1 /*-------------------------------------------------------------------------
2  *
3  * mcxt.c
4  *	  POSTGRES memory context management code.
5  *
6  * This module handles context management operations that are independent
7  * of the particular kind of context being operated on.  It calls
8  * context-type-specific operations via the function pointers in a
9  * context's MemoryContextMethods struct.
10  *
11  *
12  * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
13  * Portions Copyright (c) 1994, Regents of the University of California
14  *
15  *
16  * IDENTIFICATION
17  *	  src/backend/utils/mmgr/mcxt.c
18  *
19  *-------------------------------------------------------------------------
20  */
21 
22 #include "postgres.h"
23 
24 #include "mb/pg_wchar.h"
25 #include "miscadmin.h"
26 #include "storage/proc.h"
27 #include "storage/procarray.h"
28 #include "storage/procsignal.h"
29 #include "utils/fmgrprotos.h"
30 #include "utils/memdebug.h"
31 #include "utils/memutils.h"
32 
33 
34 /*****************************************************************************
35  *	  GLOBAL MEMORY															 *
36  *****************************************************************************/
37 
38 /*
39  * CurrentMemoryContext
40  *		Default memory context for allocations.
41  */
42 MemoryContext CurrentMemoryContext = NULL;
43 
44 /*
45  * Standard top-level contexts. For a description of the purpose of each
46  * of these contexts, refer to src/backend/utils/mmgr/README
47  */
48 MemoryContext TopMemoryContext = NULL;
49 MemoryContext ErrorContext = NULL;
50 MemoryContext PostmasterContext = NULL;
51 MemoryContext CacheMemoryContext = NULL;
52 MemoryContext MessageContext = NULL;
53 MemoryContext TopTransactionContext = NULL;
54 MemoryContext CurTransactionContext = NULL;
55 
56 /* This is a transient link to the active portal's memory context: */
57 MemoryContext PortalContext = NULL;
58 
59 static void MemoryContextCallResetCallbacks(MemoryContext context);
60 static void MemoryContextStatsInternal(MemoryContext context, int level,
61 									   bool print, int max_children,
62 									   MemoryContextCounters *totals,
63 									   bool print_to_stderr);
64 static void MemoryContextStatsPrint(MemoryContext context, void *passthru,
65 									const char *stats_string,
66 									bool print_to_stderr);
67 
68 /*
69  * You should not do memory allocations within a critical section, because
70  * an out-of-memory error will be escalated to a PANIC. To enforce that
71  * rule, the allocation functions Assert that.
72  */
73 #define AssertNotInCriticalSection(context) \
74 	Assert(CritSectionCount == 0 || (context)->allowInCritSection)
75 
76 
77 /*****************************************************************************
78  *	  EXPORTED ROUTINES														 *
79  *****************************************************************************/
80 
81 
82 /*
83  * MemoryContextInit
84  *		Start up the memory-context subsystem.
85  *
86  * This must be called before creating contexts or allocating memory in
87  * contexts.  TopMemoryContext and ErrorContext are initialized here;
88  * other contexts must be created afterwards.
89  *
90  * In normal multi-backend operation, this is called once during
91  * postmaster startup, and not at all by individual backend startup
92  * (since the backends inherit an already-initialized context subsystem
93  * by virtue of being forked off the postmaster).  But in an EXEC_BACKEND
94  * build, each process must do this for itself.
95  *
96  * In a standalone backend this must be called during backend startup.
97  */
98 void
MemoryContextInit(void)99 MemoryContextInit(void)
100 {
101 	AssertState(TopMemoryContext == NULL);
102 
103 	/*
104 	 * First, initialize TopMemoryContext, which is the parent of all others.
105 	 */
106 	TopMemoryContext = AllocSetContextCreate((MemoryContext) NULL,
107 											 "TopMemoryContext",
108 											 ALLOCSET_DEFAULT_SIZES);
109 
110 	/*
111 	 * Not having any other place to point CurrentMemoryContext, make it point
112 	 * to TopMemoryContext.  Caller should change this soon!
113 	 */
114 	CurrentMemoryContext = TopMemoryContext;
115 
116 	/*
117 	 * Initialize ErrorContext as an AllocSetContext with slow growth rate ---
118 	 * we don't really expect much to be allocated in it. More to the point,
119 	 * require it to contain at least 8K at all times. This is the only case
120 	 * where retained memory in a context is *essential* --- we want to be
121 	 * sure ErrorContext still has some memory even if we've run out
122 	 * elsewhere! Also, allow allocations in ErrorContext within a critical
123 	 * section. Otherwise a PANIC will cause an assertion failure in the error
124 	 * reporting code, before printing out the real cause of the failure.
125 	 *
126 	 * This should be the last step in this function, as elog.c assumes memory
127 	 * management works once ErrorContext is non-null.
128 	 */
129 	ErrorContext = AllocSetContextCreate(TopMemoryContext,
130 										 "ErrorContext",
131 										 8 * 1024,
132 										 8 * 1024,
133 										 8 * 1024);
134 	MemoryContextAllowInCriticalSection(ErrorContext, true);
135 }
136 
137 /*
138  * MemoryContextReset
139  *		Release all space allocated within a context and delete all its
140  *		descendant contexts (but not the named context itself).
141  */
142 void
MemoryContextReset(MemoryContext context)143 MemoryContextReset(MemoryContext context)
144 {
145 	AssertArg(MemoryContextIsValid(context));
146 
147 	/* save a function call in common case where there are no children */
148 	if (context->firstchild != NULL)
149 		MemoryContextDeleteChildren(context);
150 
151 	/* save a function call if no pallocs since startup or last reset */
152 	if (!context->isReset)
153 		MemoryContextResetOnly(context);
154 }
155 
156 /*
157  * MemoryContextResetOnly
158  *		Release all space allocated within a context.
159  *		Nothing is done to the context's descendant contexts.
160  */
161 void
MemoryContextResetOnly(MemoryContext context)162 MemoryContextResetOnly(MemoryContext context)
163 {
164 	AssertArg(MemoryContextIsValid(context));
165 
166 	/* Nothing to do if no pallocs since startup or last reset */
167 	if (!context->isReset)
168 	{
169 		MemoryContextCallResetCallbacks(context);
170 
171 		/*
172 		 * If context->ident points into the context's memory, it will become
173 		 * a dangling pointer.  We could prevent that by setting it to NULL
174 		 * here, but that would break valid coding patterns that keep the
175 		 * ident elsewhere, e.g. in a parent context.  Another idea is to use
176 		 * MemoryContextContains(), but we don't require ident strings to be
177 		 * in separately-palloc'd chunks, so that risks false positives.  So
178 		 * for now we assume the programmer got it right.
179 		 */
180 
181 		context->methods->reset(context);
182 		context->isReset = true;
183 		VALGRIND_DESTROY_MEMPOOL(context);
184 		VALGRIND_CREATE_MEMPOOL(context, 0, false);
185 	}
186 }
187 
188 /*
189  * MemoryContextResetChildren
190  *		Release all space allocated within a context's descendants,
191  *		but don't delete the contexts themselves.  The named context
192  *		itself is not touched.
193  */
194 void
MemoryContextResetChildren(MemoryContext context)195 MemoryContextResetChildren(MemoryContext context)
196 {
197 	MemoryContext child;
198 
199 	AssertArg(MemoryContextIsValid(context));
200 
201 	for (child = context->firstchild; child != NULL; child = child->nextchild)
202 	{
203 		MemoryContextResetChildren(child);
204 		MemoryContextResetOnly(child);
205 	}
206 }
207 
208 /*
209  * MemoryContextDelete
210  *		Delete a context and its descendants, and release all space
211  *		allocated therein.
212  *
213  * The type-specific delete routine removes all storage for the context,
214  * but we have to recurse to handle the children.
215  * We must also delink the context from its parent, if it has one.
216  */
217 void
MemoryContextDelete(MemoryContext context)218 MemoryContextDelete(MemoryContext context)
219 {
220 	AssertArg(MemoryContextIsValid(context));
221 	/* We had better not be deleting TopMemoryContext ... */
222 	Assert(context != TopMemoryContext);
223 	/* And not CurrentMemoryContext, either */
224 	Assert(context != CurrentMemoryContext);
225 
226 	/* save a function call in common case where there are no children */
227 	if (context->firstchild != NULL)
228 		MemoryContextDeleteChildren(context);
229 
230 	/*
231 	 * It's not entirely clear whether 'tis better to do this before or after
232 	 * delinking the context; but an error in a callback will likely result in
233 	 * leaking the whole context (if it's not a root context) if we do it
234 	 * after, so let's do it before.
235 	 */
236 	MemoryContextCallResetCallbacks(context);
237 
238 	/*
239 	 * We delink the context from its parent before deleting it, so that if
240 	 * there's an error we won't have deleted/busted contexts still attached
241 	 * to the context tree.  Better a leak than a crash.
242 	 */
243 	MemoryContextSetParent(context, NULL);
244 
245 	/*
246 	 * Also reset the context's ident pointer, in case it points into the
247 	 * context.  This would only matter if someone tries to get stats on the
248 	 * (already unlinked) context, which is unlikely, but let's be safe.
249 	 */
250 	context->ident = NULL;
251 
252 	context->methods->delete_context(context);
253 
254 	VALGRIND_DESTROY_MEMPOOL(context);
255 }
256 
257 /*
258  * MemoryContextDeleteChildren
259  *		Delete all the descendants of the named context and release all
260  *		space allocated therein.  The named context itself is not touched.
261  */
262 void
MemoryContextDeleteChildren(MemoryContext context)263 MemoryContextDeleteChildren(MemoryContext context)
264 {
265 	AssertArg(MemoryContextIsValid(context));
266 
267 	/*
268 	 * MemoryContextDelete will delink the child from me, so just iterate as
269 	 * long as there is a child.
270 	 */
271 	while (context->firstchild != NULL)
272 		MemoryContextDelete(context->firstchild);
273 }
274 
275 /*
276  * MemoryContextRegisterResetCallback
277  *		Register a function to be called before next context reset/delete.
278  *		Such callbacks will be called in reverse order of registration.
279  *
280  * The caller is responsible for allocating a MemoryContextCallback struct
281  * to hold the info about this callback request, and for filling in the
282  * "func" and "arg" fields in the struct to show what function to call with
283  * what argument.  Typically the callback struct should be allocated within
284  * the specified context, since that means it will automatically be freed
285  * when no longer needed.
286  *
287  * There is no API for deregistering a callback once registered.  If you
288  * want it to not do anything anymore, adjust the state pointed to by its
289  * "arg" to indicate that.
290  */
291 void
MemoryContextRegisterResetCallback(MemoryContext context,MemoryContextCallback * cb)292 MemoryContextRegisterResetCallback(MemoryContext context,
293 								   MemoryContextCallback *cb)
294 {
295 	AssertArg(MemoryContextIsValid(context));
296 
297 	/* Push onto head so this will be called before older registrants. */
298 	cb->next = context->reset_cbs;
299 	context->reset_cbs = cb;
300 	/* Mark the context as non-reset (it probably is already). */
301 	context->isReset = false;
302 }
303 
304 /*
305  * MemoryContextCallResetCallbacks
306  *		Internal function to call all registered callbacks for context.
307  */
308 static void
MemoryContextCallResetCallbacks(MemoryContext context)309 MemoryContextCallResetCallbacks(MemoryContext context)
310 {
311 	MemoryContextCallback *cb;
312 
313 	/*
314 	 * We pop each callback from the list before calling.  That way, if an
315 	 * error occurs inside the callback, we won't try to call it a second time
316 	 * in the likely event that we reset or delete the context later.
317 	 */
318 	while ((cb = context->reset_cbs) != NULL)
319 	{
320 		context->reset_cbs = cb->next;
321 		cb->func(cb->arg);
322 	}
323 }
324 
325 /*
326  * MemoryContextSetIdentifier
327  *		Set the identifier string for a memory context.
328  *
329  * An identifier can be provided to help distinguish among different contexts
330  * of the same kind in memory context stats dumps.  The identifier string
331  * must live at least as long as the context it is for; typically it is
332  * allocated inside that context, so that it automatically goes away on
333  * context deletion.  Pass id = NULL to forget any old identifier.
334  */
335 void
MemoryContextSetIdentifier(MemoryContext context,const char * id)336 MemoryContextSetIdentifier(MemoryContext context, const char *id)
337 {
338 	AssertArg(MemoryContextIsValid(context));
339 	context->ident = id;
340 }
341 
342 /*
343  * MemoryContextSetParent
344  *		Change a context to belong to a new parent (or no parent).
345  *
346  * We provide this as an API function because it is sometimes useful to
347  * change a context's lifespan after creation.  For example, a context
348  * might be created underneath a transient context, filled with data,
349  * and then reparented underneath CacheMemoryContext to make it long-lived.
350  * In this way no special effort is needed to get rid of the context in case
351  * a failure occurs before its contents are completely set up.
352  *
353  * Callers often assume that this function cannot fail, so don't put any
354  * elog(ERROR) calls in it.
355  *
356  * A possible caller error is to reparent a context under itself, creating
357  * a loop in the context graph.  We assert here that context != new_parent,
358  * but checking for multi-level loops seems more trouble than it's worth.
359  */
360 void
MemoryContextSetParent(MemoryContext context,MemoryContext new_parent)361 MemoryContextSetParent(MemoryContext context, MemoryContext new_parent)
362 {
363 	AssertArg(MemoryContextIsValid(context));
364 	AssertArg(context != new_parent);
365 
366 	/* Fast path if it's got correct parent already */
367 	if (new_parent == context->parent)
368 		return;
369 
370 	/* Delink from existing parent, if any */
371 	if (context->parent)
372 	{
373 		MemoryContext parent = context->parent;
374 
375 		if (context->prevchild != NULL)
376 			context->prevchild->nextchild = context->nextchild;
377 		else
378 		{
379 			Assert(parent->firstchild == context);
380 			parent->firstchild = context->nextchild;
381 		}
382 
383 		if (context->nextchild != NULL)
384 			context->nextchild->prevchild = context->prevchild;
385 	}
386 
387 	/* And relink */
388 	if (new_parent)
389 	{
390 		AssertArg(MemoryContextIsValid(new_parent));
391 		context->parent = new_parent;
392 		context->prevchild = NULL;
393 		context->nextchild = new_parent->firstchild;
394 		if (new_parent->firstchild != NULL)
395 			new_parent->firstchild->prevchild = context;
396 		new_parent->firstchild = context;
397 	}
398 	else
399 	{
400 		context->parent = NULL;
401 		context->prevchild = NULL;
402 		context->nextchild = NULL;
403 	}
404 }
405 
406 /*
407  * MemoryContextAllowInCriticalSection
408  *		Allow/disallow allocations in this memory context within a critical
409  *		section.
410  *
411  * Normally, memory allocations are not allowed within a critical section,
412  * because a failure would lead to PANIC.  There are a few exceptions to
413  * that, like allocations related to debugging code that is not supposed to
414  * be enabled in production.  This function can be used to exempt specific
415  * memory contexts from the assertion in palloc().
416  */
417 void
MemoryContextAllowInCriticalSection(MemoryContext context,bool allow)418 MemoryContextAllowInCriticalSection(MemoryContext context, bool allow)
419 {
420 	AssertArg(MemoryContextIsValid(context));
421 
422 	context->allowInCritSection = allow;
423 }
424 
425 /*
426  * GetMemoryChunkSpace
427  *		Given a currently-allocated chunk, determine the total space
428  *		it occupies (including all memory-allocation overhead).
429  *
430  * This is useful for measuring the total space occupied by a set of
431  * allocated chunks.
432  */
433 Size
GetMemoryChunkSpace(void * pointer)434 GetMemoryChunkSpace(void *pointer)
435 {
436 	MemoryContext context = GetMemoryChunkContext(pointer);
437 
438 	return context->methods->get_chunk_space(context, pointer);
439 }
440 
441 /*
442  * MemoryContextGetParent
443  *		Get the parent context (if any) of the specified context
444  */
445 MemoryContext
MemoryContextGetParent(MemoryContext context)446 MemoryContextGetParent(MemoryContext context)
447 {
448 	AssertArg(MemoryContextIsValid(context));
449 
450 	return context->parent;
451 }
452 
453 /*
454  * MemoryContextIsEmpty
455  *		Is a memory context empty of any allocated space?
456  */
457 bool
MemoryContextIsEmpty(MemoryContext context)458 MemoryContextIsEmpty(MemoryContext context)
459 {
460 	AssertArg(MemoryContextIsValid(context));
461 
462 	/*
463 	 * For now, we consider a memory context nonempty if it has any children;
464 	 * perhaps this should be changed later.
465 	 */
466 	if (context->firstchild != NULL)
467 		return false;
468 	/* Otherwise use the type-specific inquiry */
469 	return context->methods->is_empty(context);
470 }
471 
472 /*
473  * Find the memory allocated to blocks for this memory context. If recurse is
474  * true, also include children.
475  */
476 Size
MemoryContextMemAllocated(MemoryContext context,bool recurse)477 MemoryContextMemAllocated(MemoryContext context, bool recurse)
478 {
479 	Size		total = context->mem_allocated;
480 
481 	AssertArg(MemoryContextIsValid(context));
482 
483 	if (recurse)
484 	{
485 		MemoryContext child;
486 
487 		for (child = context->firstchild;
488 			 child != NULL;
489 			 child = child->nextchild)
490 			total += MemoryContextMemAllocated(child, true);
491 	}
492 
493 	return total;
494 }
495 
496 /*
497  * MemoryContextStats
498  *		Print statistics about the named context and all its descendants.
499  *
500  * This is just a debugging utility, so it's not very fancy.  However, we do
501  * make some effort to summarize when the output would otherwise be very long.
502  * The statistics are sent to stderr.
503  */
504 void
MemoryContextStats(MemoryContext context)505 MemoryContextStats(MemoryContext context)
506 {
507 	/* A hard-wired limit on the number of children is usually good enough */
508 	MemoryContextStatsDetail(context, 100, true);
509 }
510 
511 /*
512  * MemoryContextStatsDetail
513  *
514  * Entry point for use if you want to vary the number of child contexts shown.
515  *
516  * If print_to_stderr is true, print statistics about the memory contexts
517  * with fprintf(stderr), otherwise use ereport().
518  */
519 void
MemoryContextStatsDetail(MemoryContext context,int max_children,bool print_to_stderr)520 MemoryContextStatsDetail(MemoryContext context, int max_children,
521 						 bool print_to_stderr)
522 {
523 	MemoryContextCounters grand_totals;
524 
525 	memset(&grand_totals, 0, sizeof(grand_totals));
526 
527 	MemoryContextStatsInternal(context, 0, true, max_children, &grand_totals, print_to_stderr);
528 
529 	if (print_to_stderr)
530 		fprintf(stderr,
531 				"Grand total: %zu bytes in %zd blocks; %zu free (%zd chunks); %zu used\n",
532 				grand_totals.totalspace, grand_totals.nblocks,
533 				grand_totals.freespace, grand_totals.freechunks,
534 				grand_totals.totalspace - grand_totals.freespace);
535 	else
536 
537 		/*
538 		 * Use LOG_SERVER_ONLY to prevent the memory contexts from being sent
539 		 * to the connected client.
540 		 *
541 		 * We don't buffer the information about all memory contexts in a
542 		 * backend into StringInfo and log it as one message. Otherwise which
543 		 * may require the buffer to be enlarged very much and lead to OOM
544 		 * error since there can be a large number of memory contexts in a
545 		 * backend. Instead, we log one message per memory context.
546 		 */
547 		ereport(LOG_SERVER_ONLY,
548 				(errhidestmt(true),
549 				 errhidecontext(true),
550 				 errmsg_internal("Grand total: %zu bytes in %zd blocks; %zu free (%zd chunks); %zu used",
551 								 grand_totals.totalspace, grand_totals.nblocks,
552 								 grand_totals.freespace, grand_totals.freechunks,
553 								 grand_totals.totalspace - grand_totals.freespace)));
554 }
555 
556 /*
557  * MemoryContextStatsInternal
558  *		One recursion level for MemoryContextStats
559  *
560  * Print this context if print is true, but in any case accumulate counts into
561  * *totals (if given).
562  */
563 static void
MemoryContextStatsInternal(MemoryContext context,int level,bool print,int max_children,MemoryContextCounters * totals,bool print_to_stderr)564 MemoryContextStatsInternal(MemoryContext context, int level,
565 						   bool print, int max_children,
566 						   MemoryContextCounters *totals,
567 						   bool print_to_stderr)
568 {
569 	MemoryContextCounters local_totals;
570 	MemoryContext child;
571 	int			ichild;
572 
573 	AssertArg(MemoryContextIsValid(context));
574 
575 	/* Examine the context itself */
576 	context->methods->stats(context,
577 							print ? MemoryContextStatsPrint : NULL,
578 							(void *) &level,
579 							totals, print_to_stderr);
580 
581 	/*
582 	 * Examine children.  If there are more than max_children of them, we do
583 	 * not print the rest explicitly, but just summarize them.
584 	 */
585 	memset(&local_totals, 0, sizeof(local_totals));
586 
587 	for (child = context->firstchild, ichild = 0;
588 		 child != NULL;
589 		 child = child->nextchild, ichild++)
590 	{
591 		if (ichild < max_children)
592 			MemoryContextStatsInternal(child, level + 1,
593 									   print, max_children,
594 									   totals,
595 									   print_to_stderr);
596 		else
597 			MemoryContextStatsInternal(child, level + 1,
598 									   false, max_children,
599 									   &local_totals,
600 									   print_to_stderr);
601 	}
602 
603 	/* Deal with excess children */
604 	if (ichild > max_children)
605 	{
606 		if (print)
607 		{
608 			if (print_to_stderr)
609 			{
610 				int			i;
611 
612 				for (i = 0; i <= level; i++)
613 					fprintf(stderr, "  ");
614 				fprintf(stderr,
615 						"%d more child contexts containing %zu total in %zd blocks; %zu free (%zd chunks); %zu used\n",
616 						ichild - max_children,
617 						local_totals.totalspace,
618 						local_totals.nblocks,
619 						local_totals.freespace,
620 						local_totals.freechunks,
621 						local_totals.totalspace - local_totals.freespace);
622 			}
623 			else
624 				ereport(LOG_SERVER_ONLY,
625 						(errhidestmt(true),
626 						 errhidecontext(true),
627 						 errmsg_internal("level: %d; %d more child contexts containing %zu total in %zd blocks; %zu free (%zd chunks); %zu used",
628 										 level,
629 										 ichild - max_children,
630 										 local_totals.totalspace,
631 										 local_totals.nblocks,
632 										 local_totals.freespace,
633 										 local_totals.freechunks,
634 										 local_totals.totalspace - local_totals.freespace)));
635 		}
636 
637 		if (totals)
638 		{
639 			totals->nblocks += local_totals.nblocks;
640 			totals->freechunks += local_totals.freechunks;
641 			totals->totalspace += local_totals.totalspace;
642 			totals->freespace += local_totals.freespace;
643 		}
644 	}
645 }
646 
647 /*
648  * MemoryContextStatsPrint
649  *		Print callback used by MemoryContextStatsInternal
650  *
651  * For now, the passthru pointer just points to "int level"; later we might
652  * make that more complicated.
653  */
654 static void
MemoryContextStatsPrint(MemoryContext context,void * passthru,const char * stats_string,bool print_to_stderr)655 MemoryContextStatsPrint(MemoryContext context, void *passthru,
656 						const char *stats_string,
657 						bool print_to_stderr)
658 {
659 	int			level = *(int *) passthru;
660 	const char *name = context->name;
661 	const char *ident = context->ident;
662 	char		truncated_ident[110];
663 	int			i;
664 
665 	/*
666 	 * It seems preferable to label dynahash contexts with just the hash table
667 	 * name.  Those are already unique enough, so the "dynahash" part isn't
668 	 * very helpful, and this way is more consistent with pre-v11 practice.
669 	 */
670 	if (ident && strcmp(name, "dynahash") == 0)
671 	{
672 		name = ident;
673 		ident = NULL;
674 	}
675 
676 	truncated_ident[0] = '\0';
677 
678 	if (ident)
679 	{
680 		/*
681 		 * Some contexts may have very long identifiers (e.g., SQL queries).
682 		 * Arbitrarily truncate at 100 bytes, but be careful not to break
683 		 * multibyte characters.  Also, replace ASCII control characters, such
684 		 * as newlines, with spaces.
685 		 */
686 		int			idlen = strlen(ident);
687 		bool		truncated = false;
688 
689 		strcpy(truncated_ident, ": ");
690 		i = strlen(truncated_ident);
691 
692 		if (idlen > 100)
693 		{
694 			idlen = pg_mbcliplen(ident, idlen, 100);
695 			truncated = true;
696 		}
697 
698 		while (idlen-- > 0)
699 		{
700 			unsigned char c = *ident++;
701 
702 			if (c < ' ')
703 				c = ' ';
704 			truncated_ident[i++] = c;
705 		}
706 		truncated_ident[i] = '\0';
707 
708 		if (truncated)
709 			strcat(truncated_ident, "...");
710 	}
711 
712 	if (print_to_stderr)
713 	{
714 		for (i = 0; i < level; i++)
715 			fprintf(stderr, "  ");
716 		fprintf(stderr, "%s: %s%s\n", name, stats_string, truncated_ident);
717 	}
718 	else
719 		ereport(LOG_SERVER_ONLY,
720 				(errhidestmt(true),
721 				 errhidecontext(true),
722 				 errmsg_internal("level: %d; %s: %s%s",
723 								 level, name, stats_string, truncated_ident)));
724 }
725 
726 /*
727  * MemoryContextCheck
728  *		Check all chunks in the named context.
729  *
730  * This is just a debugging utility, so it's not fancy.
731  */
732 #ifdef MEMORY_CONTEXT_CHECKING
733 void
MemoryContextCheck(MemoryContext context)734 MemoryContextCheck(MemoryContext context)
735 {
736 	MemoryContext child;
737 
738 	AssertArg(MemoryContextIsValid(context));
739 
740 	context->methods->check(context);
741 	for (child = context->firstchild; child != NULL; child = child->nextchild)
742 		MemoryContextCheck(child);
743 }
744 #endif
745 
746 /*
747  * MemoryContextContains
748  *		Detect whether an allocated chunk of memory belongs to a given
749  *		context or not.
750  *
751  * Caution: this test is reliable as long as 'pointer' does point to
752  * a chunk of memory allocated from *some* context.  If 'pointer' points
753  * at memory obtained in some other way, there is a small chance of a
754  * false-positive result, since the bits right before it might look like
755  * a valid chunk header by chance.
756  */
757 bool
MemoryContextContains(MemoryContext context,void * pointer)758 MemoryContextContains(MemoryContext context, void *pointer)
759 {
760 	MemoryContext ptr_context;
761 
762 	/*
763 	 * NB: Can't use GetMemoryChunkContext() here - that performs assertions
764 	 * that aren't acceptable here since we might be passed memory not
765 	 * allocated by any memory context.
766 	 *
767 	 * Try to detect bogus pointers handed to us, poorly though we can.
768 	 * Presumably, a pointer that isn't MAXALIGNED isn't pointing at an
769 	 * allocated chunk.
770 	 */
771 	if (pointer == NULL || pointer != (void *) MAXALIGN(pointer))
772 		return false;
773 
774 	/*
775 	 * OK, it's probably safe to look at the context.
776 	 */
777 	ptr_context = *(MemoryContext *) (((char *) pointer) - sizeof(void *));
778 
779 	return ptr_context == context;
780 }
781 
782 /*
783  * MemoryContextCreate
784  *		Context-type-independent part of context creation.
785  *
786  * This is only intended to be called by context-type-specific
787  * context creation routines, not by the unwashed masses.
788  *
789  * The memory context creation procedure goes like this:
790  *	1.  Context-type-specific routine makes some initial space allocation,
791  *		including enough space for the context header.  If it fails,
792  *		it can ereport() with no damage done.
793  *	2.	Context-type-specific routine sets up all type-specific fields of
794  *		the header (those beyond MemoryContextData proper), as well as any
795  *		other management fields it needs to have a fully valid context.
796  *		Usually, failure in this step is impossible, but if it's possible
797  *		the initial space allocation should be freed before ereport'ing.
798  *	3.	Context-type-specific routine calls MemoryContextCreate() to fill in
799  *		the generic header fields and link the context into the context tree.
800  *	4.  We return to the context-type-specific routine, which finishes
801  *		up type-specific initialization.  This routine can now do things
802  *		that might fail (like allocate more memory), so long as it's
803  *		sure the node is left in a state that delete will handle.
804  *
805  * node: the as-yet-uninitialized common part of the context header node.
806  * tag: NodeTag code identifying the memory context type.
807  * methods: context-type-specific methods (usually statically allocated).
808  * parent: parent context, or NULL if this will be a top-level context.
809  * name: name of context (must be statically allocated).
810  *
811  * Context routines generally assume that MemoryContextCreate can't fail,
812  * so this can contain Assert but not elog/ereport.
813  */
814 void
MemoryContextCreate(MemoryContext node,NodeTag tag,const MemoryContextMethods * methods,MemoryContext parent,const char * name)815 MemoryContextCreate(MemoryContext node,
816 					NodeTag tag,
817 					const MemoryContextMethods *methods,
818 					MemoryContext parent,
819 					const char *name)
820 {
821 	/* Creating new memory contexts is not allowed in a critical section */
822 	Assert(CritSectionCount == 0);
823 
824 	/* Initialize all standard fields of memory context header */
825 	node->type = tag;
826 	node->isReset = true;
827 	node->methods = methods;
828 	node->parent = parent;
829 	node->firstchild = NULL;
830 	node->mem_allocated = 0;
831 	node->prevchild = NULL;
832 	node->name = name;
833 	node->ident = NULL;
834 	node->reset_cbs = NULL;
835 
836 	/* OK to link node into context tree */
837 	if (parent)
838 	{
839 		node->nextchild = parent->firstchild;
840 		if (parent->firstchild != NULL)
841 			parent->firstchild->prevchild = node;
842 		parent->firstchild = node;
843 		/* inherit allowInCritSection flag from parent */
844 		node->allowInCritSection = parent->allowInCritSection;
845 	}
846 	else
847 	{
848 		node->nextchild = NULL;
849 		node->allowInCritSection = false;
850 	}
851 
852 	VALGRIND_CREATE_MEMPOOL(node, 0, false);
853 }
854 
855 /*
856  * MemoryContextAlloc
857  *		Allocate space within the specified context.
858  *
859  * This could be turned into a macro, but we'd have to import
860  * nodes/memnodes.h into postgres.h which seems a bad idea.
861  */
862 void *
MemoryContextAlloc(MemoryContext context,Size size)863 MemoryContextAlloc(MemoryContext context, Size size)
864 {
865 	void	   *ret;
866 
867 	AssertArg(MemoryContextIsValid(context));
868 	AssertNotInCriticalSection(context);
869 
870 	if (!AllocSizeIsValid(size))
871 		elog(ERROR, "invalid memory alloc request size %zu", size);
872 
873 	context->isReset = false;
874 
875 	ret = context->methods->alloc(context, size);
876 	if (unlikely(ret == NULL))
877 	{
878 		MemoryContextStats(TopMemoryContext);
879 
880 		/*
881 		 * Here, and elsewhere in this module, we show the target context's
882 		 * "name" but not its "ident" (if any) in user-visible error messages.
883 		 * The "ident" string might contain security-sensitive data, such as
884 		 * values in SQL commands.
885 		 */
886 		ereport(ERROR,
887 				(errcode(ERRCODE_OUT_OF_MEMORY),
888 				 errmsg("out of memory"),
889 				 errdetail("Failed on request of size %zu in memory context \"%s\".",
890 						   size, context->name)));
891 	}
892 
893 	VALGRIND_MEMPOOL_ALLOC(context, ret, size);
894 
895 	return ret;
896 }
897 
898 /*
899  * MemoryContextAllocZero
900  *		Like MemoryContextAlloc, but clears allocated memory
901  *
902  *	We could just call MemoryContextAlloc then clear the memory, but this
903  *	is a very common combination, so we provide the combined operation.
904  */
905 void *
MemoryContextAllocZero(MemoryContext context,Size size)906 MemoryContextAllocZero(MemoryContext context, Size size)
907 {
908 	void	   *ret;
909 
910 	AssertArg(MemoryContextIsValid(context));
911 	AssertNotInCriticalSection(context);
912 
913 	if (!AllocSizeIsValid(size))
914 		elog(ERROR, "invalid memory alloc request size %zu", size);
915 
916 	context->isReset = false;
917 
918 	ret = context->methods->alloc(context, size);
919 	if (unlikely(ret == NULL))
920 	{
921 		MemoryContextStats(TopMemoryContext);
922 		ereport(ERROR,
923 				(errcode(ERRCODE_OUT_OF_MEMORY),
924 				 errmsg("out of memory"),
925 				 errdetail("Failed on request of size %zu in memory context \"%s\".",
926 						   size, context->name)));
927 	}
928 
929 	VALGRIND_MEMPOOL_ALLOC(context, ret, size);
930 
931 	MemSetAligned(ret, 0, size);
932 
933 	return ret;
934 }
935 
936 /*
937  * MemoryContextAllocZeroAligned
938  *		MemoryContextAllocZero where length is suitable for MemSetLoop
939  *
940  *	This might seem overly specialized, but it's not because newNode()
941  *	is so often called with compile-time-constant sizes.
942  */
943 void *
MemoryContextAllocZeroAligned(MemoryContext context,Size size)944 MemoryContextAllocZeroAligned(MemoryContext context, Size size)
945 {
946 	void	   *ret;
947 
948 	AssertArg(MemoryContextIsValid(context));
949 	AssertNotInCriticalSection(context);
950 
951 	if (!AllocSizeIsValid(size))
952 		elog(ERROR, "invalid memory alloc request size %zu", size);
953 
954 	context->isReset = false;
955 
956 	ret = context->methods->alloc(context, size);
957 	if (unlikely(ret == NULL))
958 	{
959 		MemoryContextStats(TopMemoryContext);
960 		ereport(ERROR,
961 				(errcode(ERRCODE_OUT_OF_MEMORY),
962 				 errmsg("out of memory"),
963 				 errdetail("Failed on request of size %zu in memory context \"%s\".",
964 						   size, context->name)));
965 	}
966 
967 	VALGRIND_MEMPOOL_ALLOC(context, ret, size);
968 
969 	MemSetLoop(ret, 0, size);
970 
971 	return ret;
972 }
973 
974 /*
975  * MemoryContextAllocExtended
976  *		Allocate space within the specified context using the given flags.
977  */
978 void *
MemoryContextAllocExtended(MemoryContext context,Size size,int flags)979 MemoryContextAllocExtended(MemoryContext context, Size size, int flags)
980 {
981 	void	   *ret;
982 
983 	AssertArg(MemoryContextIsValid(context));
984 	AssertNotInCriticalSection(context);
985 
986 	if (((flags & MCXT_ALLOC_HUGE) != 0 && !AllocHugeSizeIsValid(size)) ||
987 		((flags & MCXT_ALLOC_HUGE) == 0 && !AllocSizeIsValid(size)))
988 		elog(ERROR, "invalid memory alloc request size %zu", size);
989 
990 	context->isReset = false;
991 
992 	ret = context->methods->alloc(context, size);
993 	if (unlikely(ret == NULL))
994 	{
995 		if ((flags & MCXT_ALLOC_NO_OOM) == 0)
996 		{
997 			MemoryContextStats(TopMemoryContext);
998 			ereport(ERROR,
999 					(errcode(ERRCODE_OUT_OF_MEMORY),
1000 					 errmsg("out of memory"),
1001 					 errdetail("Failed on request of size %zu in memory context \"%s\".",
1002 							   size, context->name)));
1003 		}
1004 		return NULL;
1005 	}
1006 
1007 	VALGRIND_MEMPOOL_ALLOC(context, ret, size);
1008 
1009 	if ((flags & MCXT_ALLOC_ZERO) != 0)
1010 		MemSetAligned(ret, 0, size);
1011 
1012 	return ret;
1013 }
1014 
1015 /*
1016  * HandleLogMemoryContextInterrupt
1017  *		Handle receipt of an interrupt indicating logging of memory
1018  *		contexts.
1019  *
1020  * All the actual work is deferred to ProcessLogMemoryContextInterrupt(),
1021  * because we cannot safely emit a log message inside the signal handler.
1022  */
1023 void
HandleLogMemoryContextInterrupt(void)1024 HandleLogMemoryContextInterrupt(void)
1025 {
1026 	InterruptPending = true;
1027 	LogMemoryContextPending = true;
1028 	/* latch will be set by procsignal_sigusr1_handler */
1029 }
1030 
1031 /*
1032  * ProcessLogMemoryContextInterrupt
1033  * 		Perform logging of memory contexts of this backend process.
1034  *
1035  * Any backend that participates in ProcSignal signaling must arrange
1036  * to call this function if we see LogMemoryContextPending set.
1037  * It is called from CHECK_FOR_INTERRUPTS(), which is enough because
1038  * the target process for logging of memory contexts is a backend.
1039  */
1040 void
ProcessLogMemoryContextInterrupt(void)1041 ProcessLogMemoryContextInterrupt(void)
1042 {
1043 	LogMemoryContextPending = false;
1044 
1045 	ereport(LOG,
1046 			(errmsg("logging memory contexts of PID %d", MyProcPid)));
1047 
1048 	/*
1049 	 * When a backend process is consuming huge memory, logging all its memory
1050 	 * contexts might overrun available disk space. To prevent this, we limit
1051 	 * the number of child contexts to log per parent to 100.
1052 	 *
1053 	 * As with MemoryContextStats(), we suppose that practical cases where the
1054 	 * dump gets long will typically be huge numbers of siblings under the
1055 	 * same parent context; while the additional debugging value from seeing
1056 	 * details about individual siblings beyond 100 will not be large.
1057 	 */
1058 	MemoryContextStatsDetail(TopMemoryContext, 100, false);
1059 }
1060 
1061 void *
palloc(Size size)1062 palloc(Size size)
1063 {
1064 	/* duplicates MemoryContextAlloc to avoid increased overhead */
1065 	void	   *ret;
1066 	MemoryContext context = CurrentMemoryContext;
1067 
1068 	AssertArg(MemoryContextIsValid(context));
1069 	AssertNotInCriticalSection(context);
1070 
1071 	if (!AllocSizeIsValid(size))
1072 		elog(ERROR, "invalid memory alloc request size %zu", size);
1073 
1074 	context->isReset = false;
1075 
1076 	ret = context->methods->alloc(context, size);
1077 	if (unlikely(ret == NULL))
1078 	{
1079 		MemoryContextStats(TopMemoryContext);
1080 		ereport(ERROR,
1081 				(errcode(ERRCODE_OUT_OF_MEMORY),
1082 				 errmsg("out of memory"),
1083 				 errdetail("Failed on request of size %zu in memory context \"%s\".",
1084 						   size, context->name)));
1085 	}
1086 
1087 	VALGRIND_MEMPOOL_ALLOC(context, ret, size);
1088 
1089 	return ret;
1090 }
1091 
1092 void *
palloc0(Size size)1093 palloc0(Size size)
1094 {
1095 	/* duplicates MemoryContextAllocZero to avoid increased overhead */
1096 	void	   *ret;
1097 	MemoryContext context = CurrentMemoryContext;
1098 
1099 	AssertArg(MemoryContextIsValid(context));
1100 	AssertNotInCriticalSection(context);
1101 
1102 	if (!AllocSizeIsValid(size))
1103 		elog(ERROR, "invalid memory alloc request size %zu", size);
1104 
1105 	context->isReset = false;
1106 
1107 	ret = context->methods->alloc(context, size);
1108 	if (unlikely(ret == NULL))
1109 	{
1110 		MemoryContextStats(TopMemoryContext);
1111 		ereport(ERROR,
1112 				(errcode(ERRCODE_OUT_OF_MEMORY),
1113 				 errmsg("out of memory"),
1114 				 errdetail("Failed on request of size %zu in memory context \"%s\".",
1115 						   size, context->name)));
1116 	}
1117 
1118 	VALGRIND_MEMPOOL_ALLOC(context, ret, size);
1119 
1120 	MemSetAligned(ret, 0, size);
1121 
1122 	return ret;
1123 }
1124 
1125 void *
palloc_extended(Size size,int flags)1126 palloc_extended(Size size, int flags)
1127 {
1128 	/* duplicates MemoryContextAllocExtended to avoid increased overhead */
1129 	void	   *ret;
1130 	MemoryContext context = CurrentMemoryContext;
1131 
1132 	AssertArg(MemoryContextIsValid(context));
1133 	AssertNotInCriticalSection(context);
1134 
1135 	if (((flags & MCXT_ALLOC_HUGE) != 0 && !AllocHugeSizeIsValid(size)) ||
1136 		((flags & MCXT_ALLOC_HUGE) == 0 && !AllocSizeIsValid(size)))
1137 		elog(ERROR, "invalid memory alloc request size %zu", size);
1138 
1139 	context->isReset = false;
1140 
1141 	ret = context->methods->alloc(context, size);
1142 	if (unlikely(ret == NULL))
1143 	{
1144 		if ((flags & MCXT_ALLOC_NO_OOM) == 0)
1145 		{
1146 			MemoryContextStats(TopMemoryContext);
1147 			ereport(ERROR,
1148 					(errcode(ERRCODE_OUT_OF_MEMORY),
1149 					 errmsg("out of memory"),
1150 					 errdetail("Failed on request of size %zu in memory context \"%s\".",
1151 							   size, context->name)));
1152 		}
1153 		return NULL;
1154 	}
1155 
1156 	VALGRIND_MEMPOOL_ALLOC(context, ret, size);
1157 
1158 	if ((flags & MCXT_ALLOC_ZERO) != 0)
1159 		MemSetAligned(ret, 0, size);
1160 
1161 	return ret;
1162 }
1163 
1164 /*
1165  * pfree
1166  *		Release an allocated chunk.
1167  */
1168 void
pfree(void * pointer)1169 pfree(void *pointer)
1170 {
1171 	MemoryContext context = GetMemoryChunkContext(pointer);
1172 
1173 	context->methods->free_p(context, pointer);
1174 	VALGRIND_MEMPOOL_FREE(context, pointer);
1175 }
1176 
1177 /*
1178  * repalloc
1179  *		Adjust the size of a previously allocated chunk.
1180  */
1181 void *
repalloc(void * pointer,Size size)1182 repalloc(void *pointer, Size size)
1183 {
1184 	MemoryContext context = GetMemoryChunkContext(pointer);
1185 	void	   *ret;
1186 
1187 	if (!AllocSizeIsValid(size))
1188 		elog(ERROR, "invalid memory alloc request size %zu", size);
1189 
1190 	AssertNotInCriticalSection(context);
1191 
1192 	/* isReset must be false already */
1193 	Assert(!context->isReset);
1194 
1195 	ret = context->methods->realloc(context, pointer, size);
1196 	if (unlikely(ret == NULL))
1197 	{
1198 		MemoryContextStats(TopMemoryContext);
1199 		ereport(ERROR,
1200 				(errcode(ERRCODE_OUT_OF_MEMORY),
1201 				 errmsg("out of memory"),
1202 				 errdetail("Failed on request of size %zu in memory context \"%s\".",
1203 						   size, context->name)));
1204 	}
1205 
1206 	VALGRIND_MEMPOOL_CHANGE(context, pointer, ret, size);
1207 
1208 	return ret;
1209 }
1210 
1211 /*
1212  * MemoryContextAllocHuge
1213  *		Allocate (possibly-expansive) space within the specified context.
1214  *
1215  * See considerations in comment at MaxAllocHugeSize.
1216  */
1217 void *
MemoryContextAllocHuge(MemoryContext context,Size size)1218 MemoryContextAllocHuge(MemoryContext context, Size size)
1219 {
1220 	void	   *ret;
1221 
1222 	AssertArg(MemoryContextIsValid(context));
1223 	AssertNotInCriticalSection(context);
1224 
1225 	if (!AllocHugeSizeIsValid(size))
1226 		elog(ERROR, "invalid memory alloc request size %zu", size);
1227 
1228 	context->isReset = false;
1229 
1230 	ret = context->methods->alloc(context, size);
1231 	if (unlikely(ret == NULL))
1232 	{
1233 		MemoryContextStats(TopMemoryContext);
1234 		ereport(ERROR,
1235 				(errcode(ERRCODE_OUT_OF_MEMORY),
1236 				 errmsg("out of memory"),
1237 				 errdetail("Failed on request of size %zu in memory context \"%s\".",
1238 						   size, context->name)));
1239 	}
1240 
1241 	VALGRIND_MEMPOOL_ALLOC(context, ret, size);
1242 
1243 	return ret;
1244 }
1245 
1246 /*
1247  * repalloc_huge
1248  *		Adjust the size of a previously allocated chunk, permitting a large
1249  *		value.  The previous allocation need not have been "huge".
1250  */
1251 void *
repalloc_huge(void * pointer,Size size)1252 repalloc_huge(void *pointer, Size size)
1253 {
1254 	MemoryContext context = GetMemoryChunkContext(pointer);
1255 	void	   *ret;
1256 
1257 	if (!AllocHugeSizeIsValid(size))
1258 		elog(ERROR, "invalid memory alloc request size %zu", size);
1259 
1260 	AssertNotInCriticalSection(context);
1261 
1262 	/* isReset must be false already */
1263 	Assert(!context->isReset);
1264 
1265 	ret = context->methods->realloc(context, pointer, size);
1266 	if (unlikely(ret == NULL))
1267 	{
1268 		MemoryContextStats(TopMemoryContext);
1269 		ereport(ERROR,
1270 				(errcode(ERRCODE_OUT_OF_MEMORY),
1271 				 errmsg("out of memory"),
1272 				 errdetail("Failed on request of size %zu in memory context \"%s\".",
1273 						   size, context->name)));
1274 	}
1275 
1276 	VALGRIND_MEMPOOL_CHANGE(context, pointer, ret, size);
1277 
1278 	return ret;
1279 }
1280 
1281 /*
1282  * MemoryContextStrdup
1283  *		Like strdup(), but allocate from the specified context
1284  */
1285 char *
MemoryContextStrdup(MemoryContext context,const char * string)1286 MemoryContextStrdup(MemoryContext context, const char *string)
1287 {
1288 	char	   *nstr;
1289 	Size		len = strlen(string) + 1;
1290 
1291 	nstr = (char *) MemoryContextAlloc(context, len);
1292 
1293 	memcpy(nstr, string, len);
1294 
1295 	return nstr;
1296 }
1297 
1298 char *
pstrdup(const char * in)1299 pstrdup(const char *in)
1300 {
1301 	return MemoryContextStrdup(CurrentMemoryContext, in);
1302 }
1303 
1304 /*
1305  * pnstrdup
1306  *		Like pstrdup(), but append null byte to a
1307  *		not-necessarily-null-terminated input string.
1308  */
1309 char *
pnstrdup(const char * in,Size len)1310 pnstrdup(const char *in, Size len)
1311 {
1312 	char	   *out;
1313 
1314 	len = strnlen(in, len);
1315 
1316 	out = palloc(len + 1);
1317 	memcpy(out, in, len);
1318 	out[len] = '\0';
1319 
1320 	return out;
1321 }
1322 
1323 /*
1324  * Make copy of string with all trailing newline characters removed.
1325  */
1326 char *
pchomp(const char * in)1327 pchomp(const char *in)
1328 {
1329 	size_t		n;
1330 
1331 	n = strlen(in);
1332 	while (n > 0 && in[n - 1] == '\n')
1333 		n--;
1334 	return pnstrdup(in, n);
1335 }
1336