1 /*------------------------------------------------------------------------- 2 * 3 * hashpage.c 4 * Hash table page management code for the Postgres hash access method 5 * 6 * Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group 7 * Portions Copyright (c) 1994, Regents of the University of California 8 * 9 * 10 * IDENTIFICATION 11 * src/backend/access/hash/hashpage.c 12 * 13 * NOTES 14 * Postgres hash pages look like ordinary relation pages. The opaque 15 * data at high addresses includes information about the page including 16 * whether a page is an overflow page or a true bucket, the bucket 17 * number, and the block numbers of the preceding and following pages 18 * in the same bucket. 19 * 20 * The first page in a hash relation, page zero, is special -- it stores 21 * information describing the hash table; it is referred to as the 22 * "meta page." Pages one and higher store the actual data. 23 * 24 * There are also bitmap pages, which are not manipulated here; 25 * see hashovfl.c. 26 * 27 *------------------------------------------------------------------------- 28 */ 29 #include "postgres.h" 30 31 #include "access/hash.h" 32 #include "access/hash_xlog.h" 33 #include "miscadmin.h" 34 #include "port/pg_bitutils.h" 35 #include "storage/lmgr.h" 36 #include "storage/predicate.h" 37 #include "storage/smgr.h" 38 39 static bool _hash_alloc_buckets(Relation rel, BlockNumber firstblock, 40 uint32 nblocks); 41 static void _hash_splitbucket(Relation rel, Buffer metabuf, 42 Bucket obucket, Bucket nbucket, 43 Buffer obuf, 44 Buffer nbuf, 45 HTAB *htab, 46 uint32 maxbucket, 47 uint32 highmask, uint32 lowmask); 48 static void log_split_page(Relation rel, Buffer buf); 49 50 51 /* 52 * _hash_getbuf() -- Get a buffer by block number for read or write. 53 * 54 * 'access' must be HASH_READ, HASH_WRITE, or HASH_NOLOCK. 55 * 'flags' is a bitwise OR of the allowed page types. 56 * 57 * This must be used only to fetch pages that are expected to be valid 58 * already. _hash_checkpage() is applied using the given flags. 59 * 60 * When this routine returns, the appropriate lock is set on the 61 * requested buffer and its reference count has been incremented 62 * (ie, the buffer is "locked and pinned"). 63 * 64 * P_NEW is disallowed because this routine can only be used 65 * to access pages that are known to be before the filesystem EOF. 66 * Extending the index should be done with _hash_getnewbuf. 67 */ 68 Buffer 69 _hash_getbuf(Relation rel, BlockNumber blkno, int access, int flags) 70 { 71 Buffer buf; 72 73 if (blkno == P_NEW) 74 elog(ERROR, "hash AM does not use P_NEW"); 75 76 buf = ReadBuffer(rel, blkno); 77 78 if (access != HASH_NOLOCK) 79 LockBuffer(buf, access); 80 81 /* ref count and lock type are correct */ 82 83 _hash_checkpage(rel, buf, flags); 84 85 return buf; 86 } 87 88 /* 89 * _hash_getbuf_with_condlock_cleanup() -- Try to get a buffer for cleanup. 90 * 91 * We read the page and try to acquire a cleanup lock. If we get it, 92 * we return the buffer; otherwise, we return InvalidBuffer. 93 */ 94 Buffer 95 _hash_getbuf_with_condlock_cleanup(Relation rel, BlockNumber blkno, int flags) 96 { 97 Buffer buf; 98 99 if (blkno == P_NEW) 100 elog(ERROR, "hash AM does not use P_NEW"); 101 102 buf = ReadBuffer(rel, blkno); 103 104 if (!ConditionalLockBufferForCleanup(buf)) 105 { 106 ReleaseBuffer(buf); 107 return InvalidBuffer; 108 } 109 110 /* ref count and lock type are correct */ 111 112 _hash_checkpage(rel, buf, flags); 113 114 return buf; 115 } 116 117 /* 118 * _hash_getinitbuf() -- Get and initialize a buffer by block number. 119 * 120 * This must be used only to fetch pages that are known to be before 121 * the index's filesystem EOF, but are to be filled from scratch. 122 * _hash_pageinit() is applied automatically. Otherwise it has 123 * effects similar to _hash_getbuf() with access = HASH_WRITE. 124 * 125 * When this routine returns, a write lock is set on the 126 * requested buffer and its reference count has been incremented 127 * (ie, the buffer is "locked and pinned"). 128 * 129 * P_NEW is disallowed because this routine can only be used 130 * to access pages that are known to be before the filesystem EOF. 131 * Extending the index should be done with _hash_getnewbuf. 132 */ 133 Buffer 134 _hash_getinitbuf(Relation rel, BlockNumber blkno) 135 { 136 Buffer buf; 137 138 if (blkno == P_NEW) 139 elog(ERROR, "hash AM does not use P_NEW"); 140 141 buf = ReadBufferExtended(rel, MAIN_FORKNUM, blkno, RBM_ZERO_AND_LOCK, 142 NULL); 143 144 /* ref count and lock type are correct */ 145 146 /* initialize the page */ 147 _hash_pageinit(BufferGetPage(buf), BufferGetPageSize(buf)); 148 149 return buf; 150 } 151 152 /* 153 * _hash_initbuf() -- Get and initialize a buffer by bucket number. 154 */ 155 void 156 _hash_initbuf(Buffer buf, uint32 max_bucket, uint32 num_bucket, uint32 flag, 157 bool initpage) 158 { 159 HashPageOpaque pageopaque; 160 Page page; 161 162 page = BufferGetPage(buf); 163 164 /* initialize the page */ 165 if (initpage) 166 _hash_pageinit(page, BufferGetPageSize(buf)); 167 168 pageopaque = (HashPageOpaque) PageGetSpecialPointer(page); 169 170 /* 171 * Set hasho_prevblkno with current hashm_maxbucket. This value will be 172 * used to validate cached HashMetaPageData. See 173 * _hash_getbucketbuf_from_hashkey(). 174 */ 175 pageopaque->hasho_prevblkno = max_bucket; 176 pageopaque->hasho_nextblkno = InvalidBlockNumber; 177 pageopaque->hasho_bucket = num_bucket; 178 pageopaque->hasho_flag = flag; 179 pageopaque->hasho_page_id = HASHO_PAGE_ID; 180 } 181 182 /* 183 * _hash_getnewbuf() -- Get a new page at the end of the index. 184 * 185 * This has the same API as _hash_getinitbuf, except that we are adding 186 * a page to the index, and hence expect the page to be past the 187 * logical EOF. (However, we have to support the case where it isn't, 188 * since a prior try might have crashed after extending the filesystem 189 * EOF but before updating the metapage to reflect the added page.) 190 * 191 * It is caller's responsibility to ensure that only one process can 192 * extend the index at a time. In practice, this function is called 193 * only while holding write lock on the metapage, because adding a page 194 * is always associated with an update of metapage data. 195 */ 196 Buffer 197 _hash_getnewbuf(Relation rel, BlockNumber blkno, ForkNumber forkNum) 198 { 199 BlockNumber nblocks = RelationGetNumberOfBlocksInFork(rel, forkNum); 200 Buffer buf; 201 202 if (blkno == P_NEW) 203 elog(ERROR, "hash AM does not use P_NEW"); 204 if (blkno > nblocks) 205 elog(ERROR, "access to noncontiguous page in hash index \"%s\"", 206 RelationGetRelationName(rel)); 207 208 /* smgr insists we use P_NEW to extend the relation */ 209 if (blkno == nblocks) 210 { 211 buf = ReadBufferExtended(rel, forkNum, P_NEW, RBM_NORMAL, NULL); 212 if (BufferGetBlockNumber(buf) != blkno) 213 elog(ERROR, "unexpected hash relation size: %u, should be %u", 214 BufferGetBlockNumber(buf), blkno); 215 LockBuffer(buf, HASH_WRITE); 216 } 217 else 218 { 219 buf = ReadBufferExtended(rel, forkNum, blkno, RBM_ZERO_AND_LOCK, 220 NULL); 221 } 222 223 /* ref count and lock type are correct */ 224 225 /* initialize the page */ 226 _hash_pageinit(BufferGetPage(buf), BufferGetPageSize(buf)); 227 228 return buf; 229 } 230 231 /* 232 * _hash_getbuf_with_strategy() -- Get a buffer with nondefault strategy. 233 * 234 * This is identical to _hash_getbuf() but also allows a buffer access 235 * strategy to be specified. We use this for VACUUM operations. 236 */ 237 Buffer 238 _hash_getbuf_with_strategy(Relation rel, BlockNumber blkno, 239 int access, int flags, 240 BufferAccessStrategy bstrategy) 241 { 242 Buffer buf; 243 244 if (blkno == P_NEW) 245 elog(ERROR, "hash AM does not use P_NEW"); 246 247 buf = ReadBufferExtended(rel, MAIN_FORKNUM, blkno, RBM_NORMAL, bstrategy); 248 249 if (access != HASH_NOLOCK) 250 LockBuffer(buf, access); 251 252 /* ref count and lock type are correct */ 253 254 _hash_checkpage(rel, buf, flags); 255 256 return buf; 257 } 258 259 /* 260 * _hash_relbuf() -- release a locked buffer. 261 * 262 * Lock and pin (refcount) are both dropped. 263 */ 264 void 265 _hash_relbuf(Relation rel, Buffer buf) 266 { 267 UnlockReleaseBuffer(buf); 268 } 269 270 /* 271 * _hash_dropbuf() -- release an unlocked buffer. 272 * 273 * This is used to unpin a buffer on which we hold no lock. 274 */ 275 void 276 _hash_dropbuf(Relation rel, Buffer buf) 277 { 278 ReleaseBuffer(buf); 279 } 280 281 /* 282 * _hash_dropscanbuf() -- release buffers used in scan. 283 * 284 * This routine unpins the buffers used during scan on which we 285 * hold no lock. 286 */ 287 void 288 _hash_dropscanbuf(Relation rel, HashScanOpaque so) 289 { 290 /* release pin we hold on primary bucket page */ 291 if (BufferIsValid(so->hashso_bucket_buf) && 292 so->hashso_bucket_buf != so->currPos.buf) 293 _hash_dropbuf(rel, so->hashso_bucket_buf); 294 so->hashso_bucket_buf = InvalidBuffer; 295 296 /* release pin we hold on primary bucket page of bucket being split */ 297 if (BufferIsValid(so->hashso_split_bucket_buf) && 298 so->hashso_split_bucket_buf != so->currPos.buf) 299 _hash_dropbuf(rel, so->hashso_split_bucket_buf); 300 so->hashso_split_bucket_buf = InvalidBuffer; 301 302 /* release any pin we still hold */ 303 if (BufferIsValid(so->currPos.buf)) 304 _hash_dropbuf(rel, so->currPos.buf); 305 so->currPos.buf = InvalidBuffer; 306 307 /* reset split scan */ 308 so->hashso_buc_populated = false; 309 so->hashso_buc_split = false; 310 } 311 312 313 /* 314 * _hash_init() -- Initialize the metadata page of a hash index, 315 * the initial buckets, and the initial bitmap page. 316 * 317 * The initial number of buckets is dependent on num_tuples, an estimate 318 * of the number of tuples to be loaded into the index initially. The 319 * chosen number of buckets is returned. 320 * 321 * We are fairly cavalier about locking here, since we know that no one else 322 * could be accessing this index. In particular the rule about not holding 323 * multiple buffer locks is ignored. 324 */ 325 uint32 326 _hash_init(Relation rel, double num_tuples, ForkNumber forkNum) 327 { 328 Buffer metabuf; 329 Buffer buf; 330 Buffer bitmapbuf; 331 Page pg; 332 HashMetaPage metap; 333 RegProcedure procid; 334 int32 data_width; 335 int32 item_width; 336 int32 ffactor; 337 uint32 num_buckets; 338 uint32 i; 339 bool use_wal; 340 341 /* safety check */ 342 if (RelationGetNumberOfBlocksInFork(rel, forkNum) != 0) 343 elog(ERROR, "cannot initialize non-empty hash index \"%s\"", 344 RelationGetRelationName(rel)); 345 346 /* 347 * WAL log creation of pages if the relation is persistent, or this is the 348 * init fork. Init forks for unlogged relations always need to be WAL 349 * logged. 350 */ 351 use_wal = RelationNeedsWAL(rel) || forkNum == INIT_FORKNUM; 352 353 /* 354 * Determine the target fill factor (in tuples per bucket) for this index. 355 * The idea is to make the fill factor correspond to pages about as full 356 * as the user-settable fillfactor parameter says. We can compute it 357 * exactly since the index datatype (i.e. uint32 hash key) is fixed-width. 358 */ 359 data_width = sizeof(uint32); 360 item_width = MAXALIGN(sizeof(IndexTupleData)) + MAXALIGN(data_width) + 361 sizeof(ItemIdData); /* include the line pointer */ 362 ffactor = HashGetTargetPageUsage(rel) / item_width; 363 /* keep to a sane range */ 364 if (ffactor < 10) 365 ffactor = 10; 366 367 procid = index_getprocid(rel, 1, HASHSTANDARD_PROC); 368 369 /* 370 * We initialize the metapage, the first N bucket pages, and the first 371 * bitmap page in sequence, using _hash_getnewbuf to cause smgrextend() 372 * calls to occur. This ensures that the smgr level has the right idea of 373 * the physical index length. 374 * 375 * Critical section not required, because on error the creation of the 376 * whole relation will be rolled back. 377 */ 378 metabuf = _hash_getnewbuf(rel, HASH_METAPAGE, forkNum); 379 _hash_init_metabuffer(metabuf, num_tuples, procid, ffactor, false); 380 MarkBufferDirty(metabuf); 381 382 pg = BufferGetPage(metabuf); 383 metap = HashPageGetMeta(pg); 384 385 /* XLOG stuff */ 386 if (use_wal) 387 { 388 xl_hash_init_meta_page xlrec; 389 XLogRecPtr recptr; 390 391 xlrec.num_tuples = num_tuples; 392 xlrec.procid = metap->hashm_procid; 393 xlrec.ffactor = metap->hashm_ffactor; 394 395 XLogBeginInsert(); 396 XLogRegisterData((char *) &xlrec, SizeOfHashInitMetaPage); 397 XLogRegisterBuffer(0, metabuf, REGBUF_WILL_INIT | REGBUF_STANDARD); 398 399 recptr = XLogInsert(RM_HASH_ID, XLOG_HASH_INIT_META_PAGE); 400 401 PageSetLSN(BufferGetPage(metabuf), recptr); 402 } 403 404 num_buckets = metap->hashm_maxbucket + 1; 405 406 /* 407 * Release buffer lock on the metapage while we initialize buckets. 408 * Otherwise, we'll be in interrupt holdoff and the CHECK_FOR_INTERRUPTS 409 * won't accomplish anything. It's a bad idea to hold buffer locks for 410 * long intervals in any case, since that can block the bgwriter. 411 */ 412 LockBuffer(metabuf, BUFFER_LOCK_UNLOCK); 413 414 /* 415 * Initialize and WAL Log the first N buckets 416 */ 417 for (i = 0; i < num_buckets; i++) 418 { 419 BlockNumber blkno; 420 421 /* Allow interrupts, in case N is huge */ 422 CHECK_FOR_INTERRUPTS(); 423 424 blkno = BUCKET_TO_BLKNO(metap, i); 425 buf = _hash_getnewbuf(rel, blkno, forkNum); 426 _hash_initbuf(buf, metap->hashm_maxbucket, i, LH_BUCKET_PAGE, false); 427 MarkBufferDirty(buf); 428 429 if (use_wal) 430 log_newpage(&rel->rd_node, 431 forkNum, 432 blkno, 433 BufferGetPage(buf), 434 true); 435 _hash_relbuf(rel, buf); 436 } 437 438 /* Now reacquire buffer lock on metapage */ 439 LockBuffer(metabuf, BUFFER_LOCK_EXCLUSIVE); 440 441 /* 442 * Initialize bitmap page 443 */ 444 bitmapbuf = _hash_getnewbuf(rel, num_buckets + 1, forkNum); 445 _hash_initbitmapbuffer(bitmapbuf, metap->hashm_bmsize, false); 446 MarkBufferDirty(bitmapbuf); 447 448 /* add the new bitmap page to the metapage's list of bitmaps */ 449 /* metapage already has a write lock */ 450 if (metap->hashm_nmaps >= HASH_MAX_BITMAPS) 451 ereport(ERROR, 452 (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), 453 errmsg("out of overflow pages in hash index \"%s\"", 454 RelationGetRelationName(rel)))); 455 456 metap->hashm_mapp[metap->hashm_nmaps] = num_buckets + 1; 457 458 metap->hashm_nmaps++; 459 MarkBufferDirty(metabuf); 460 461 /* XLOG stuff */ 462 if (use_wal) 463 { 464 xl_hash_init_bitmap_page xlrec; 465 XLogRecPtr recptr; 466 467 xlrec.bmsize = metap->hashm_bmsize; 468 469 XLogBeginInsert(); 470 XLogRegisterData((char *) &xlrec, SizeOfHashInitBitmapPage); 471 XLogRegisterBuffer(0, bitmapbuf, REGBUF_WILL_INIT); 472 473 /* 474 * This is safe only because nobody else can be modifying the index at 475 * this stage; it's only visible to the transaction that is creating 476 * it. 477 */ 478 XLogRegisterBuffer(1, metabuf, REGBUF_STANDARD); 479 480 recptr = XLogInsert(RM_HASH_ID, XLOG_HASH_INIT_BITMAP_PAGE); 481 482 PageSetLSN(BufferGetPage(bitmapbuf), recptr); 483 PageSetLSN(BufferGetPage(metabuf), recptr); 484 } 485 486 /* all done */ 487 _hash_relbuf(rel, bitmapbuf); 488 _hash_relbuf(rel, metabuf); 489 490 return num_buckets; 491 } 492 493 /* 494 * _hash_init_metabuffer() -- Initialize the metadata page of a hash index. 495 */ 496 void 497 _hash_init_metabuffer(Buffer buf, double num_tuples, RegProcedure procid, 498 uint16 ffactor, bool initpage) 499 { 500 HashMetaPage metap; 501 HashPageOpaque pageopaque; 502 Page page; 503 double dnumbuckets; 504 uint32 num_buckets; 505 uint32 spare_index; 506 uint32 lshift; 507 508 /* 509 * Choose the number of initial bucket pages to match the fill factor 510 * given the estimated number of tuples. We round up the result to the 511 * total number of buckets which has to be allocated before using its 512 * hashm_spares element. However always force at least 2 bucket pages. The 513 * upper limit is determined by considerations explained in 514 * _hash_expandtable(). 515 */ 516 dnumbuckets = num_tuples / ffactor; 517 if (dnumbuckets <= 2.0) 518 num_buckets = 2; 519 else if (dnumbuckets >= (double) 0x40000000) 520 num_buckets = 0x40000000; 521 else 522 num_buckets = _hash_get_totalbuckets(_hash_spareindex(dnumbuckets)); 523 524 spare_index = _hash_spareindex(num_buckets); 525 Assert(spare_index < HASH_MAX_SPLITPOINTS); 526 527 page = BufferGetPage(buf); 528 if (initpage) 529 _hash_pageinit(page, BufferGetPageSize(buf)); 530 531 pageopaque = (HashPageOpaque) PageGetSpecialPointer(page); 532 pageopaque->hasho_prevblkno = InvalidBlockNumber; 533 pageopaque->hasho_nextblkno = InvalidBlockNumber; 534 pageopaque->hasho_bucket = -1; 535 pageopaque->hasho_flag = LH_META_PAGE; 536 pageopaque->hasho_page_id = HASHO_PAGE_ID; 537 538 metap = HashPageGetMeta(page); 539 540 metap->hashm_magic = HASH_MAGIC; 541 metap->hashm_version = HASH_VERSION; 542 metap->hashm_ntuples = 0; 543 metap->hashm_nmaps = 0; 544 metap->hashm_ffactor = ffactor; 545 metap->hashm_bsize = HashGetMaxBitmapSize(page); 546 547 /* find largest bitmap array size that will fit in page size */ 548 lshift = pg_leftmost_one_pos32(metap->hashm_bsize); 549 Assert(lshift > 0); 550 metap->hashm_bmsize = 1 << lshift; 551 metap->hashm_bmshift = lshift + BYTE_TO_BIT; 552 Assert((1 << BMPG_SHIFT(metap)) == (BMPG_MASK(metap) + 1)); 553 554 /* 555 * Label the index with its primary hash support function's OID. This is 556 * pretty useless for normal operation (in fact, hashm_procid is not used 557 * anywhere), but it might be handy for forensic purposes so we keep it. 558 */ 559 metap->hashm_procid = procid; 560 561 /* 562 * We initialize the index with N buckets, 0 .. N-1, occupying physical 563 * blocks 1 to N. The first freespace bitmap page is in block N+1. 564 */ 565 metap->hashm_maxbucket = num_buckets - 1; 566 567 /* 568 * Set highmask as next immediate ((2 ^ x) - 1), which should be 569 * sufficient to cover num_buckets. 570 */ 571 metap->hashm_highmask = pg_nextpower2_32(num_buckets + 1) - 1; 572 metap->hashm_lowmask = (metap->hashm_highmask >> 1); 573 574 MemSet(metap->hashm_spares, 0, sizeof(metap->hashm_spares)); 575 MemSet(metap->hashm_mapp, 0, sizeof(metap->hashm_mapp)); 576 577 /* Set up mapping for one spare page after the initial splitpoints */ 578 metap->hashm_spares[spare_index] = 1; 579 metap->hashm_ovflpoint = spare_index; 580 metap->hashm_firstfree = 0; 581 582 /* 583 * Set pd_lower just past the end of the metadata. This is essential, 584 * because without doing so, metadata will be lost if xlog.c compresses 585 * the page. 586 */ 587 ((PageHeader) page)->pd_lower = 588 ((char *) metap + sizeof(HashMetaPageData)) - (char *) page; 589 } 590 591 /* 592 * _hash_pageinit() -- Initialize a new hash index page. 593 */ 594 void 595 _hash_pageinit(Page page, Size size) 596 { 597 PageInit(page, size, sizeof(HashPageOpaqueData)); 598 } 599 600 /* 601 * Attempt to expand the hash table by creating one new bucket. 602 * 603 * This will silently do nothing if we don't get cleanup lock on old or 604 * new bucket. 605 * 606 * Complete the pending splits and remove the tuples from old bucket, 607 * if there are any left over from the previous split. 608 * 609 * The caller must hold a pin, but no lock, on the metapage buffer. 610 * The buffer is returned in the same state. 611 */ 612 void 613 _hash_expandtable(Relation rel, Buffer metabuf) 614 { 615 HashMetaPage metap; 616 Bucket old_bucket; 617 Bucket new_bucket; 618 uint32 spare_ndx; 619 BlockNumber start_oblkno; 620 BlockNumber start_nblkno; 621 Buffer buf_nblkno; 622 Buffer buf_oblkno; 623 Page opage; 624 Page npage; 625 HashPageOpaque oopaque; 626 HashPageOpaque nopaque; 627 uint32 maxbucket; 628 uint32 highmask; 629 uint32 lowmask; 630 bool metap_update_masks = false; 631 bool metap_update_splitpoint = false; 632 633 restart_expand: 634 635 /* 636 * Write-lock the meta page. It used to be necessary to acquire a 637 * heavyweight lock to begin a split, but that is no longer required. 638 */ 639 LockBuffer(metabuf, BUFFER_LOCK_EXCLUSIVE); 640 641 _hash_checkpage(rel, metabuf, LH_META_PAGE); 642 metap = HashPageGetMeta(BufferGetPage(metabuf)); 643 644 /* 645 * Check to see if split is still needed; someone else might have already 646 * done one while we waited for the lock. 647 * 648 * Make sure this stays in sync with _hash_doinsert() 649 */ 650 if (metap->hashm_ntuples <= 651 (double) metap->hashm_ffactor * (metap->hashm_maxbucket + 1)) 652 goto fail; 653 654 /* 655 * Can't split anymore if maxbucket has reached its maximum possible 656 * value. 657 * 658 * Ideally we'd allow bucket numbers up to UINT_MAX-1 (no higher because 659 * the calculation maxbucket+1 mustn't overflow). Currently we restrict 660 * to half that to prevent failure of pg_ceil_log2_32() and insufficient 661 * space in hashm_spares[]. It's moot anyway because an index with 2^32 662 * buckets would certainly overflow BlockNumber and hence 663 * _hash_alloc_buckets() would fail, but if we supported buckets smaller 664 * than a disk block then this would be an independent constraint. 665 * 666 * If you change this, see also the maximum initial number of buckets in 667 * _hash_init(). 668 */ 669 if (metap->hashm_maxbucket >= (uint32) 0x7FFFFFFE) 670 goto fail; 671 672 /* 673 * Determine which bucket is to be split, and attempt to take cleanup lock 674 * on the old bucket. If we can't get the lock, give up. 675 * 676 * The cleanup lock protects us not only against other backends, but 677 * against our own backend as well. 678 * 679 * The cleanup lock is mainly to protect the split from concurrent 680 * inserts. See src/backend/access/hash/README, Lock Definitions for 681 * further details. Due to this locking restriction, if there is any 682 * pending scan, the split will give up which is not good, but harmless. 683 */ 684 new_bucket = metap->hashm_maxbucket + 1; 685 686 old_bucket = (new_bucket & metap->hashm_lowmask); 687 688 start_oblkno = BUCKET_TO_BLKNO(metap, old_bucket); 689 690 buf_oblkno = _hash_getbuf_with_condlock_cleanup(rel, start_oblkno, LH_BUCKET_PAGE); 691 if (!buf_oblkno) 692 goto fail; 693 694 opage = BufferGetPage(buf_oblkno); 695 oopaque = (HashPageOpaque) PageGetSpecialPointer(opage); 696 697 /* 698 * We want to finish the split from a bucket as there is no apparent 699 * benefit by not doing so and it will make the code complicated to finish 700 * the split that involves multiple buckets considering the case where new 701 * split also fails. We don't need to consider the new bucket for 702 * completing the split here as it is not possible that a re-split of new 703 * bucket starts when there is still a pending split from old bucket. 704 */ 705 if (H_BUCKET_BEING_SPLIT(oopaque)) 706 { 707 /* 708 * Copy bucket mapping info now; refer the comment in code below where 709 * we copy this information before calling _hash_splitbucket to see 710 * why this is okay. 711 */ 712 maxbucket = metap->hashm_maxbucket; 713 highmask = metap->hashm_highmask; 714 lowmask = metap->hashm_lowmask; 715 716 /* 717 * Release the lock on metapage and old_bucket, before completing the 718 * split. 719 */ 720 LockBuffer(metabuf, BUFFER_LOCK_UNLOCK); 721 LockBuffer(buf_oblkno, BUFFER_LOCK_UNLOCK); 722 723 _hash_finish_split(rel, metabuf, buf_oblkno, old_bucket, maxbucket, 724 highmask, lowmask); 725 726 /* release the pin on old buffer and retry for expand. */ 727 _hash_dropbuf(rel, buf_oblkno); 728 729 goto restart_expand; 730 } 731 732 /* 733 * Clean the tuples remained from the previous split. This operation 734 * requires cleanup lock and we already have one on the old bucket, so 735 * let's do it. We also don't want to allow further splits from the bucket 736 * till the garbage of previous split is cleaned. This has two 737 * advantages; first, it helps in avoiding the bloat due to garbage and 738 * second is, during cleanup of bucket, we are always sure that the 739 * garbage tuples belong to most recently split bucket. On the contrary, 740 * if we allow cleanup of bucket after meta page is updated to indicate 741 * the new split and before the actual split, the cleanup operation won't 742 * be able to decide whether the tuple has been moved to the newly created 743 * bucket and ended up deleting such tuples. 744 */ 745 if (H_NEEDS_SPLIT_CLEANUP(oopaque)) 746 { 747 /* 748 * Copy bucket mapping info now; refer to the comment in code below 749 * where we copy this information before calling _hash_splitbucket to 750 * see why this is okay. 751 */ 752 maxbucket = metap->hashm_maxbucket; 753 highmask = metap->hashm_highmask; 754 lowmask = metap->hashm_lowmask; 755 756 /* Release the metapage lock. */ 757 LockBuffer(metabuf, BUFFER_LOCK_UNLOCK); 758 759 hashbucketcleanup(rel, old_bucket, buf_oblkno, start_oblkno, NULL, 760 maxbucket, highmask, lowmask, NULL, NULL, true, 761 NULL, NULL); 762 763 _hash_dropbuf(rel, buf_oblkno); 764 765 goto restart_expand; 766 } 767 768 /* 769 * There shouldn't be any active scan on new bucket. 770 * 771 * Note: it is safe to compute the new bucket's blkno here, even though we 772 * may still need to update the BUCKET_TO_BLKNO mapping. This is because 773 * the current value of hashm_spares[hashm_ovflpoint] correctly shows 774 * where we are going to put a new splitpoint's worth of buckets. 775 */ 776 start_nblkno = BUCKET_TO_BLKNO(metap, new_bucket); 777 778 /* 779 * If the split point is increasing we need to allocate a new batch of 780 * bucket pages. 781 */ 782 spare_ndx = _hash_spareindex(new_bucket + 1); 783 if (spare_ndx > metap->hashm_ovflpoint) 784 { 785 uint32 buckets_to_add; 786 787 Assert(spare_ndx == metap->hashm_ovflpoint + 1); 788 789 /* 790 * We treat allocation of buckets as a separate WAL-logged action. 791 * Even if we fail after this operation, won't leak bucket pages; 792 * rather, the next split will consume this space. In any case, even 793 * without failure we don't use all the space in one split operation. 794 */ 795 buckets_to_add = _hash_get_totalbuckets(spare_ndx) - new_bucket; 796 if (!_hash_alloc_buckets(rel, start_nblkno, buckets_to_add)) 797 { 798 /* can't split due to BlockNumber overflow */ 799 _hash_relbuf(rel, buf_oblkno); 800 goto fail; 801 } 802 } 803 804 /* 805 * Physically allocate the new bucket's primary page. We want to do this 806 * before changing the metapage's mapping info, in case we can't get the 807 * disk space. Ideally, we don't need to check for cleanup lock on new 808 * bucket as no other backend could find this bucket unless meta page is 809 * updated. However, it is good to be consistent with old bucket locking. 810 */ 811 buf_nblkno = _hash_getnewbuf(rel, start_nblkno, MAIN_FORKNUM); 812 if (!IsBufferCleanupOK(buf_nblkno)) 813 { 814 _hash_relbuf(rel, buf_oblkno); 815 _hash_relbuf(rel, buf_nblkno); 816 goto fail; 817 } 818 819 /* 820 * Since we are scribbling on the pages in the shared buffers, establish a 821 * critical section. Any failure in this next code leaves us with a big 822 * problem: the metapage is effectively corrupt but could get written back 823 * to disk. 824 */ 825 START_CRIT_SECTION(); 826 827 /* 828 * Okay to proceed with split. Update the metapage bucket mapping info. 829 */ 830 metap->hashm_maxbucket = new_bucket; 831 832 if (new_bucket > metap->hashm_highmask) 833 { 834 /* Starting a new doubling */ 835 metap->hashm_lowmask = metap->hashm_highmask; 836 metap->hashm_highmask = new_bucket | metap->hashm_lowmask; 837 metap_update_masks = true; 838 } 839 840 /* 841 * If the split point is increasing we need to adjust the hashm_spares[] 842 * array and hashm_ovflpoint so that future overflow pages will be created 843 * beyond this new batch of bucket pages. 844 */ 845 if (spare_ndx > metap->hashm_ovflpoint) 846 { 847 metap->hashm_spares[spare_ndx] = metap->hashm_spares[metap->hashm_ovflpoint]; 848 metap->hashm_ovflpoint = spare_ndx; 849 metap_update_splitpoint = true; 850 } 851 852 MarkBufferDirty(metabuf); 853 854 /* 855 * Copy bucket mapping info now; this saves re-accessing the meta page 856 * inside _hash_splitbucket's inner loop. Note that once we drop the 857 * split lock, other splits could begin, so these values might be out of 858 * date before _hash_splitbucket finishes. That's okay, since all it 859 * needs is to tell which of these two buckets to map hashkeys into. 860 */ 861 maxbucket = metap->hashm_maxbucket; 862 highmask = metap->hashm_highmask; 863 lowmask = metap->hashm_lowmask; 864 865 opage = BufferGetPage(buf_oblkno); 866 oopaque = (HashPageOpaque) PageGetSpecialPointer(opage); 867 868 /* 869 * Mark the old bucket to indicate that split is in progress. (At 870 * operation end, we will clear the split-in-progress flag.) Also, for a 871 * primary bucket page, hasho_prevblkno stores the number of buckets that 872 * existed as of the last split, so we must update that value here. 873 */ 874 oopaque->hasho_flag |= LH_BUCKET_BEING_SPLIT; 875 oopaque->hasho_prevblkno = maxbucket; 876 877 MarkBufferDirty(buf_oblkno); 878 879 npage = BufferGetPage(buf_nblkno); 880 881 /* 882 * initialize the new bucket's primary page and mark it to indicate that 883 * split is in progress. 884 */ 885 nopaque = (HashPageOpaque) PageGetSpecialPointer(npage); 886 nopaque->hasho_prevblkno = maxbucket; 887 nopaque->hasho_nextblkno = InvalidBlockNumber; 888 nopaque->hasho_bucket = new_bucket; 889 nopaque->hasho_flag = LH_BUCKET_PAGE | LH_BUCKET_BEING_POPULATED; 890 nopaque->hasho_page_id = HASHO_PAGE_ID; 891 892 MarkBufferDirty(buf_nblkno); 893 894 /* XLOG stuff */ 895 if (RelationNeedsWAL(rel)) 896 { 897 xl_hash_split_allocate_page xlrec; 898 XLogRecPtr recptr; 899 900 xlrec.new_bucket = maxbucket; 901 xlrec.old_bucket_flag = oopaque->hasho_flag; 902 xlrec.new_bucket_flag = nopaque->hasho_flag; 903 xlrec.flags = 0; 904 905 XLogBeginInsert(); 906 907 XLogRegisterBuffer(0, buf_oblkno, REGBUF_STANDARD); 908 XLogRegisterBuffer(1, buf_nblkno, REGBUF_WILL_INIT); 909 XLogRegisterBuffer(2, metabuf, REGBUF_STANDARD); 910 911 if (metap_update_masks) 912 { 913 xlrec.flags |= XLH_SPLIT_META_UPDATE_MASKS; 914 XLogRegisterBufData(2, (char *) &metap->hashm_lowmask, sizeof(uint32)); 915 XLogRegisterBufData(2, (char *) &metap->hashm_highmask, sizeof(uint32)); 916 } 917 918 if (metap_update_splitpoint) 919 { 920 xlrec.flags |= XLH_SPLIT_META_UPDATE_SPLITPOINT; 921 XLogRegisterBufData(2, (char *) &metap->hashm_ovflpoint, 922 sizeof(uint32)); 923 XLogRegisterBufData(2, 924 (char *) &metap->hashm_spares[metap->hashm_ovflpoint], 925 sizeof(uint32)); 926 } 927 928 XLogRegisterData((char *) &xlrec, SizeOfHashSplitAllocPage); 929 930 recptr = XLogInsert(RM_HASH_ID, XLOG_HASH_SPLIT_ALLOCATE_PAGE); 931 932 PageSetLSN(BufferGetPage(buf_oblkno), recptr); 933 PageSetLSN(BufferGetPage(buf_nblkno), recptr); 934 PageSetLSN(BufferGetPage(metabuf), recptr); 935 } 936 937 END_CRIT_SECTION(); 938 939 /* drop lock, but keep pin */ 940 LockBuffer(metabuf, BUFFER_LOCK_UNLOCK); 941 942 /* Relocate records to the new bucket */ 943 _hash_splitbucket(rel, metabuf, 944 old_bucket, new_bucket, 945 buf_oblkno, buf_nblkno, NULL, 946 maxbucket, highmask, lowmask); 947 948 /* all done, now release the pins on primary buckets. */ 949 _hash_dropbuf(rel, buf_oblkno); 950 _hash_dropbuf(rel, buf_nblkno); 951 952 return; 953 954 /* Here if decide not to split or fail to acquire old bucket lock */ 955 fail: 956 957 /* We didn't write the metapage, so just drop lock */ 958 LockBuffer(metabuf, BUFFER_LOCK_UNLOCK); 959 } 960 961 962 /* 963 * _hash_alloc_buckets -- allocate a new splitpoint's worth of bucket pages 964 * 965 * This does not need to initialize the new bucket pages; we'll do that as 966 * each one is used by _hash_expandtable(). But we have to extend the logical 967 * EOF to the end of the splitpoint; this keeps smgr's idea of the EOF in 968 * sync with ours, so that we don't get complaints from smgr. 969 * 970 * We do this by writing a page of zeroes at the end of the splitpoint range. 971 * We expect that the filesystem will ensure that the intervening pages read 972 * as zeroes too. On many filesystems this "hole" will not be allocated 973 * immediately, which means that the index file may end up more fragmented 974 * than if we forced it all to be allocated now; but since we don't scan 975 * hash indexes sequentially anyway, that probably doesn't matter. 976 * 977 * XXX It's annoying that this code is executed with the metapage lock held. 978 * We need to interlock against _hash_addovflpage() adding a new overflow page 979 * concurrently, but it'd likely be better to use LockRelationForExtension 980 * for the purpose. OTOH, adding a splitpoint is a very infrequent operation, 981 * so it may not be worth worrying about. 982 * 983 * Returns true if successful, or false if allocation failed due to 984 * BlockNumber overflow. 985 */ 986 static bool 987 _hash_alloc_buckets(Relation rel, BlockNumber firstblock, uint32 nblocks) 988 { 989 BlockNumber lastblock; 990 PGAlignedBlock zerobuf; 991 Page page; 992 HashPageOpaque ovflopaque; 993 994 lastblock = firstblock + nblocks - 1; 995 996 /* 997 * Check for overflow in block number calculation; if so, we cannot extend 998 * the index anymore. 999 */ 1000 if (lastblock < firstblock || lastblock == InvalidBlockNumber) 1001 return false; 1002 1003 page = (Page) zerobuf.data; 1004 1005 /* 1006 * Initialize the page. Just zeroing the page won't work; see 1007 * _hash_freeovflpage for similar usage. We take care to make the special 1008 * space valid for the benefit of tools such as pageinspect. 1009 */ 1010 _hash_pageinit(page, BLCKSZ); 1011 1012 ovflopaque = (HashPageOpaque) PageGetSpecialPointer(page); 1013 1014 ovflopaque->hasho_prevblkno = InvalidBlockNumber; 1015 ovflopaque->hasho_nextblkno = InvalidBlockNumber; 1016 ovflopaque->hasho_bucket = -1; 1017 ovflopaque->hasho_flag = LH_UNUSED_PAGE; 1018 ovflopaque->hasho_page_id = HASHO_PAGE_ID; 1019 1020 if (RelationNeedsWAL(rel)) 1021 log_newpage(&rel->rd_node, 1022 MAIN_FORKNUM, 1023 lastblock, 1024 zerobuf.data, 1025 true); 1026 1027 RelationOpenSmgr(rel); 1028 PageSetChecksumInplace(page, lastblock); 1029 smgrextend(rel->rd_smgr, MAIN_FORKNUM, lastblock, zerobuf.data, false); 1030 1031 return true; 1032 } 1033 1034 1035 /* 1036 * _hash_splitbucket -- split 'obucket' into 'obucket' and 'nbucket' 1037 * 1038 * This routine is used to partition the tuples between old and new bucket and 1039 * is used to finish the incomplete split operations. To finish the previously 1040 * interrupted split operation, the caller needs to fill htab. If htab is set, 1041 * then we skip the movement of tuples that exists in htab, otherwise NULL 1042 * value of htab indicates movement of all the tuples that belong to the new 1043 * bucket. 1044 * 1045 * We are splitting a bucket that consists of a base bucket page and zero 1046 * or more overflow (bucket chain) pages. We must relocate tuples that 1047 * belong in the new bucket. 1048 * 1049 * The caller must hold cleanup locks on both buckets to ensure that 1050 * no one else is trying to access them (see README). 1051 * 1052 * The caller must hold a pin, but no lock, on the metapage buffer. 1053 * The buffer is returned in the same state. (The metapage is only 1054 * touched if it becomes necessary to add or remove overflow pages.) 1055 * 1056 * Split needs to retain pin on primary bucket pages of both old and new 1057 * buckets till end of operation. This is to prevent vacuum from starting 1058 * while a split is in progress. 1059 * 1060 * In addition, the caller must have created the new bucket's base page, 1061 * which is passed in buffer nbuf, pinned and write-locked. The lock will be 1062 * released here and pin must be released by the caller. (The API is set up 1063 * this way because we must do _hash_getnewbuf() before releasing the metapage 1064 * write lock. So instead of passing the new bucket's start block number, we 1065 * pass an actual buffer.) 1066 */ 1067 static void 1068 _hash_splitbucket(Relation rel, 1069 Buffer metabuf, 1070 Bucket obucket, 1071 Bucket nbucket, 1072 Buffer obuf, 1073 Buffer nbuf, 1074 HTAB *htab, 1075 uint32 maxbucket, 1076 uint32 highmask, 1077 uint32 lowmask) 1078 { 1079 Buffer bucket_obuf; 1080 Buffer bucket_nbuf; 1081 Page opage; 1082 Page npage; 1083 HashPageOpaque oopaque; 1084 HashPageOpaque nopaque; 1085 OffsetNumber itup_offsets[MaxIndexTuplesPerPage]; 1086 IndexTuple itups[MaxIndexTuplesPerPage]; 1087 Size all_tups_size = 0; 1088 int i; 1089 uint16 nitups = 0; 1090 1091 bucket_obuf = obuf; 1092 opage = BufferGetPage(obuf); 1093 oopaque = (HashPageOpaque) PageGetSpecialPointer(opage); 1094 1095 bucket_nbuf = nbuf; 1096 npage = BufferGetPage(nbuf); 1097 nopaque = (HashPageOpaque) PageGetSpecialPointer(npage); 1098 1099 /* Copy the predicate locks from old bucket to new bucket. */ 1100 PredicateLockPageSplit(rel, 1101 BufferGetBlockNumber(bucket_obuf), 1102 BufferGetBlockNumber(bucket_nbuf)); 1103 1104 /* 1105 * Partition the tuples in the old bucket between the old bucket and the 1106 * new bucket, advancing along the old bucket's overflow bucket chain and 1107 * adding overflow pages to the new bucket as needed. Outer loop iterates 1108 * once per page in old bucket. 1109 */ 1110 for (;;) 1111 { 1112 BlockNumber oblkno; 1113 OffsetNumber ooffnum; 1114 OffsetNumber omaxoffnum; 1115 1116 /* Scan each tuple in old page */ 1117 omaxoffnum = PageGetMaxOffsetNumber(opage); 1118 for (ooffnum = FirstOffsetNumber; 1119 ooffnum <= omaxoffnum; 1120 ooffnum = OffsetNumberNext(ooffnum)) 1121 { 1122 IndexTuple itup; 1123 Size itemsz; 1124 Bucket bucket; 1125 bool found = false; 1126 1127 /* skip dead tuples */ 1128 if (ItemIdIsDead(PageGetItemId(opage, ooffnum))) 1129 continue; 1130 1131 /* 1132 * Before inserting a tuple, probe the hash table containing TIDs 1133 * of tuples belonging to new bucket, if we find a match, then 1134 * skip that tuple, else fetch the item's hash key (conveniently 1135 * stored in the item) and determine which bucket it now belongs 1136 * in. 1137 */ 1138 itup = (IndexTuple) PageGetItem(opage, 1139 PageGetItemId(opage, ooffnum)); 1140 1141 if (htab) 1142 (void) hash_search(htab, &itup->t_tid, HASH_FIND, &found); 1143 1144 if (found) 1145 continue; 1146 1147 bucket = _hash_hashkey2bucket(_hash_get_indextuple_hashkey(itup), 1148 maxbucket, highmask, lowmask); 1149 1150 if (bucket == nbucket) 1151 { 1152 IndexTuple new_itup; 1153 1154 /* 1155 * make a copy of index tuple as we have to scribble on it. 1156 */ 1157 new_itup = CopyIndexTuple(itup); 1158 1159 /* 1160 * mark the index tuple as moved by split, such tuples are 1161 * skipped by scan if there is split in progress for a bucket. 1162 */ 1163 new_itup->t_info |= INDEX_MOVED_BY_SPLIT_MASK; 1164 1165 /* 1166 * insert the tuple into the new bucket. if it doesn't fit on 1167 * the current page in the new bucket, we must allocate a new 1168 * overflow page and place the tuple on that page instead. 1169 */ 1170 itemsz = IndexTupleSize(new_itup); 1171 itemsz = MAXALIGN(itemsz); 1172 1173 if (PageGetFreeSpaceForMultipleTuples(npage, nitups + 1) < (all_tups_size + itemsz)) 1174 { 1175 /* 1176 * Change the shared buffer state in critical section, 1177 * otherwise any error could make it unrecoverable. 1178 */ 1179 START_CRIT_SECTION(); 1180 1181 _hash_pgaddmultitup(rel, nbuf, itups, itup_offsets, nitups); 1182 MarkBufferDirty(nbuf); 1183 /* log the split operation before releasing the lock */ 1184 log_split_page(rel, nbuf); 1185 1186 END_CRIT_SECTION(); 1187 1188 /* drop lock, but keep pin */ 1189 LockBuffer(nbuf, BUFFER_LOCK_UNLOCK); 1190 1191 /* be tidy */ 1192 for (i = 0; i < nitups; i++) 1193 pfree(itups[i]); 1194 nitups = 0; 1195 all_tups_size = 0; 1196 1197 /* chain to a new overflow page */ 1198 nbuf = _hash_addovflpage(rel, metabuf, nbuf, (nbuf == bucket_nbuf) ? true : false); 1199 npage = BufferGetPage(nbuf); 1200 nopaque = (HashPageOpaque) PageGetSpecialPointer(npage); 1201 } 1202 1203 itups[nitups++] = new_itup; 1204 all_tups_size += itemsz; 1205 } 1206 else 1207 { 1208 /* 1209 * the tuple stays on this page, so nothing to do. 1210 */ 1211 Assert(bucket == obucket); 1212 } 1213 } 1214 1215 oblkno = oopaque->hasho_nextblkno; 1216 1217 /* retain the pin on the old primary bucket */ 1218 if (obuf == bucket_obuf) 1219 LockBuffer(obuf, BUFFER_LOCK_UNLOCK); 1220 else 1221 _hash_relbuf(rel, obuf); 1222 1223 /* Exit loop if no more overflow pages in old bucket */ 1224 if (!BlockNumberIsValid(oblkno)) 1225 { 1226 /* 1227 * Change the shared buffer state in critical section, otherwise 1228 * any error could make it unrecoverable. 1229 */ 1230 START_CRIT_SECTION(); 1231 1232 _hash_pgaddmultitup(rel, nbuf, itups, itup_offsets, nitups); 1233 MarkBufferDirty(nbuf); 1234 /* log the split operation before releasing the lock */ 1235 log_split_page(rel, nbuf); 1236 1237 END_CRIT_SECTION(); 1238 1239 if (nbuf == bucket_nbuf) 1240 LockBuffer(nbuf, BUFFER_LOCK_UNLOCK); 1241 else 1242 _hash_relbuf(rel, nbuf); 1243 1244 /* be tidy */ 1245 for (i = 0; i < nitups; i++) 1246 pfree(itups[i]); 1247 break; 1248 } 1249 1250 /* Else, advance to next old page */ 1251 obuf = _hash_getbuf(rel, oblkno, HASH_READ, LH_OVERFLOW_PAGE); 1252 opage = BufferGetPage(obuf); 1253 oopaque = (HashPageOpaque) PageGetSpecialPointer(opage); 1254 } 1255 1256 /* 1257 * We're at the end of the old bucket chain, so we're done partitioning 1258 * the tuples. Mark the old and new buckets to indicate split is 1259 * finished. 1260 * 1261 * To avoid deadlocks due to locking order of buckets, first lock the old 1262 * bucket and then the new bucket. 1263 */ 1264 LockBuffer(bucket_obuf, BUFFER_LOCK_EXCLUSIVE); 1265 opage = BufferGetPage(bucket_obuf); 1266 oopaque = (HashPageOpaque) PageGetSpecialPointer(opage); 1267 1268 LockBuffer(bucket_nbuf, BUFFER_LOCK_EXCLUSIVE); 1269 npage = BufferGetPage(bucket_nbuf); 1270 nopaque = (HashPageOpaque) PageGetSpecialPointer(npage); 1271 1272 START_CRIT_SECTION(); 1273 1274 oopaque->hasho_flag &= ~LH_BUCKET_BEING_SPLIT; 1275 nopaque->hasho_flag &= ~LH_BUCKET_BEING_POPULATED; 1276 1277 /* 1278 * After the split is finished, mark the old bucket to indicate that it 1279 * contains deletable tuples. We will clear split-cleanup flag after 1280 * deleting such tuples either at the end of split or at the next split 1281 * from old bucket or at the time of vacuum. 1282 */ 1283 oopaque->hasho_flag |= LH_BUCKET_NEEDS_SPLIT_CLEANUP; 1284 1285 /* 1286 * now write the buffers, here we don't release the locks as caller is 1287 * responsible to release locks. 1288 */ 1289 MarkBufferDirty(bucket_obuf); 1290 MarkBufferDirty(bucket_nbuf); 1291 1292 if (RelationNeedsWAL(rel)) 1293 { 1294 XLogRecPtr recptr; 1295 xl_hash_split_complete xlrec; 1296 1297 xlrec.old_bucket_flag = oopaque->hasho_flag; 1298 xlrec.new_bucket_flag = nopaque->hasho_flag; 1299 1300 XLogBeginInsert(); 1301 1302 XLogRegisterData((char *) &xlrec, SizeOfHashSplitComplete); 1303 1304 XLogRegisterBuffer(0, bucket_obuf, REGBUF_STANDARD); 1305 XLogRegisterBuffer(1, bucket_nbuf, REGBUF_STANDARD); 1306 1307 recptr = XLogInsert(RM_HASH_ID, XLOG_HASH_SPLIT_COMPLETE); 1308 1309 PageSetLSN(BufferGetPage(bucket_obuf), recptr); 1310 PageSetLSN(BufferGetPage(bucket_nbuf), recptr); 1311 } 1312 1313 END_CRIT_SECTION(); 1314 1315 /* 1316 * If possible, clean up the old bucket. We might not be able to do this 1317 * if someone else has a pin on it, but if not then we can go ahead. This 1318 * isn't absolutely necessary, but it reduces bloat; if we don't do it 1319 * now, VACUUM will do it eventually, but maybe not until new overflow 1320 * pages have been allocated. Note that there's no need to clean up the 1321 * new bucket. 1322 */ 1323 if (IsBufferCleanupOK(bucket_obuf)) 1324 { 1325 LockBuffer(bucket_nbuf, BUFFER_LOCK_UNLOCK); 1326 hashbucketcleanup(rel, obucket, bucket_obuf, 1327 BufferGetBlockNumber(bucket_obuf), NULL, 1328 maxbucket, highmask, lowmask, NULL, NULL, true, 1329 NULL, NULL); 1330 } 1331 else 1332 { 1333 LockBuffer(bucket_nbuf, BUFFER_LOCK_UNLOCK); 1334 LockBuffer(bucket_obuf, BUFFER_LOCK_UNLOCK); 1335 } 1336 } 1337 1338 /* 1339 * _hash_finish_split() -- Finish the previously interrupted split operation 1340 * 1341 * To complete the split operation, we form the hash table of TIDs in new 1342 * bucket which is then used by split operation to skip tuples that are 1343 * already moved before the split operation was previously interrupted. 1344 * 1345 * The caller must hold a pin, but no lock, on the metapage and old bucket's 1346 * primary page buffer. The buffers are returned in the same state. (The 1347 * metapage is only touched if it becomes necessary to add or remove overflow 1348 * pages.) 1349 */ 1350 void 1351 _hash_finish_split(Relation rel, Buffer metabuf, Buffer obuf, Bucket obucket, 1352 uint32 maxbucket, uint32 highmask, uint32 lowmask) 1353 { 1354 HASHCTL hash_ctl; 1355 HTAB *tidhtab; 1356 Buffer bucket_nbuf = InvalidBuffer; 1357 Buffer nbuf; 1358 Page npage; 1359 BlockNumber nblkno; 1360 BlockNumber bucket_nblkno; 1361 HashPageOpaque npageopaque; 1362 Bucket nbucket; 1363 bool found; 1364 1365 /* Initialize hash tables used to track TIDs */ 1366 memset(&hash_ctl, 0, sizeof(hash_ctl)); 1367 hash_ctl.keysize = sizeof(ItemPointerData); 1368 hash_ctl.entrysize = sizeof(ItemPointerData); 1369 hash_ctl.hcxt = CurrentMemoryContext; 1370 1371 tidhtab = 1372 hash_create("bucket ctids", 1373 256, /* arbitrary initial size */ 1374 &hash_ctl, 1375 HASH_ELEM | HASH_BLOBS | HASH_CONTEXT); 1376 1377 bucket_nblkno = nblkno = _hash_get_newblock_from_oldbucket(rel, obucket); 1378 1379 /* 1380 * Scan the new bucket and build hash table of TIDs 1381 */ 1382 for (;;) 1383 { 1384 OffsetNumber noffnum; 1385 OffsetNumber nmaxoffnum; 1386 1387 nbuf = _hash_getbuf(rel, nblkno, HASH_READ, 1388 LH_BUCKET_PAGE | LH_OVERFLOW_PAGE); 1389 1390 /* remember the primary bucket buffer to acquire cleanup lock on it. */ 1391 if (nblkno == bucket_nblkno) 1392 bucket_nbuf = nbuf; 1393 1394 npage = BufferGetPage(nbuf); 1395 npageopaque = (HashPageOpaque) PageGetSpecialPointer(npage); 1396 1397 /* Scan each tuple in new page */ 1398 nmaxoffnum = PageGetMaxOffsetNumber(npage); 1399 for (noffnum = FirstOffsetNumber; 1400 noffnum <= nmaxoffnum; 1401 noffnum = OffsetNumberNext(noffnum)) 1402 { 1403 IndexTuple itup; 1404 1405 /* Fetch the item's TID and insert it in hash table. */ 1406 itup = (IndexTuple) PageGetItem(npage, 1407 PageGetItemId(npage, noffnum)); 1408 1409 (void) hash_search(tidhtab, &itup->t_tid, HASH_ENTER, &found); 1410 1411 Assert(!found); 1412 } 1413 1414 nblkno = npageopaque->hasho_nextblkno; 1415 1416 /* 1417 * release our write lock without modifying buffer and ensure to 1418 * retain the pin on primary bucket. 1419 */ 1420 if (nbuf == bucket_nbuf) 1421 LockBuffer(nbuf, BUFFER_LOCK_UNLOCK); 1422 else 1423 _hash_relbuf(rel, nbuf); 1424 1425 /* Exit loop if no more overflow pages in new bucket */ 1426 if (!BlockNumberIsValid(nblkno)) 1427 break; 1428 } 1429 1430 /* 1431 * Conditionally get the cleanup lock on old and new buckets to perform 1432 * the split operation. If we don't get the cleanup locks, silently give 1433 * up and next insertion on old bucket will try again to complete the 1434 * split. 1435 */ 1436 if (!ConditionalLockBufferForCleanup(obuf)) 1437 { 1438 hash_destroy(tidhtab); 1439 return; 1440 } 1441 if (!ConditionalLockBufferForCleanup(bucket_nbuf)) 1442 { 1443 LockBuffer(obuf, BUFFER_LOCK_UNLOCK); 1444 hash_destroy(tidhtab); 1445 return; 1446 } 1447 1448 npage = BufferGetPage(bucket_nbuf); 1449 npageopaque = (HashPageOpaque) PageGetSpecialPointer(npage); 1450 nbucket = npageopaque->hasho_bucket; 1451 1452 _hash_splitbucket(rel, metabuf, obucket, 1453 nbucket, obuf, bucket_nbuf, tidhtab, 1454 maxbucket, highmask, lowmask); 1455 1456 _hash_dropbuf(rel, bucket_nbuf); 1457 hash_destroy(tidhtab); 1458 } 1459 1460 /* 1461 * log_split_page() -- Log the split operation 1462 * 1463 * We log the split operation when the new page in new bucket gets full, 1464 * so we log the entire page. 1465 * 1466 * 'buf' must be locked by the caller which is also responsible for unlocking 1467 * it. 1468 */ 1469 static void 1470 log_split_page(Relation rel, Buffer buf) 1471 { 1472 if (RelationNeedsWAL(rel)) 1473 { 1474 XLogRecPtr recptr; 1475 1476 XLogBeginInsert(); 1477 1478 XLogRegisterBuffer(0, buf, REGBUF_FORCE_IMAGE | REGBUF_STANDARD); 1479 1480 recptr = XLogInsert(RM_HASH_ID, XLOG_HASH_SPLIT_PAGE); 1481 1482 PageSetLSN(BufferGetPage(buf), recptr); 1483 } 1484 } 1485 1486 /* 1487 * _hash_getcachedmetap() -- Returns cached metapage data. 1488 * 1489 * If metabuf is not InvalidBuffer, caller must hold a pin, but no lock, on 1490 * the metapage. If not set, we'll set it before returning if we have to 1491 * refresh the cache, and return with a pin but no lock on it; caller is 1492 * responsible for releasing the pin. 1493 * 1494 * We refresh the cache if it's not initialized yet or force_refresh is true. 1495 */ 1496 HashMetaPage 1497 _hash_getcachedmetap(Relation rel, Buffer *metabuf, bool force_refresh) 1498 { 1499 Page page; 1500 1501 Assert(metabuf); 1502 if (force_refresh || rel->rd_amcache == NULL) 1503 { 1504 char *cache = NULL; 1505 1506 /* 1507 * It's important that we don't set rd_amcache to an invalid value. 1508 * Either MemoryContextAlloc or _hash_getbuf could fail, so don't 1509 * install a pointer to the newly-allocated storage in the actual 1510 * relcache entry until both have succeeded. 1511 */ 1512 if (rel->rd_amcache == NULL) 1513 cache = MemoryContextAlloc(rel->rd_indexcxt, 1514 sizeof(HashMetaPageData)); 1515 1516 /* Read the metapage. */ 1517 if (BufferIsValid(*metabuf)) 1518 LockBuffer(*metabuf, BUFFER_LOCK_SHARE); 1519 else 1520 *metabuf = _hash_getbuf(rel, HASH_METAPAGE, HASH_READ, 1521 LH_META_PAGE); 1522 page = BufferGetPage(*metabuf); 1523 1524 /* Populate the cache. */ 1525 if (rel->rd_amcache == NULL) 1526 rel->rd_amcache = cache; 1527 memcpy(rel->rd_amcache, HashPageGetMeta(page), 1528 sizeof(HashMetaPageData)); 1529 1530 /* Release metapage lock, but keep the pin. */ 1531 LockBuffer(*metabuf, BUFFER_LOCK_UNLOCK); 1532 } 1533 1534 return (HashMetaPage) rel->rd_amcache; 1535 } 1536 1537 /* 1538 * _hash_getbucketbuf_from_hashkey() -- Get the bucket's buffer for the given 1539 * hashkey. 1540 * 1541 * Bucket pages do not move or get removed once they are allocated. This give 1542 * us an opportunity to use the previously saved metapage contents to reach 1543 * the target bucket buffer, instead of reading from the metapage every time. 1544 * This saves one buffer access every time we want to reach the target bucket 1545 * buffer, which is very helpful savings in bufmgr traffic and contention. 1546 * 1547 * The access type parameter (HASH_READ or HASH_WRITE) indicates whether the 1548 * bucket buffer has to be locked for reading or writing. 1549 * 1550 * The out parameter cachedmetap is set with metapage contents used for 1551 * hashkey to bucket buffer mapping. Some callers need this info to reach the 1552 * old bucket in case of bucket split, see _hash_doinsert(). 1553 */ 1554 Buffer 1555 _hash_getbucketbuf_from_hashkey(Relation rel, uint32 hashkey, int access, 1556 HashMetaPage *cachedmetap) 1557 { 1558 HashMetaPage metap; 1559 Buffer buf; 1560 Buffer metabuf = InvalidBuffer; 1561 Page page; 1562 Bucket bucket; 1563 BlockNumber blkno; 1564 HashPageOpaque opaque; 1565 1566 /* We read from target bucket buffer, hence locking is must. */ 1567 Assert(access == HASH_READ || access == HASH_WRITE); 1568 1569 metap = _hash_getcachedmetap(rel, &metabuf, false); 1570 Assert(metap != NULL); 1571 1572 /* 1573 * Loop until we get a lock on the correct target bucket. 1574 */ 1575 for (;;) 1576 { 1577 /* 1578 * Compute the target bucket number, and convert to block number. 1579 */ 1580 bucket = _hash_hashkey2bucket(hashkey, 1581 metap->hashm_maxbucket, 1582 metap->hashm_highmask, 1583 metap->hashm_lowmask); 1584 1585 blkno = BUCKET_TO_BLKNO(metap, bucket); 1586 1587 /* Fetch the primary bucket page for the bucket */ 1588 buf = _hash_getbuf(rel, blkno, access, LH_BUCKET_PAGE); 1589 page = BufferGetPage(buf); 1590 opaque = (HashPageOpaque) PageGetSpecialPointer(page); 1591 Assert(opaque->hasho_bucket == bucket); 1592 Assert(opaque->hasho_prevblkno != InvalidBlockNumber); 1593 1594 /* 1595 * If this bucket hasn't been split, we're done. 1596 */ 1597 if (opaque->hasho_prevblkno <= metap->hashm_maxbucket) 1598 break; 1599 1600 /* Drop lock on this buffer, update cached metapage, and retry. */ 1601 _hash_relbuf(rel, buf); 1602 metap = _hash_getcachedmetap(rel, &metabuf, true); 1603 Assert(metap != NULL); 1604 } 1605 1606 if (BufferIsValid(metabuf)) 1607 _hash_dropbuf(rel, metabuf); 1608 1609 if (cachedmetap) 1610 *cachedmetap = metap; 1611 1612 return buf; 1613 } 1614