK expressions
1462  * could get inlined into larger expressions, but presently that's impossible.
1463  * Still, it might be allowed in future, or other node types with similar
1464  * issues might get invented.  So give this function a generic name, and set
1465  * up the recursion state to allow multiple flag bits.
1466  */
1467 static bool
contain_context_dependent_node(Node * clause)1468 contain_context_dependent_node(Node *clause)
1469 {
1470 	int			flags = 0;
1471 
1472 	return contain_context_dependent_node_walker(clause, &flags);
1473 }
1474 
1475 #define CCDN_IN_CASEEXPR	0x0001	/* CaseTestExpr okay here? */
1476 
1477 static bool
contain_context_dependent_node_walker(Node * node,int * flags)1478 contain_context_dependent_node_walker(Node *node, int *flags)
1479 {
1480 	if (node == NULL)
1481 		return false;
1482 	if (IsA(node, CaseTestExpr))
1483 		return !(*flags & CCDN_IN_CASEEXPR);
1484 	if (IsA(node, CaseExpr))
1485 	{
1486 		CaseExpr   *caseexpr = (CaseExpr *) node;
1487 
1488 		/*
1489 		 * If this CASE doesn't have a test expression, then it doesn't create
1490 		 * a context in which CaseTestExprs should appear, so just fall
1491 		 * through and treat it as a generic expression node.
1492 		 */
1493 		if (caseexpr->arg)
1494 		{
1495 			int			save_flags = *flags;
1496 			bool		res;
1497 
1498 			/*
1499 			 * Note: in principle, we could distinguish the various sub-parts
1500 			 * of a CASE construct and set the flag bit only for some of them,
1501 			 * since we are only expecting CaseTestExprs to appear in the
1502 			 * "expr" subtree of the CaseWhen nodes.  But it doesn't really
1503 			 * seem worth any extra code.  If there are any bare CaseTestExprs
1504 			 * elsewhere in the CASE, something's wrong already.
1505 			 */
1506 			*flags |= CCDN_IN_CASEEXPR;
1507 			res = expression_tree_walker(node,
1508 										 contain_context_dependent_node_walker,
1509 										 (void *) flags);
1510 			*flags = save_flags;
1511 			return res;
1512 		}
1513 	}
1514 	return expression_tree_walker(node, contain_context_dependent_node_walker,
1515 								  (void *) flags);
1516 }
1517 
1518 /*****************************************************************************
1519  *		  Check clauses for Vars passed to non-leakproof functions
1520  *****************************************************************************/
1521 
1522 /*
1523  * contain_leaked_vars
1524  *		Recursively scan a clause to discover whether it contains any Var
1525  *		nodes (of the current query level) that are passed as arguments to
1526  *		leaky functions.
1527  *
1528  * Returns true if the clause contains any non-leakproof functions that are
1529  * passed Var nodes of the current query level, and which might therefore leak
1530  * data.  Such clauses must be applied after any lower-level security barrier
1531  * clauses.
1532  */
1533 bool
contain_leaked_vars(Node * clause)1534 contain_leaked_vars(Node *clause)
1535 {
1536 	return contain_leaked_vars_walker(clause, NULL);
1537 }
1538 
1539 static bool
contain_leaked_vars_checker(Oid func_id,void * context)1540 contain_leaked_vars_checker(Oid func_id, void *context)
1541 {
1542 	return !get_func_leakproof(func_id);
1543 }
1544 
1545 static bool
contain_leaked_vars_walker(Node * node,void * context)1546 contain_leaked_vars_walker(Node *node, void *context)
1547 {
1548 	if (node == NULL)
1549 		return false;
1550 
1551 	switch (nodeTag(node))
1552 	{
1553 		case T_Var:
1554 		case T_Const:
1555 		case T_Param:
1556 		case T_ArrayExpr:
1557 		case T_FieldSelect:
1558 		case T_FieldStore:
1559 		case T_NamedArgExpr:
1560 		case T_BoolExpr:
1561 		case T_RelabelType:
1562 		case T_CollateExpr:
1563 		case T_CaseExpr:
1564 		case T_CaseTestExpr:
1565 		case T_RowExpr:
1566 		case T_SQLValueFunction:
1567 		case T_NullTest:
1568 		case T_BooleanTest:
1569 		case T_NextValueExpr:
1570 		case T_List:
1571 
1572 			/*
1573 			 * We know these node types don't contain function calls; but
1574 			 * something further down in the node tree might.
1575 			 */
1576 			break;
1577 
1578 		case T_FuncExpr:
1579 		case T_OpExpr:
1580 		case T_DistinctExpr:
1581 		case T_NullIfExpr:
1582 		case T_ScalarArrayOpExpr:
1583 		case T_CoerceViaIO:
1584 		case T_ArrayCoerceExpr:
1585 
1586 			/*
1587 			 * If node contains a leaky function call, and there's any Var
1588 			 * underneath it, reject.
1589 			 */
1590 			if (check_functions_in_node(node, contain_leaked_vars_checker,
1591 										context) &&
1592 				contain_var_clause(node))
1593 				return true;
1594 			break;
1595 
1596 		case T_ArrayRef:
1597 			{
1598 				ArrayRef *aref = (ArrayRef *) node;
1599 
1600 				/*
1601 				 * array assignment is leaky, but subscripted fetches
1602 				 * are not
1603 				 */
1604 				if (aref->refassgnexpr != NULL)
1605 				{
1606 					/* Node is leaky, so reject if it contains Vars */
1607 					if (contain_var_clause(node))
1608 						return true;
1609 				}
1610 			}
1611 			break;
1612 
1613 		case T_RowCompareExpr:
1614 			{
1615 				/*
1616 				 * It's worth special-casing this because a leaky comparison
1617 				 * function only compromises one pair of row elements, which
1618 				 * might not contain Vars while others do.
1619 				 */
1620 				RowCompareExpr *rcexpr = (RowCompareExpr *) node;
1621 				ListCell   *opid;
1622 				ListCell   *larg;
1623 				ListCell   *rarg;
1624 
1625 				forthree(opid, rcexpr->opnos,
1626 						 larg, rcexpr->largs,
1627 						 rarg, rcexpr->rargs)
1628 				{
1629 					Oid			funcid = get_opcode(lfirst_oid(opid));
1630 
1631 					if (!get_func_leakproof(funcid) &&
1632 						(contain_var_clause((Node *) lfirst(larg)) ||
1633 						 contain_var_clause((Node *) lfirst(rarg))))
1634 						return true;
1635 				}
1636 			}
1637 			break;
1638 
1639 		case T_MinMaxExpr:
1640 			{
1641 				/*
1642 				 * MinMaxExpr is leakproof if the comparison function it calls
1643 				 * is leakproof.
1644 				 */
1645 				MinMaxExpr *minmaxexpr = (MinMaxExpr *) node;
1646 				TypeCacheEntry *typentry;
1647 				bool		leakproof;
1648 
1649 				/* Look up the btree comparison function for the datatype */
1650 				typentry = lookup_type_cache(minmaxexpr->minmaxtype,
1651 											 TYPECACHE_CMP_PROC);
1652 				if (OidIsValid(typentry->cmp_proc))
1653 					leakproof = get_func_leakproof(typentry->cmp_proc);
1654 				else
1655 				{
1656 					/*
1657 					 * The executor will throw an error, but here we just
1658 					 * treat the missing function as leaky.
1659 					 */
1660 					leakproof = false;
1661 				}
1662 
1663 				if (!leakproof &&
1664 					contain_var_clause((Node *) minmaxexpr->args))
1665 					return true;
1666 			}
1667 			break;
1668 
1669 		case T_CurrentOfExpr:
1670 
1671 			/*
1672 			 * WHERE CURRENT OF doesn't contain leaky function calls.
1673 			 * Moreover, it is essential that this is considered non-leaky,
1674 			 * since the planner must always generate a TID scan when CURRENT
1675 			 * OF is present -- c.f. cost_tidscan.
1676 			 */
1677 			return false;
1678 
1679 		default:
1680 
1681 			/*
1682 			 * If we don't recognize the node tag, assume it might be leaky.
1683 			 * This prevents an unexpected security hole if someone adds a new
1684 			 * node type that can call a function.
1685 			 */
1686 			return true;
1687 	}
1688 	return expression_tree_walker(node, contain_leaked_vars_walker,
1689 								  context);
1690 }
1691 
1692 /*
1693  * find_nonnullable_rels
1694  *		Determine which base rels are forced nonnullable by given clause.
1695  *
1696  * Returns the set of all Relids that are referenced in the clause in such
1697  * a way that the clause cannot possibly return TRUE if any of these Relids
1698  * is an all-NULL row.  (It is OK to err on the side of conservatism; hence
1699  * the analysis here is simplistic.)
1700  *
1701  * The semantics here are subtly different from contain_nonstrict_functions:
1702  * that function is concerned with NULL results from arbitrary expressions,
1703  * but here we assume that the input is a Boolean expression, and wish to
1704  * see if NULL inputs will provably cause a FALSE-or-NULL result.  We expect
1705  * the expression to have been AND/OR flattened and converted to implicit-AND
1706  * format.
1707  *
1708  * Note: this function is largely duplicative of find_nonnullable_vars().
1709  * The reason not to simplify this function into a thin wrapper around
1710  * find_nonnullable_vars() is that the tested conditions really are different:
1711  * a clause like "t1.v1 IS NOT NULL OR t1.v2 IS NOT NULL" does not prove
1712  * that either v1 or v2 can't be NULL, but it does prove that the t1 row
1713  * as a whole can't be all-NULL.
1714  *
1715  * top_level is TRUE while scanning top-level AND/OR structure; here, showing
1716  * the result is either FALSE or NULL is good enough.  top_level is FALSE when
1717  * we have descended below a NOT or a strict function: now we must be able to
1718  * prove that the subexpression goes to NULL.
1719  *
1720  * We don't use expression_tree_walker here because we don't want to descend
1721  * through very many kinds of nodes; only the ones we can be sure are strict.
1722  */
1723 Relids
find_nonnullable_rels(Node * clause)1724 find_nonnullable_rels(Node *clause)
1725 {
1726 	return find_nonnullable_rels_walker(clause, true);
1727 }
1728 
1729 static Relids
find_nonnullable_rels_walker(Node * node,bool top_level)1730 find_nonnullable_rels_walker(Node *node, bool top_level)
1731 {
1732 	Relids		result = NULL;
1733 	ListCell   *l;
1734 
1735 	if (node == NULL)
1736 		return NULL;
1737 	if (IsA(node, Var))
1738 	{
1739 		Var		   *var = (Var *) node;
1740 
1741 		if (var->varlevelsup == 0)
1742 			result = bms_make_singleton(var->varno);
1743 	}
1744 	else if (IsA(node, List))
1745 	{
1746 		/*
1747 		 * At top level, we are examining an implicit-AND list: if any of the
1748 		 * arms produces FALSE-or-NULL then the result is FALSE-or-NULL. If
1749 		 * not at top level, we are examining the arguments of a strict
1750 		 * function: if any of them produce NULL then the result of the
1751 		 * function must be NULL.  So in both cases, the set of nonnullable
1752 		 * rels is the union of those found in the arms, and we pass down the
1753 		 * top_level flag unmodified.
1754 		 */
1755 		foreach(l, (List *) node)
1756 		{
1757 			result = bms_join(result,
1758 							  find_nonnullable_rels_walker(lfirst(l),
1759 														   top_level));
1760 		}
1761 	}
1762 	else if (IsA(node, FuncExpr))
1763 	{
1764 		FuncExpr   *expr = (FuncExpr *) node;
1765 
1766 		if (func_strict(expr->funcid))
1767 			result = find_nonnullable_rels_walker((Node *) expr->args, false);
1768 	}
1769 	else if (IsA(node, OpExpr))
1770 	{
1771 		OpExpr	   *expr = (OpExpr *) node;
1772 
1773 		set_opfuncid(expr);
1774 		if (func_strict(expr->opfuncid))
1775 			result = find_nonnullable_rels_walker((Node *) expr->args, false);
1776 	}
1777 	else if (IsA(node, ScalarArrayOpExpr))
1778 	{
1779 		ScalarArrayOpExpr *expr = (ScalarArrayOpExpr *) node;
1780 
1781 		if (is_strict_saop(expr, true))
1782 			result = find_nonnullable_rels_walker((Node *) expr->args, false);
1783 	}
1784 	else if (IsA(node, BoolExpr))
1785 	{
1786 		BoolExpr   *expr = (BoolExpr *) node;
1787 
1788 		switch (expr->boolop)
1789 		{
1790 			case AND_EXPR:
1791 				/* At top level we can just recurse (to the List case) */
1792 				if (top_level)
1793 				{
1794 					result = find_nonnullable_rels_walker((Node *) expr->args,
1795 														  top_level);
1796 					break;
1797 				}
1798 
1799 				/*
1800 				 * Below top level, even if one arm produces NULL, the result
1801 				 * could be FALSE (hence not NULL).  However, if *all* the
1802 				 * arms produce NULL then the result is NULL, so we can take
1803 				 * the intersection of the sets of nonnullable rels, just as
1804 				 * for OR.  Fall through to share code.
1805 				 */
1806 				/* FALL THRU */
1807 			case OR_EXPR:
1808 
1809 				/*
1810 				 * OR is strict if all of its arms are, so we can take the
1811 				 * intersection of the sets of nonnullable rels for each arm.
1812 				 * This works for both values of top_level.
1813 				 */
1814 				foreach(l, expr->args)
1815 				{
1816 					Relids		subresult;
1817 
1818 					subresult = find_nonnullable_rels_walker(lfirst(l),
1819 															 top_level);
1820 					if (result == NULL) /* first subresult? */
1821 						result = subresult;
1822 					else
1823 						result = bms_int_members(result, subresult);
1824 
1825 					/*
1826 					 * If the intersection is empty, we can stop looking. This
1827 					 * also justifies the test for first-subresult above.
1828 					 */
1829 					if (bms_is_empty(result))
1830 						break;
1831 				}
1832 				break;
1833 			case NOT_EXPR:
1834 				/* NOT will return null if its arg is null */
1835 				result = find_nonnullable_rels_walker((Node *) expr->args,
1836 													  false);
1837 				break;
1838 			default:
1839 				elog(ERROR, "unrecognized boolop: %d", (int) expr->boolop);
1840 				break;
1841 		}
1842 	}
1843 	else if (IsA(node, RelabelType))
1844 	{
1845 		RelabelType *expr = (RelabelType *) node;
1846 
1847 		result = find_nonnullable_rels_walker((Node *) expr->arg, top_level);
1848 	}
1849 	else if (IsA(node, CoerceViaIO))
1850 	{
1851 		/* not clear this is useful, but it can't hurt */
1852 		CoerceViaIO *expr = (CoerceViaIO *) node;
1853 
1854 		result = find_nonnullable_rels_walker((Node *) expr->arg, top_level);
1855 	}
1856 	else if (IsA(node, ArrayCoerceExpr))
1857 	{
1858 		/* ArrayCoerceExpr is strict at the array level */
1859 		ArrayCoerceExpr *expr = (ArrayCoerceExpr *) node;
1860 
1861 		result = find_nonnullable_rels_walker((Node *) expr->arg, top_level);
1862 	}
1863 	else if (IsA(node, ConvertRowtypeExpr))
1864 	{
1865 		/* not clear this is useful, but it can't hurt */
1866 		ConvertRowtypeExpr *expr = (ConvertRowtypeExpr *) node;
1867 
1868 		result = find_nonnullable_rels_walker((Node *) expr->arg, top_level);
1869 	}
1870 	else if (IsA(node, CollateExpr))
1871 	{
1872 		CollateExpr *expr = (CollateExpr *) node;
1873 
1874 		result = find_nonnullable_rels_walker((Node *) expr->arg, top_level);
1875 	}
1876 	else if (IsA(node, NullTest))
1877 	{
1878 		/* IS NOT NULL can be considered strict, but only at top level */
1879 		NullTest   *expr = (NullTest *) node;
1880 
1881 		if (top_level && expr->nulltesttype == IS_NOT_NULL && !expr->argisrow)
1882 			result = find_nonnullable_rels_walker((Node *) expr->arg, false);
1883 	}
1884 	else if (IsA(node, BooleanTest))
1885 	{
1886 		/* Boolean tests that reject NULL are strict at top level */
1887 		BooleanTest *expr = (BooleanTest *) node;
1888 
1889 		if (top_level &&
1890 			(expr->booltesttype == IS_TRUE ||
1891 			 expr->booltesttype == IS_FALSE ||
1892 			 expr->booltesttype == IS_NOT_UNKNOWN))
1893 			result = find_nonnullable_rels_walker((Node *) expr->arg, false);
1894 	}
1895 	else if (IsA(node, PlaceHolderVar))
1896 	{
1897 		PlaceHolderVar *phv = (PlaceHolderVar *) node;
1898 
1899 		result = find_nonnullable_rels_walker((Node *) phv->phexpr, top_level);
1900 	}
1901 	return result;
1902 }
1903 
1904 /*
1905  * find_nonnullable_vars
1906  *		Determine which Vars are forced nonnullable by given clause.
1907  *
1908  * Returns a list of all level-zero Vars that are referenced in the clause in
1909  * such a way that the clause cannot possibly return TRUE if any of these Vars
1910  * is NULL.  (It is OK to err on the side of conservatism; hence the analysis
1911  * here is simplistic.)
1912  *
1913  * The semantics here are subtly different from contain_nonstrict_functions:
1914  * that function is concerned with NULL results from arbitrary expressions,
1915  * but here we assume that the input is a Boolean expression, and wish to
1916  * see if NULL inputs will provably cause a FALSE-or-NULL result.  We expect
1917  * the expression to have been AND/OR flattened and converted to implicit-AND
1918  * format.
1919  *
1920  * The result is a palloc'd List, but we have not copied the member Var nodes.
1921  * Also, we don't bother trying to eliminate duplicate entries.
1922  *
1923  * top_level is TRUE while scanning top-level AND/OR structure; here, showing
1924  * the result is either FALSE or NULL is good enough.  top_level is FALSE when
1925  * we have descended below a NOT or a strict function: now we must be able to
1926  * prove that the subexpression goes to NULL.
1927  *
1928  * We don't use expression_tree_walker here because we don't want to descend
1929  * through very many kinds of nodes; only the ones we can be sure are strict.
1930  */
1931 List *
find_nonnullable_vars(Node * clause)1932 find_nonnullable_vars(Node *clause)
1933 {
1934 	return find_nonnullable_vars_walker(clause, true);
1935 }
1936 
1937 static List *
find_nonnullable_vars_walker(Node * node,bool top_level)1938 find_nonnullable_vars_walker(Node *node, bool top_level)
1939 {
1940 	List	   *result = NIL;
1941 	ListCell   *l;
1942 
1943 	if (node == NULL)
1944 		return NIL;
1945 	if (IsA(node, Var))
1946 	{
1947 		Var		   *var = (Var *) node;
1948 
1949 		if (var->varlevelsup == 0)
1950 			result = list_make1(var);
1951 	}
1952 	else if (IsA(node, List))
1953 	{
1954 		/*
1955 		 * At top level, we are examining an implicit-AND list: if any of the
1956 		 * arms produces FALSE-or-NULL then the result is FALSE-or-NULL. If
1957 		 * not at top level, we are examining the arguments of a strict
1958 		 * function: if any of them produce NULL then the result of the
1959 		 * function must be NULL.  So in both cases, the set of nonnullable
1960 		 * vars is the union of those found in the arms, and we pass down the
1961 		 * top_level flag unmodified.
1962 		 */
1963 		foreach(l, (List *) node)
1964 		{
1965 			result = list_concat(result,
1966 								 find_nonnullable_vars_walker(lfirst(l),
1967 															  top_level));
1968 		}
1969 	}
1970 	else if (IsA(node, FuncExpr))
1971 	{
1972 		FuncExpr   *expr = (FuncExpr *) node;
1973 
1974 		if (func_strict(expr->funcid))
1975 			result = find_nonnullable_vars_walker((Node *) expr->args, false);
1976 	}
1977 	else if (IsA(node, OpExpr))
1978 	{
1979 		OpExpr	   *expr = (OpExpr *) node;
1980 
1981 		set_opfuncid(expr);
1982 		if (func_strict(expr->opfuncid))
1983 			result = find_nonnullable_vars_walker((Node *) expr->args, false);
1984 	}
1985 	else if (IsA(node, ScalarArrayOpExpr))
1986 	{
1987 		ScalarArrayOpExpr *expr = (ScalarArrayOpExpr *) node;
1988 
1989 		if (is_strict_saop(expr, true))
1990 			result = find_nonnullable_vars_walker((Node *) expr->args, false);
1991 	}
1992 	else if (IsA(node, BoolExpr))
1993 	{
1994 		BoolExpr   *expr = (BoolExpr *) node;
1995 
1996 		switch (expr->boolop)
1997 		{
1998 			case AND_EXPR:
1999 				/* At top level we can just recurse (to the List case) */
2000 				if (top_level)
2001 				{
2002 					result = find_nonnullable_vars_walker((Node *) expr->args,
2003 														  top_level);
2004 					break;
2005 				}
2006 
2007 				/*
2008 				 * Below top level, even if one arm produces NULL, the result
2009 				 * could be FALSE (hence not NULL).  However, if *all* the
2010 				 * arms produce NULL then the result is NULL, so we can take
2011 				 * the intersection of the sets of nonnullable vars, just as
2012 				 * for OR.  Fall through to share code.
2013 				 */
2014 				/* FALL THRU */
2015 			case OR_EXPR:
2016 
2017 				/*
2018 				 * OR is strict if all of its arms are, so we can take the
2019 				 * intersection of the sets of nonnullable vars for each arm.
2020 				 * This works for both values of top_level.
2021 				 */
2022 				foreach(l, expr->args)
2023 				{
2024 					List	   *subresult;
2025 
2026 					subresult = find_nonnullable_vars_walker(lfirst(l),
2027 															 top_level);
2028 					if (result == NIL)	/* first subresult? */
2029 						result = subresult;
2030 					else
2031 						result = list_intersection(result, subresult);
2032 
2033 					/*
2034 					 * If the intersection is empty, we can stop looking. This
2035 					 * also justifies the test for first-subresult above.
2036 					 */
2037 					if (result == NIL)
2038 						break;
2039 				}
2040 				break;
2041 			case NOT_EXPR:
2042 				/* NOT will return null if its arg is null */
2043 				result = find_nonnullable_vars_walker((Node *) expr->args,
2044 													  false);
2045 				break;
2046 			default:
2047 				elog(ERROR, "unrecognized boolop: %d", (int) expr->boolop);
2048 				break;
2049 		}
2050 	}
2051 	else if (IsA(node, RelabelType))
2052 	{
2053 		RelabelType *expr = (RelabelType *) node;
2054 
2055 		result = find_nonnullable_vars_walker((Node *) expr->arg, top_level);
2056 	}
2057 	else if (IsA(node, CoerceViaIO))
2058 	{
2059 		/* not clear this is useful, but it can't hurt */
2060 		CoerceViaIO *expr = (CoerceViaIO *) node;
2061 
2062 		result = find_nonnullable_vars_walker((Node *) expr->arg, false);
2063 	}
2064 	else if (IsA(node, ArrayCoerceExpr))
2065 	{
2066 		/* ArrayCoerceExpr is strict at the array level */
2067 		ArrayCoerceExpr *expr = (ArrayCoerceExpr *) node;
2068 
2069 		result = find_nonnullable_vars_walker((Node *) expr->arg, top_level);
2070 	}
2071 	else if (IsA(node, ConvertRowtypeExpr))
2072 	{
2073 		/* not clear this is useful, but it can't hurt */
2074 		ConvertRowtypeExpr *expr = (ConvertRowtypeExpr *) node;
2075 
2076 		result = find_nonnullable_vars_walker((Node *) expr->arg, top_level);
2077 	}
2078 	else if (IsA(node, CollateExpr))
2079 	{
2080 		CollateExpr *expr = (CollateExpr *) node;
2081 
2082 		result = find_nonnullable_vars_walker((Node *) expr->arg, top_level);
2083 	}
2084 	else if (IsA(node, NullTest))
2085 	{
2086 		/* IS NOT NULL can be considered strict, but only at top level */
2087 		NullTest   *expr = (NullTest *) node;
2088 
2089 		if (top_level && expr->nulltesttype == IS_NOT_NULL && !expr->argisrow)
2090 			result = find_nonnullable_vars_walker((Node *) expr->arg, false);
2091 	}
2092 	else if (IsA(node, BooleanTest))
2093 	{
2094 		/* Boolean tests that reject NULL are strict at top level */
2095 		BooleanTest *expr = (BooleanTest *) node;
2096 
2097 		if (top_level &&
2098 			(expr->booltesttype == IS_TRUE ||
2099 			 expr->booltesttype == IS_FALSE ||
2100 			 expr->booltesttype == IS_NOT_UNKNOWN))
2101 			result = find_nonnullable_vars_walker((Node *) expr->arg, false);
2102 	}
2103 	else if (IsA(node, PlaceHolderVar))
2104 	{
2105 		PlaceHolderVar *phv = (PlaceHolderVar *) node;
2106 
2107 		result = find_nonnullable_vars_walker((Node *) phv->phexpr, top_level);
2108 	}
2109 	return result;
2110 }
2111 
2112 /*
2113  * find_forced_null_vars
2114  *		Determine which Vars must be NULL for the given clause to return TRUE.
2115  *
2116  * This is the complement of find_nonnullable_vars: find the level-zero Vars
2117  * that must be NULL for the clause to return TRUE.  (It is OK to err on the
2118  * side of conservatism; hence the analysis here is simplistic.  In fact,
2119  * we only detect simple "var IS NULL" tests at the top level.)
2120  *
2121  * The result is a palloc'd List, but we have not copied the member Var nodes.
2122  * Also, we don't bother trying to eliminate duplicate entries.
2123  */
2124 List *
find_forced_null_vars(Node * node)2125 find_forced_null_vars(Node *node)
2126 {
2127 	List	   *result = NIL;
2128 	Var		   *var;
2129 	ListCell   *l;
2130 
2131 	if (node == NULL)
2132 		return NIL;
2133 	/* Check single-clause cases using subroutine */
2134 	var = find_forced_null_var(node);
2135 	if (var)
2136 	{
2137 		result = list_make1(var);
2138 	}
2139 	/* Otherwise, handle AND-conditions */
2140 	else if (IsA(node, List))
2141 	{
2142 		/*
2143 		 * At top level, we are examining an implicit-AND list: if any of the
2144 		 * arms produces FALSE-or-NULL then the result is FALSE-or-NULL.
2145 		 */
2146 		foreach(l, (List *) node)
2147 		{
2148 			result = list_concat(result,
2149 								 find_forced_null_vars(lfirst(l)));
2150 		}
2151 	}
2152 	else if (IsA(node, BoolExpr))
2153 	{
2154 		BoolExpr   *expr = (BoolExpr *) node;
2155 
2156 		/*
2157 		 * We don't bother considering the OR case, because it's fairly
2158 		 * unlikely anyone would write "v1 IS NULL OR v1 IS NULL". Likewise,
2159 		 * the NOT case isn't worth expending code on.
2160 		 */
2161 		if (expr->boolop == AND_EXPR)
2162 		{
2163 			/* At top level we can just recurse (to the List case) */
2164 			result = find_forced_null_vars((Node *) expr->args);
2165 		}
2166 	}
2167 	return result;
2168 }
2169 
2170 /*
2171  * find_forced_null_var
2172  *		Return the Var forced null by the given clause, or NULL if it's
2173  *		not an IS NULL-type clause.  For success, the clause must enforce
2174  *		*only* nullness of the particular Var, not any other conditions.
2175  *
2176  * This is just the single-clause case of find_forced_null_vars(), without
2177  * any allowance for AND conditions.  It's used by initsplan.c on individual
2178  * qual clauses.  The reason for not just applying find_forced_null_vars()
2179  * is that if an AND of an IS NULL clause with something else were to somehow
2180  * survive AND/OR flattening, initsplan.c might get fooled into discarding
2181  * the whole clause when only the IS NULL part of it had been proved redundant.
2182  */
2183 Var *
find_forced_null_var(Node * node)2184 find_forced_null_var(Node *node)
2185 {
2186 	if (node == NULL)
2187 		return NULL;
2188 	if (IsA(node, NullTest))
2189 	{
2190 		/* check for var IS NULL */
2191 		NullTest   *expr = (NullTest *) node;
2192 
2193 		if (expr->nulltesttype == IS_NULL && !expr->argisrow)
2194 		{
2195 			Var		   *var = (Var *) expr->arg;
2196 
2197 			if (var && IsA(var, Var) &&
2198 				var->varlevelsup == 0)
2199 				return var;
2200 		}
2201 	}
2202 	else if (IsA(node, BooleanTest))
2203 	{
2204 		/* var IS UNKNOWN is equivalent to var IS NULL */
2205 		BooleanTest *expr = (BooleanTest *) node;
2206 
2207 		if (expr->booltesttype == IS_UNKNOWN)
2208 		{
2209 			Var		   *var = (Var *) expr->arg;
2210 
2211 			if (var && IsA(var, Var) &&
2212 				var->varlevelsup == 0)
2213 				return var;
2214 		}
2215 	}
2216 	return NULL;
2217 }
2218 
2219 /*
2220  * Can we treat a ScalarArrayOpExpr as strict?
2221  *
2222  * If "falseOK" is true, then a "false" result can be considered strict,
2223  * else we need to guarantee an actual NULL result for NULL input.
2224  *
2225  * "foo op ALL array" is strict if the op is strict *and* we can prove
2226  * that the array input isn't an empty array.  We can check that
2227  * for the cases of an array constant and an ARRAY[] construct.
2228  *
2229  * "foo op ANY array" is strict in the falseOK sense if the op is strict.
2230  * If not falseOK, the test is the same as for "foo op ALL array".
2231  */
2232 static bool
is_strict_saop(ScalarArrayOpExpr * expr,bool falseOK)2233 is_strict_saop(ScalarArrayOpExpr *expr, bool falseOK)
2234 {
2235 	Node	   *rightop;
2236 
2237 	/* The contained operator must be strict. */
2238 	set_sa_opfuncid(expr);
2239 	if (!func_strict(expr->opfuncid))
2240 		return false;
2241 	/* If ANY and falseOK, that's all we need to check. */
2242 	if (expr->useOr && falseOK)
2243 		return true;
2244 	/* Else, we have to see if the array is provably non-empty. */
2245 	Assert(list_length(expr->args) == 2);
2246 	rightop = (Node *) lsecond(expr->args);
2247 	if (rightop && IsA(rightop, Const))
2248 	{
2249 		Datum		arraydatum = ((Const *) rightop)->constvalue;
2250 		bool		arrayisnull = ((Const *) rightop)->constisnull;
2251 		ArrayType  *arrayval;
2252 		int			nitems;
2253 
2254 		if (arrayisnull)
2255 			return false;
2256 		arrayval = DatumGetArrayTypeP(arraydatum);
2257 		nitems = ArrayGetNItems(ARR_NDIM(arrayval), ARR_DIMS(arrayval));
2258 		if (nitems > 0)
2259 			return true;
2260 	}
2261 	else if (rightop && IsA(rightop, ArrayExpr))
2262 	{
2263 		ArrayExpr  *arrayexpr = (ArrayExpr *) rightop;
2264 
2265 		if (arrayexpr->elements != NIL && !arrayexpr->multidims)
2266 			return true;
2267 	}
2268 	return false;
2269 }
2270 
2271 
2272 /*****************************************************************************
2273  *		Check for "pseudo-constant" clauses
2274  *****************************************************************************/
2275 
2276 /*
2277  * is_pseudo_constant_clause
2278  *	  Detect whether an expression is "pseudo constant", ie, it contains no
2279  *	  variables of the current query level and no uses of volatile functions.
2280  *	  Such an expr is not necessarily a true constant: it can still contain
2281  *	  Params and outer-level Vars, not to mention functions whose results
2282  *	  may vary from one statement to the next.  However, the expr's value
2283  *	  will be constant over any one scan of the current query, so it can be
2284  *	  used as, eg, an indexscan key.
2285  *
2286  * CAUTION: this function omits to test for one very important class of
2287  * not-constant expressions, namely aggregates (Aggrefs).  In current usage
2288  * this is only applied to WHERE clauses and so a check for Aggrefs would be
2289  * a waste of cycles; but be sure to also check contain_agg_clause() if you
2290  * want to know about pseudo-constness in other contexts.  The same goes
2291  * for window functions (WindowFuncs).
2292  */
2293 bool
is_pseudo_constant_clause(Node * clause)2294 is_pseudo_constant_clause(Node *clause)
2295 {
2296 	/*
2297 	 * We could implement this check in one recursive scan.  But since the
2298 	 * check for volatile functions is both moderately expensive and unlikely
2299 	 * to fail, it seems better to look for Vars first and only check for
2300 	 * volatile functions if we find no Vars.
2301 	 */
2302 	if (!contain_var_clause(clause) &&
2303 		!contain_volatile_functions(clause))
2304 		return true;
2305 	return false;
2306 }
2307 
2308 /*
2309  * is_pseudo_constant_clause_relids
2310  *	  Same as above, except caller already has available the var membership
2311  *	  of the expression; this lets us avoid the contain_var_clause() scan.
2312  */
2313 bool
is_pseudo_constant_clause_relids(Node * clause,Relids relids)2314 is_pseudo_constant_clause_relids(Node *clause, Relids relids)
2315 {
2316 	if (bms_is_empty(relids) &&
2317 		!contain_volatile_functions(clause))
2318 		return true;
2319 	return false;
2320 }
2321 
2322 
2323 /*****************************************************************************
2324  *																			 *
2325  *		General clause-manipulating routines								 *
2326  *																			 *
2327  *****************************************************************************/
2328 
2329 /*
2330  * NumRelids
2331  *		(formerly clause_relids)
2332  *
2333  * Returns the number of different relations referenced in 'clause'.
2334  */
2335 int
NumRelids(Node * clause)2336 NumRelids(Node *clause)
2337 {
2338 	Relids		varnos = pull_varnos(clause);
2339 	int			result = bms_num_members(varnos);
2340 
2341 	bms_free(varnos);
2342 	return result;
2343 }
2344 
2345 /*
2346  * CommuteOpExpr: commute a binary operator clause
2347  *
2348  * XXX the clause is destructively modified!
2349  */
2350 void
CommuteOpExpr(OpExpr * clause)2351 CommuteOpExpr(OpExpr *clause)
2352 {
2353 	Oid			opoid;
2354 	Node	   *temp;
2355 
2356 	/* Sanity checks: caller is at fault if these fail */
2357 	if (!is_opclause(clause) ||
2358 		list_length(clause->args) != 2)
2359 		elog(ERROR, "cannot commute non-binary-operator clause");
2360 
2361 	opoid = get_commutator(clause->opno);
2362 
2363 	if (!OidIsValid(opoid))
2364 		elog(ERROR, "could not find commutator for operator %u",
2365 			 clause->opno);
2366 
2367 	/*
2368 	 * modify the clause in-place!
2369 	 */
2370 	clause->opno = opoid;
2371 	clause->opfuncid = InvalidOid;
2372 	/* opresulttype, opretset, opcollid, inputcollid need not change */
2373 
2374 	temp = linitial(clause->args);
2375 	linitial(clause->args) = lsecond(clause->args);
2376 	lsecond(clause->args) = temp;
2377 }
2378 
2379 /*
2380  * CommuteRowCompareExpr: commute a RowCompareExpr clause
2381  *
2382  * XXX the clause is destructively modified!
2383  */
2384 void
CommuteRowCompareExpr(RowCompareExpr * clause)2385 CommuteRowCompareExpr(RowCompareExpr *clause)
2386 {
2387 	List	   *newops;
2388 	List	   *temp;
2389 	ListCell   *l;
2390 
2391 	/* Sanity checks: caller is at fault if these fail */
2392 	if (!IsA(clause, RowCompareExpr))
2393 		elog(ERROR, "expected a RowCompareExpr");
2394 
2395 	/* Build list of commuted operators */
2396 	newops = NIL;
2397 	foreach(l, clause->opnos)
2398 	{
2399 		Oid			opoid = lfirst_oid(l);
2400 
2401 		opoid = get_commutator(opoid);
2402 		if (!OidIsValid(opoid))
2403 			elog(ERROR, "could not find commutator for operator %u",
2404 				 lfirst_oid(l));
2405 		newops = lappend_oid(newops, opoid);
2406 	}
2407 
2408 	/*
2409 	 * modify the clause in-place!
2410 	 */
2411 	switch (clause->rctype)
2412 	{
2413 		case ROWCOMPARE_LT:
2414 			clause->rctype = ROWCOMPARE_GT;
2415 			break;
2416 		case ROWCOMPARE_LE:
2417 			clause->rctype = ROWCOMPARE_GE;
2418 			break;
2419 		case ROWCOMPARE_GE:
2420 			clause->rctype = ROWCOMPARE_LE;
2421 			break;
2422 		case ROWCOMPARE_GT:
2423 			clause->rctype = ROWCOMPARE_LT;
2424 			break;
2425 		default:
2426 			elog(ERROR, "unexpected RowCompare type: %d",
2427 				 (int) clause->rctype);
2428 			break;
2429 	}
2430 
2431 	clause->opnos = newops;
2432 
2433 	/*
2434 	 * Note: we need not change the opfamilies list; we assume any btree
2435 	 * opfamily containing an operator will also contain its commutator.
2436 	 * Collations don't change either.
2437 	 */
2438 
2439 	temp = clause->largs;
2440 	clause->largs = clause->rargs;
2441 	clause->rargs = temp;
2442 }
2443 
2444 /*
2445  * Helper for eval_const_expressions: check that datatype of an attribute
2446  * is still what it was when the expression was parsed.  This is needed to
2447  * guard against improper simplification after ALTER COLUMN TYPE.  (XXX we
2448  * may well need to make similar checks elsewhere?)
2449  */
2450 static bool
rowtype_field_matches(Oid rowtypeid,int fieldnum,Oid expectedtype,int32 expectedtypmod,Oid expectedcollation)2451 rowtype_field_matches(Oid rowtypeid, int fieldnum,
2452 					  Oid expectedtype, int32 expectedtypmod,
2453 					  Oid expectedcollation)
2454 {
2455 	TupleDesc	tupdesc;
2456 	Form_pg_attribute attr;
2457 
2458 	/* No issue for RECORD, since there is no way to ALTER such a type */
2459 	if (rowtypeid == RECORDOID)
2460 		return true;
2461 	tupdesc = lookup_rowtype_tupdesc(rowtypeid, -1);
2462 	if (fieldnum <= 0 || fieldnum > tupdesc->natts)
2463 	{
2464 		ReleaseTupleDesc(tupdesc);
2465 		return false;
2466 	}
2467 	attr = tupdesc->attrs[fieldnum - 1];
2468 	if (attr->attisdropped ||
2469 		attr->atttypid != expectedtype ||
2470 		attr->atttypmod != expectedtypmod ||
2471 		attr->attcollation != expectedcollation)
2472 	{
2473 		ReleaseTupleDesc(tupdesc);
2474 		return false;
2475 	}
2476 	ReleaseTupleDesc(tupdesc);
2477 	return true;
2478 }
2479 
2480 
2481 /*--------------------
2482  * eval_const_expressions
2483  *
2484  * Reduce any recognizably constant subexpressions of the given
2485  * expression tree, for example "2 + 2" => "4".  More interestingly,
2486  * we can reduce certain boolean expressions even when they contain
2487  * non-constant subexpressions: "x OR true" => "true" no matter what
2488  * the subexpression x is.  (XXX We assume that no such subexpression
2489  * will have important side-effects, which is not necessarily a good
2490  * assumption in the presence of user-defined functions; do we need a
2491  * pg_proc flag that prevents discarding the execution of a function?)
2492  *
2493  * We do understand that certain functions may deliver non-constant
2494  * results even with constant inputs, "nextval()" being the classic
2495  * example.  Functions that are not marked "immutable" in pg_proc
2496  * will not be pre-evaluated here, although we will reduce their
2497  * arguments as far as possible.
2498  *
2499  * Whenever a function is eliminated from the expression by means of
2500  * constant-expression evaluation or inlining, we add the function to
2501  * root->glob->invalItems.  This ensures the plan is known to depend on
2502  * such functions, even though they aren't referenced anymore.
2503  *
2504  * We assume that the tree has already been type-checked and contains
2505  * only operators and functions that are reasonable to try to execute.
2506  *
2507  * NOTE: "root" can be passed as NULL if the caller never wants to do any
2508  * Param substitutions nor receive info about inlined functions.
2509  *
2510  * NOTE: the planner assumes that this will always flatten nested AND and
2511  * OR clauses into N-argument form.  See comments in prepqual.c.
2512  *
2513  * NOTE: another critical effect is that any function calls that require
2514  * default arguments will be expanded, and named-argument calls will be
2515  * converted to positional notation.  The executor won't handle either.
2516  *--------------------
2517  */
2518 Node *
eval_const_expressions(PlannerInfo * root,Node * node)2519 eval_const_expressions(PlannerInfo *root, Node *node)
2520 {
2521 	eval_const_expressions_context context;
2522 
2523 	if (root)
2524 		context.boundParams = root->glob->boundParams;	/* bound Params */
2525 	else
2526 		context.boundParams = NULL;
2527 	context.root = root;		/* for inlined-function dependencies */
2528 	context.active_fns = NIL;	/* nothing being recursively simplified */
2529 	context.case_val = NULL;	/* no CASE being examined */
2530 	context.estimate = false;	/* safe transformations only */
2531 	return eval_const_expressions_mutator(node, &context);
2532 }
2533 
2534 /*--------------------
2535  * estimate_expression_value
2536  *
2537  * This function attempts to estimate the value of an expression for
2538  * planning purposes.  It is in essence a more aggressive version of
2539  * eval_const_expressions(): we will perform constant reductions that are
2540  * not necessarily 100% safe, but are reasonable for estimation purposes.
2541  *
2542  * Currently the extra steps that are taken in this mode are:
2543  * 1. Substitute values for Params, where a bound Param value has been made
2544  *	  available by the caller of planner(), even if the Param isn't marked
2545  *	  constant.  This effectively means that we plan using the first supplied
2546  *	  value of the Param.
2547  * 2. Fold stable, as well as immutable, functions to constants.
2548  * 3. Reduce PlaceHolderVar nodes to their contained expressions.
2549  *--------------------
2550  */
2551 Node *
estimate_expression_value(PlannerInfo * root,Node * node)2552 estimate_expression_value(PlannerInfo *root, Node *node)
2553 {
2554 	eval_const_expressions_context context;
2555 
2556 	context.boundParams = root->glob->boundParams;	/* bound Params */
2557 	/* we do not need to mark the plan as depending on inlined functions */
2558 	context.root = NULL;
2559 	context.active_fns = NIL;	/* nothing being recursively simplified */
2560 	context.case_val = NULL;	/* no CASE being examined */
2561 	context.estimate = true;	/* unsafe transformations OK */
2562 	return eval_const_expressions_mutator(node, &context);
2563 }
2564 
2565 static Node *
eval_const_expressions_mutator(Node * node,eval_const_expressions_context * context)2566 eval_const_expressions_mutator(Node *node,
2567 							   eval_const_expressions_context *context)
2568 {
2569 	if (node == NULL)
2570 		return NULL;
2571 	switch (nodeTag(node))
2572 	{
2573 		case T_Param:
2574 			{
2575 				Param	   *param = (Param *) node;
2576 
2577 				/* Look to see if we've been given a value for this Param */
2578 				if (param->paramkind == PARAM_EXTERN &&
2579 					context->boundParams != NULL &&
2580 					param->paramid > 0 &&
2581 					param->paramid <= context->boundParams->numParams)
2582 				{
2583 					ParamExternData *prm = &context->boundParams->params[param->paramid - 1];
2584 
2585 					if (OidIsValid(prm->ptype))
2586 					{
2587 						/* OK to substitute parameter value? */
2588 						if (context->estimate ||
2589 							(prm->pflags & PARAM_FLAG_CONST))
2590 						{
2591 							/*
2592 							 * Return a Const representing the param value.
2593 							 * Must copy pass-by-ref datatypes, since the
2594 							 * Param might be in a memory context
2595 							 * shorter-lived than our output plan should be.
2596 							 */
2597 							int16		typLen;
2598 							bool		typByVal;
2599 							Datum		pval;
2600 
2601 							Assert(prm->ptype == param->paramtype);
2602 							get_typlenbyval(param->paramtype,
2603 											&typLen, &typByVal);
2604 							if (prm->isnull || typByVal)
2605 								pval = prm->value;
2606 							else
2607 								pval = datumCopy(prm->value, typByVal, typLen);
2608 							return (Node *) makeConst(param->paramtype,
2609 													  param->paramtypmod,
2610 													  param->paramcollid,
2611 													  (int) typLen,
2612 													  pval,
2613 													  prm->isnull,
2614 													  typByVal);
2615 						}
2616 					}
2617 				}
2618 
2619 				/*
2620 				 * Not replaceable, so just copy the Param (no need to
2621 				 * recurse)
2622 				 */
2623 				return (Node *) copyObject(param);
2624 			}
2625 		case T_WindowFunc:
2626 			{
2627 				WindowFunc *expr = (WindowFunc *) node;
2628 				Oid			funcid = expr->winfnoid;
2629 				List	   *args;
2630 				Expr	   *aggfilter;
2631 				HeapTuple	func_tuple;
2632 				WindowFunc *newexpr;
2633 
2634 				/*
2635 				 * We can't really simplify a WindowFunc node, but we mustn't
2636 				 * just fall through to the default processing, because we
2637 				 * have to apply expand_function_arguments to its argument
2638 				 * list.  That takes care of inserting default arguments and
2639 				 * expanding named-argument notation.
2640 				 */
2641 				func_tuple = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
2642 				if (!HeapTupleIsValid(func_tuple))
2643 					elog(ERROR, "cache lookup failed for function %u", funcid);
2644 
2645 				args = expand_function_arguments(expr->args, expr->wintype,
2646 												 func_tuple);
2647 
2648 				ReleaseSysCache(func_tuple);
2649 
2650 				/* Now, recursively simplify the args (which are a List) */
2651 				args = (List *)
2652 					expression_tree_mutator((Node *) args,
2653 											eval_const_expressions_mutator,
2654 											(void *) context);
2655 				/* ... and the filter expression, which isn't */
2656 				aggfilter = (Expr *)
2657 					eval_const_expressions_mutator((Node *) expr->aggfilter,
2658 												   context);
2659 
2660 				/* And build the replacement WindowFunc node */
2661 				newexpr = makeNode(WindowFunc);
2662 				newexpr->winfnoid = expr->winfnoid;
2663 				newexpr->wintype = expr->wintype;
2664 				newexpr->wincollid = expr->wincollid;
2665 				newexpr->inputcollid = expr->inputcollid;
2666 				newexpr->args = args;
2667 				newexpr->aggfilter = aggfilter;
2668 				newexpr->winref = expr->winref;
2669 				newexpr->winstar = expr->winstar;
2670 				newexpr->winagg = expr->winagg;
2671 				newexpr->location = expr->location;
2672 
2673 				return (Node *) newexpr;
2674 			}
2675 		case T_FuncExpr:
2676 			{
2677 				FuncExpr   *expr = (FuncExpr *) node;
2678 				List	   *args = expr->args;
2679 				Expr	   *simple;
2680 				FuncExpr   *newexpr;
2681 
2682 				/*
2683 				 * Code for op/func reduction is pretty bulky, so split it out
2684 				 * as a separate function.  Note: exprTypmod normally returns
2685 				 * -1 for a FuncExpr, but not when the node is recognizably a
2686 				 * length coercion; we want to preserve the typmod in the
2687 				 * eventual Const if so.
2688 				 */
2689 				simple = simplify_function(expr->funcid,
2690 										   expr->funcresulttype,
2691 										   exprTypmod(node),
2692 										   expr->funccollid,
2693 										   expr->inputcollid,
2694 										   &args,
2695 										   expr->funcvariadic,
2696 										   true,
2697 										   true,
2698 										   context);
2699 				if (simple)		/* successfully simplified it */
2700 					return (Node *) simple;
2701 
2702 				/*
2703 				 * The expression cannot be simplified any further, so build
2704 				 * and return a replacement FuncExpr node using the
2705 				 * possibly-simplified arguments.  Note that we have also
2706 				 * converted the argument list to positional notation.
2707 				 */
2708 				newexpr = makeNode(FuncExpr);
2709 				newexpr->funcid = expr->funcid;
2710 				newexpr->funcresulttype = expr->funcresulttype;
2711 				newexpr->funcretset = expr->funcretset;
2712 				newexpr->funcvariadic = expr->funcvariadic;
2713 				newexpr->funcformat = expr->funcformat;
2714 				newexpr->funccollid = expr->funccollid;
2715 				newexpr->inputcollid = expr->inputcollid;
2716 				newexpr->args = args;
2717 				newexpr->location = expr->location;
2718 				return (Node *) newexpr;
2719 			}
2720 		case T_OpExpr:
2721 			{
2722 				OpExpr	   *expr = (OpExpr *) node;
2723 				List	   *args = expr->args;
2724 				Expr	   *simple;
2725 				OpExpr	   *newexpr;
2726 
2727 				/*
2728 				 * Need to get OID of underlying function.  Okay to scribble
2729 				 * on input to this extent.
2730 				 */
2731 				set_opfuncid(expr);
2732 
2733 				/*
2734 				 * Code for op/func reduction is pretty bulky, so split it out
2735 				 * as a separate function.
2736 				 */
2737 				simple = simplify_function(expr->opfuncid,
2738 										   expr->opresulttype, -1,
2739 										   expr->opcollid,
2740 										   expr->inputcollid,
2741 										   &args,
2742 										   false,
2743 										   true,
2744 										   true,
2745 										   context);
2746 				if (simple)		/* successfully simplified it */
2747 					return (Node *) simple;
2748 
2749 				/*
2750 				 * If the operator is boolean equality or inequality, we know
2751 				 * how to simplify cases involving one constant and one
2752 				 * non-constant argument.
2753 				 */
2754 				if (expr->opno == BooleanEqualOperator ||
2755 					expr->opno == BooleanNotEqualOperator)
2756 				{
2757 					simple = (Expr *) simplify_boolean_equality(expr->opno,
2758 																args);
2759 					if (simple) /* successfully simplified it */
2760 						return (Node *) simple;
2761 				}
2762 
2763 				/*
2764 				 * The expression cannot be simplified any further, so build
2765 				 * and return a replacement OpExpr node using the
2766 				 * possibly-simplified arguments.
2767 				 */
2768 				newexpr = makeNode(OpExpr);
2769 				newexpr->opno = expr->opno;
2770 				newexpr->opfuncid = expr->opfuncid;
2771 				newexpr->opresulttype = expr->opresulttype;
2772 				newexpr->opretset = expr->opretset;
2773 				newexpr->opcollid = expr->opcollid;
2774 				newexpr->inputcollid = expr->inputcollid;
2775 				newexpr->args = args;
2776 				newexpr->location = expr->location;
2777 				return (Node *) newexpr;
2778 			}
2779 		case T_DistinctExpr:
2780 			{
2781 				DistinctExpr *expr = (DistinctExpr *) node;
2782 				List	   *args;
2783 				ListCell   *arg;
2784 				bool		has_null_input = false;
2785 				bool		all_null_input = true;
2786 				bool		has_nonconst_input = false;
2787 				Expr	   *simple;
2788 				DistinctExpr *newexpr;
2789 
2790 				/*
2791 				 * Reduce constants in the DistinctExpr's arguments.  We know
2792 				 * args is either NIL or a List node, so we can call
2793 				 * expression_tree_mutator directly rather than recursing to
2794 				 * self.
2795 				 */
2796 				args = (List *) expression_tree_mutator((Node *) expr->args,
2797 														eval_const_expressions_mutator,
2798 														(void *) context);
2799 
2800 				/*
2801 				 * We must do our own check for NULLs because DistinctExpr has
2802 				 * different results for NULL input than the underlying
2803 				 * operator does.
2804 				 */
2805 				foreach(arg, args)
2806 				{
2807 					if (IsA(lfirst(arg), Const))
2808 					{
2809 						has_null_input |= ((Const *) lfirst(arg))->constisnull;
2810 						all_null_input &= ((Const *) lfirst(arg))->constisnull;
2811 					}
2812 					else
2813 						has_nonconst_input = true;
2814 				}
2815 
2816 				/* all constants? then can optimize this out */
2817 				if (!has_nonconst_input)
2818 				{
2819 					/* all nulls? then not distinct */
2820 					if (all_null_input)
2821 						return makeBoolConst(false, false);
2822 
2823 					/* one null? then distinct */
2824 					if (has_null_input)
2825 						return makeBoolConst(true, false);
2826 
2827 					/* otherwise try to evaluate the '=' operator */
2828 					/* (NOT okay to try to inline it, though!) */
2829 
2830 					/*
2831 					 * Need to get OID of underlying function.  Okay to
2832 					 * scribble on input to this extent.
2833 					 */
2834 					set_opfuncid((OpExpr *) expr);	/* rely on struct
2835 													 * equivalence */
2836 
2837 					/*
2838 					 * Code for op/func reduction is pretty bulky, so split it
2839 					 * out as a separate function.
2840 					 */
2841 					simple = simplify_function(expr->opfuncid,
2842 											   expr->opresulttype, -1,
2843 											   expr->opcollid,
2844 											   expr->inputcollid,
2845 											   &args,
2846 											   false,
2847 											   false,
2848 											   false,
2849 											   context);
2850 					if (simple) /* successfully simplified it */
2851 					{
2852 						/*
2853 						 * Since the underlying operator is "=", must negate
2854 						 * its result
2855 						 */
2856 						Const	   *csimple = castNode(Const, simple);
2857 
2858 						csimple->constvalue =
2859 							BoolGetDatum(!DatumGetBool(csimple->constvalue));
2860 						return (Node *) csimple;
2861 					}
2862 				}
2863 
2864 				/*
2865 				 * The expression cannot be simplified any further, so build
2866 				 * and return a replacement DistinctExpr node using the
2867 				 * possibly-simplified arguments.
2868 				 */
2869 				newexpr = makeNode(DistinctExpr);
2870 				newexpr->opno = expr->opno;
2871 				newexpr->opfuncid = expr->opfuncid;
2872 				newexpr->opresulttype = expr->opresulttype;
2873 				newexpr->opretset = expr->opretset;
2874 				newexpr->opcollid = expr->opcollid;
2875 				newexpr->inputcollid = expr->inputcollid;
2876 				newexpr->args = args;
2877 				newexpr->location = expr->location;
2878 				return (Node *) newexpr;
2879 			}
2880 		case T_BoolExpr:
2881 			{
2882 				BoolExpr   *expr = (BoolExpr *) node;
2883 
2884 				switch (expr->boolop)
2885 				{
2886 					case OR_EXPR:
2887 						{
2888 							List	   *newargs;
2889 							bool		haveNull = false;
2890 							bool		forceTrue = false;
2891 
2892 							newargs = simplify_or_arguments(expr->args,
2893 															context,
2894 															&haveNull,
2895 															&forceTrue);
2896 							if (forceTrue)
2897 								return makeBoolConst(true, false);
2898 							if (haveNull)
2899 								newargs = lappend(newargs,
2900 												  makeBoolConst(false, true));
2901 							/* If all the inputs are FALSE, result is FALSE */
2902 							if (newargs == NIL)
2903 								return makeBoolConst(false, false);
2904 
2905 							/*
2906 							 * If only one nonconst-or-NULL input, it's the
2907 							 * result
2908 							 */
2909 							if (list_length(newargs) == 1)
2910 								return (Node *) linitial(newargs);
2911 							/* Else we still need an OR node */
2912 							return (Node *) make_orclause(newargs);
2913 						}
2914 					case AND_EXPR:
2915 						{
2916 							List	   *newargs;
2917 							bool		haveNull = false;
2918 							bool		forceFalse = false;
2919 
2920 							newargs = simplify_and_arguments(expr->args,
2921 															 context,
2922 															 &haveNull,
2923 															 &forceFalse);
2924 							if (forceFalse)
2925 								return makeBoolConst(false, false);
2926 							if (haveNull)
2927 								newargs = lappend(newargs,
2928 												  makeBoolConst(false, true));
2929 							/* If all the inputs are TRUE, result is TRUE */
2930 							if (newargs == NIL)
2931 								return makeBoolConst(true, false);
2932 
2933 							/*
2934 							 * If only one nonconst-or-NULL input, it's the
2935 							 * result
2936 							 */
2937 							if (list_length(newargs) == 1)
2938 								return (Node *) linitial(newargs);
2939 							/* Else we still need an AND node */
2940 							return (Node *) make_andclause(newargs);
2941 						}
2942 					case NOT_EXPR:
2943 						{
2944 							Node	   *arg;
2945 
2946 							Assert(list_length(expr->args) == 1);
2947 							arg = eval_const_expressions_mutator(linitial(expr->args),
2948 																 context);
2949 
2950 							/*
2951 							 * Use negate_clause() to see if we can simplify
2952 							 * away the NOT.
2953 							 */
2954 							return negate_clause(arg);
2955 						}
2956 					default:
2957 						elog(ERROR, "unrecognized boolop: %d",
2958 							 (int) expr->boolop);
2959 						break;
2960 				}
2961 				break;
2962 			}
2963 		case T_SubPlan:
2964 		case T_AlternativeSubPlan:
2965 
2966 			/*
2967 			 * Return a SubPlan unchanged --- too late to do anything with it.
2968 			 *
2969 			 * XXX should we ereport() here instead?  Probably this routine
2970 			 * should never be invoked after SubPlan creation.
2971 			 */
2972 			return node;
2973 		case T_RelabelType:
2974 			{
2975 				/*
2976 				 * If we can simplify the input to a constant, then we don't
2977 				 * need the RelabelType node anymore: just change the type
2978 				 * field of the Const node.  Otherwise, must copy the
2979 				 * RelabelType node.
2980 				 */
2981 				RelabelType *relabel = (RelabelType *) node;
2982 				Node	   *arg;
2983 
2984 				arg = eval_const_expressions_mutator((Node *) relabel->arg,
2985 													 context);
2986 
2987 				/*
2988 				 * If we find stacked RelabelTypes (eg, from foo :: int ::
2989 				 * oid) we can discard all but the top one.
2990 				 */
2991 				while (arg && IsA(arg, RelabelType))
2992 					arg = (Node *) ((RelabelType *) arg)->arg;
2993 
2994 				if (arg && IsA(arg, Const))
2995 				{
2996 					Const	   *con = (Const *) arg;
2997 
2998 					con->consttype = relabel->resulttype;
2999 					con->consttypmod = relabel->resulttypmod;
3000 					con->constcollid = relabel->resultcollid;
3001 					return (Node *) con;
3002 				}
3003 				else
3004 				{
3005 					RelabelType *newrelabel = makeNode(RelabelType);
3006 
3007 					newrelabel->arg = (Expr *) arg;
3008 					newrelabel->resulttype = relabel->resulttype;
3009 					newrelabel->resulttypmod = relabel->resulttypmod;
3010 					newrelabel->resultcollid = relabel->resultcollid;
3011 					newrelabel->relabelformat = relabel->relabelformat;
3012 					newrelabel->location = relabel->location;
3013 					return (Node *) newrelabel;
3014 				}
3015 			}
3016 		case T_CoerceViaIO:
3017 			{
3018 				CoerceViaIO *expr = (CoerceViaIO *) node;
3019 				List	   *args;
3020 				Oid			outfunc;
3021 				bool		outtypisvarlena;
3022 				Oid			infunc;
3023 				Oid			intypioparam;
3024 				Expr	   *simple;
3025 				CoerceViaIO *newexpr;
3026 
3027 				/* Make a List so we can use simplify_function */
3028 				args = list_make1(expr->arg);
3029 
3030 				/*
3031 				 * CoerceViaIO represents calling the source type's output
3032 				 * function then the result type's input function.  So, try to
3033 				 * simplify it as though it were a stack of two such function
3034 				 * calls.  First we need to know what the functions are.
3035 				 *
3036 				 * Note that the coercion functions are assumed not to care
3037 				 * about input collation, so we just pass InvalidOid for that.
3038 				 */
3039 				getTypeOutputInfo(exprType((Node *) expr->arg),
3040 								  &outfunc, &outtypisvarlena);
3041 				getTypeInputInfo(expr->resulttype,
3042 								 &infunc, &intypioparam);
3043 
3044 				simple = simplify_function(outfunc,
3045 										   CSTRINGOID, -1,
3046 										   InvalidOid,
3047 										   InvalidOid,
3048 										   &args,
3049 										   false,
3050 										   true,
3051 										   true,
3052 										   context);
3053 				if (simple)		/* successfully simplified output fn */
3054 				{
3055 					/*
3056 					 * Input functions may want 1 to 3 arguments.  We always
3057 					 * supply all three, trusting that nothing downstream will
3058 					 * complain.
3059 					 */
3060 					args = list_make3(simple,
3061 									  makeConst(OIDOID,
3062 												-1,
3063 												InvalidOid,
3064 												sizeof(Oid),
3065 												ObjectIdGetDatum(intypioparam),
3066 												false,
3067 												true),
3068 									  makeConst(INT4OID,
3069 												-1,
3070 												InvalidOid,
3071 												sizeof(int32),
3072 												Int32GetDatum(-1),
3073 												false,
3074 												true));
3075 
3076 					simple = simplify_function(infunc,
3077 											   expr->resulttype, -1,
3078 											   expr->resultcollid,
3079 											   InvalidOid,
3080 											   &args,
3081 											   false,
3082 											   false,
3083 											   true,
3084 											   context);
3085 					if (simple) /* successfully simplified input fn */
3086 						return (Node *) simple;
3087 				}
3088 
3089 				/*
3090 				 * The expression cannot be simplified any further, so build
3091 				 * and return a replacement CoerceViaIO node using the
3092 				 * possibly-simplified argument.
3093 				 */
3094 				newexpr = makeNode(CoerceViaIO);
3095 				newexpr->arg = (Expr *) linitial(args);
3096 				newexpr->resulttype = expr->resulttype;
3097 				newexpr->resultcollid = expr->resultcollid;
3098 				newexpr->coerceformat = expr->coerceformat;
3099 				newexpr->location = expr->location;
3100 				return (Node *) newexpr;
3101 			}
3102 		case T_ArrayCoerceExpr:
3103 			{
3104 				ArrayCoerceExpr *expr = (ArrayCoerceExpr *) node;
3105 				Expr	   *arg;
3106 				ArrayCoerceExpr *newexpr;
3107 
3108 				/*
3109 				 * Reduce constants in the ArrayCoerceExpr's argument, then
3110 				 * build a new ArrayCoerceExpr.
3111 				 */
3112 				arg = (Expr *) eval_const_expressions_mutator((Node *) expr->arg,
3113 															  context);
3114 
3115 				newexpr = makeNode(ArrayCoerceExpr);
3116 				newexpr->arg = arg;
3117 				newexpr->elemfuncid = expr->elemfuncid;
3118 				newexpr->resulttype = expr->resulttype;
3119 				newexpr->resulttypmod = expr->resulttypmod;
3120 				newexpr->resultcollid = expr->resultcollid;
3121 				newexpr->isExplicit = expr->isExplicit;
3122 				newexpr->coerceformat = expr->coerceformat;
3123 				newexpr->location = expr->location;
3124 
3125 				/*
3126 				 * If constant argument and it's a binary-coercible or
3127 				 * immutable conversion, we can simplify it to a constant.
3128 				 */
3129 				if (arg && IsA(arg, Const) &&
3130 					(!OidIsValid(newexpr->elemfuncid) ||
3131 					 func_volatile(newexpr->elemfuncid) == PROVOLATILE_IMMUTABLE))
3132 					return (Node *) evaluate_expr((Expr *) newexpr,
3133 												  newexpr->resulttype,
3134 												  newexpr->resulttypmod,
3135 												  newexpr->resultcollid);
3136 
3137 				/* Else we must return the partially-simplified node */
3138 				return (Node *) newexpr;
3139 			}
3140 		case T_CollateExpr:
3141 			{
3142 				/*
3143 				 * If we can simplify the input to a constant, then we don't
3144 				 * need the CollateExpr node at all: just change the
3145 				 * constcollid field of the Const node.  Otherwise, replace
3146 				 * the CollateExpr with a RelabelType. (We do that so as to
3147 				 * improve uniformity of expression representation and thus
3148 				 * simplify comparison of expressions.)
3149 				 */
3150 				CollateExpr *collate = (CollateExpr *) node;
3151 				Node	   *arg;
3152 
3153 				arg = eval_const_expressions_mutator((Node *) collate->arg,
3154 													 context);
3155 
3156 				if (arg && IsA(arg, Const))
3157 				{
3158 					Const	   *con = (Const *) arg;
3159 
3160 					con->constcollid = collate->collOid;
3161 					return (Node *) con;
3162 				}
3163 				else if (collate->collOid == exprCollation(arg))
3164 				{
3165 					/* Don't need a RelabelType either... */
3166 					return arg;
3167 				}
3168 				else
3169 				{
3170 					RelabelType *relabel = makeNode(RelabelType);
3171 
3172 					relabel->resulttype = exprType(arg);
3173 					relabel->resulttypmod = exprTypmod(arg);
3174 					relabel->resultcollid = collate->collOid;
3175 					relabel->relabelformat = COERCE_IMPLICIT_CAST;
3176 					relabel->location = collate->location;
3177 
3178 					/* Don't create stacked RelabelTypes */
3179 					while (arg && IsA(arg, RelabelType))
3180 						arg = (Node *) ((RelabelType *) arg)->arg;
3181 					relabel->arg = (Expr *) arg;
3182 
3183 					return (Node *) relabel;
3184 				}
3185 			}
3186 		case T_CaseExpr:
3187 			{
3188 				/*----------
3189 				 * CASE expressions can be simplified if there are constant
3190 				 * condition clauses:
3191 				 *		FALSE (or NULL): drop the alternative
3192 				 *		TRUE: drop all remaining alternatives
3193 				 * If the first non-FALSE alternative is a constant TRUE,
3194 				 * we can simplify the entire CASE to that alternative's
3195 				 * expression.  If there are no non-FALSE alternatives,
3196 				 * we simplify the entire CASE to the default result (ELSE).
3197 				 *
3198 				 * If we have a simple-form CASE with constant test
3199 				 * expression, we substitute the constant value for contained
3200 				 * CaseTestExpr placeholder nodes, so that we have the
3201 				 * opportunity to reduce constant test conditions.  For
3202 				 * example this allows
3203 				 *		CASE 0 WHEN 0 THEN 1 ELSE 1/0 END
3204 				 * to reduce to 1 rather than drawing a divide-by-0 error.
3205 				 * Note that when the test expression is constant, we don't
3206 				 * have to include it in the resulting CASE; for example
3207 				 *		CASE 0 WHEN x THEN y ELSE z END
3208 				 * is transformed by the parser to
3209 				 *		CASE 0 WHEN CaseTestExpr = x THEN y ELSE z END
3210 				 * which we can simplify to
3211 				 *		CASE WHEN 0 = x THEN y ELSE z END
3212 				 * It is not necessary for the executor to evaluate the "arg"
3213 				 * expression when executing the CASE, since any contained
3214 				 * CaseTestExprs that might have referred to it will have been
3215 				 * replaced by the constant.
3216 				 *----------
3217 				 */
3218 				CaseExpr   *caseexpr = (CaseExpr *) node;
3219 				CaseExpr   *newcase;
3220 				Node	   *save_case_val;
3221 				Node	   *newarg;
3222 				List	   *newargs;
3223 				bool		const_true_cond;
3224 				Node	   *defresult = NULL;
3225 				ListCell   *arg;
3226 
3227 				/* Simplify the test expression, if any */
3228 				newarg = eval_const_expressions_mutator((Node *) caseexpr->arg,
3229 														context);
3230 
3231 				/* Set up for contained CaseTestExpr nodes */
3232 				save_case_val = context->case_val;
3233 				if (newarg && IsA(newarg, Const))
3234 				{
3235 					context->case_val = newarg;
3236 					newarg = NULL;	/* not needed anymore, see above */
3237 				}
3238 				else
3239 					context->case_val = NULL;
3240 
3241 				/* Simplify the WHEN clauses */
3242 				newargs = NIL;
3243 				const_true_cond = false;
3244 				foreach(arg, caseexpr->args)
3245 				{
3246 					CaseWhen   *oldcasewhen = lfirst_node(CaseWhen, arg);
3247 					Node	   *casecond;
3248 					Node	   *caseresult;
3249 
3250 					/* Simplify this alternative's test condition */
3251 					casecond = eval_const_expressions_mutator((Node *) oldcasewhen->expr,
3252 															  context);
3253 
3254 					/*
3255 					 * If the test condition is constant FALSE (or NULL), then
3256 					 * drop this WHEN clause completely, without processing
3257 					 * the result.
3258 					 */
3259 					if (casecond && IsA(casecond, Const))
3260 					{
3261 						Const	   *const_input = (Const *) casecond;
3262 
3263 						if (const_input->constisnull ||
3264 							!DatumGetBool(const_input->constvalue))
3265 							continue;	/* drop alternative with FALSE cond */
3266 						/* Else it's constant TRUE */
3267 						const_true_cond = true;
3268 					}
3269 
3270 					/* Simplify this alternative's result value */
3271 					caseresult = eval_const_expressions_mutator((Node *) oldcasewhen->result,
3272 																context);
3273 
3274 					/* If non-constant test condition, emit a new WHEN node */
3275 					if (!const_true_cond)
3276 					{
3277 						CaseWhen   *newcasewhen = makeNode(CaseWhen);
3278 
3279 						newcasewhen->expr = (Expr *) casecond;
3280 						newcasewhen->result = (Expr *) caseresult;
3281 						newcasewhen->location = oldcasewhen->location;
3282 						newargs = lappend(newargs, newcasewhen);
3283 						continue;
3284 					}
3285 
3286 					/*
3287 					 * Found a TRUE condition, so none of the remaining
3288 					 * alternatives can be reached.  We treat the result as
3289 					 * the default result.
3290 					 */
3291 					defresult = caseresult;
3292 					break;
3293 				}
3294 
3295 				/* Simplify the default result, unless we replaced it above */
3296 				if (!const_true_cond)
3297 					defresult = eval_const_expressions_mutator((Node *) caseexpr->defresult,
3298 															   context);
3299 
3300 				context->case_val = save_case_val;
3301 
3302 				/*
3303 				 * If no non-FALSE alternatives, CASE reduces to the default
3304 				 * result
3305 				 */
3306 				if (newargs == NIL)
3307 					return defresult;
3308 				/* Otherwise we need a new CASE node */
3309 				newcase = makeNode(CaseExpr);
3310 				newcase->casetype = caseexpr->casetype;
3311 				newcase->casecollid = caseexpr->casecollid;
3312 				newcase->arg = (Expr *) newarg;
3313 				newcase->args = newargs;
3314 				newcase->defresult = (Expr *) defresult;
3315 				newcase->location = caseexpr->location;
3316 				return (Node *) newcase;
3317 			}
3318 		case T_CaseTestExpr:
3319 			{
3320 				/*
3321 				 * If we know a constant test value for the current CASE
3322 				 * construct, substitute it for the placeholder.  Else just
3323 				 * return the placeholder as-is.
3324 				 */
3325 				if (context->case_val)
3326 					return copyObject(context->case_val);
3327 				else
3328 					return copyObject(node);
3329 			}
3330 		case T_ArrayExpr:
3331 			{
3332 				ArrayExpr  *arrayexpr = (ArrayExpr *) node;
3333 				ArrayExpr  *newarray;
3334 				bool		all_const = true;
3335 				List	   *newelems;
3336 				ListCell   *element;
3337 
3338 				newelems = NIL;
3339 				foreach(element, arrayexpr->elements)
3340 				{
3341 					Node	   *e;
3342 
3343 					e = eval_const_expressions_mutator((Node *) lfirst(element),
3344 													   context);
3345 					if (!IsA(e, Const))
3346 						all_const = false;
3347 					newelems = lappend(newelems, e);
3348 				}
3349 
3350 				newarray = makeNode(ArrayExpr);
3351 				newarray->array_typeid = arrayexpr->array_typeid;
3352 				newarray->array_collid = arrayexpr->array_collid;
3353 				newarray->element_typeid = arrayexpr->element_typeid;
3354 				newarray->elements = newelems;
3355 				newarray->multidims = arrayexpr->multidims;
3356 				newarray->location = arrayexpr->location;
3357 
3358 				if (all_const)
3359 					return (Node *) evaluate_expr((Expr *) newarray,
3360 												  newarray->array_typeid,
3361 												  exprTypmod(node),
3362 												  newarray->array_collid);
3363 
3364 				return (Node *) newarray;
3365 			}
3366 		case T_CoalesceExpr:
3367 			{
3368 				CoalesceExpr *coalesceexpr = (CoalesceExpr *) node;
3369 				CoalesceExpr *newcoalesce;
3370 				List	   *newargs;
3371 				ListCell   *arg;
3372 
3373 				newargs = NIL;
3374 				foreach(arg, coalesceexpr->args)
3375 				{
3376 					Node	   *e;
3377 
3378 					e = eval_const_expressions_mutator((Node *) lfirst(arg),
3379 													   context);
3380 
3381 					/*
3382 					 * We can remove null constants from the list. For a
3383 					 * non-null constant, if it has not been preceded by any
3384 					 * other non-null-constant expressions then it is the
3385 					 * result. Otherwise, it's the next argument, but we can
3386 					 * drop following arguments since they will never be
3387 					 * reached.
3388 					 */
3389 					if (IsA(e, Const))
3390 					{
3391 						if (((Const *) e)->constisnull)
3392 							continue;	/* drop null constant */
3393 						if (newargs == NIL)
3394 							return e;	/* first expr */
3395 						newargs = lappend(newargs, e);
3396 						break;
3397 					}
3398 					newargs = lappend(newargs, e);
3399 				}
3400 
3401 				/*
3402 				 * If all the arguments were constant null, the result is just
3403 				 * null
3404 				 */
3405 				if (newargs == NIL)
3406 					return (Node *) makeNullConst(coalesceexpr->coalescetype,
3407 												  -1,
3408 												  coalesceexpr->coalescecollid);
3409 
3410 				newcoalesce = makeNode(CoalesceExpr);
3411 				newcoalesce->coalescetype = coalesceexpr->coalescetype;
3412 				newcoalesce->coalescecollid = coalesceexpr->coalescecollid;
3413 				newcoalesce->args = newargs;
3414 				newcoalesce->location = coalesceexpr->location;
3415 				return (Node *) newcoalesce;
3416 			}
3417 		case T_SQLValueFunction:
3418 			{
3419 				/*
3420 				 * All variants of SQLValueFunction are stable, so if we are
3421 				 * estimating the expression's value, we should evaluate the
3422 				 * current function value.  Otherwise just copy.
3423 				 */
3424 				SQLValueFunction *svf = (SQLValueFunction *) node;
3425 
3426 				if (context->estimate)
3427 					return (Node *) evaluate_expr((Expr *) svf,
3428 												  svf->type,
3429 												  svf->typmod,
3430 												  InvalidOid);
3431 				else
3432 					return copyObject((Node *) svf);
3433 			}
3434 		case T_FieldSelect:
3435 			{
3436 				/*
3437 				 * We can optimize field selection from a whole-row Var into a
3438 				 * simple Var.  (This case won't be generated directly by the
3439 				 * parser, because ParseComplexProjection short-circuits it.
3440 				 * But it can arise while simplifying functions.)  Also, we
3441 				 * can optimize field selection from a RowExpr construct.
3442 				 *
3443 				 * However, replacing a whole-row Var in this way has a
3444 				 * pitfall: if we've already built the rel targetlist for the
3445 				 * source relation, then the whole-row Var is scheduled to be
3446 				 * produced by the relation scan, but the simple Var probably
3447 				 * isn't, which will lead to a failure in setrefs.c.  This is
3448 				 * not a problem when handling simple single-level queries, in
3449 				 * which expression simplification always happens first.  It
3450 				 * is a risk for lateral references from subqueries, though.
3451 				 * To avoid such failures, don't optimize uplevel references.
3452 				 *
3453 				 * We must also check that the declared type of the field is
3454 				 * still the same as when the FieldSelect was created --- this
3455 				 * can change if someone did ALTER COLUMN TYPE on the rowtype.
3456 				 */
3457 				FieldSelect *fselect = (FieldSelect *) node;
3458 				FieldSelect *newfselect;
3459 				Node	   *arg;
3460 
3461 				arg = eval_const_expressions_mutator((Node *) fselect->arg,
3462 													 context);
3463 				if (arg && IsA(arg, Var) &&
3464 					((Var *) arg)->varattno == InvalidAttrNumber &&
3465 					((Var *) arg)->varlevelsup == 0)
3466 				{
3467 					if (rowtype_field_matches(((Var *) arg)->vartype,
3468 											  fselect->fieldnum,
3469 											  fselect->resulttype,
3470 											  fselect->resulttypmod,
3471 											  fselect->resultcollid))
3472 						return (Node *) makeVar(((Var *) arg)->varno,
3473 												fselect->fieldnum,
3474 												fselect->resulttype,
3475 												fselect->resulttypmod,
3476 												fselect->resultcollid,
3477 												((Var *) arg)->varlevelsup);
3478 				}
3479 				if (arg && IsA(arg, RowExpr))
3480 				{
3481 					RowExpr    *rowexpr = (RowExpr *) arg;
3482 
3483 					if (fselect->fieldnum > 0 &&
3484 						fselect->fieldnum <= list_length(rowexpr->args))
3485 					{
3486 						Node	   *fld = (Node *) list_nth(rowexpr->args,
3487 															fselect->fieldnum - 1);
3488 
3489 						if (rowtype_field_matches(rowexpr->row_typeid,
3490 												  fselect->fieldnum,
3491 												  fselect->resulttype,
3492 												  fselect->resulttypmod,
3493 												  fselect->resultcollid) &&
3494 							fselect->resulttype == exprType(fld) &&
3495 							fselect->resulttypmod == exprTypmod(fld) &&
3496 							fselect->resultcollid == exprCollation(fld))
3497 							return fld;
3498 					}
3499 				}
3500 				newfselect = makeNode(FieldSelect);
3501 				newfselect->arg = (Expr *) arg;
3502 				newfselect->fieldnum = fselect->fieldnum;
3503 				newfselect->resulttype = fselect->resulttype;
3504 				newfselect->resulttypmod = fselect->resulttypmod;
3505 				newfselect->resultcollid = fselect->resultcollid;
3506 				return (Node *) newfselect;
3507 			}
3508 		case T_NullTest:
3509 			{
3510 				NullTest   *ntest = (NullTest *) node;
3511 				NullTest   *newntest;
3512 				Node	   *arg;
3513 
3514 				arg = eval_const_expressions_mutator((Node *) ntest->arg,
3515 													 context);
3516 				if (ntest->argisrow && arg && IsA(arg, RowExpr))
3517 				{
3518 					/*
3519 					 * We break ROW(...) IS [NOT] NULL into separate tests on
3520 					 * its component fields.  This form is usually more
3521 					 * efficient to evaluate, as well as being more amenable
3522 					 * to optimization.
3523 					 */
3524 					RowExpr    *rarg = (RowExpr *) arg;
3525 					List	   *newargs = NIL;
3526 					ListCell   *l;
3527 
3528 					foreach(l, rarg->args)
3529 					{
3530 						Node	   *relem = (Node *) lfirst(l);
3531 
3532 						/*
3533 						 * A constant field refutes the whole NullTest if it's
3534 						 * of the wrong nullness; else we can discard it.
3535 						 */
3536 						if (relem && IsA(relem, Const))
3537 						{
3538 							Const	   *carg = (Const *) relem;
3539 
3540 							if (carg->constisnull ?
3541 								(ntest->nulltesttype == IS_NOT_NULL) :
3542 								(ntest->nulltesttype == IS_NULL))
3543 								return makeBoolConst(false, false);
3544 							continue;
3545 						}
3546 
3547 						/*
3548 						 * Else, make a scalar (argisrow == false) NullTest
3549 						 * for this field.  Scalar semantics are required
3550 						 * because IS [NOT] NULL doesn't recurse; see comments
3551 						 * in ExecEvalRowNullInt().
3552 						 */
3553 						newntest = makeNode(NullTest);
3554 						newntest->arg = (Expr *) relem;
3555 						newntest->nulltesttype = ntest->nulltesttype;
3556 						newntest->argisrow = false;
3557 						newntest->location = ntest->location;
3558 						newargs = lappend(newargs, newntest);
3559 					}
3560 					/* If all the inputs were constants, result is TRUE */
3561 					if (newargs == NIL)
3562 						return makeBoolConst(true, false);
3563 					/* If only one nonconst input, it's the result */
3564 					if (list_length(newargs) == 1)
3565 						return (Node *) linitial(newargs);
3566 					/* Else we need an AND node */
3567 					return (Node *) make_andclause(newargs);
3568 				}
3569 				if (!ntest->argisrow && arg && IsA(arg, Const))
3570 				{
3571 					Const	   *carg = (Const *) arg;
3572 					bool		result;
3573 
3574 					switch (ntest->nulltesttype)
3575 					{
3576 						case IS_NULL:
3577 							result = carg->constisnull;
3578 							break;
3579 						case IS_NOT_NULL:
3580 							result = !carg->constisnull;
3581 							break;
3582 						default:
3583 							elog(ERROR, "unrecognized nulltesttype: %d",
3584 								 (int) ntest->nulltesttype);
3585 							result = false; /* keep compiler quiet */
3586 							break;
3587 					}
3588 
3589 					return makeBoolConst(result, false);
3590 				}
3591 
3592 				newntest = makeNode(NullTest);
3593 				newntest->arg = (Expr *) arg;
3594 				newntest->nulltesttype = ntest->nulltesttype;
3595 				newntest->argisrow = ntest->argisrow;
3596 				newntest->location = ntest->location;
3597 				return (Node *) newntest;
3598 			}
3599 		case T_BooleanTest:
3600 			{
3601 				BooleanTest *btest = (BooleanTest *) node;
3602 				BooleanTest *newbtest;
3603 				Node	   *arg;
3604 
3605 				arg = eval_const_expressions_mutator((Node *) btest->arg,
3606 													 context);
3607 				if (arg && IsA(arg, Const))
3608 				{
3609 					Const	   *carg = (Const *) arg;
3610 					bool		result;
3611 
3612 					switch (btest->booltesttype)
3613 					{
3614 						case IS_TRUE:
3615 							result = (!carg->constisnull &&
3616 									  DatumGetBool(carg->constvalue));
3617 							break;
3618 						case IS_NOT_TRUE:
3619 							result = (carg->constisnull ||
3620 									  !DatumGetBool(carg->constvalue));
3621 							break;
3622 						case IS_FALSE:
3623 							result = (!carg->constisnull &&
3624 									  !DatumGetBool(carg->constvalue));
3625 							break;
3626 						case IS_NOT_FALSE:
3627 							result = (carg->constisnull ||
3628 									  DatumGetBool(carg->constvalue));
3629 							break;
3630 						case IS_UNKNOWN:
3631 							result = carg->constisnull;
3632 							break;
3633 						case IS_NOT_UNKNOWN:
3634 							result = !carg->constisnull;
3635 							break;
3636 						default:
3637 							elog(ERROR, "unrecognized booltesttype: %d",
3638 								 (int) btest->booltesttype);
3639 							result = false; /* keep compiler quiet */
3640 							break;
3641 					}
3642 
3643 					return makeBoolConst(result, false);
3644 				}
3645 
3646 				newbtest = makeNode(BooleanTest);
3647 				newbtest->arg = (Expr *) arg;
3648 				newbtest->booltesttype = btest->booltesttype;
3649 				newbtest->location = btest->location;
3650 				return (Node *) newbtest;
3651 			}
3652 		case T_PlaceHolderVar:
3653 
3654 			/*
3655 			 * In estimation mode, just strip the PlaceHolderVar node
3656 			 * altogether; this amounts to estimating that the contained value
3657 			 * won't be forced to null by an outer join.  In regular mode we
3658 			 * just use the default behavior (ie, simplify the expression but
3659 			 * leave the PlaceHolderVar node intact).
3660 			 */
3661 			if (context->estimate)
3662 			{
3663 				PlaceHolderVar *phv = (PlaceHolderVar *) node;
3664 
3665 				return eval_const_expressions_mutator((Node *) phv->phexpr,
3666 													  context);
3667 			}
3668 			break;
3669 		default:
3670 			break;
3671 	}
3672 
3673 	/*
3674 	 * For any node type not handled above, we recurse using
3675 	 * expression_tree_mutator, which will copy the node unchanged but try to
3676 	 * simplify its arguments (if any) using this routine. For example: we
3677 	 * cannot eliminate an ArrayRef node, but we might be able to simplify
3678 	 * constant expressions in its subscripts.
3679 	 */
3680 	return expression_tree_mutator(node, eval_const_expressions_mutator,
3681 								   (void *) context);
3682 }
3683 
3684 /*
3685  * Subroutine for eval_const_expressions: process arguments of an OR clause
3686  *
3687  * This includes flattening of nested ORs as well as recursion to
3688  * eval_const_expressions to simplify the OR arguments.
3689  *
3690  * After simplification, OR arguments are handled as follows:
3691  *		non constant: keep
3692  *		FALSE: drop (does not affect result)
3693  *		TRUE: force result to TRUE
3694  *		NULL: keep only one
3695  * We must keep one NULL input because OR expressions evaluate to NULL when no
3696  * input is TRUE and at least one is NULL.  We don't actually include the NULL
3697  * here, that's supposed to be done by the caller.
3698  *
3699  * The output arguments *haveNull and *forceTrue must be initialized FALSE
3700  * by the caller.  They will be set TRUE if a null constant or true constant,
3701  * respectively, is detected anywhere in the argument list.
3702  */
3703 static List *
simplify_or_arguments(List * args,eval_const_expressions_context * context,bool * haveNull,bool * forceTrue)3704 simplify_or_arguments(List *args,
3705 					  eval_const_expressions_context *context,
3706 					  bool *haveNull, bool *forceTrue)
3707 {
3708 	List	   *newargs = NIL;
3709 	List	   *unprocessed_args;
3710 
3711 	/*
3712 	 * We want to ensure that any OR immediately beneath another OR gets
3713 	 * flattened into a single OR-list, so as to simplify later reasoning.
3714 	 *
3715 	 * To avoid stack overflow from recursion of eval_const_expressions, we
3716 	 * resort to some tenseness here: we keep a list of not-yet-processed
3717 	 * inputs, and handle flattening of nested ORs by prepending to the to-do
3718 	 * list instead of recursing.  Now that the parser generates N-argument
3719 	 * ORs from simple lists, this complexity is probably less necessary than
3720 	 * it once was, but we might as well keep the logic.
3721 	 */
3722 	unprocessed_args = list_copy(args);
3723 	while (unprocessed_args)
3724 	{
3725 		Node	   *arg = (Node *) linitial(unprocessed_args);
3726 
3727 		unprocessed_args = list_delete_first(unprocessed_args);
3728 
3729 		/* flatten nested ORs as per above comment */
3730 		if (or_clause(arg))
3731 		{
3732 			List	   *subargs = list_copy(((BoolExpr *) arg)->args);
3733 
3734 			/* overly tense code to avoid leaking unused list header */
3735 			if (!unprocessed_args)
3736 				unprocessed_args = subargs;
3737 			else
3738 			{
3739 				List	   *oldhdr = unprocessed_args;
3740 
3741 				unprocessed_args = list_concat(subargs, unprocessed_args);
3742 				pfree(oldhdr);
3743 			}
3744 			continue;
3745 		}
3746 
3747 		/* If it's not an OR, simplify it */
3748 		arg = eval_const_expressions_mutator(arg, context);
3749 
3750 		/*
3751 		 * It is unlikely but not impossible for simplification of a non-OR
3752 		 * clause to produce an OR.  Recheck, but don't be too tense about it
3753 		 * since it's not a mainstream case. In particular we don't worry
3754 		 * about const-simplifying the input twice.
3755 		 */
3756 		if (or_clause(arg))
3757 		{
3758 			List	   *subargs = list_copy(((BoolExpr *) arg)->args);
3759 
3760 			unprocessed_args = list_concat(subargs, unprocessed_args);
3761 			continue;
3762 		}
3763 
3764 		/*
3765 		 * OK, we have a const-simplified non-OR argument.  Process it per
3766 		 * comments above.
3767 		 */
3768 		if (IsA(arg, Const))
3769 		{
3770 			Const	   *const_input = (Const *) arg;
3771 
3772 			if (const_input->constisnull)
3773 				*haveNull = true;
3774 			else if (DatumGetBool(const_input->constvalue))
3775 			{
3776 				*forceTrue = true;
3777 
3778 				/*
3779 				 * Once we detect a TRUE result we can just exit the loop
3780 				 * immediately.  However, if we ever add a notion of
3781 				 * non-removable functions, we'd need to keep scanning.
3782 				 */
3783 				return NIL;
3784 			}
3785 			/* otherwise, we can drop the constant-false input */
3786 			continue;
3787 		}
3788 
3789 		/* else emit the simplified arg into the result list */
3790 		newargs = lappend(newargs, arg);
3791 	}
3792 
3793 	return newargs;
3794 }
3795 
3796 /*
3797  * Subroutine for eval_const_expressions: process arguments of an AND clause
3798  *
3799  * This includes flattening of nested ANDs as well as recursion to
3800  * eval_const_expressions to simplify the AND arguments.
3801  *
3802  * After simplification, AND arguments are handled as follows:
3803  *		non constant: keep
3804  *		TRUE: drop (does not affect result)
3805  *		FALSE: force result to FALSE
3806  *		NULL: keep only one
3807  * We must keep one NULL input because AND expressions evaluate to NULL when
3808  * no input is FALSE and at least one is NULL.  We don't actually include the
3809  * NULL here, that's supposed to be done by the caller.
3810  *
3811  * The output arguments *haveNull and *forceFalse must be initialized FALSE
3812  * by the caller.  They will be set TRUE if a null constant or false constant,
3813  * respectively, is detected anywhere in the argument list.
3814  */
3815 static List *
simplify_and_arguments(List * args,eval_const_expressions_context * context,bool * haveNull,bool * forceFalse)3816 simplify_and_arguments(List *args,
3817 					   eval_const_expressions_context *context,
3818 					   bool *haveNull, bool *forceFalse)
3819 {
3820 	List	   *newargs = NIL;
3821 	List	   *unprocessed_args;
3822 
3823 	/* See comments in simplify_or_arguments */
3824 	unprocessed_args = list_copy(args);
3825 	while (unprocessed_args)
3826 	{
3827 		Node	   *arg = (Node *) linitial(unprocessed_args);
3828 
3829 		unprocessed_args = list_delete_first(unprocessed_args);
3830 
3831 		/* flatten nested ANDs as per above comment */
3832 		if (and_clause(arg))
3833 		{
3834 			List	   *subargs = list_copy(((BoolExpr *) arg)->args);
3835 
3836 			/* overly tense code to avoid leaking unused list header */
3837 			if (!unprocessed_args)
3838 				unprocessed_args = subargs;
3839 			else
3840 			{
3841 				List	   *oldhdr = unprocessed_args;
3842 
3843 				unprocessed_args = list_concat(subargs, unprocessed_args);
3844 				pfree(oldhdr);
3845 			}
3846 			continue;
3847 		}
3848 
3849 		/* If it's not an AND, simplify it */
3850 		arg = eval_const_expressions_mutator(arg, context);
3851 
3852 		/*
3853 		 * It is unlikely but not impossible for simplification of a non-AND
3854 		 * clause to produce an AND.  Recheck, but don't be too tense about it
3855 		 * since it's not a mainstream case. In particular we don't worry
3856 		 * about const-simplifying the input twice.
3857 		 */
3858 		if (and_clause(arg))
3859 		{
3860 			List	   *subargs = list_copy(((BoolExpr *) arg)->args);
3861 
3862 			unprocessed_args = list_concat(subargs, unprocessed_args);
3863 			continue;
3864 		}
3865 
3866 		/*
3867 		 * OK, we have a const-simplified non-AND argument.  Process it per
3868 		 * comments above.
3869 		 */
3870 		if (IsA(arg, Const))
3871 		{
3872 			Const	   *const_input = (Const *) arg;
3873 
3874 			if (const_input->constisnull)
3875 				*haveNull = true;
3876 			else if (!DatumGetBool(const_input->constvalue))
3877 			{
3878 				*forceFalse = true;
3879 
3880 				/*
3881 				 * Once we detect a FALSE result we can just exit the loop
3882 				 * immediately.  However, if we ever add a notion of
3883 				 * non-removable functions, we'd need to keep scanning.
3884 				 */
3885 				return NIL;
3886 			}
3887 			/* otherwise, we can drop the constant-true input */
3888 			continue;
3889 		}
3890 
3891 		/* else emit the simplified arg into the result list */
3892 		newargs = lappend(newargs, arg);
3893 	}
3894 
3895 	return newargs;
3896 }
3897 
3898 /*
3899  * Subroutine for eval_const_expressions: try to simplify boolean equality
3900  * or inequality condition
3901  *
3902  * Inputs are the operator OID and the simplified arguments to the operator.
3903  * Returns a simplified expression if successful, or NULL if cannot
3904  * simplify the expression.
3905  *
3906  * The idea here is to reduce "x = true" to "x" and "x = false" to "NOT x",
3907  * or similarly "x <> true" to "NOT x" and "x <> false" to "x".
3908  * This is only marginally useful in itself, but doing it in constant folding
3909  * ensures that we will recognize these forms as being equivalent in, for
3910  * example, partial index matching.
3911  *
3912  * We come here only if simplify_function has failed; therefore we cannot
3913  * see two constant inputs, nor a constant-NULL input.
3914  */
3915 static Node *
simplify_boolean_equality(Oid opno,List * args)3916 simplify_boolean_equality(Oid opno, List *args)
3917 {
3918 	Node	   *leftop;
3919 	Node	   *rightop;
3920 
3921 	Assert(list_length(args) == 2);
3922 	leftop = linitial(args);
3923 	rightop = lsecond(args);
3924 	if (leftop && IsA(leftop, Const))
3925 	{
3926 		Assert(!((Const *) leftop)->constisnull);
3927 		if (opno == BooleanEqualOperator)
3928 		{
3929 			if (DatumGetBool(((Const *) leftop)->constvalue))
3930 				return rightop; /* true = foo */
3931 			else
3932 				return negate_clause(rightop);	/* false = foo */
3933 		}
3934 		else
3935 		{
3936 			if (DatumGetBool(((Const *) leftop)->constvalue))
3937 				return negate_clause(rightop);	/* true <> foo */
3938 			else
3939 				return rightop; /* false <> foo */
3940 		}
3941 	}
3942 	if (rightop && IsA(rightop, Const))
3943 	{
3944 		Assert(!((Const *) rightop)->constisnull);
3945 		if (opno == BooleanEqualOperator)
3946 		{
3947 			if (DatumGetBool(((Const *) rightop)->constvalue))
3948 				return leftop;	/* foo = true */
3949 			else
3950 				return negate_clause(leftop);	/* foo = false */
3951 		}
3952 		else
3953 		{
3954 			if (DatumGetBool(((Const *) rightop)->constvalue))
3955 				return negate_clause(leftop);	/* foo <> true */
3956 			else
3957 				return leftop;	/* foo <> false */
3958 		}
3959 	}
3960 	return NULL;
3961 }
3962 
3963 /*
3964  * Subroutine for eval_const_expressions: try to simplify a function call
3965  * (which might originally have been an operator; we don't care)
3966  *
3967  * Inputs are the function OID, actual result type OID (which is needed for
3968  * polymorphic functions), result typmod, result collation, the input
3969  * collation to use for the function, the original argument list (not
3970  * const-simplified yet, unless process_args is false), and some flags;
3971  * also the context data for eval_const_expressions.
3972  *
3973  * Returns a simplified expression if successful, or NULL if cannot
3974  * simplify the function call.
3975  *
3976  * This function is also responsible for converting named-notation argument
3977  * lists into positional notation and/or adding any needed default argument
3978  * expressions; which is a bit grotty, but it avoids extra fetches of the
3979  * function's pg_proc tuple.  For this reason, the args list is
3980  * pass-by-reference.  Conversion and const-simplification of the args list
3981  * will be done even if simplification of the function call itself is not
3982  * possible.
3983  */
3984 static Expr *
simplify_function(Oid funcid,Oid result_type,int32 result_typmod,Oid result_collid,Oid input_collid,List ** args_p,bool funcvariadic,bool process_args,bool allow_non_const,eval_const_expressions_context * context)3985 simplify_function(Oid funcid, Oid result_type, int32 result_typmod,
3986 				  Oid result_collid, Oid input_collid, List **args_p,
3987 				  bool funcvariadic, bool process_args, bool allow_non_const,
3988 				  eval_const_expressions_context *context)
3989 {
3990 	List	   *args = *args_p;
3991 	HeapTuple	func_tuple;
3992 	Form_pg_proc func_form;
3993 	Expr	   *newexpr;
3994 
3995 	/*
3996 	 * We have three strategies for simplification: execute the function to
3997 	 * deliver a constant result, use a transform function to generate a
3998 	 * substitute node tree, or expand in-line the body of the function
3999 	 * definition (which only works for simple SQL-language functions, but
4000 	 * that is a common case).  Each case needs access to the function's
4001 	 * pg_proc tuple, so fetch it just once.
4002 	 *
4003 	 * Note: the allow_non_const flag suppresses both the second and third
4004 	 * strategies; so if !allow_non_const, simplify_function can only return a
4005 	 * Const or NULL.  Argument-list rewriting happens anyway, though.
4006 	 */
4007 	func_tuple = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
4008 	if (!HeapTupleIsValid(func_tuple))
4009 		elog(ERROR, "cache lookup failed for function %u", funcid);
4010 	func_form = (Form_pg_proc) GETSTRUCT(func_tuple);
4011 
4012 	/*
4013 	 * Process the function arguments, unless the caller did it already.
4014 	 *
4015 	 * Here we must deal with named or defaulted arguments, and then
4016 	 * recursively apply eval_const_expressions to the whole argument list.
4017 	 */
4018 	if (process_args)
4019 	{
4020 		args = expand_function_arguments(args, result_type, func_tuple);
4021 		args = (List *) expression_tree_mutator((Node *) args,
4022 												eval_const_expressions_mutator,
4023 												(void *) context);
4024 		/* Argument processing done, give it back to the caller */
4025 		*args_p = args;
4026 	}
4027 
4028 	/* Now attempt simplification of the function call proper. */
4029 
4030 	newexpr = evaluate_function(funcid, result_type, result_typmod,
4031 								result_collid, input_collid,
4032 								args, funcvariadic,
4033 								func_tuple, context);
4034 
4035 	if (!newexpr && allow_non_const && OidIsValid(func_form->protransform))
4036 	{
4037 		/*
4038 		 * Build a dummy FuncExpr node containing the simplified arg list.  We
4039 		 * use this approach to present a uniform interface to the transform
4040 		 * function regardless of how the function is actually being invoked.
4041 		 */
4042 		FuncExpr	fexpr;
4043 
4044 		fexpr.xpr.type = T_FuncExpr;
4045 		fexpr.funcid = funcid;
4046 		fexpr.funcresulttype = result_type;
4047 		fexpr.funcretset = func_form->proretset;
4048 		fexpr.funcvariadic = funcvariadic;
4049 		fexpr.funcformat = COERCE_EXPLICIT_CALL;
4050 		fexpr.funccollid = result_collid;
4051 		fexpr.inputcollid = input_collid;
4052 		fexpr.args = args;
4053 		fexpr.location = -1;
4054 
4055 		newexpr = (Expr *)
4056 			DatumGetPointer(OidFunctionCall1(func_form->protransform,
4057 											 PointerGetDatum(&fexpr)));
4058 	}
4059 
4060 	if (!newexpr && allow_non_const)
4061 		newexpr = inline_function(funcid, result_type, result_collid,
4062 								  input_collid, args, funcvariadic,
4063 								  func_tuple, context);
4064 
4065 	ReleaseSysCache(func_tuple);
4066 
4067 	return newexpr;
4068 }
4069 
4070 /*
4071  * expand_function_arguments: convert named-notation args to positional args
4072  * and/or insert default args, as needed
4073  *
4074  * If we need to change anything, the input argument list is copied, not
4075  * modified.
4076  *
4077  * Note: this gets applied to operator argument lists too, even though the
4078  * cases it handles should never occur there.  This should be OK since it
4079  * will fall through very quickly if there's nothing to do.
4080  */
4081 static List *
expand_function_arguments(List * args,Oid result_type,HeapTuple func_tuple)4082 expand_function_arguments(List *args, Oid result_type, HeapTuple func_tuple)
4083 {
4084 	Form_pg_proc funcform = (Form_pg_proc) GETSTRUCT(func_tuple);
4085 	bool		has_named_args = false;
4086 	ListCell   *lc;
4087 
4088 	/* Do we have any named arguments? */
4089 	foreach(lc, args)
4090 	{
4091 		Node	   *arg = (Node *) lfirst(lc);
4092 
4093 		if (IsA(arg, NamedArgExpr))
4094 		{
4095 			has_named_args = true;
4096 			break;
4097 		}
4098 	}
4099 
4100 	/* If so, we must apply reorder_function_arguments */
4101 	if (has_named_args)
4102 	{
4103 		args = reorder_function_arguments(args, func_tuple);
4104 		/* Recheck argument types and add casts if needed */
4105 		recheck_cast_function_args(args, result_type, func_tuple);
4106 	}
4107 	else if (list_length(args) < funcform->pronargs)
4108 	{
4109 		/* No named args, but we seem to be short some defaults */
4110 		args = add_function_defaults(args, func_tuple);
4111 		/* Recheck argument types and add casts if needed */
4112 		recheck_cast_function_args(args, result_type, func_tuple);
4113 	}
4114 
4115 	return args;
4116 }
4117 
4118 /*
4119  * reorder_function_arguments: convert named-notation args to positional args
4120  *
4121  * This function also inserts default argument values as needed, since it's
4122  * impossible to form a truly valid positional call without that.
4123  */
4124 static List *
reorder_function_arguments(List * args,HeapTuple func_tuple)4125 reorder_function_arguments(List *args, HeapTuple func_tuple)
4126 {
4127 	Form_pg_proc funcform = (Form_pg_proc) GETSTRUCT(func_tuple);
4128 	int			pronargs = funcform->pronargs;
4129 	int			nargsprovided = list_length(args);
4130 	Node	   *argarray[FUNC_MAX_ARGS];
4131 	ListCell   *lc;
4132 	int			i;
4133 
4134 	Assert(nargsprovided <= pronargs);
4135 	if (pronargs < 0 || pronargs > FUNC_MAX_ARGS)
4136 		elog(ERROR, "too many function arguments");
4137 	memset(argarray, 0, pronargs * sizeof(Node *));
4138 
4139 	/* Deconstruct the argument list into an array indexed by argnumber */
4140 	i = 0;
4141 	foreach(lc, args)
4142 	{
4143 		Node	   *arg = (Node *) lfirst(lc);
4144 
4145 		if (!IsA(arg, NamedArgExpr))
4146 		{
4147 			/* positional argument, assumed to precede all named args */
4148 			Assert(argarray[i] == NULL);
4149 			argarray[i++] = arg;
4150 		}
4151 		else
4152 		{
4153 			NamedArgExpr *na = (NamedArgExpr *) arg;
4154 
4155 			Assert(argarray[na->argnumber] == NULL);
4156 			argarray[na->argnumber] = (Node *) na->arg;
4157 		}
4158 	}
4159 
4160 	/*
4161 	 * Fetch default expressions, if needed, and insert into array at proper
4162 	 * locations (they aren't necessarily consecutive or all used)
4163 	 */
4164 	if (nargsprovided < pronargs)
4165 	{
4166 		List	   *defaults = fetch_function_defaults(func_tuple);
4167 
4168 		i = pronargs - funcform->pronargdefaults;
4169 		foreach(lc, defaults)
4170 		{
4171 			if (argarray[i] == NULL)
4172 				argarray[i] = (Node *) lfirst(lc);
4173 			i++;
4174 		}
4175 	}
4176 
4177 	/* Now reconstruct the args list in proper order */
4178 	args = NIL;
4179 	for (i = 0; i < pronargs; i++)
4180 	{
4181 		Assert(argarray[i] != NULL);
4182 		args = lappend(args, argarray[i]);
4183 	}
4184 
4185 	return args;
4186 }
4187 
4188 /*
4189  * add_function_defaults: add missing function arguments from its defaults
4190  *
4191  * This is used only when the argument list was positional to begin with,
4192  * and so we know we just need to add defaults at the end.
4193  */
4194 static List *
add_function_defaults(List * args,HeapTuple func_tuple)4195 add_function_defaults(List *args, HeapTuple func_tuple)
4196 {
4197 	Form_pg_proc funcform = (Form_pg_proc) GETSTRUCT(func_tuple);
4198 	int			nargsprovided = list_length(args);
4199 	List	   *defaults;
4200 	int			ndelete;
4201 
4202 	/* Get all the default expressions from the pg_proc tuple */
4203 	defaults = fetch_function_defaults(func_tuple);
4204 
4205 	/* Delete any unused defaults from the list */
4206 	ndelete = nargsprovided + list_length(defaults) - funcform->pronargs;
4207 	if (ndelete < 0)
4208 		elog(ERROR, "not enough default arguments");
4209 	while (ndelete-- > 0)
4210 		defaults = list_delete_first(defaults);
4211 
4212 	/* And form the combined argument list, not modifying the input list */
4213 	return list_concat(list_copy(args), defaults);
4214 }
4215 
4216 /*
4217  * fetch_function_defaults: get function's default arguments as expression list
4218  */
4219 static List *
fetch_function_defaults(HeapTuple func_tuple)4220 fetch_function_defaults(HeapTuple func_tuple)
4221 {
4222 	List	   *defaults;
4223 	Datum		proargdefaults;
4224 	bool		isnull;
4225 	char	   *str;
4226 
4227 	/* The error cases here shouldn't happen, but check anyway */
4228 	proargdefaults = SysCacheGetAttr(PROCOID, func_tuple,
4229 									 Anum_pg_proc_proargdefaults,
4230 									 &isnull);
4231 	if (isnull)
4232 		elog(ERROR, "not enough default arguments");
4233 	str = TextDatumGetCString(proargdefaults);
4234 	defaults = castNode(List, stringToNode(str));
4235 	pfree(str);
4236 	return defaults;
4237 }
4238 
4239 /*
4240  * recheck_cast_function_args: recheck function args and typecast as needed
4241  * after adding defaults.
4242  *
4243  * It is possible for some of the defaulted arguments to be polymorphic;
4244  * therefore we can't assume that the default expressions have the correct
4245  * data types already.  We have to re-resolve polymorphics and do coercion
4246  * just like the parser did.
4247  *
4248  * This should be a no-op if there are no polymorphic arguments,
4249  * but we do it anyway to be sure.
4250  *
4251  * Note: if any casts are needed, the args list is modified in-place;
4252  * caller should have already copied the list structure.
4253  */
4254 static void
recheck_cast_function_args(List * args,Oid result_type,HeapTuple func_tuple)4255 recheck_cast_function_args(List *args, Oid result_type, HeapTuple func_tuple)
4256 {
4257 	Form_pg_proc funcform = (Form_pg_proc) GETSTRUCT(func_tuple);
4258 	int			nargs;
4259 	Oid			actual_arg_types[FUNC_MAX_ARGS];
4260 	Oid			declared_arg_types[FUNC_MAX_ARGS];
4261 	Oid			rettype;
4262 	ListCell   *lc;
4263 
4264 	if (list_length(args) > FUNC_MAX_ARGS)
4265 		elog(ERROR, "too many function arguments");
4266 	nargs = 0;
4267 	foreach(lc, args)
4268 	{
4269 		actual_arg_types[nargs++] = exprType((Node *) lfirst(lc));
4270 	}
4271 	Assert(nargs == funcform->pronargs);
4272 	memcpy(declared_arg_types, funcform->proargtypes.values,
4273 		   funcform->pronargs * sizeof(Oid));
4274 	rettype = enforce_generic_type_consistency(actual_arg_types,
4275 											   declared_arg_types,
4276 											   nargs,
4277 											   funcform->prorettype,
4278 											   false);
4279 	/* let's just check we got the same answer as the parser did ... */
4280 	if (rettype != result_type)
4281 		elog(ERROR, "function's resolved result type changed during planning");
4282 
4283 	/* perform any necessary typecasting of arguments */
4284 	make_fn_arguments(NULL, args, actual_arg_types, declared_arg_types);
4285 }
4286 
4287 /*
4288  * evaluate_function: try to pre-evaluate a function call
4289  *
4290  * We can do this if the function is strict and has any constant-null inputs
4291  * (just return a null constant), or if the function is immutable and has all
4292  * constant inputs (call it and return the result as a Const node).  In
4293  * estimation mode we are willing to pre-evaluate stable functions too.
4294  *
4295  * Returns a simplified expression if successful, or NULL if cannot
4296  * simplify the function.
4297  */
4298 static Expr *
evaluate_function(Oid funcid,Oid result_type,int32 result_typmod,Oid result_collid,Oid input_collid,List * args,bool funcvariadic,HeapTuple func_tuple,eval_const_expressions_context * context)4299 evaluate_function(Oid funcid, Oid result_type, int32 result_typmod,
4300 				  Oid result_collid, Oid input_collid, List *args,
4301 				  bool funcvariadic,
4302 				  HeapTuple func_tuple,
4303 				  eval_const_expressions_context *context)
4304 {
4305 	Form_pg_proc funcform = (Form_pg_proc) GETSTRUCT(func_tuple);
4306 	bool		has_nonconst_input = false;
4307 	bool		has_null_input = false;
4308 	ListCell   *arg;
4309 	FuncExpr   *newexpr;
4310 
4311 	/*
4312 	 * Can't simplify if it returns a set.
4313 	 */
4314 	if (funcform->proretset)
4315 		return NULL;
4316 
4317 	/*
4318 	 * Can't simplify if it returns RECORD.  The immediate problem is that it
4319 	 * will be needing an expected tupdesc which we can't supply here.
4320 	 *
4321 	 * In the case where it has OUT parameters, it could get by without an
4322 	 * expected tupdesc, but we still have issues: get_expr_result_type()
4323 	 * doesn't know how to extract type info from a RECORD constant, and in
4324 	 * the case of a NULL function result there doesn't seem to be any clean
4325 	 * way to fix that.  In view of the likelihood of there being still other
4326 	 * gotchas, seems best to leave the function call unreduced.
4327 	 */
4328 	if (funcform->prorettype == RECORDOID)
4329 		return NULL;
4330 
4331 	/*
4332 	 * Check for constant inputs and especially constant-NULL inputs.
4333 	 */
4334 	foreach(arg, args)
4335 	{
4336 		if (IsA(lfirst(arg), Const))
4337 			has_null_input |= ((Const *) lfirst(arg))->constisnull;
4338 		else
4339 			has_nonconst_input = true;
4340 	}
4341 
4342 	/*
4343 	 * If the function is strict and has a constant-NULL input, it will never
4344 	 * be called at all, so we can replace the call by a NULL constant, even
4345 	 * if there are other inputs that aren't constant, and even if the
4346 	 * function is not otherwise immutable.
4347 	 */
4348 	if (funcform->proisstrict && has_null_input)
4349 		return (Expr *) makeNullConst(result_type, result_typmod,
4350 									  result_collid);
4351 
4352 	/*
4353 	 * Otherwise, can simplify only if all inputs are constants. (For a
4354 	 * non-strict function, constant NULL inputs are treated the same as
4355 	 * constant non-NULL inputs.)
4356 	 */
4357 	if (has_nonconst_input)
4358 		return NULL;
4359 
4360 	/*
4361 	 * Ordinarily we are only allowed to simplify immutable functions. But for
4362 	 * purposes of estimation, we consider it okay to simplify functions that
4363 	 * are merely stable; the risk that the result might change from planning
4364 	 * time to execution time is worth taking in preference to not being able
4365 	 * to estimate the value at all.
4366 	 */
4367 	if (funcform->provolatile == PROVOLATILE_IMMUTABLE)
4368 		 /* okay */ ;
4369 	else if (context->estimate && funcform->provolatile == PROVOLATILE_STABLE)
4370 		 /* okay */ ;
4371 	else
4372 		return NULL;
4373 
4374 	/*
4375 	 * OK, looks like we can simplify this operator/function.
4376 	 *
4377 	 * Build a new FuncExpr node containing the already-simplified arguments.
4378 	 */
4379 	newexpr = makeNode(FuncExpr);
4380 	newexpr->funcid = funcid;
4381 	newexpr->funcresulttype = result_type;
4382 	newexpr->funcretset = false;
4383 	newexpr->funcvariadic = funcvariadic;
4384 	newexpr->funcformat = COERCE_EXPLICIT_CALL; /* doesn't matter */
4385 	newexpr->funccollid = result_collid;	/* doesn't matter */
4386 	newexpr->inputcollid = input_collid;
4387 	newexpr->args = args;
4388 	newexpr->location = -1;
4389 
4390 	return evaluate_expr((Expr *) newexpr, result_type, result_typmod,
4391 						 result_collid);
4392 }
4393 
4394 /*
4395  * inline_function: try to expand a function call inline
4396  *
4397  * If the function is a sufficiently simple SQL-language function
4398  * (just "SELECT expression"), then we can inline it and avoid the rather
4399  * high per-call overhead of SQL functions.  Furthermore, this can expose
4400  * opportunities for constant-folding within the function expression.
4401  *
4402  * We have to beware of some special cases however.  A directly or
4403  * indirectly recursive function would cause us to recurse forever,
4404  * so we keep track of which functions we are already expanding and
4405  * do not re-expand them.  Also, if a parameter is used more than once
4406  * in the SQL-function body, we require it not to contain any volatile
4407  * functions (volatiles might deliver inconsistent answers) nor to be
4408  * unreasonably expensive to evaluate.  The expensiveness check not only
4409  * prevents us from doing multiple evaluations of an expensive parameter
4410  * at runtime, but is a safety value to limit growth of an expression due
4411  * to repeated inlining.
4412  *
4413  * We must also beware of changing the volatility or strictness status of
4414  * functions by inlining them.
4415  *
4416  * Also, at the moment we can't inline functions returning RECORD.  This
4417  * doesn't work in the general case because it discards information such
4418  * as OUT-parameter declarations.
4419  *
4420  * Also, context-dependent expression nodes in the argument list are trouble.
4421  *
4422  * Returns a simplified expression if successful, or NULL if cannot
4423  * simplify the function.
4424  */
4425 static Expr *
inline_function(Oid funcid,Oid result_type,Oid result_collid,Oid input_collid,List * args,bool funcvariadic,HeapTuple func_tuple,eval_const_expressions_context * context)4426 inline_function(Oid funcid, Oid result_type, Oid result_collid,
4427 				Oid input_collid, List *args,
4428 				bool funcvariadic,
4429 				HeapTuple func_tuple,
4430 				eval_const_expressions_context *context)
4431 {
4432 	Form_pg_proc funcform = (Form_pg_proc) GETSTRUCT(func_tuple);
4433 	char	   *src;
4434 	Datum		tmp;
4435 	bool		isNull;
4436 	bool		modifyTargetList;
4437 	MemoryContext oldcxt;
4438 	MemoryContext mycxt;
4439 	inline_error_callback_arg callback_arg;
4440 	ErrorContextCallback sqlerrcontext;
4441 	FuncExpr   *fexpr;
4442 	SQLFunctionParseInfoPtr pinfo;
4443 	ParseState *pstate;
4444 	List	   *raw_parsetree_list;
4445 	Query	   *querytree;
4446 	Node	   *newexpr;
4447 	int		   *usecounts;
4448 	ListCell   *arg;
4449 	int			i;
4450 
4451 	/*
4452 	 * Forget it if the function is not SQL-language or has other showstopper
4453 	 * properties.  (The nargs check is just paranoia.)
4454 	 */
4455 	if (funcform->prolang != SQLlanguageId ||
4456 		funcform->prosecdef ||
4457 		funcform->proretset ||
4458 		funcform->prorettype == RECORDOID ||
4459 		!heap_attisnull(func_tuple, Anum_pg_proc_proconfig) ||
4460 		funcform->pronargs != list_length(args))
4461 		return NULL;
4462 
4463 	/* Check for recursive function, and give up trying to expand if so */
4464 	if (list_member_oid(context->active_fns, funcid))
4465 		return NULL;
4466 
4467 	/* Check permission to call function (fail later, if not) */
4468 	if (pg_proc_aclcheck(funcid, GetUserId(), ACL_EXECUTE) != ACLCHECK_OK)
4469 		return NULL;
4470 
4471 	/* Check whether a plugin wants to hook function entry/exit */
4472 	if (FmgrHookIsNeeded(funcid))
4473 		return NULL;
4474 
4475 	/*
4476 	 * Make a temporary memory context, so that we don't leak all the stuff
4477 	 * that parsing might create.
4478 	 */
4479 	mycxt = AllocSetContextCreate(CurrentMemoryContext,
4480 								  "inline_function",
4481 								  ALLOCSET_DEFAULT_SIZES);
4482 	oldcxt = MemoryContextSwitchTo(mycxt);
4483 
4484 	/* Fetch the function body */
4485 	tmp = SysCacheGetAttr(PROCOID,
4486 						  func_tuple,
4487 						  Anum_pg_proc_prosrc,
4488 						  &isNull);
4489 	if (isNull)
4490 		elog(ERROR, "null prosrc for function %u", funcid);
4491 	src = TextDatumGetCString(tmp);
4492 
4493 	/*
4494 	 * Setup error traceback support for ereport().  This is so that we can
4495 	 * finger the function that bad information came from.
4496 	 */
4497 	callback_arg.proname = NameStr(funcform->proname);
4498 	callback_arg.prosrc = src;
4499 
4500 	sqlerrcontext.callback = sql_inline_error_callback;
4501 	sqlerrcontext.arg = (void *) &callback_arg;
4502 	sqlerrcontext.previous = error_context_stack;
4503 	error_context_stack = &sqlerrcontext;
4504 
4505 	/*
4506 	 * Set up to handle parameters while parsing the function body.  We need a
4507 	 * dummy FuncExpr node containing the already-simplified arguments to pass
4508 	 * to prepare_sql_fn_parse_info.  (It is really only needed if there are
4509 	 * some polymorphic arguments, but for simplicity we always build it.)
4510 	 */
4511 	fexpr = makeNode(FuncExpr);
4512 	fexpr->funcid = funcid;
4513 	fexpr->funcresulttype = result_type;
4514 	fexpr->funcretset = false;
4515 	fexpr->funcvariadic = funcvariadic;
4516 	fexpr->funcformat = COERCE_EXPLICIT_CALL;	/* doesn't matter */
4517 	fexpr->funccollid = result_collid;	/* doesn't matter */
4518 	fexpr->inputcollid = input_collid;
4519 	fexpr->args = args;
4520 	fexpr->location = -1;
4521 
4522 	pinfo = prepare_sql_fn_parse_info(func_tuple,
4523 									  (Node *) fexpr,
4524 									  input_collid);
4525 
4526 	/*
4527 	 * We just do parsing and parse analysis, not rewriting, because rewriting
4528 	 * will not affect table-free-SELECT-only queries, which is all that we
4529 	 * care about.  Also, we can punt as soon as we detect more than one
4530 	 * command in the function body.
4531 	 */
4532 	raw_parsetree_list = pg_parse_query(src);
4533 	if (list_length(raw_parsetree_list) != 1)
4534 		goto fail;
4535 
4536 	pstate = make_parsestate(NULL);
4537 	pstate->p_sourcetext = src;
4538 	sql_fn_parser_setup(pstate, pinfo);
4539 
4540 	querytree = transformTopLevelStmt(pstate, linitial(raw_parsetree_list));
4541 
4542 	free_parsestate(pstate);
4543 
4544 	/*
4545 	 * The single command must be a simple "SELECT expression".
4546 	 */
4547 	if (!IsA(querytree, Query) ||
4548 		querytree->commandType != CMD_SELECT ||
4549 		querytree->hasAggs ||
4550 		querytree->hasWindowFuncs ||
4551 		querytree->hasTargetSRFs ||
4552 		querytree->hasSubLinks ||
4553 		querytree->cteList ||
4554 		querytree->rtable ||
4555 		querytree->jointree->fromlist ||
4556 		querytree->jointree->quals ||
4557 		querytree->groupClause ||
4558 		querytree->groupingSets ||
4559 		querytree->havingQual ||
4560 		querytree->windowClause ||
4561 		querytree->distinctClause ||
4562 		querytree->sortClause ||
4563 		querytree->limitOffset ||
4564 		querytree->limitCount ||
4565 		querytree->setOperations ||
4566 		list_length(querytree->targetList) != 1)
4567 		goto fail;
4568 
4569 	/*
4570 	 * Make sure the function (still) returns what it's declared to.  This
4571 	 * will raise an error if wrong, but that's okay since the function would
4572 	 * fail at runtime anyway.  Note that check_sql_fn_retval will also insert
4573 	 * a RelabelType if needed to make the tlist expression match the declared
4574 	 * type of the function.
4575 	 *
4576 	 * Note: we do not try this until we have verified that no rewriting was
4577 	 * needed; that's probably not important, but let's be careful.
4578 	 */
4579 	if (check_sql_fn_retval(funcid, result_type, list_make1(querytree),
4580 							&modifyTargetList, NULL))
4581 		goto fail;				/* reject whole-tuple-result cases */
4582 
4583 	/* Now we can grab the tlist expression */
4584 	newexpr = (Node *) ((TargetEntry *) linitial(querytree->targetList))->expr;
4585 
4586 	/* Assert that check_sql_fn_retval did the right thing */
4587 	Assert(exprType(newexpr) == result_type);
4588 	/* It couldn't have made any dangerous tlist changes, either */
4589 	Assert(!modifyTargetList);
4590 
4591 	/*
4592 	 * Additional validity checks on the expression.  It mustn't be more
4593 	 * volatile than the surrounding function (this is to avoid breaking hacks
4594 	 * that involve pretending a function is immutable when it really ain't).
4595 	 * If the surrounding function is declared strict, then the expression
4596 	 * must contain only strict constructs and must use all of the function
4597 	 * parameters (this is overkill, but an exact analysis is hard).
4598 	 */
4599 	if (funcform->provolatile == PROVOLATILE_IMMUTABLE &&
4600 		contain_mutable_functions(newexpr))
4601 		goto fail;
4602 	else if (funcform->provolatile == PROVOLATILE_STABLE &&
4603 			 contain_volatile_functions(newexpr))
4604 		goto fail;
4605 
4606 	if (funcform->proisstrict &&
4607 		contain_nonstrict_functions(newexpr))
4608 		goto fail;
4609 
4610 	/*
4611 	 * If any parameter expression contains a context-dependent node, we can't
4612 	 * inline, for fear of putting such a node into the wrong context.
4613 	 */
4614 	if (contain_context_dependent_node((Node *) args))
4615 		goto fail;
4616 
4617 	/*
4618 	 * We may be able to do it; there are still checks on parameter usage to
4619 	 * make, but those are most easily done in combination with the actual
4620 	 * substitution of the inputs.  So start building expression with inputs
4621 	 * substituted.
4622 	 */
4623 	usecounts = (int *) palloc0(funcform->pronargs * sizeof(int));
4624 	newexpr = substitute_actual_parameters(newexpr, funcform->pronargs,
4625 										   args, usecounts);
4626 
4627 	/* Now check for parameter usage */
4628 	i = 0;
4629 	foreach(arg, args)
4630 	{
4631 		Node	   *param = lfirst(arg);
4632 
4633 		if (usecounts[i] == 0)
4634 		{
4635 			/* Param not used at all: uncool if func is strict */
4636 			if (funcform->proisstrict)
4637 				goto fail;
4638 		}
4639 		else if (usecounts[i] != 1)
4640 		{
4641 			/* Param used multiple times: uncool if expensive or volatile */
4642 			QualCost	eval_cost;
4643 
4644 			/*
4645 			 * We define "expensive" as "contains any subplan or more than 10
4646 			 * operators".  Note that the subplan search has to be done
4647 			 * explicitly, since cost_qual_eval() will barf on unplanned
4648 			 * subselects.
4649 			 */
4650 			if (contain_subplans(param))
4651 				goto fail;
4652 			cost_qual_eval(&eval_cost, list_make1(param), NULL);
4653 			if (eval_cost.startup + eval_cost.per_tuple >
4654 				10 * cpu_operator_cost)
4655 				goto fail;
4656 
4657 			/*
4658 			 * Check volatility last since this is more expensive than the
4659 			 * above tests
4660 			 */
4661 			if (contain_volatile_functions(param))
4662 				goto fail;
4663 		}
4664 		i++;
4665 	}
4666 
4667 	/*
4668 	 * Whew --- we can make the substitution.  Copy the modified expression
4669 	 * out of the temporary memory context, and clean up.
4670 	 */
4671 	MemoryContextSwitchTo(oldcxt);
4672 
4673 	newexpr = copyObject(newexpr);
4674 
4675 	MemoryContextDelete(mycxt);
4676 
4677 	/*
4678 	 * If the result is of a collatable type, force the result to expose the
4679 	 * correct collation.  In most cases this does not matter, but it's
4680 	 * possible that the function result is used directly as a sort key or in
4681 	 * other places where we expect exprCollation() to tell the truth.
4682 	 */
4683 	if (OidIsValid(result_collid))
4684 	{
4685 		Oid			exprcoll = exprCollation(newexpr);
4686 
4687 		if (OidIsValid(exprcoll) && exprcoll != result_collid)
4688 		{
4689 			CollateExpr *newnode = makeNode(CollateExpr);
4690 
4691 			newnode->arg = (Expr *) newexpr;
4692 			newnode->collOid = result_collid;
4693 			newnode->location = -1;
4694 
4695 			newexpr = (Node *) newnode;
4696 		}
4697 	}
4698 
4699 	/*
4700 	 * Since there is now no trace of the function in the plan tree, we must
4701 	 * explicitly record the plan's dependency on the function.
4702 	 */
4703 	if (context->root)
4704 		record_plan_function_dependency(context->root, funcid);
4705 
4706 	/*
4707 	 * Recursively try to simplify the modified expression.  Here we must add
4708 	 * the current function to the context list of active functions.
4709 	 */
4710 	context->active_fns = lcons_oid(funcid, context->active_fns);
4711 	newexpr = eval_const_expressions_mutator(newexpr, context);
4712 	context->active_fns = list_delete_first(context->active_fns);
4713 
4714 	error_context_stack = sqlerrcontext.previous;
4715 
4716 	return (Expr *) newexpr;
4717 
4718 	/* Here if func is not inlinable: release temp memory and return NULL */
4719 fail:
4720 	MemoryContextSwitchTo(oldcxt);
4721 	MemoryContextDelete(mycxt);
4722 	error_context_stack = sqlerrcontext.previous;
4723 
4724 	return NULL;
4725 }
4726 
4727 /*
4728  * Replace Param nodes by appropriate actual parameters
4729  */
4730 static Node *
substitute_actual_parameters(Node * expr,int nargs,List * args,int * usecounts)4731 substitute_actual_parameters(Node *expr, int nargs, List *args,
4732 							 int *usecounts)
4733 {
4734 	substitute_actual_parameters_context context;
4735 
4736 	context.nargs = nargs;
4737 	context.args = args;
4738 	context.usecounts = usecounts;
4739 
4740 	return substitute_actual_parameters_mutator(expr, &context);
4741 }
4742 
4743 static Node *
substitute_actual_parameters_mutator(Node * node,substitute_actual_parameters_context * context)4744 substitute_actual_parameters_mutator(Node *node,
4745 									 substitute_actual_parameters_context *context)
4746 {
4747 	if (node == NULL)
4748 		return NULL;
4749 	if (IsA(node, Param))
4750 	{
4751 		Param	   *param = (Param *) node;
4752 
4753 		if (param->paramkind != PARAM_EXTERN)
4754 			elog(ERROR, "unexpected paramkind: %d", (int) param->paramkind);
4755 		if (param->paramid <= 0 || param->paramid > context->nargs)
4756 			elog(ERROR, "invalid paramid: %d", param->paramid);
4757 
4758 		/* Count usage of parameter */
4759 		context->usecounts[param->paramid - 1]++;
4760 
4761 		/* Select the appropriate actual arg and replace the Param with it */
4762 		/* We don't need to copy at this time (it'll get done later) */
4763 		return list_nth(context->args, param->paramid - 1);
4764 	}
4765 	return expression_tree_mutator(node, substitute_actual_parameters_mutator,
4766 								   (void *) context);
4767 }
4768 
4769 /*
4770  * error context callback to let us supply a call-stack traceback
4771  */
4772 static void
sql_inline_error_callback(void * arg)4773 sql_inline_error_callback(void *arg)
4774 {
4775 	inline_error_callback_arg *callback_arg = (inline_error_callback_arg *) arg;
4776 	int			syntaxerrposition;
4777 
4778 	/* If it's a syntax error, convert to internal syntax error report */
4779 	syntaxerrposition = geterrposition();
4780 	if (syntaxerrposition > 0)
4781 	{
4782 		errposition(0);
4783 		internalerrposition(syntaxerrposition);
4784 		internalerrquery(callback_arg->prosrc);
4785 	}
4786 
4787 	errcontext("SQL function \"%s\" during inlining", callback_arg->proname);
4788 }
4789 
4790 /*
4791  * evaluate_expr: pre-evaluate a constant expression
4792  *
4793  * We use the executor's routine ExecEvalExpr() to avoid duplication of
4794  * code and ensure we get the same result as the executor would get.
4795  */
4796 static Expr *
evaluate_expr(Expr * expr,Oid result_type,int32 result_typmod,Oid result_collation)4797 evaluate_expr(Expr *expr, Oid result_type, int32 result_typmod,
4798 			  Oid result_collation)
4799 {
4800 	EState	   *estate;
4801 	ExprState  *exprstate;
4802 	MemoryContext oldcontext;
4803 	Datum		const_val;
4804 	bool		const_is_null;
4805 	int16		resultTypLen;
4806 	bool		resultTypByVal;
4807 
4808 	/*
4809 	 * To use the executor, we need an EState.
4810 	 */
4811 	estate = CreateExecutorState();
4812 
4813 	/* We can use the estate's working context to avoid memory leaks. */
4814 	oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
4815 
4816 	/* Make sure any opfuncids are filled in. */
4817 	fix_opfuncids((Node *) expr);
4818 
4819 	/*
4820 	 * Prepare expr for execution.  (Note: we can't use ExecPrepareExpr
4821 	 * because it'd result in recursively invoking eval_const_expressions.)
4822 	 */
4823 	exprstate = ExecInitExpr(expr, NULL);
4824 
4825 	/*
4826 	 * And evaluate it.
4827 	 *
4828 	 * It is OK to use a default econtext because none of the ExecEvalExpr()
4829 	 * code used in this situation will use econtext.  That might seem
4830 	 * fortuitous, but it's not so unreasonable --- a constant expression does
4831 	 * not depend on context, by definition, n'est ce pas?
4832 	 */
4833 	const_val = ExecEvalExprSwitchContext(exprstate,
4834 										  GetPerTupleExprContext(estate),
4835 										  &const_is_null);
4836 
4837 	/* Get info needed about result datatype */
4838 	get_typlenbyval(result_type, &resultTypLen, &resultTypByVal);
4839 
4840 	/* Get back to outer memory context */
4841 	MemoryContextSwitchTo(oldcontext);
4842 
4843 	/*
4844 	 * Must copy result out of sub-context used by expression eval.
4845 	 *
4846 	 * Also, if it's varlena, forcibly detoast it.  This protects us against
4847 	 * storing TOAST pointers into plans that might outlive the referenced
4848 	 * data.  (makeConst would handle detoasting anyway, but it's worth a few
4849 	 * extra lines here so that we can do the copy and detoast in one step.)
4850 	 */
4851 	if (!const_is_null)
4852 	{
4853 		if (resultTypLen == -1)
4854 			const_val = PointerGetDatum(PG_DETOAST_DATUM_COPY(const_val));
4855 		else
4856 			const_val = datumCopy(const_val, resultTypByVal, resultTypLen);
4857 	}
4858 
4859 	/* Release all the junk we just created */
4860 	FreeExecutorState(estate);
4861 
4862 	/*
4863 	 * Make the constant result node.
4864 	 */
4865 	return (Expr *) makeConst(result_type, result_typmod, result_collation,
4866 							  resultTypLen,
4867 							  const_val, const_is_null,
4868 							  resultTypByVal);
4869 }
4870 
4871 
4872 /*
4873  * inline_set_returning_function
4874  *		Attempt to "inline" a set-returning function in the FROM clause.
4875  *
4876  * "rte" is an RTE_FUNCTION rangetable entry.  If it represents a call of a
4877  * set-returning SQL function that can safely be inlined, expand the function
4878  * and return the substitute Query structure.  Otherwise, return NULL.
4879  *
4880  * This has a good deal of similarity to inline_function(), but that's
4881  * for the non-set-returning case, and there are enough differences to
4882  * justify separate functions.
4883  */
4884 Query *
inline_set_returning_function(PlannerInfo * root,RangeTblEntry * rte)4885 inline_set_returning_function(PlannerInfo *root, RangeTblEntry *rte)
4886 {
4887 	RangeTblFunction *rtfunc;
4888 	FuncExpr   *fexpr;
4889 	Oid			func_oid;
4890 	HeapTuple	func_tuple;
4891 	Form_pg_proc funcform;
4892 	char	   *src;
4893 	Datum		tmp;
4894 	bool		isNull;
4895 	bool		modifyTargetList;
4896 	MemoryContext oldcxt;
4897 	MemoryContext mycxt;
4898 	List	   *saveInvalItems;
4899 	inline_error_callback_arg callback_arg;
4900 	ErrorContextCallback sqlerrcontext;
4901 	SQLFunctionParseInfoPtr pinfo;
4902 	List	   *raw_parsetree_list;
4903 	List	   *querytree_list;
4904 	Query	   *querytree;
4905 
4906 	Assert(rte->rtekind == RTE_FUNCTION);
4907 
4908 	/*
4909 	 * It doesn't make a lot of sense for a SQL SRF to refer to itself in its
4910 	 * own FROM clause, since that must cause infinite recursion at runtime.
4911 	 * It will cause this code to recurse too, so check for stack overflow.
4912 	 * (There's no need to do more.)
4913 	 */
4914 	check_stack_depth();
4915 
4916 	/* Fail if the RTE has ORDINALITY - we don't implement that here. */
4917 	if (rte->funcordinality)
4918 		return NULL;
4919 
4920 	/* Fail if RTE isn't a single, simple FuncExpr */
4921 	if (list_length(rte->functions) != 1)
4922 		return NULL;
4923 	rtfunc = (RangeTblFunction *) linitial(rte->functions);
4924 
4925 	if (!IsA(rtfunc->funcexpr, FuncExpr))
4926 		return NULL;
4927 	fexpr = (FuncExpr *) rtfunc->funcexpr;
4928 
4929 	func_oid = fexpr->funcid;
4930 
4931 	/*
4932 	 * The function must be declared to return a set, else inlining would
4933 	 * change the results if the contained SELECT didn't return exactly one
4934 	 * row.
4935 	 */
4936 	if (!fexpr->funcretset)
4937 		return NULL;
4938 
4939 	/*
4940 	 * Refuse to inline if the arguments contain any volatile functions or
4941 	 * sub-selects.  Volatile functions are rejected because inlining may
4942 	 * result in the arguments being evaluated multiple times, risking a
4943 	 * change in behavior.  Sub-selects are rejected partly for implementation
4944 	 * reasons (pushing them down another level might change their behavior)
4945 	 * and partly because they're likely to be expensive and so multiple
4946 	 * evaluation would be bad.
4947 	 */
4948 	if (contain_volatile_functions((Node *) fexpr->args) ||
4949 		contain_subplans((Node *) fexpr->args))
4950 		return NULL;
4951 
4952 	/* Check permission to call function (fail later, if not) */
4953 	if (pg_proc_aclcheck(func_oid, GetUserId(), ACL_EXECUTE) != ACLCHECK_OK)
4954 		return NULL;
4955 
4956 	/* Check whether a plugin wants to hook function entry/exit */
4957 	if (FmgrHookIsNeeded(func_oid))
4958 		return NULL;
4959 
4960 	/*
4961 	 * OK, let's take a look at the function's pg_proc entry.
4962 	 */
4963 	func_tuple = SearchSysCache1(PROCOID, ObjectIdGetDatum(func_oid));
4964 	if (!HeapTupleIsValid(func_tuple))
4965 		elog(ERROR, "cache lookup failed for function %u", func_oid);
4966 	funcform = (Form_pg_proc) GETSTRUCT(func_tuple);
4967 
4968 	/*
4969 	 * Forget it if the function is not SQL-language or has other showstopper
4970 	 * properties.  In particular it mustn't be declared STRICT, since we
4971 	 * couldn't enforce that.  It also mustn't be VOLATILE, because that is
4972 	 * supposed to cause it to be executed with its own snapshot, rather than
4973 	 * sharing the snapshot of the calling query.  (Rechecking proretset is
4974 	 * just paranoia.)
4975 	 */
4976 	if (funcform->prolang != SQLlanguageId ||
4977 		funcform->proisstrict ||
4978 		funcform->provolatile == PROVOLATILE_VOLATILE ||
4979 		funcform->prosecdef ||
4980 		!funcform->proretset ||
4981 		!heap_attisnull(func_tuple, Anum_pg_proc_proconfig))
4982 	{
4983 		ReleaseSysCache(func_tuple);
4984 		return NULL;
4985 	}
4986 
4987 	/*
4988 	 * Make a temporary memory context, so that we don't leak all the stuff
4989 	 * that parsing might create.
4990 	 */
4991 	mycxt = AllocSetContextCreate(CurrentMemoryContext,
4992 								  "inline_set_returning_function",
4993 								  ALLOCSET_DEFAULT_SIZES);
4994 	oldcxt = MemoryContextSwitchTo(mycxt);
4995 
4996 	/*
4997 	 * When we call eval_const_expressions below, it might try to add items to
4998 	 * root->glob->invalItems.  Since it is running in the temp context, those
4999 	 * items will be in that context, and will need to be copied out if we're
5000 	 * successful.  Temporarily reset the list so that we can keep those items
5001 	 * separate from the pre-existing list contents.
5002 	 */
5003 	saveInvalItems = root->glob->invalItems;
5004 	root->glob->invalItems = NIL;
5005 
5006 	/* Fetch the function body */
5007 	tmp = SysCacheGetAttr(PROCOID,
5008 						  func_tuple,
5009 						  Anum_pg_proc_prosrc,
5010 						  &isNull);
5011 	if (isNull)
5012 		elog(ERROR, "null prosrc for function %u", func_oid);
5013 	src = TextDatumGetCString(tmp);
5014 
5015 	/*
5016 	 * Setup error traceback support for ereport().  This is so that we can
5017 	 * finger the function that bad information came from.
5018 	 */
5019 	callback_arg.proname = NameStr(funcform->proname);
5020 	callback_arg.prosrc = src;
5021 
5022 	sqlerrcontext.callback = sql_inline_error_callback;
5023 	sqlerrcontext.arg = (void *) &callback_arg;
5024 	sqlerrcontext.previous = error_context_stack;
5025 	error_context_stack = &sqlerrcontext;
5026 
5027 	/*
5028 	 * Run eval_const_expressions on the function call.  This is necessary to
5029 	 * ensure that named-argument notation is converted to positional notation
5030 	 * and any default arguments are inserted.  It's a bit of overkill for the
5031 	 * arguments, since they'll get processed again later, but no harm will be
5032 	 * done.
5033 	 */
5034 	fexpr = (FuncExpr *) eval_const_expressions(root, (Node *) fexpr);
5035 
5036 	/* It should still be a call of the same function, but let's check */
5037 	if (!IsA(fexpr, FuncExpr) ||
5038 		fexpr->funcid != func_oid)
5039 		goto fail;
5040 
5041 	/* Arg list length should now match the function */
5042 	if (list_length(fexpr->args) != funcform->pronargs)
5043 		goto fail;
5044 
5045 	/*
5046 	 * Set up to handle parameters while parsing the function body.  We can
5047 	 * use the FuncExpr just created as the input for
5048 	 * prepare_sql_fn_parse_info.
5049 	 */
5050 	pinfo = prepare_sql_fn_parse_info(func_tuple,
5051 									  (Node *) fexpr,
5052 									  fexpr->inputcollid);
5053 
5054 	/*
5055 	 * Parse, analyze, and rewrite (unlike inline_function(), we can't skip
5056 	 * rewriting here).  We can fail as soon as we find more than one query,
5057 	 * though.
5058 	 */
5059 	raw_parsetree_list = pg_parse_query(src);
5060 	if (list_length(raw_parsetree_list) != 1)
5061 		goto fail;
5062 
5063 	querytree_list = pg_analyze_and_rewrite_params(linitial(raw_parsetree_list),
5064 												   src,
5065 												   (ParserSetupHook) sql_fn_parser_setup,
5066 												   pinfo, NULL);
5067 	if (list_length(querytree_list) != 1)
5068 		goto fail;
5069 	querytree = linitial(querytree_list);
5070 
5071 	/*
5072 	 * The single command must be a plain SELECT.
5073 	 */
5074 	if (!IsA(querytree, Query) ||
5075 		querytree->commandType != CMD_SELECT)
5076 		goto fail;
5077 
5078 	/*
5079 	 * Make sure the function (still) returns what it's declared to.  This
5080 	 * will raise an error if wrong, but that's okay since the function would
5081 	 * fail at runtime anyway.  Note that check_sql_fn_retval will also insert
5082 	 * RelabelType(s) and/or NULL columns if needed to make the tlist
5083 	 * expression(s) match the declared type of the function.
5084 	 *
5085 	 * If the function returns a composite type, don't inline unless the check
5086 	 * shows it's returning a whole tuple result; otherwise what it's
5087 	 * returning is a single composite column which is not what we need.
5088 	 */
5089 	if (!check_sql_fn_retval(func_oid, fexpr->funcresulttype,
5090 							 querytree_list,
5091 							 &modifyTargetList, NULL) &&
5092 		(get_typtype(fexpr->funcresulttype) == TYPTYPE_COMPOSITE ||
5093 		 fexpr->funcresulttype == RECORDOID))
5094 		goto fail;				/* reject not-whole-tuple-result cases */
5095 
5096 	/*
5097 	 * If we had to modify the tlist to make it match, and the statement is
5098 	 * one in which changing the tlist contents could change semantics, we
5099 	 * have to punt and not inline.
5100 	 */
5101 	if (modifyTargetList)
5102 		goto fail;
5103 
5104 	/*
5105 	 * If it returns RECORD, we have to check against the column type list
5106 	 * provided in the RTE; check_sql_fn_retval can't do that.  (If no match,
5107 	 * we just fail to inline, rather than complaining; see notes for
5108 	 * tlist_matches_coltypelist.)	We don't have to do this for functions
5109 	 * with declared OUT parameters, even though their funcresulttype is
5110 	 * RECORDOID, so check get_func_result_type too.
5111 	 */
5112 	if (fexpr->funcresulttype == RECORDOID &&
5113 		get_func_result_type(func_oid, NULL, NULL) == TYPEFUNC_RECORD &&
5114 		!tlist_matches_coltypelist(querytree->targetList,
5115 								   rtfunc->funccoltypes))
5116 		goto fail;
5117 
5118 	/*
5119 	 * Looks good --- substitute parameters into the query.
5120 	 */
5121 	querytree = substitute_actual_srf_parameters(querytree,
5122 												 funcform->pronargs,
5123 												 fexpr->args);
5124 
5125 	/*
5126 	 * Copy the modified query out of the temporary memory context, and clean
5127 	 * up.
5128 	 */
5129 	MemoryContextSwitchTo(oldcxt);
5130 
5131 	querytree = copyObject(querytree);
5132 
5133 	/* copy up any new invalItems, too */
5134 	root->glob->invalItems = list_concat(saveInvalItems,
5135 										 copyObject(root->glob->invalItems));
5136 
5137 	MemoryContextDelete(mycxt);
5138 	error_context_stack = sqlerrcontext.previous;
5139 	ReleaseSysCache(func_tuple);
5140 
5141 	/*
5142 	 * We don't have to fix collations here because the upper query is already
5143 	 * parsed, ie, the collations in the RTE are what count.
5144 	 */
5145 
5146 	/*
5147 	 * Since there is now no trace of the function in the plan tree, we must
5148 	 * explicitly record the plan's dependency on the function.
5149 	 */
5150 	record_plan_function_dependency(root, func_oid);
5151 
5152 	return querytree;
5153 
5154 	/* Here if func is not inlinable: release temp memory and return NULL */
5155 fail:
5156 	MemoryContextSwitchTo(oldcxt);
5157 	root->glob->invalItems = saveInvalItems;
5158 	MemoryContextDelete(mycxt);
5159 	error_context_stack = sqlerrcontext.previous;
5160 	ReleaseSysCache(func_tuple);
5161 
5162 	return NULL;
5163 }
5164 
5165 /*
5166  * Replace Param nodes by appropriate actual parameters
5167  *
5168  * This is just enough different from substitute_actual_parameters()
5169  * that it needs its own code.
5170  */
5171 static Query *
substitute_actual_srf_parameters(Query * expr,int nargs,List * args)5172 substitute_actual_srf_parameters(Query *expr, int nargs, List *args)
5173 {
5174 	substitute_actual_srf_parameters_context context;
5175 
5176 	context.nargs = nargs;
5177 	context.args = args;
5178 	context.sublevels_up = 1;
5179 
5180 	return query_tree_mutator(expr,
5181 							  substitute_actual_srf_parameters_mutator,
5182 							  &context,
5183 							  0);
5184 }
5185 
5186 static Node *
substitute_actual_srf_parameters_mutator(Node * node,substitute_actual_srf_parameters_context * context)5187 substitute_actual_srf_parameters_mutator(Node *node,
5188 										 substitute_actual_srf_parameters_context *context)
5189 {
5190 	Node	   *result;
5191 
5192 	if (node == NULL)
5193 		return NULL;
5194 	if (IsA(node, Query))
5195 	{
5196 		context->sublevels_up++;
5197 		result = (Node *) query_tree_mutator((Query *) node,
5198 											 substitute_actual_srf_parameters_mutator,
5199 											 (void *) context,
5200 											 0);
5201 		context->sublevels_up--;
5202 		return result;
5203 	}
5204 	if (IsA(node, Param))
5205 	{
5206 		Param	   *param = (Param *) node;
5207 
5208 		if (param->paramkind == PARAM_EXTERN)
5209 		{
5210 			if (param->paramid <= 0 || param->paramid > context->nargs)
5211 				elog(ERROR, "invalid paramid: %d", param->paramid);
5212 
5213 			/*
5214 			 * Since the parameter is being inserted into a subquery, we must
5215 			 * adjust levels.
5216 			 */
5217 			result = copyObject(list_nth(context->args, param->paramid - 1));
5218 			IncrementVarSublevelsUp(result, context->sublevels_up, 0);
5219 			return result;
5220 		}
5221 	}
5222 	return expression_tree_mutator(node,
5223 								   substitute_actual_srf_parameters_mutator,
5224 								   (void *) context);
5225 }
5226 
5227 /*
5228  * Check whether a SELECT targetlist emits the specified column types,
5229  * to see if it's safe to inline a function returning record.
5230  *
5231  * We insist on exact match here.  The executor allows binary-coercible
5232  * cases too, but we don't have a way to preserve the correct column types
5233  * in the correct places if we inline the function in such a case.
5234  *
5235  * Note that we only check type OIDs not typmods; this agrees with what the
5236  * executor would do at runtime, and attributing a specific typmod to a
5237  * function result is largely wishful thinking anyway.
5238  */
5239 static bool
tlist_matches_coltypelist(List * tlist,List * coltypelist)5240 tlist_matches_coltypelist(List *tlist, List *coltypelist)
5241 {
5242 	ListCell   *tlistitem;
5243 	ListCell   *clistitem;
5244 
5245 	clistitem = list_head(coltypelist);
5246 	foreach(tlistitem, tlist)
5247 	{
5248 		TargetEntry *tle = (TargetEntry *) lfirst(tlistitem);
5249 		Oid			coltype;
5250 
5251 		if (tle->resjunk)
5252 			continue;			/* ignore junk columns */
5253 
5254 		if (clistitem == NULL)
5255 			return false;		/* too many tlist items */
5256 
5257 		coltype = lfirst_oid(clistitem);
5258 		clistitem = lnext(clistitem);
5259 
5260 		if (exprType((Node *) tle->expr) != coltype)
5261 			return false;		/* column type mismatch */
5262 	}
5263 
5264 	if (clistitem != NULL)
5265 		return false;			/* too few tlist items */
5266 
5267 	return true;
5268 }
5269