1 /*-------------------------------------------------------------------------
2  *
3  * clog.c
4  *		PostgreSQL transaction-commit-log manager
5  *
6  * This module replaces the old "pg_log" access code, which treated pg_log
7  * essentially like a relation, in that it went through the regular buffer
8  * manager.  The problem with that was that there wasn't any good way to
9  * recycle storage space for transactions so old that they'll never be
10  * looked up again.  Now we use specialized access code so that the commit
11  * log can be broken into relatively small, independent segments.
12  *
13  * XLOG interactions: this module generates an XLOG record whenever a new
14  * CLOG page is initialized to zeroes.  Other writes of CLOG come from
15  * recording of transaction commit or abort in xact.c, which generates its
16  * own XLOG records for these events and will re-perform the status update
17  * on redo; so we need make no additional XLOG entry here.  For synchronous
18  * transaction commits, the XLOG is guaranteed flushed through the XLOG commit
19  * record before we are called to log a commit, so the WAL rule "write xlog
20  * before data" is satisfied automatically.  However, for async commits we
21  * must track the latest LSN affecting each CLOG page, so that we can flush
22  * XLOG that far and satisfy the WAL rule.  We don't have to worry about this
23  * for aborts (whether sync or async), since the post-crash assumption would
24  * be that such transactions failed anyway.
25  *
26  * Portions Copyright (c) 1996-2018, PostgreSQL Global Development Group
27  * Portions Copyright (c) 1994, Regents of the University of California
28  *
29  * src/backend/access/transam/clog.c
30  *
31  *-------------------------------------------------------------------------
32  */
33 #include "postgres.h"
34 
35 #include "access/clog.h"
36 #include "access/slru.h"
37 #include "access/transam.h"
38 #include "access/xlog.h"
39 #include "access/xloginsert.h"
40 #include "access/xlogutils.h"
41 #include "miscadmin.h"
42 #include "pgstat.h"
43 #include "pg_trace.h"
44 #include "storage/proc.h"
45 
46 /*
47  * Defines for CLOG page sizes.  A page is the same BLCKSZ as is used
48  * everywhere else in Postgres.
49  *
50  * Note: because TransactionIds are 32 bits and wrap around at 0xFFFFFFFF,
51  * CLOG page numbering also wraps around at 0xFFFFFFFF/CLOG_XACTS_PER_PAGE,
52  * and CLOG segment numbering at
53  * 0xFFFFFFFF/CLOG_XACTS_PER_PAGE/SLRU_PAGES_PER_SEGMENT.  We need take no
54  * explicit notice of that fact in this module, except when comparing segment
55  * and page numbers in TruncateCLOG (see CLOGPagePrecedes).
56  */
57 
58 /* We need two bits per xact, so four xacts fit in a byte */
59 #define CLOG_BITS_PER_XACT	2
60 #define CLOG_XACTS_PER_BYTE 4
61 #define CLOG_XACTS_PER_PAGE (BLCKSZ * CLOG_XACTS_PER_BYTE)
62 #define CLOG_XACT_BITMASK	((1 << CLOG_BITS_PER_XACT) - 1)
63 
64 #define TransactionIdToPage(xid)	((xid) / (TransactionId) CLOG_XACTS_PER_PAGE)
65 #define TransactionIdToPgIndex(xid) ((xid) % (TransactionId) CLOG_XACTS_PER_PAGE)
66 #define TransactionIdToByte(xid)	(TransactionIdToPgIndex(xid) / CLOG_XACTS_PER_BYTE)
67 #define TransactionIdToBIndex(xid)	((xid) % (TransactionId) CLOG_XACTS_PER_BYTE)
68 
69 /* We store the latest async LSN for each group of transactions */
70 #define CLOG_XACTS_PER_LSN_GROUP	32	/* keep this a power of 2 */
71 #define CLOG_LSNS_PER_PAGE	(CLOG_XACTS_PER_PAGE / CLOG_XACTS_PER_LSN_GROUP)
72 
73 #define GetLSNIndex(slotno, xid)	((slotno) * CLOG_LSNS_PER_PAGE + \
74 	((xid) % (TransactionId) CLOG_XACTS_PER_PAGE) / CLOG_XACTS_PER_LSN_GROUP)
75 
76 /*
77  * The number of subtransactions below which we consider to apply clog group
78  * update optimization.  Testing reveals that the number higher than this can
79  * hurt performance.
80  */
81 #define THRESHOLD_SUBTRANS_CLOG_OPT	5
82 
83 /*
84  * Link to shared-memory data structures for CLOG control
85  */
86 static SlruCtlData ClogCtlData;
87 
88 #define ClogCtl (&ClogCtlData)
89 
90 
91 static int	ZeroCLOGPage(int pageno, bool writeXlog);
92 static bool CLOGPagePrecedes(int page1, int page2);
93 static void WriteZeroPageXlogRec(int pageno);
94 static void WriteTruncateXlogRec(int pageno, TransactionId oldestXact,
95 					 Oid oldestXidDb);
96 static void TransactionIdSetPageStatus(TransactionId xid, int nsubxids,
97 						   TransactionId *subxids, XidStatus status,
98 						   XLogRecPtr lsn, int pageno,
99 						   bool all_xact_same_page);
100 static void TransactionIdSetStatusBit(TransactionId xid, XidStatus status,
101 						  XLogRecPtr lsn, int slotno);
102 static void set_status_by_pages(int nsubxids, TransactionId *subxids,
103 					XidStatus status, XLogRecPtr lsn);
104 static bool TransactionGroupUpdateXidStatus(TransactionId xid,
105 								XidStatus status, XLogRecPtr lsn, int pageno);
106 static void TransactionIdSetPageStatusInternal(TransactionId xid, int nsubxids,
107 								   TransactionId *subxids, XidStatus status,
108 								   XLogRecPtr lsn, int pageno);
109 
110 
111 /*
112  * TransactionIdSetTreeStatus
113  *
114  * Record the final state of transaction entries in the commit log for
115  * a transaction and its subtransaction tree. Take care to ensure this is
116  * efficient, and as atomic as possible.
117  *
118  * xid is a single xid to set status for. This will typically be
119  * the top level transactionid for a top level commit or abort. It can
120  * also be a subtransaction when we record transaction aborts.
121  *
122  * subxids is an array of xids of length nsubxids, representing subtransactions
123  * in the tree of xid. In various cases nsubxids may be zero.
124  *
125  * lsn must be the WAL location of the commit record when recording an async
126  * commit.  For a synchronous commit it can be InvalidXLogRecPtr, since the
127  * caller guarantees the commit record is already flushed in that case.  It
128  * should be InvalidXLogRecPtr for abort cases, too.
129  *
130  * In the commit case, atomicity is limited by whether all the subxids are in
131  * the same CLOG page as xid.  If they all are, then the lock will be grabbed
132  * only once, and the status will be set to committed directly.  Otherwise
133  * we must
134  *	 1. set sub-committed all subxids that are not on the same page as the
135  *		main xid
136  *	 2. atomically set committed the main xid and the subxids on the same page
137  *	 3. go over the first bunch again and set them committed
138  * Note that as far as concurrent checkers are concerned, main transaction
139  * commit as a whole is still atomic.
140  *
141  * Example:
142  *		TransactionId t commits and has subxids t1, t2, t3, t4
143  *		t is on page p1, t1 is also on p1, t2 and t3 are on p2, t4 is on p3
144  *		1. update pages2-3:
145  *					page2: set t2,t3 as sub-committed
146  *					page3: set t4 as sub-committed
147  *		2. update page1:
148  *					set t1 as sub-committed,
149  *					then set t as committed,
150 					then set t1 as committed
151  *		3. update pages2-3:
152  *					page2: set t2,t3 as committed
153  *					page3: set t4 as committed
154  *
155  * NB: this is a low-level routine and is NOT the preferred entry point
156  * for most uses; functions in transam.c are the intended callers.
157  *
158  * XXX Think about issuing FADVISE_WILLNEED on pages that we will need,
159  * but aren't yet in cache, as well as hinting pages not to fall out of
160  * cache yet.
161  */
162 void
TransactionIdSetTreeStatus(TransactionId xid,int nsubxids,TransactionId * subxids,XidStatus status,XLogRecPtr lsn)163 TransactionIdSetTreeStatus(TransactionId xid, int nsubxids,
164 						   TransactionId *subxids, XidStatus status, XLogRecPtr lsn)
165 {
166 	int			pageno = TransactionIdToPage(xid);	/* get page of parent */
167 	int			i;
168 
169 	Assert(status == TRANSACTION_STATUS_COMMITTED ||
170 		   status == TRANSACTION_STATUS_ABORTED);
171 
172 	/*
173 	 * See how many subxids, if any, are on the same page as the parent, if
174 	 * any.
175 	 */
176 	for (i = 0; i < nsubxids; i++)
177 	{
178 		if (TransactionIdToPage(subxids[i]) != pageno)
179 			break;
180 	}
181 
182 	/*
183 	 * Do all items fit on a single page?
184 	 */
185 	if (i == nsubxids)
186 	{
187 		/*
188 		 * Set the parent and all subtransactions in a single call
189 		 */
190 		TransactionIdSetPageStatus(xid, nsubxids, subxids, status, lsn,
191 								   pageno, true);
192 	}
193 	else
194 	{
195 		int			nsubxids_on_first_page = i;
196 
197 		/*
198 		 * If this is a commit then we care about doing this correctly (i.e.
199 		 * using the subcommitted intermediate status).  By here, we know
200 		 * we're updating more than one page of clog, so we must mark entries
201 		 * that are *not* on the first page so that they show as subcommitted
202 		 * before we then return to update the status to fully committed.
203 		 *
204 		 * To avoid touching the first page twice, skip marking subcommitted
205 		 * for the subxids on that first page.
206 		 */
207 		if (status == TRANSACTION_STATUS_COMMITTED)
208 			set_status_by_pages(nsubxids - nsubxids_on_first_page,
209 								subxids + nsubxids_on_first_page,
210 								TRANSACTION_STATUS_SUB_COMMITTED, lsn);
211 
212 		/*
213 		 * Now set the parent and subtransactions on same page as the parent,
214 		 * if any
215 		 */
216 		pageno = TransactionIdToPage(xid);
217 		TransactionIdSetPageStatus(xid, nsubxids_on_first_page, subxids, status,
218 								   lsn, pageno, false);
219 
220 		/*
221 		 * Now work through the rest of the subxids one clog page at a time,
222 		 * starting from the second page onwards, like we did above.
223 		 */
224 		set_status_by_pages(nsubxids - nsubxids_on_first_page,
225 							subxids + nsubxids_on_first_page,
226 							status, lsn);
227 	}
228 }
229 
230 /*
231  * Helper for TransactionIdSetTreeStatus: set the status for a bunch of
232  * transactions, chunking in the separate CLOG pages involved. We never
233  * pass the whole transaction tree to this function, only subtransactions
234  * that are on different pages to the top level transaction id.
235  */
236 static void
set_status_by_pages(int nsubxids,TransactionId * subxids,XidStatus status,XLogRecPtr lsn)237 set_status_by_pages(int nsubxids, TransactionId *subxids,
238 					XidStatus status, XLogRecPtr lsn)
239 {
240 	int			pageno = TransactionIdToPage(subxids[0]);
241 	int			offset = 0;
242 	int			i = 0;
243 
244 	Assert(nsubxids > 0);		/* else the pageno fetch above is unsafe */
245 
246 	while (i < nsubxids)
247 	{
248 		int			num_on_page = 0;
249 		int			nextpageno;
250 
251 		do
252 		{
253 			nextpageno = TransactionIdToPage(subxids[i]);
254 			if (nextpageno != pageno)
255 				break;
256 			num_on_page++;
257 			i++;
258 		} while (i < nsubxids);
259 
260 		TransactionIdSetPageStatus(InvalidTransactionId,
261 								   num_on_page, subxids + offset,
262 								   status, lsn, pageno, false);
263 		offset = i;
264 		pageno = nextpageno;
265 	}
266 }
267 
268 /*
269  * Record the final state of transaction entries in the commit log for all
270  * entries on a single page.  Atomic only on this page.
271  */
272 static void
TransactionIdSetPageStatus(TransactionId xid,int nsubxids,TransactionId * subxids,XidStatus status,XLogRecPtr lsn,int pageno,bool all_xact_same_page)273 TransactionIdSetPageStatus(TransactionId xid, int nsubxids,
274 						   TransactionId *subxids, XidStatus status,
275 						   XLogRecPtr lsn, int pageno,
276 						   bool all_xact_same_page)
277 {
278 	/* Can't use group update when PGPROC overflows. */
279 	StaticAssertStmt(THRESHOLD_SUBTRANS_CLOG_OPT <= PGPROC_MAX_CACHED_SUBXIDS,
280 					 "group clog threshold less than PGPROC cached subxids");
281 
282 	/*
283 	 * When there is contention on CLogControlLock, we try to group multiple
284 	 * updates; a single leader process will perform transaction status
285 	 * updates for multiple backends so that the number of times
286 	 * CLogControlLock needs to be acquired is reduced.
287 	 *
288 	 * For this optimization to be safe, the XID in MyPgXact and the subxids
289 	 * in MyProc must be the same as the ones for which we're setting the
290 	 * status.  Check that this is the case.
291 	 *
292 	 * For this optimization to be efficient, we shouldn't have too many
293 	 * sub-XIDs and all of the XIDs for which we're adjusting clog should be
294 	 * on the same page.  Check those conditions, too.
295 	 */
296 	if (all_xact_same_page && xid == MyPgXact->xid &&
297 		nsubxids <= THRESHOLD_SUBTRANS_CLOG_OPT &&
298 		nsubxids == MyPgXact->nxids &&
299 		memcmp(subxids, MyProc->subxids.xids,
300 			   nsubxids * sizeof(TransactionId)) == 0)
301 	{
302 		/*
303 		 * If we can immediately acquire CLogControlLock, we update the status
304 		 * of our own XID and release the lock.  If not, try use group XID
305 		 * update.  If that doesn't work out, fall back to waiting for the
306 		 * lock to perform an update for this transaction only.
307 		 */
308 		if (LWLockConditionalAcquire(CLogControlLock, LW_EXCLUSIVE))
309 		{
310 			/* Got the lock without waiting!  Do the update. */
311 			TransactionIdSetPageStatusInternal(xid, nsubxids, subxids, status,
312 											   lsn, pageno);
313 			LWLockRelease(CLogControlLock);
314 			return;
315 		}
316 		else if (TransactionGroupUpdateXidStatus(xid, status, lsn, pageno))
317 		{
318 			/* Group update mechanism has done the work. */
319 			return;
320 		}
321 
322 		/* Fall through only if update isn't done yet. */
323 	}
324 
325 	/* Group update not applicable, or couldn't accept this page number. */
326 	LWLockAcquire(CLogControlLock, LW_EXCLUSIVE);
327 	TransactionIdSetPageStatusInternal(xid, nsubxids, subxids, status,
328 									   lsn, pageno);
329 	LWLockRelease(CLogControlLock);
330 }
331 
332 /*
333  * Record the final state of transaction entry in the commit log
334  *
335  * We don't do any locking here; caller must handle that.
336  */
337 static void
TransactionIdSetPageStatusInternal(TransactionId xid,int nsubxids,TransactionId * subxids,XidStatus status,XLogRecPtr lsn,int pageno)338 TransactionIdSetPageStatusInternal(TransactionId xid, int nsubxids,
339 								   TransactionId *subxids, XidStatus status,
340 								   XLogRecPtr lsn, int pageno)
341 {
342 	int			slotno;
343 	int			i;
344 
345 	Assert(status == TRANSACTION_STATUS_COMMITTED ||
346 		   status == TRANSACTION_STATUS_ABORTED ||
347 		   (status == TRANSACTION_STATUS_SUB_COMMITTED && !TransactionIdIsValid(xid)));
348 	Assert(LWLockHeldByMeInMode(CLogControlLock, LW_EXCLUSIVE));
349 
350 	/*
351 	 * If we're doing an async commit (ie, lsn is valid), then we must wait
352 	 * for any active write on the page slot to complete.  Otherwise our
353 	 * update could reach disk in that write, which will not do since we
354 	 * mustn't let it reach disk until we've done the appropriate WAL flush.
355 	 * But when lsn is invalid, it's OK to scribble on a page while it is
356 	 * write-busy, since we don't care if the update reaches disk sooner than
357 	 * we think.
358 	 */
359 	slotno = SimpleLruReadPage(ClogCtl, pageno, XLogRecPtrIsInvalid(lsn), xid);
360 
361 	/*
362 	 * Set the main transaction id, if any.
363 	 *
364 	 * If we update more than one xid on this page while it is being written
365 	 * out, we might find that some of the bits go to disk and others don't.
366 	 * If we are updating commits on the page with the top-level xid that
367 	 * could break atomicity, so we subcommit the subxids first before we mark
368 	 * the top-level commit.
369 	 */
370 	if (TransactionIdIsValid(xid))
371 	{
372 		/* Subtransactions first, if needed ... */
373 		if (status == TRANSACTION_STATUS_COMMITTED)
374 		{
375 			for (i = 0; i < nsubxids; i++)
376 			{
377 				Assert(ClogCtl->shared->page_number[slotno] == TransactionIdToPage(subxids[i]));
378 				TransactionIdSetStatusBit(subxids[i],
379 										  TRANSACTION_STATUS_SUB_COMMITTED,
380 										  lsn, slotno);
381 			}
382 		}
383 
384 		/* ... then the main transaction */
385 		TransactionIdSetStatusBit(xid, status, lsn, slotno);
386 	}
387 
388 	/* Set the subtransactions */
389 	for (i = 0; i < nsubxids; i++)
390 	{
391 		Assert(ClogCtl->shared->page_number[slotno] == TransactionIdToPage(subxids[i]));
392 		TransactionIdSetStatusBit(subxids[i], status, lsn, slotno);
393 	}
394 
395 	ClogCtl->shared->page_dirty[slotno] = true;
396 }
397 
398 /*
399  * When we cannot immediately acquire CLogControlLock in exclusive mode at
400  * commit time, add ourselves to a list of processes that need their XIDs
401  * status update.  The first process to add itself to the list will acquire
402  * CLogControlLock in exclusive mode and set transaction status as required
403  * on behalf of all group members.  This avoids a great deal of contention
404  * around CLogControlLock when many processes are trying to commit at once,
405  * since the lock need not be repeatedly handed off from one committing
406  * process to the next.
407  *
408  * Returns true when transaction status has been updated in clog; returns
409  * false if we decided against applying the optimization because the page
410  * number we need to update differs from those processes already waiting.
411  */
412 static bool
TransactionGroupUpdateXidStatus(TransactionId xid,XidStatus status,XLogRecPtr lsn,int pageno)413 TransactionGroupUpdateXidStatus(TransactionId xid, XidStatus status,
414 								XLogRecPtr lsn, int pageno)
415 {
416 	volatile PROC_HDR *procglobal = ProcGlobal;
417 	PGPROC	   *proc = MyProc;
418 	uint32		nextidx;
419 	uint32		wakeidx;
420 
421 	/* We should definitely have an XID whose status needs to be updated. */
422 	Assert(TransactionIdIsValid(xid));
423 
424 	/*
425 	 * Add ourselves to the list of processes needing a group XID status
426 	 * update.
427 	 */
428 	proc->clogGroupMember = true;
429 	proc->clogGroupMemberXid = xid;
430 	proc->clogGroupMemberXidStatus = status;
431 	proc->clogGroupMemberPage = pageno;
432 	proc->clogGroupMemberLsn = lsn;
433 
434 	nextidx = pg_atomic_read_u32(&procglobal->clogGroupFirst);
435 
436 	while (true)
437 	{
438 		/*
439 		 * Add the proc to list, if the clog page where we need to update the
440 		 * current transaction status is same as group leader's clog page.
441 		 *
442 		 * There is a race condition here, which is that after doing the below
443 		 * check and before adding this proc's clog update to a group, the
444 		 * group leader might have already finished the group update for this
445 		 * page and becomes group leader of another group. This will lead to a
446 		 * situation where a single group can have different clog page
447 		 * updates.  This isn't likely and will still work, just maybe a bit
448 		 * less efficiently.
449 		 */
450 		if (nextidx != INVALID_PGPROCNO &&
451 			ProcGlobal->allProcs[nextidx].clogGroupMemberPage != proc->clogGroupMemberPage)
452 		{
453 			/*
454 			 * Ensure that this proc is not a member of any clog group that
455 			 * needs an XID status update.
456 			 */
457 			proc->clogGroupMember = false;
458 			pg_atomic_write_u32(&proc->clogGroupNext, INVALID_PGPROCNO);
459 			return false;
460 		}
461 
462 		pg_atomic_write_u32(&proc->clogGroupNext, nextidx);
463 
464 		if (pg_atomic_compare_exchange_u32(&procglobal->clogGroupFirst,
465 										   &nextidx,
466 										   (uint32) proc->pgprocno))
467 			break;
468 	}
469 
470 	/*
471 	 * If the list was not empty, the leader will update the status of our
472 	 * XID. It is impossible to have followers without a leader because the
473 	 * first process that has added itself to the list will always have
474 	 * nextidx as INVALID_PGPROCNO.
475 	 */
476 	if (nextidx != INVALID_PGPROCNO)
477 	{
478 		int			extraWaits = 0;
479 
480 		/* Sleep until the leader updates our XID status. */
481 		pgstat_report_wait_start(WAIT_EVENT_CLOG_GROUP_UPDATE);
482 		for (;;)
483 		{
484 			/* acts as a read barrier */
485 			PGSemaphoreLock(proc->sem);
486 			if (!proc->clogGroupMember)
487 				break;
488 			extraWaits++;
489 		}
490 		pgstat_report_wait_end();
491 
492 		Assert(pg_atomic_read_u32(&proc->clogGroupNext) == INVALID_PGPROCNO);
493 
494 		/* Fix semaphore count for any absorbed wakeups */
495 		while (extraWaits-- > 0)
496 			PGSemaphoreUnlock(proc->sem);
497 		return true;
498 	}
499 
500 	/* We are the leader.  Acquire the lock on behalf of everyone. */
501 	LWLockAcquire(CLogControlLock, LW_EXCLUSIVE);
502 
503 	/*
504 	 * Now that we've got the lock, clear the list of processes waiting for
505 	 * group XID status update, saving a pointer to the head of the list.
506 	 * Trying to pop elements one at a time could lead to an ABA problem.
507 	 */
508 	nextidx = pg_atomic_exchange_u32(&procglobal->clogGroupFirst,
509 									 INVALID_PGPROCNO);
510 
511 	/* Remember head of list so we can perform wakeups after dropping lock. */
512 	wakeidx = nextidx;
513 
514 	/* Walk the list and update the status of all XIDs. */
515 	while (nextidx != INVALID_PGPROCNO)
516 	{
517 		PGPROC	   *proc = &ProcGlobal->allProcs[nextidx];
518 		PGXACT	   *pgxact = &ProcGlobal->allPgXact[nextidx];
519 
520 		/*
521 		 * Transactions with more than THRESHOLD_SUBTRANS_CLOG_OPT sub-XIDs
522 		 * should not use group XID status update mechanism.
523 		 */
524 		Assert(pgxact->nxids <= THRESHOLD_SUBTRANS_CLOG_OPT);
525 
526 		TransactionIdSetPageStatusInternal(proc->clogGroupMemberXid,
527 										   pgxact->nxids,
528 										   proc->subxids.xids,
529 										   proc->clogGroupMemberXidStatus,
530 										   proc->clogGroupMemberLsn,
531 										   proc->clogGroupMemberPage);
532 
533 		/* Move to next proc in list. */
534 		nextidx = pg_atomic_read_u32(&proc->clogGroupNext);
535 	}
536 
537 	/* We're done with the lock now. */
538 	LWLockRelease(CLogControlLock);
539 
540 	/*
541 	 * Now that we've released the lock, go back and wake everybody up.  We
542 	 * don't do this under the lock so as to keep lock hold times to a
543 	 * minimum.
544 	 */
545 	while (wakeidx != INVALID_PGPROCNO)
546 	{
547 		PGPROC	   *proc = &ProcGlobal->allProcs[wakeidx];
548 
549 		wakeidx = pg_atomic_read_u32(&proc->clogGroupNext);
550 		pg_atomic_write_u32(&proc->clogGroupNext, INVALID_PGPROCNO);
551 
552 		/* ensure all previous writes are visible before follower continues. */
553 		pg_write_barrier();
554 
555 		proc->clogGroupMember = false;
556 
557 		if (proc != MyProc)
558 			PGSemaphoreUnlock(proc->sem);
559 	}
560 
561 	return true;
562 }
563 
564 /*
565  * Sets the commit status of a single transaction.
566  *
567  * Must be called with CLogControlLock held
568  */
569 static void
TransactionIdSetStatusBit(TransactionId xid,XidStatus status,XLogRecPtr lsn,int slotno)570 TransactionIdSetStatusBit(TransactionId xid, XidStatus status, XLogRecPtr lsn, int slotno)
571 {
572 	int			byteno = TransactionIdToByte(xid);
573 	int			bshift = TransactionIdToBIndex(xid) * CLOG_BITS_PER_XACT;
574 	char	   *byteptr;
575 	char		byteval;
576 	char		curval;
577 
578 	byteptr = ClogCtl->shared->page_buffer[slotno] + byteno;
579 	curval = (*byteptr >> bshift) & CLOG_XACT_BITMASK;
580 
581 	/*
582 	 * When replaying transactions during recovery we still need to perform
583 	 * the two phases of subcommit and then commit. However, some transactions
584 	 * are already correctly marked, so we just treat those as a no-op which
585 	 * allows us to keep the following Assert as restrictive as possible.
586 	 */
587 	if (InRecovery && status == TRANSACTION_STATUS_SUB_COMMITTED &&
588 		curval == TRANSACTION_STATUS_COMMITTED)
589 		return;
590 
591 	/*
592 	 * Current state change should be from 0 or subcommitted to target state
593 	 * or we should already be there when replaying changes during recovery.
594 	 */
595 	Assert(curval == 0 ||
596 		   (curval == TRANSACTION_STATUS_SUB_COMMITTED &&
597 			status != TRANSACTION_STATUS_IN_PROGRESS) ||
598 		   curval == status);
599 
600 	/* note this assumes exclusive access to the clog page */
601 	byteval = *byteptr;
602 	byteval &= ~(((1 << CLOG_BITS_PER_XACT) - 1) << bshift);
603 	byteval |= (status << bshift);
604 	*byteptr = byteval;
605 
606 	/*
607 	 * Update the group LSN if the transaction completion LSN is higher.
608 	 *
609 	 * Note: lsn will be invalid when supplied during InRecovery processing,
610 	 * so we don't need to do anything special to avoid LSN updates during
611 	 * recovery. After recovery completes the next clog change will set the
612 	 * LSN correctly.
613 	 */
614 	if (!XLogRecPtrIsInvalid(lsn))
615 	{
616 		int			lsnindex = GetLSNIndex(slotno, xid);
617 
618 		if (ClogCtl->shared->group_lsn[lsnindex] < lsn)
619 			ClogCtl->shared->group_lsn[lsnindex] = lsn;
620 	}
621 }
622 
623 /*
624  * Interrogate the state of a transaction in the commit log.
625  *
626  * Aside from the actual commit status, this function returns (into *lsn)
627  * an LSN that is late enough to be able to guarantee that if we flush up to
628  * that LSN then we will have flushed the transaction's commit record to disk.
629  * The result is not necessarily the exact LSN of the transaction's commit
630  * record!	For example, for long-past transactions (those whose clog pages
631  * already migrated to disk), we'll return InvalidXLogRecPtr.  Also, because
632  * we group transactions on the same clog page to conserve storage, we might
633  * return the LSN of a later transaction that falls into the same group.
634  *
635  * NB: this is a low-level routine and is NOT the preferred entry point
636  * for most uses; TransactionLogFetch() in transam.c is the intended caller.
637  */
638 XidStatus
TransactionIdGetStatus(TransactionId xid,XLogRecPtr * lsn)639 TransactionIdGetStatus(TransactionId xid, XLogRecPtr *lsn)
640 {
641 	int			pageno = TransactionIdToPage(xid);
642 	int			byteno = TransactionIdToByte(xid);
643 	int			bshift = TransactionIdToBIndex(xid) * CLOG_BITS_PER_XACT;
644 	int			slotno;
645 	int			lsnindex;
646 	char	   *byteptr;
647 	XidStatus	status;
648 
649 	/* lock is acquired by SimpleLruReadPage_ReadOnly */
650 
651 	slotno = SimpleLruReadPage_ReadOnly(ClogCtl, pageno, xid);
652 	byteptr = ClogCtl->shared->page_buffer[slotno] + byteno;
653 
654 	status = (*byteptr >> bshift) & CLOG_XACT_BITMASK;
655 
656 	lsnindex = GetLSNIndex(slotno, xid);
657 	*lsn = ClogCtl->shared->group_lsn[lsnindex];
658 
659 	LWLockRelease(CLogControlLock);
660 
661 	return status;
662 }
663 
664 /*
665  * Number of shared CLOG buffers.
666  *
667  * On larger multi-processor systems, it is possible to have many CLOG page
668  * requests in flight at one time which could lead to disk access for CLOG
669  * page if the required page is not found in memory.  Testing revealed that we
670  * can get the best performance by having 128 CLOG buffers, more than that it
671  * doesn't improve performance.
672  *
673  * Unconditionally keeping the number of CLOG buffers to 128 did not seem like
674  * a good idea, because it would increase the minimum amount of shared memory
675  * required to start, which could be a problem for people running very small
676  * configurations.  The following formula seems to represent a reasonable
677  * compromise: people with very low values for shared_buffers will get fewer
678  * CLOG buffers as well, and everyone else will get 128.
679  */
680 Size
CLOGShmemBuffers(void)681 CLOGShmemBuffers(void)
682 {
683 	return Min(128, Max(4, NBuffers / 512));
684 }
685 
686 /*
687  * Initialization of shared memory for CLOG
688  */
689 Size
CLOGShmemSize(void)690 CLOGShmemSize(void)
691 {
692 	return SimpleLruShmemSize(CLOGShmemBuffers(), CLOG_LSNS_PER_PAGE);
693 }
694 
695 void
CLOGShmemInit(void)696 CLOGShmemInit(void)
697 {
698 	ClogCtl->PagePrecedes = CLOGPagePrecedes;
699 	SimpleLruInit(ClogCtl, "clog", CLOGShmemBuffers(), CLOG_LSNS_PER_PAGE,
700 				  CLogControlLock, "pg_xact", LWTRANCHE_CLOG_BUFFERS);
701 	SlruPagePrecedesUnitTests(ClogCtl, CLOG_XACTS_PER_PAGE);
702 }
703 
704 /*
705  * This func must be called ONCE on system install.  It creates
706  * the initial CLOG segment.  (The CLOG directory is assumed to
707  * have been created by initdb, and CLOGShmemInit must have been
708  * called already.)
709  */
710 void
BootStrapCLOG(void)711 BootStrapCLOG(void)
712 {
713 	int			slotno;
714 
715 	LWLockAcquire(CLogControlLock, LW_EXCLUSIVE);
716 
717 	/* Create and zero the first page of the commit log */
718 	slotno = ZeroCLOGPage(0, false);
719 
720 	/* Make sure it's written out */
721 	SimpleLruWritePage(ClogCtl, slotno);
722 	Assert(!ClogCtl->shared->page_dirty[slotno]);
723 
724 	LWLockRelease(CLogControlLock);
725 }
726 
727 /*
728  * Initialize (or reinitialize) a page of CLOG to zeroes.
729  * If writeXlog is true, also emit an XLOG record saying we did this.
730  *
731  * The page is not actually written, just set up in shared memory.
732  * The slot number of the new page is returned.
733  *
734  * Control lock must be held at entry, and will be held at exit.
735  */
736 static int
ZeroCLOGPage(int pageno,bool writeXlog)737 ZeroCLOGPage(int pageno, bool writeXlog)
738 {
739 	int			slotno;
740 
741 	slotno = SimpleLruZeroPage(ClogCtl, pageno);
742 
743 	if (writeXlog)
744 		WriteZeroPageXlogRec(pageno);
745 
746 	return slotno;
747 }
748 
749 /*
750  * This must be called ONCE during postmaster or standalone-backend startup,
751  * after StartupXLOG has initialized ShmemVariableCache->nextXid.
752  */
753 void
StartupCLOG(void)754 StartupCLOG(void)
755 {
756 	TransactionId xid = ShmemVariableCache->nextXid;
757 	int			pageno = TransactionIdToPage(xid);
758 
759 	LWLockAcquire(CLogControlLock, LW_EXCLUSIVE);
760 
761 	/*
762 	 * Initialize our idea of the latest page number.
763 	 */
764 	ClogCtl->shared->latest_page_number = pageno;
765 
766 	LWLockRelease(CLogControlLock);
767 }
768 
769 /*
770  * This must be called ONCE at the end of startup/recovery.
771  */
772 void
TrimCLOG(void)773 TrimCLOG(void)
774 {
775 	TransactionId xid = ShmemVariableCache->nextXid;
776 	int			pageno = TransactionIdToPage(xid);
777 
778 	LWLockAcquire(CLogControlLock, LW_EXCLUSIVE);
779 
780 	/*
781 	 * Re-Initialize our idea of the latest page number.
782 	 */
783 	ClogCtl->shared->latest_page_number = pageno;
784 
785 	/*
786 	 * Zero out the remainder of the current clog page.  Under normal
787 	 * circumstances it should be zeroes already, but it seems at least
788 	 * theoretically possible that XLOG replay will have settled on a nextXID
789 	 * value that is less than the last XID actually used and marked by the
790 	 * previous database lifecycle (since subtransaction commit writes clog
791 	 * but makes no WAL entry).  Let's just be safe. (We need not worry about
792 	 * pages beyond the current one, since those will be zeroed when first
793 	 * used.  For the same reason, there is no need to do anything when
794 	 * nextXid is exactly at a page boundary; and it's likely that the
795 	 * "current" page doesn't exist yet in that case.)
796 	 */
797 	if (TransactionIdToPgIndex(xid) != 0)
798 	{
799 		int			byteno = TransactionIdToByte(xid);
800 		int			bshift = TransactionIdToBIndex(xid) * CLOG_BITS_PER_XACT;
801 		int			slotno;
802 		char	   *byteptr;
803 
804 		slotno = SimpleLruReadPage(ClogCtl, pageno, false, xid);
805 		byteptr = ClogCtl->shared->page_buffer[slotno] + byteno;
806 
807 		/* Zero so-far-unused positions in the current byte */
808 		*byteptr &= (1 << bshift) - 1;
809 		/* Zero the rest of the page */
810 		MemSet(byteptr + 1, 0, BLCKSZ - byteno - 1);
811 
812 		ClogCtl->shared->page_dirty[slotno] = true;
813 	}
814 
815 	LWLockRelease(CLogControlLock);
816 }
817 
818 /*
819  * This must be called ONCE during postmaster or standalone-backend shutdown
820  */
821 void
ShutdownCLOG(void)822 ShutdownCLOG(void)
823 {
824 	/* Flush dirty CLOG pages to disk */
825 	TRACE_POSTGRESQL_CLOG_CHECKPOINT_START(false);
826 	SimpleLruFlush(ClogCtl, false);
827 
828 	/*
829 	 * fsync pg_xact to ensure that any files flushed previously are durably
830 	 * on disk.
831 	 */
832 	fsync_fname("pg_xact", true);
833 
834 	TRACE_POSTGRESQL_CLOG_CHECKPOINT_DONE(false);
835 }
836 
837 /*
838  * Perform a checkpoint --- either during shutdown, or on-the-fly
839  */
840 void
CheckPointCLOG(void)841 CheckPointCLOG(void)
842 {
843 	/* Flush dirty CLOG pages to disk */
844 	TRACE_POSTGRESQL_CLOG_CHECKPOINT_START(true);
845 	SimpleLruFlush(ClogCtl, true);
846 	TRACE_POSTGRESQL_CLOG_CHECKPOINT_DONE(true);
847 }
848 
849 
850 /*
851  * Make sure that CLOG has room for a newly-allocated XID.
852  *
853  * NB: this is called while holding XidGenLock.  We want it to be very fast
854  * most of the time; even when it's not so fast, no actual I/O need happen
855  * unless we're forced to write out a dirty clog or xlog page to make room
856  * in shared memory.
857  */
858 void
ExtendCLOG(TransactionId newestXact)859 ExtendCLOG(TransactionId newestXact)
860 {
861 	int			pageno;
862 
863 	/*
864 	 * No work except at first XID of a page.  But beware: just after
865 	 * wraparound, the first XID of page zero is FirstNormalTransactionId.
866 	 */
867 	if (TransactionIdToPgIndex(newestXact) != 0 &&
868 		!TransactionIdEquals(newestXact, FirstNormalTransactionId))
869 		return;
870 
871 	pageno = TransactionIdToPage(newestXact);
872 
873 	LWLockAcquire(CLogControlLock, LW_EXCLUSIVE);
874 
875 	/* Zero the page and make an XLOG entry about it */
876 	ZeroCLOGPage(pageno, true);
877 
878 	LWLockRelease(CLogControlLock);
879 }
880 
881 
882 /*
883  * Remove all CLOG segments before the one holding the passed transaction ID
884  *
885  * Before removing any CLOG data, we must flush XLOG to disk, to ensure
886  * that any recently-emitted HEAP_FREEZE records have reached disk; otherwise
887  * a crash and restart might leave us with some unfrozen tuples referencing
888  * removed CLOG data.  We choose to emit a special TRUNCATE XLOG record too.
889  * Replaying the deletion from XLOG is not critical, since the files could
890  * just as well be removed later, but doing so prevents a long-running hot
891  * standby server from acquiring an unreasonably bloated CLOG directory.
892  *
893  * Since CLOG segments hold a large number of transactions, the opportunity to
894  * actually remove a segment is fairly rare, and so it seems best not to do
895  * the XLOG flush unless we have confirmed that there is a removable segment.
896  */
897 void
TruncateCLOG(TransactionId oldestXact,Oid oldestxid_datoid)898 TruncateCLOG(TransactionId oldestXact, Oid oldestxid_datoid)
899 {
900 	int			cutoffPage;
901 
902 	/*
903 	 * The cutoff point is the start of the segment containing oldestXact. We
904 	 * pass the *page* containing oldestXact to SimpleLruTruncate.
905 	 */
906 	cutoffPage = TransactionIdToPage(oldestXact);
907 
908 	/* Check to see if there's any files that could be removed */
909 	if (!SlruScanDirectory(ClogCtl, SlruScanDirCbReportPresence, &cutoffPage))
910 		return;					/* nothing to remove */
911 
912 	/*
913 	 * Advance oldestClogXid before truncating clog, so concurrent xact status
914 	 * lookups can ensure they don't attempt to access truncated-away clog.
915 	 *
916 	 * It's only necessary to do this if we will actually truncate away clog
917 	 * pages.
918 	 */
919 	AdvanceOldestClogXid(oldestXact);
920 
921 	/*
922 	 * Write XLOG record and flush XLOG to disk. We record the oldest xid
923 	 * we're keeping information about here so we can ensure that it's always
924 	 * ahead of clog truncation in case we crash, and so a standby finds out
925 	 * the new valid xid before the next checkpoint.
926 	 */
927 	WriteTruncateXlogRec(cutoffPage, oldestXact, oldestxid_datoid);
928 
929 	/* Now we can remove the old CLOG segment(s) */
930 	SimpleLruTruncate(ClogCtl, cutoffPage);
931 }
932 
933 
934 /*
935  * Decide whether a CLOG page number is "older" for truncation purposes.
936  *
937  * We need to use comparison of TransactionIds here in order to do the right
938  * thing with wraparound XID arithmetic.  However, TransactionIdPrecedes()
939  * would get weird about permanent xact IDs.  So, offset both such that xid1,
940  * xid2, and xid2 + CLOG_XACTS_PER_PAGE - 1 are all normal XIDs; this offset
941  * is relevant to page 0 and to the page preceding page 0.
942  *
943  * The page containing oldestXact-2^31 is the important edge case.  The
944  * portion of that page equaling or following oldestXact-2^31 is expendable,
945  * but the portion preceding oldestXact-2^31 is not.  When oldestXact-2^31 is
946  * the first XID of a page and segment, the entire page and segment is
947  * expendable, and we could truncate the segment.  Recognizing that case would
948  * require making oldestXact, not just the page containing oldestXact,
949  * available to this callback.  The benefit would be rare and small, so we
950  * don't optimize that edge case.
951  */
952 static bool
CLOGPagePrecedes(int page1,int page2)953 CLOGPagePrecedes(int page1, int page2)
954 {
955 	TransactionId xid1;
956 	TransactionId xid2;
957 
958 	xid1 = ((TransactionId) page1) * CLOG_XACTS_PER_PAGE;
959 	xid1 += FirstNormalTransactionId + 1;
960 	xid2 = ((TransactionId) page2) * CLOG_XACTS_PER_PAGE;
961 	xid2 += FirstNormalTransactionId + 1;
962 
963 	return (TransactionIdPrecedes(xid1, xid2) &&
964 			TransactionIdPrecedes(xid1, xid2 + CLOG_XACTS_PER_PAGE - 1));
965 }
966 
967 
968 /*
969  * Write a ZEROPAGE xlog record
970  */
971 static void
WriteZeroPageXlogRec(int pageno)972 WriteZeroPageXlogRec(int pageno)
973 {
974 	XLogBeginInsert();
975 	XLogRegisterData((char *) (&pageno), sizeof(int));
976 	(void) XLogInsert(RM_CLOG_ID, CLOG_ZEROPAGE);
977 }
978 
979 /*
980  * Write a TRUNCATE xlog record
981  *
982  * We must flush the xlog record to disk before returning --- see notes
983  * in TruncateCLOG().
984  */
985 static void
WriteTruncateXlogRec(int pageno,TransactionId oldestXact,Oid oldestXactDb)986 WriteTruncateXlogRec(int pageno, TransactionId oldestXact, Oid oldestXactDb)
987 {
988 	XLogRecPtr	recptr;
989 	xl_clog_truncate xlrec;
990 
991 	xlrec.pageno = pageno;
992 	xlrec.oldestXact = oldestXact;
993 	xlrec.oldestXactDb = oldestXactDb;
994 
995 	XLogBeginInsert();
996 	XLogRegisterData((char *) (&xlrec), sizeof(xl_clog_truncate));
997 	recptr = XLogInsert(RM_CLOG_ID, CLOG_TRUNCATE);
998 	XLogFlush(recptr);
999 }
1000 
1001 /*
1002  * CLOG resource manager's routines
1003  */
1004 void
clog_redo(XLogReaderState * record)1005 clog_redo(XLogReaderState *record)
1006 {
1007 	uint8		info = XLogRecGetInfo(record) & ~XLR_INFO_MASK;
1008 
1009 	/* Backup blocks are not used in clog records */
1010 	Assert(!XLogRecHasAnyBlockRefs(record));
1011 
1012 	if (info == CLOG_ZEROPAGE)
1013 	{
1014 		int			pageno;
1015 		int			slotno;
1016 
1017 		memcpy(&pageno, XLogRecGetData(record), sizeof(int));
1018 
1019 		LWLockAcquire(CLogControlLock, LW_EXCLUSIVE);
1020 
1021 		slotno = ZeroCLOGPage(pageno, false);
1022 		SimpleLruWritePage(ClogCtl, slotno);
1023 		Assert(!ClogCtl->shared->page_dirty[slotno]);
1024 
1025 		LWLockRelease(CLogControlLock);
1026 	}
1027 	else if (info == CLOG_TRUNCATE)
1028 	{
1029 		xl_clog_truncate xlrec;
1030 
1031 		memcpy(&xlrec, XLogRecGetData(record), sizeof(xl_clog_truncate));
1032 
1033 		/*
1034 		 * During XLOG replay, latest_page_number isn't set up yet; insert a
1035 		 * suitable value to bypass the sanity test in SimpleLruTruncate.
1036 		 */
1037 		ClogCtl->shared->latest_page_number = xlrec.pageno;
1038 
1039 		AdvanceOldestClogXid(xlrec.oldestXact);
1040 
1041 		SimpleLruTruncate(ClogCtl, xlrec.pageno);
1042 	}
1043 	else
1044 		elog(PANIC, "clog_redo: unknown op code %u", info);
1045 }
1046