1 /*-------------------------------------------------------------------------
2  *
3  * dependency.c
4  *	  Routines to support inter-object dependencies.
5  *
6  *
7  * Portions Copyright (c) 1996-2016, PostgreSQL Global Development Group
8  * Portions Copyright (c) 1994, Regents of the University of California
9  *
10  * IDENTIFICATION
11  *	  src/backend/catalog/dependency.c
12  *
13  *-------------------------------------------------------------------------
14  */
15 #include "postgres.h"
16 
17 #include "access/htup_details.h"
18 #include "access/xact.h"
19 #include "catalog/dependency.h"
20 #include "catalog/heap.h"
21 #include "catalog/index.h"
22 #include "catalog/objectaccess.h"
23 #include "catalog/pg_am.h"
24 #include "catalog/pg_amop.h"
25 #include "catalog/pg_amproc.h"
26 #include "catalog/pg_attrdef.h"
27 #include "catalog/pg_authid.h"
28 #include "catalog/pg_cast.h"
29 #include "catalog/pg_collation.h"
30 #include "catalog/pg_collation_fn.h"
31 #include "catalog/pg_constraint.h"
32 #include "catalog/pg_constraint_fn.h"
33 #include "catalog/pg_conversion.h"
34 #include "catalog/pg_conversion_fn.h"
35 #include "catalog/pg_database.h"
36 #include "catalog/pg_default_acl.h"
37 #include "catalog/pg_depend.h"
38 #include "catalog/pg_event_trigger.h"
39 #include "catalog/pg_extension.h"
40 #include "catalog/pg_foreign_data_wrapper.h"
41 #include "catalog/pg_foreign_server.h"
42 #include "catalog/pg_init_privs.h"
43 #include "catalog/pg_language.h"
44 #include "catalog/pg_largeobject.h"
45 #include "catalog/pg_namespace.h"
46 #include "catalog/pg_opclass.h"
47 #include "catalog/pg_operator.h"
48 #include "catalog/pg_opfamily.h"
49 #include "catalog/pg_policy.h"
50 #include "catalog/pg_proc.h"
51 #include "catalog/pg_rewrite.h"
52 #include "catalog/pg_tablespace.h"
53 #include "catalog/pg_transform.h"
54 #include "catalog/pg_trigger.h"
55 #include "catalog/pg_ts_config.h"
56 #include "catalog/pg_ts_dict.h"
57 #include "catalog/pg_ts_parser.h"
58 #include "catalog/pg_ts_template.h"
59 #include "catalog/pg_type.h"
60 #include "catalog/pg_user_mapping.h"
61 #include "commands/comment.h"
62 #include "commands/defrem.h"
63 #include "commands/event_trigger.h"
64 #include "commands/extension.h"
65 #include "commands/policy.h"
66 #include "commands/proclang.h"
67 #include "commands/schemacmds.h"
68 #include "commands/seclabel.h"
69 #include "commands/trigger.h"
70 #include "commands/typecmds.h"
71 #include "nodes/nodeFuncs.h"
72 #include "parser/parsetree.h"
73 #include "rewrite/rewriteRemove.h"
74 #include "storage/lmgr.h"
75 #include "utils/fmgroids.h"
76 #include "utils/guc.h"
77 #include "utils/lsyscache.h"
78 #include "utils/syscache.h"
79 #include "utils/tqual.h"
80 
81 
82 /*
83  * Deletion processing requires additional state for each ObjectAddress that
84  * it's planning to delete.  For simplicity and code-sharing we make the
85  * ObjectAddresses code support arrays with or without this extra state.
86  */
87 typedef struct
88 {
89 	int			flags;			/* bitmask, see bit definitions below */
90 	ObjectAddress dependee;		/* object whose deletion forced this one */
91 } ObjectAddressExtra;
92 
93 /* ObjectAddressExtra flag bits */
94 #define DEPFLAG_ORIGINAL	0x0001		/* an original deletion target */
95 #define DEPFLAG_NORMAL		0x0002		/* reached via normal dependency */
96 #define DEPFLAG_AUTO		0x0004		/* reached via auto dependency */
97 #define DEPFLAG_INTERNAL	0x0008		/* reached via internal dependency */
98 #define DEPFLAG_EXTENSION	0x0010		/* reached via extension dependency */
99 #define DEPFLAG_REVERSE		0x0020		/* reverse internal/extension link */
100 
101 
102 /* expansible list of ObjectAddresses */
103 struct ObjectAddresses
104 {
105 	ObjectAddress *refs;		/* => palloc'd array */
106 	ObjectAddressExtra *extras; /* => palloc'd array, or NULL if not used */
107 	int			numrefs;		/* current number of references */
108 	int			maxrefs;		/* current size of palloc'd array(s) */
109 };
110 
111 /* typedef ObjectAddresses appears in dependency.h */
112 
113 /* threaded list of ObjectAddresses, for recursion detection */
114 typedef struct ObjectAddressStack
115 {
116 	const ObjectAddress *object;	/* object being visited */
117 	int			flags;			/* its current flag bits */
118 	struct ObjectAddressStack *next;	/* next outer stack level */
119 } ObjectAddressStack;
120 
121 /* for find_expr_references_walker */
122 typedef struct
123 {
124 	ObjectAddresses *addrs;		/* addresses being accumulated */
125 	List	   *rtables;		/* list of rangetables to resolve Vars */
126 } find_expr_references_context;
127 
128 /*
129  * This constant table maps ObjectClasses to the corresponding catalog OIDs.
130  * See also getObjectClass().
131  */
132 static const Oid object_classes[] = {
133 	RelationRelationId,			/* OCLASS_CLASS */
134 	ProcedureRelationId,		/* OCLASS_PROC */
135 	TypeRelationId,				/* OCLASS_TYPE */
136 	CastRelationId,				/* OCLASS_CAST */
137 	CollationRelationId,		/* OCLASS_COLLATION */
138 	ConstraintRelationId,		/* OCLASS_CONSTRAINT */
139 	ConversionRelationId,		/* OCLASS_CONVERSION */
140 	AttrDefaultRelationId,		/* OCLASS_DEFAULT */
141 	LanguageRelationId,			/* OCLASS_LANGUAGE */
142 	LargeObjectRelationId,		/* OCLASS_LARGEOBJECT */
143 	OperatorRelationId,			/* OCLASS_OPERATOR */
144 	OperatorClassRelationId,	/* OCLASS_OPCLASS */
145 	OperatorFamilyRelationId,	/* OCLASS_OPFAMILY */
146 	AccessMethodRelationId,		/* OCLASS_AM */
147 	AccessMethodOperatorRelationId,		/* OCLASS_AMOP */
148 	AccessMethodProcedureRelationId,	/* OCLASS_AMPROC */
149 	RewriteRelationId,			/* OCLASS_REWRITE */
150 	TriggerRelationId,			/* OCLASS_TRIGGER */
151 	NamespaceRelationId,		/* OCLASS_SCHEMA */
152 	TSParserRelationId,			/* OCLASS_TSPARSER */
153 	TSDictionaryRelationId,		/* OCLASS_TSDICT */
154 	TSTemplateRelationId,		/* OCLASS_TSTEMPLATE */
155 	TSConfigRelationId,			/* OCLASS_TSCONFIG */
156 	AuthIdRelationId,			/* OCLASS_ROLE */
157 	DatabaseRelationId,			/* OCLASS_DATABASE */
158 	TableSpaceRelationId,		/* OCLASS_TBLSPACE */
159 	ForeignDataWrapperRelationId,		/* OCLASS_FDW */
160 	ForeignServerRelationId,	/* OCLASS_FOREIGN_SERVER */
161 	UserMappingRelationId,		/* OCLASS_USER_MAPPING */
162 	DefaultAclRelationId,		/* OCLASS_DEFACL */
163 	ExtensionRelationId,		/* OCLASS_EXTENSION */
164 	EventTriggerRelationId,		/* OCLASS_EVENT_TRIGGER */
165 	PolicyRelationId,			/* OCLASS_POLICY */
166 	TransformRelationId			/* OCLASS_TRANSFORM */
167 };
168 
169 
170 static void findDependentObjects(const ObjectAddress *object,
171 					 int flags,
172 					 ObjectAddressStack *stack,
173 					 ObjectAddresses *targetObjects,
174 					 const ObjectAddresses *pendingObjects,
175 					 Relation *depRel);
176 static void reportDependentObjects(const ObjectAddresses *targetObjects,
177 					   DropBehavior behavior,
178 					   int msglevel,
179 					   const ObjectAddress *origObject);
180 static void deleteOneObject(const ObjectAddress *object,
181 				Relation *depRel, int32 flags);
182 static void doDeletion(const ObjectAddress *object, int flags);
183 static bool find_expr_references_walker(Node *node,
184 							find_expr_references_context *context);
185 static void eliminate_duplicate_dependencies(ObjectAddresses *addrs);
186 static int	object_address_comparator(const void *a, const void *b);
187 static void add_object_address(ObjectClass oclass, Oid objectId, int32 subId,
188 				   ObjectAddresses *addrs);
189 static void add_exact_object_address_extra(const ObjectAddress *object,
190 							   const ObjectAddressExtra *extra,
191 							   ObjectAddresses *addrs);
192 static bool object_address_present_add_flags(const ObjectAddress *object,
193 								 int flags,
194 								 ObjectAddresses *addrs);
195 static bool stack_address_present_add_flags(const ObjectAddress *object,
196 								int flags,
197 								ObjectAddressStack *stack);
198 static void DeleteInitPrivs(const ObjectAddress *object);
199 
200 
201 /*
202  * Go through the objects given running the final actions on them, and execute
203  * the actual deletion.
204  */
205 static void
deleteObjectsInList(ObjectAddresses * targetObjects,Relation * depRel,int flags)206 deleteObjectsInList(ObjectAddresses *targetObjects, Relation *depRel,
207 					int flags)
208 {
209 	int			i;
210 
211 	/*
212 	 * Keep track of objects for event triggers, if necessary.
213 	 */
214 	if (trackDroppedObjectsNeeded() && !(flags & PERFORM_DELETION_INTERNAL))
215 	{
216 		for (i = 0; i < targetObjects->numrefs; i++)
217 		{
218 			const ObjectAddress *thisobj = &targetObjects->refs[i];
219 			const ObjectAddressExtra *extra = &targetObjects->extras[i];
220 			bool		original = false;
221 			bool		normal = false;
222 
223 			if (extra->flags & DEPFLAG_ORIGINAL)
224 				original = true;
225 			if (extra->flags & DEPFLAG_NORMAL)
226 				normal = true;
227 			if (extra->flags & DEPFLAG_REVERSE)
228 				normal = true;
229 
230 			if (EventTriggerSupportsObjectClass(getObjectClass(thisobj)))
231 			{
232 				EventTriggerSQLDropAddObject(thisobj, original, normal);
233 			}
234 		}
235 	}
236 
237 	/*
238 	 * Delete all the objects in the proper order.
239 	 */
240 	for (i = 0; i < targetObjects->numrefs; i++)
241 	{
242 		ObjectAddress *thisobj = targetObjects->refs + i;
243 
244 		deleteOneObject(thisobj, depRel, flags);
245 	}
246 }
247 
248 /*
249  * performDeletion: attempt to drop the specified object.  If CASCADE
250  * behavior is specified, also drop any dependent objects (recursively).
251  * If RESTRICT behavior is specified, error out if there are any dependent
252  * objects, except for those that should be implicitly dropped anyway
253  * according to the dependency type.
254  *
255  * This is the outer control routine for all forms of DROP that drop objects
256  * that can participate in dependencies.  Note that the next two routines
257  * are variants on the same theme; if you change anything here you'll likely
258  * need to fix them too.
259  *
260  * flags should include PERFORM_DELETION_INTERNAL when the drop operation is
261  * not the direct result of a user-initiated action.  For example, when a
262  * temporary schema is cleaned out so that a new backend can use it, or when
263  * a column default is dropped as an intermediate step while adding a new one,
264  * that's an internal operation.  On the other hand, when we drop something
265  * because the user issued a DROP statement against it, that's not internal.
266  */
267 void
performDeletion(const ObjectAddress * object,DropBehavior behavior,int flags)268 performDeletion(const ObjectAddress *object,
269 				DropBehavior behavior, int flags)
270 {
271 	Relation	depRel;
272 	ObjectAddresses *targetObjects;
273 
274 	/*
275 	 * We save some cycles by opening pg_depend just once and passing the
276 	 * Relation pointer down to all the recursive deletion steps.
277 	 */
278 	depRel = heap_open(DependRelationId, RowExclusiveLock);
279 
280 	/*
281 	 * Acquire deletion lock on the target object.  (Ideally the caller has
282 	 * done this already, but many places are sloppy about it.)
283 	 */
284 	AcquireDeletionLock(object, 0);
285 
286 	/*
287 	 * Construct a list of objects to delete (ie, the given object plus
288 	 * everything directly or indirectly dependent on it).
289 	 */
290 	targetObjects = new_object_addresses();
291 
292 	findDependentObjects(object,
293 						 DEPFLAG_ORIGINAL,
294 						 NULL,	/* empty stack */
295 						 targetObjects,
296 						 NULL,	/* no pendingObjects */
297 						 &depRel);
298 
299 	/*
300 	 * Check if deletion is allowed, and report about cascaded deletes.
301 	 */
302 	reportDependentObjects(targetObjects,
303 						   behavior,
304 						   NOTICE,
305 						   object);
306 
307 	/* do the deed */
308 	deleteObjectsInList(targetObjects, &depRel, flags);
309 
310 	/* And clean up */
311 	free_object_addresses(targetObjects);
312 
313 	heap_close(depRel, RowExclusiveLock);
314 }
315 
316 /*
317  * performMultipleDeletions: Similar to performDeletion, but act on multiple
318  * objects at once.
319  *
320  * The main difference from issuing multiple performDeletion calls is that the
321  * list of objects that would be implicitly dropped, for each object to be
322  * dropped, is the union of the implicit-object list for all objects.  This
323  * makes each check be more relaxed.
324  */
325 void
performMultipleDeletions(const ObjectAddresses * objects,DropBehavior behavior,int flags)326 performMultipleDeletions(const ObjectAddresses *objects,
327 						 DropBehavior behavior, int flags)
328 {
329 	Relation	depRel;
330 	ObjectAddresses *targetObjects;
331 	int			i;
332 
333 	/* No work if no objects... */
334 	if (objects->numrefs <= 0)
335 		return;
336 
337 	/*
338 	 * We save some cycles by opening pg_depend just once and passing the
339 	 * Relation pointer down to all the recursive deletion steps.
340 	 */
341 	depRel = heap_open(DependRelationId, RowExclusiveLock);
342 
343 	/*
344 	 * Construct a list of objects to delete (ie, the given objects plus
345 	 * everything directly or indirectly dependent on them).  Note that
346 	 * because we pass the whole objects list as pendingObjects context, we
347 	 * won't get a failure from trying to delete an object that is internally
348 	 * dependent on another one in the list; we'll just skip that object and
349 	 * delete it when we reach its owner.
350 	 */
351 	targetObjects = new_object_addresses();
352 
353 	for (i = 0; i < objects->numrefs; i++)
354 	{
355 		const ObjectAddress *thisobj = objects->refs + i;
356 
357 		/*
358 		 * Acquire deletion lock on each target object.  (Ideally the caller
359 		 * has done this already, but many places are sloppy about it.)
360 		 */
361 		AcquireDeletionLock(thisobj, flags);
362 
363 		findDependentObjects(thisobj,
364 							 DEPFLAG_ORIGINAL,
365 							 NULL,		/* empty stack */
366 							 targetObjects,
367 							 objects,
368 							 &depRel);
369 	}
370 
371 	/*
372 	 * Check if deletion is allowed, and report about cascaded deletes.
373 	 *
374 	 * If there's exactly one object being deleted, report it the same way as
375 	 * in performDeletion(), else we have to be vaguer.
376 	 */
377 	reportDependentObjects(targetObjects,
378 						   behavior,
379 						   NOTICE,
380 						   (objects->numrefs == 1 ? objects->refs : NULL));
381 
382 	/* do the deed */
383 	deleteObjectsInList(targetObjects, &depRel, flags);
384 
385 	/* And clean up */
386 	free_object_addresses(targetObjects);
387 
388 	heap_close(depRel, RowExclusiveLock);
389 }
390 
391 /*
392  * deleteWhatDependsOn: attempt to drop everything that depends on the
393  * specified object, though not the object itself.  Behavior is always
394  * CASCADE.
395  *
396  * This is currently used only to clean out the contents of a schema
397  * (namespace): the passed object is a namespace.  We normally want this
398  * to be done silently, so there's an option to suppress NOTICE messages.
399  *
400  * Note we don't fire object drop event triggers here; it would be wrong to do
401  * so for the current only use of this function, but if more callers are added
402  * this might need to be reconsidered.
403  */
404 void
deleteWhatDependsOn(const ObjectAddress * object,bool showNotices)405 deleteWhatDependsOn(const ObjectAddress *object,
406 					bool showNotices)
407 {
408 	Relation	depRel;
409 	ObjectAddresses *targetObjects;
410 	int			i;
411 
412 	/*
413 	 * We save some cycles by opening pg_depend just once and passing the
414 	 * Relation pointer down to all the recursive deletion steps.
415 	 */
416 	depRel = heap_open(DependRelationId, RowExclusiveLock);
417 
418 	/*
419 	 * Acquire deletion lock on the target object.  (Ideally the caller has
420 	 * done this already, but many places are sloppy about it.)
421 	 */
422 	AcquireDeletionLock(object, 0);
423 
424 	/*
425 	 * Construct a list of objects to delete (ie, the given object plus
426 	 * everything directly or indirectly dependent on it).
427 	 */
428 	targetObjects = new_object_addresses();
429 
430 	findDependentObjects(object,
431 						 DEPFLAG_ORIGINAL,
432 						 NULL,	/* empty stack */
433 						 targetObjects,
434 						 NULL,	/* no pendingObjects */
435 						 &depRel);
436 
437 	/*
438 	 * Check if deletion is allowed, and report about cascaded deletes.
439 	 */
440 	reportDependentObjects(targetObjects,
441 						   DROP_CASCADE,
442 						   showNotices ? NOTICE : DEBUG2,
443 						   object);
444 
445 	/*
446 	 * Delete all the objects in the proper order, except we skip the original
447 	 * object.
448 	 */
449 	for (i = 0; i < targetObjects->numrefs; i++)
450 	{
451 		ObjectAddress *thisobj = targetObjects->refs + i;
452 		ObjectAddressExtra *thisextra = targetObjects->extras + i;
453 
454 		if (thisextra->flags & DEPFLAG_ORIGINAL)
455 			continue;
456 
457 		/*
458 		 * Since this function is currently only used to clean out temporary
459 		 * schemas, we pass PERFORM_DELETION_INTERNAL here, indicating that
460 		 * the operation is an automatic system operation rather than a user
461 		 * action.  If, in the future, this function is used for other
462 		 * purposes, we might need to revisit this.
463 		 */
464 		deleteOneObject(thisobj, &depRel, PERFORM_DELETION_INTERNAL);
465 	}
466 
467 	/* And clean up */
468 	free_object_addresses(targetObjects);
469 
470 	heap_close(depRel, RowExclusiveLock);
471 }
472 
473 /*
474  * findDependentObjects - find all objects that depend on 'object'
475  *
476  * For every object that depends on the starting object, acquire a deletion
477  * lock on the object, add it to targetObjects (if not already there),
478  * and recursively find objects that depend on it.  An object's dependencies
479  * will be placed into targetObjects before the object itself; this means
480  * that the finished list's order represents a safe deletion order.
481  *
482  * The caller must already have a deletion lock on 'object' itself,
483  * but must not have added it to targetObjects.  (Note: there are corner
484  * cases where we won't add the object either, and will also release the
485  * caller-taken lock.  This is a bit ugly, but the API is set up this way
486  * to allow easy rechecking of an object's liveness after we lock it.  See
487  * notes within the function.)
488  *
489  * When dropping a whole object (subId = 0), we find dependencies for
490  * its sub-objects too.
491  *
492  *	object: the object to add to targetObjects and find dependencies on
493  *	flags: flags to be ORed into the object's targetObjects entry
494  *	stack: list of objects being visited in current recursion; topmost item
495  *			is the object that we recursed from (NULL for external callers)
496  *	targetObjects: list of objects that are scheduled to be deleted
497  *	pendingObjects: list of other objects slated for destruction, but
498  *			not necessarily in targetObjects yet (can be NULL if none)
499  *	*depRel: already opened pg_depend relation
500  */
501 static void
findDependentObjects(const ObjectAddress * object,int flags,ObjectAddressStack * stack,ObjectAddresses * targetObjects,const ObjectAddresses * pendingObjects,Relation * depRel)502 findDependentObjects(const ObjectAddress *object,
503 					 int flags,
504 					 ObjectAddressStack *stack,
505 					 ObjectAddresses *targetObjects,
506 					 const ObjectAddresses *pendingObjects,
507 					 Relation *depRel)
508 {
509 	ScanKeyData key[3];
510 	int			nkeys;
511 	SysScanDesc scan;
512 	HeapTuple	tup;
513 	ObjectAddress otherObject;
514 	ObjectAddressStack mystack;
515 	ObjectAddressExtra extra;
516 
517 	/*
518 	 * If the target object is already being visited in an outer recursion
519 	 * level, just report the current flags back to that level and exit. This
520 	 * is needed to avoid infinite recursion in the face of circular
521 	 * dependencies.
522 	 *
523 	 * The stack check alone would result in dependency loops being broken at
524 	 * an arbitrary point, ie, the first member object of the loop to be
525 	 * visited is the last one to be deleted.  This is obviously unworkable.
526 	 * However, the check for internal dependency below guarantees that we
527 	 * will not break a loop at an internal dependency: if we enter the loop
528 	 * at an "owned" object we will switch and start at the "owning" object
529 	 * instead.  We could probably hack something up to avoid breaking at an
530 	 * auto dependency, too, if we had to.  However there are no known cases
531 	 * where that would be necessary.
532 	 */
533 	if (stack_address_present_add_flags(object, flags, stack))
534 		return;
535 
536 	/*
537 	 * It's also possible that the target object has already been completely
538 	 * processed and put into targetObjects.  If so, again we just add the
539 	 * specified flags to its entry and return.
540 	 *
541 	 * (Note: in these early-exit cases we could release the caller-taken
542 	 * lock, since the object is presumably now locked multiple times; but it
543 	 * seems not worth the cycles.)
544 	 */
545 	if (object_address_present_add_flags(object, flags, targetObjects))
546 		return;
547 
548 	/*
549 	 * The target object might be internally dependent on some other object
550 	 * (its "owner"), and/or be a member of an extension (also considered its
551 	 * owner).  If so, and if we aren't recursing from the owning object, we
552 	 * have to transform this deletion request into a deletion request of the
553 	 * owning object.  (We'll eventually recurse back to this object, but the
554 	 * owning object has to be visited first so it will be deleted after.) The
555 	 * way to find out about this is to scan the pg_depend entries that show
556 	 * what this object depends on.
557 	 */
558 	ScanKeyInit(&key[0],
559 				Anum_pg_depend_classid,
560 				BTEqualStrategyNumber, F_OIDEQ,
561 				ObjectIdGetDatum(object->classId));
562 	ScanKeyInit(&key[1],
563 				Anum_pg_depend_objid,
564 				BTEqualStrategyNumber, F_OIDEQ,
565 				ObjectIdGetDatum(object->objectId));
566 	if (object->objectSubId != 0)
567 	{
568 		ScanKeyInit(&key[2],
569 					Anum_pg_depend_objsubid,
570 					BTEqualStrategyNumber, F_INT4EQ,
571 					Int32GetDatum(object->objectSubId));
572 		nkeys = 3;
573 	}
574 	else
575 		nkeys = 2;
576 
577 	scan = systable_beginscan(*depRel, DependDependerIndexId, true,
578 							  NULL, nkeys, key);
579 
580 	while (HeapTupleIsValid(tup = systable_getnext(scan)))
581 	{
582 		Form_pg_depend foundDep = (Form_pg_depend) GETSTRUCT(tup);
583 
584 		otherObject.classId = foundDep->refclassid;
585 		otherObject.objectId = foundDep->refobjid;
586 		otherObject.objectSubId = foundDep->refobjsubid;
587 
588 		switch (foundDep->deptype)
589 		{
590 			case DEPENDENCY_NORMAL:
591 			case DEPENDENCY_AUTO:
592 			case DEPENDENCY_AUTO_EXTENSION:
593 				/* no problem */
594 				break;
595 
596 			case DEPENDENCY_EXTENSION:
597 
598 				/*
599 				 * If the other object is the extension currently being
600 				 * created/altered, ignore this dependency and continue with
601 				 * the deletion.  This allows dropping of an extension's
602 				 * objects within the extension's scripts, as well as corner
603 				 * cases such as dropping a transient object created within
604 				 * such a script.
605 				 */
606 				if (creating_extension &&
607 					otherObject.classId == ExtensionRelationId &&
608 					otherObject.objectId == CurrentExtensionObject)
609 					break;
610 
611 				/* Otherwise, treat this like an internal dependency */
612 				/* FALL THRU */
613 
614 			case DEPENDENCY_INTERNAL:
615 
616 				/*
617 				 * This object is part of the internal implementation of
618 				 * another object, or is part of the extension that is the
619 				 * other object.  We have three cases:
620 				 *
621 				 * 1. At the outermost recursion level, disallow the DROP. (We
622 				 * just ereport here, rather than proceeding, since no other
623 				 * dependencies are likely to be interesting.)	However, if
624 				 * the owning object is listed in pendingObjects, just release
625 				 * the caller's lock and return; we'll eventually complete the
626 				 * DROP when we reach that entry in the pending list.
627 				 */
628 				if (stack == NULL)
629 				{
630 					char	   *otherObjDesc;
631 
632 					if (pendingObjects &&
633 						object_address_present(&otherObject, pendingObjects))
634 					{
635 						systable_endscan(scan);
636 						/* need to release caller's lock; see notes below */
637 						ReleaseDeletionLock(object);
638 						return;
639 					}
640 					otherObjDesc = getObjectDescription(&otherObject);
641 					ereport(ERROR,
642 							(errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
643 							 errmsg("cannot drop %s because %s requires it",
644 									getObjectDescription(object),
645 									otherObjDesc),
646 							 errhint("You can drop %s instead.",
647 									 otherObjDesc)));
648 				}
649 
650 				/*
651 				 * 2. When recursing from the other end of this dependency,
652 				 * it's okay to continue with the deletion.  This holds when
653 				 * recursing from a whole object that includes the nominal
654 				 * other end as a component, too.  Since there can be more
655 				 * than one "owning" object, we have to allow matches that are
656 				 * more than one level down in the stack.
657 				 */
658 				if (stack_address_present_add_flags(&otherObject, 0, stack))
659 					break;
660 
661 				/*
662 				 * 3. Not all the owning objects have been visited, so
663 				 * transform this deletion request into a delete of this
664 				 * owning object.
665 				 *
666 				 * First, release caller's lock on this object and get
667 				 * deletion lock on the owning object.  (We must release
668 				 * caller's lock to avoid deadlock against a concurrent
669 				 * deletion of the owning object.)
670 				 */
671 				ReleaseDeletionLock(object);
672 				AcquireDeletionLock(&otherObject, 0);
673 
674 				/*
675 				 * The owning object might have been deleted while we waited
676 				 * to lock it; if so, neither it nor the current object are
677 				 * interesting anymore.  We test this by checking the
678 				 * pg_depend entry (see notes below).
679 				 */
680 				if (!systable_recheck_tuple(scan, tup))
681 				{
682 					systable_endscan(scan);
683 					ReleaseDeletionLock(&otherObject);
684 					return;
685 				}
686 
687 				/*
688 				 * Okay, recurse to the owning object instead of proceeding.
689 				 *
690 				 * We do not need to stack the current object; we want the
691 				 * traversal order to be as if the original reference had
692 				 * linked to the owning object instead of this one.
693 				 *
694 				 * The dependency type is a "reverse" dependency: we need to
695 				 * delete the owning object if this one is to be deleted, but
696 				 * this linkage is never a reason for an automatic deletion.
697 				 */
698 				findDependentObjects(&otherObject,
699 									 DEPFLAG_REVERSE,
700 									 stack,
701 									 targetObjects,
702 									 pendingObjects,
703 									 depRel);
704 				/* And we're done here. */
705 				systable_endscan(scan);
706 				return;
707 			case DEPENDENCY_PIN:
708 
709 				/*
710 				 * Should not happen; PIN dependencies should have zeroes in
711 				 * the depender fields...
712 				 */
713 				elog(ERROR, "incorrect use of PIN dependency with %s",
714 					 getObjectDescription(object));
715 				break;
716 			default:
717 				elog(ERROR, "unrecognized dependency type '%c' for %s",
718 					 foundDep->deptype, getObjectDescription(object));
719 				break;
720 		}
721 	}
722 
723 	systable_endscan(scan);
724 
725 	/*
726 	 * Now recurse to any dependent objects.  We must visit them first since
727 	 * they have to be deleted before the current object.
728 	 */
729 	mystack.object = object;	/* set up a new stack level */
730 	mystack.flags = flags;
731 	mystack.next = stack;
732 
733 	ScanKeyInit(&key[0],
734 				Anum_pg_depend_refclassid,
735 				BTEqualStrategyNumber, F_OIDEQ,
736 				ObjectIdGetDatum(object->classId));
737 	ScanKeyInit(&key[1],
738 				Anum_pg_depend_refobjid,
739 				BTEqualStrategyNumber, F_OIDEQ,
740 				ObjectIdGetDatum(object->objectId));
741 	if (object->objectSubId != 0)
742 	{
743 		ScanKeyInit(&key[2],
744 					Anum_pg_depend_refobjsubid,
745 					BTEqualStrategyNumber, F_INT4EQ,
746 					Int32GetDatum(object->objectSubId));
747 		nkeys = 3;
748 	}
749 	else
750 		nkeys = 2;
751 
752 	scan = systable_beginscan(*depRel, DependReferenceIndexId, true,
753 							  NULL, nkeys, key);
754 
755 	while (HeapTupleIsValid(tup = systable_getnext(scan)))
756 	{
757 		Form_pg_depend foundDep = (Form_pg_depend) GETSTRUCT(tup);
758 		int			subflags;
759 
760 		otherObject.classId = foundDep->classid;
761 		otherObject.objectId = foundDep->objid;
762 		otherObject.objectSubId = foundDep->objsubid;
763 
764 		/*
765 		 * Must lock the dependent object before recursing to it.
766 		 */
767 		AcquireDeletionLock(&otherObject, 0);
768 
769 		/*
770 		 * The dependent object might have been deleted while we waited to
771 		 * lock it; if so, we don't need to do anything more with it. We can
772 		 * test this cheaply and independently of the object's type by seeing
773 		 * if the pg_depend tuple we are looking at is still live. (If the
774 		 * object got deleted, the tuple would have been deleted too.)
775 		 */
776 		if (!systable_recheck_tuple(scan, tup))
777 		{
778 			/* release the now-useless lock */
779 			ReleaseDeletionLock(&otherObject);
780 			/* and continue scanning for dependencies */
781 			continue;
782 		}
783 
784 		/* Recurse, passing flags indicating the dependency type */
785 		switch (foundDep->deptype)
786 		{
787 			case DEPENDENCY_NORMAL:
788 				subflags = DEPFLAG_NORMAL;
789 				break;
790 			case DEPENDENCY_AUTO:
791 			case DEPENDENCY_AUTO_EXTENSION:
792 				subflags = DEPFLAG_AUTO;
793 				break;
794 			case DEPENDENCY_INTERNAL:
795 				subflags = DEPFLAG_INTERNAL;
796 				break;
797 			case DEPENDENCY_EXTENSION:
798 				subflags = DEPFLAG_EXTENSION;
799 				break;
800 			case DEPENDENCY_PIN:
801 
802 				/*
803 				 * For a PIN dependency we just ereport immediately; there
804 				 * won't be any others to report.
805 				 */
806 				ereport(ERROR,
807 						(errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
808 						 errmsg("cannot drop %s because it is required by the database system",
809 								getObjectDescription(object))));
810 				subflags = 0;	/* keep compiler quiet */
811 				break;
812 			default:
813 				elog(ERROR, "unrecognized dependency type '%c' for %s",
814 					 foundDep->deptype, getObjectDescription(object));
815 				subflags = 0;	/* keep compiler quiet */
816 				break;
817 		}
818 
819 		findDependentObjects(&otherObject,
820 							 subflags,
821 							 &mystack,
822 							 targetObjects,
823 							 pendingObjects,
824 							 depRel);
825 	}
826 
827 	systable_endscan(scan);
828 
829 	/*
830 	 * Finally, we can add the target object to targetObjects.  Be careful to
831 	 * include any flags that were passed back down to us from inner recursion
832 	 * levels.
833 	 */
834 	extra.flags = mystack.flags;
835 	if (stack)
836 		extra.dependee = *stack->object;
837 	else
838 		memset(&extra.dependee, 0, sizeof(extra.dependee));
839 	add_exact_object_address_extra(object, &extra, targetObjects);
840 }
841 
842 /*
843  * reportDependentObjects - report about dependencies, and fail if RESTRICT
844  *
845  * Tell the user about dependent objects that we are going to delete
846  * (or would need to delete, but are prevented by RESTRICT mode);
847  * then error out if there are any and it's not CASCADE mode.
848  *
849  *	targetObjects: list of objects that are scheduled to be deleted
850  *	behavior: RESTRICT or CASCADE
851  *	msglevel: elog level for non-error report messages
852  *	origObject: base object of deletion, or NULL if not available
853  *		(the latter case occurs in DROP OWNED)
854  */
855 static void
reportDependentObjects(const ObjectAddresses * targetObjects,DropBehavior behavior,int msglevel,const ObjectAddress * origObject)856 reportDependentObjects(const ObjectAddresses *targetObjects,
857 					   DropBehavior behavior,
858 					   int msglevel,
859 					   const ObjectAddress *origObject)
860 {
861 	bool		ok = true;
862 	StringInfoData clientdetail;
863 	StringInfoData logdetail;
864 	int			numReportedClient = 0;
865 	int			numNotReportedClient = 0;
866 	int			i;
867 
868 	/*
869 	 * If no error is to be thrown, and the msglevel is too low to be shown to
870 	 * either client or server log, there's no need to do any of the work.
871 	 *
872 	 * Note: this code doesn't know all there is to be known about elog
873 	 * levels, but it works for NOTICE and DEBUG2, which are the only values
874 	 * msglevel can currently have.  We also assume we are running in a normal
875 	 * operating environment.
876 	 */
877 	if (behavior == DROP_CASCADE &&
878 		msglevel < client_min_messages &&
879 		(msglevel < log_min_messages || log_min_messages == LOG))
880 		return;
881 
882 	/*
883 	 * We limit the number of dependencies reported to the client to
884 	 * MAX_REPORTED_DEPS, since client software may not deal well with
885 	 * enormous error strings.  The server log always gets a full report.
886 	 */
887 #define MAX_REPORTED_DEPS 100
888 
889 	initStringInfo(&clientdetail);
890 	initStringInfo(&logdetail);
891 
892 	/*
893 	 * We process the list back to front (ie, in dependency order not deletion
894 	 * order), since this makes for a more understandable display.
895 	 */
896 	for (i = targetObjects->numrefs - 1; i >= 0; i--)
897 	{
898 		const ObjectAddress *obj = &targetObjects->refs[i];
899 		const ObjectAddressExtra *extra = &targetObjects->extras[i];
900 		char	   *objDesc;
901 
902 		/* Ignore the original deletion target(s) */
903 		if (extra->flags & DEPFLAG_ORIGINAL)
904 			continue;
905 
906 		objDesc = getObjectDescription(obj);
907 
908 		/* An object being dropped concurrently doesn't need to be reported */
909 		if (objDesc == NULL)
910 			continue;
911 
912 		/*
913 		 * If, at any stage of the recursive search, we reached the object via
914 		 * an AUTO, INTERNAL, or EXTENSION dependency, then it's okay to
915 		 * delete it even in RESTRICT mode.
916 		 */
917 		if (extra->flags & (DEPFLAG_AUTO |
918 							DEPFLAG_INTERNAL |
919 							DEPFLAG_EXTENSION))
920 		{
921 			/*
922 			 * auto-cascades are reported at DEBUG2, not msglevel.  We don't
923 			 * try to combine them with the regular message because the
924 			 * results are too confusing when client_min_messages and
925 			 * log_min_messages are different.
926 			 */
927 			ereport(DEBUG2,
928 					(errmsg("drop auto-cascades to %s",
929 							objDesc)));
930 		}
931 		else if (behavior == DROP_RESTRICT)
932 		{
933 			char	   *otherDesc = getObjectDescription(&extra->dependee);
934 
935 			if (otherDesc)
936 			{
937 				if (numReportedClient < MAX_REPORTED_DEPS)
938 				{
939 					/* separate entries with a newline */
940 					if (clientdetail.len != 0)
941 						appendStringInfoChar(&clientdetail, '\n');
942 					appendStringInfo(&clientdetail, _("%s depends on %s"),
943 									 objDesc, otherDesc);
944 					numReportedClient++;
945 				}
946 				else
947 					numNotReportedClient++;
948 				/* separate entries with a newline */
949 				if (logdetail.len != 0)
950 					appendStringInfoChar(&logdetail, '\n');
951 				appendStringInfo(&logdetail, _("%s depends on %s"),
952 								 objDesc, otherDesc);
953 				pfree(otherDesc);
954 			}
955 			else
956 				numNotReportedClient++;
957 			ok = false;
958 		}
959 		else
960 		{
961 			if (numReportedClient < MAX_REPORTED_DEPS)
962 			{
963 				/* separate entries with a newline */
964 				if (clientdetail.len != 0)
965 					appendStringInfoChar(&clientdetail, '\n');
966 				appendStringInfo(&clientdetail, _("drop cascades to %s"),
967 								 objDesc);
968 				numReportedClient++;
969 			}
970 			else
971 				numNotReportedClient++;
972 			/* separate entries with a newline */
973 			if (logdetail.len != 0)
974 				appendStringInfoChar(&logdetail, '\n');
975 			appendStringInfo(&logdetail, _("drop cascades to %s"),
976 							 objDesc);
977 		}
978 
979 		pfree(objDesc);
980 	}
981 
982 	if (numNotReportedClient > 0)
983 		appendStringInfo(&clientdetail, ngettext("\nand %d other object "
984 												 "(see server log for list)",
985 												 "\nand %d other objects "
986 												 "(see server log for list)",
987 												 numNotReportedClient),
988 						 numNotReportedClient);
989 
990 	if (!ok)
991 	{
992 		if (origObject)
993 			ereport(ERROR,
994 					(errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
995 				  errmsg("cannot drop %s because other objects depend on it",
996 						 getObjectDescription(origObject)),
997 					 errdetail("%s", clientdetail.data),
998 					 errdetail_log("%s", logdetail.data),
999 					 errhint("Use DROP ... CASCADE to drop the dependent objects too.")));
1000 		else
1001 			ereport(ERROR,
1002 					(errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
1003 					 errmsg("cannot drop desired object(s) because other objects depend on them"),
1004 					 errdetail("%s", clientdetail.data),
1005 					 errdetail_log("%s", logdetail.data),
1006 					 errhint("Use DROP ... CASCADE to drop the dependent objects too.")));
1007 	}
1008 	else if (numReportedClient > 1)
1009 	{
1010 		ereport(msglevel,
1011 		/* translator: %d always has a value larger than 1 */
1012 				(errmsg_plural("drop cascades to %d other object",
1013 							   "drop cascades to %d other objects",
1014 							   numReportedClient + numNotReportedClient,
1015 							   numReportedClient + numNotReportedClient),
1016 				 errdetail("%s", clientdetail.data),
1017 				 errdetail_log("%s", logdetail.data)));
1018 	}
1019 	else if (numReportedClient == 1)
1020 	{
1021 		/* we just use the single item as-is */
1022 		ereport(msglevel,
1023 				(errmsg_internal("%s", clientdetail.data)));
1024 	}
1025 
1026 	pfree(clientdetail.data);
1027 	pfree(logdetail.data);
1028 }
1029 
1030 /*
1031  * deleteOneObject: delete a single object for performDeletion.
1032  *
1033  * *depRel is the already-open pg_depend relation.
1034  */
1035 static void
deleteOneObject(const ObjectAddress * object,Relation * depRel,int flags)1036 deleteOneObject(const ObjectAddress *object, Relation *depRel, int flags)
1037 {
1038 	ScanKeyData key[3];
1039 	int			nkeys;
1040 	SysScanDesc scan;
1041 	HeapTuple	tup;
1042 
1043 	/* DROP hook of the objects being removed */
1044 	InvokeObjectDropHookArg(object->classId, object->objectId,
1045 							object->objectSubId, flags);
1046 
1047 	/*
1048 	 * Close depRel if we are doing a drop concurrently.  The object deletion
1049 	 * subroutine will commit the current transaction, so we can't keep the
1050 	 * relation open across doDeletion().
1051 	 */
1052 	if (flags & PERFORM_DELETION_CONCURRENTLY)
1053 		heap_close(*depRel, RowExclusiveLock);
1054 
1055 	/*
1056 	 * Delete the object itself, in an object-type-dependent way.
1057 	 *
1058 	 * We used to do this after removing the outgoing dependency links, but it
1059 	 * seems just as reasonable to do it beforehand.  In the concurrent case
1060 	 * we *must* do it in this order, because we can't make any transactional
1061 	 * updates before calling doDeletion() --- they'd get committed right
1062 	 * away, which is not cool if the deletion then fails.
1063 	 */
1064 	doDeletion(object, flags);
1065 
1066 	/*
1067 	 * Reopen depRel if we closed it above
1068 	 */
1069 	if (flags & PERFORM_DELETION_CONCURRENTLY)
1070 		*depRel = heap_open(DependRelationId, RowExclusiveLock);
1071 
1072 	/*
1073 	 * Now remove any pg_depend records that link from this object to others.
1074 	 * (Any records linking to this object should be gone already.)
1075 	 *
1076 	 * When dropping a whole object (subId = 0), remove all pg_depend records
1077 	 * for its sub-objects too.
1078 	 */
1079 	ScanKeyInit(&key[0],
1080 				Anum_pg_depend_classid,
1081 				BTEqualStrategyNumber, F_OIDEQ,
1082 				ObjectIdGetDatum(object->classId));
1083 	ScanKeyInit(&key[1],
1084 				Anum_pg_depend_objid,
1085 				BTEqualStrategyNumber, F_OIDEQ,
1086 				ObjectIdGetDatum(object->objectId));
1087 	if (object->objectSubId != 0)
1088 	{
1089 		ScanKeyInit(&key[2],
1090 					Anum_pg_depend_objsubid,
1091 					BTEqualStrategyNumber, F_INT4EQ,
1092 					Int32GetDatum(object->objectSubId));
1093 		nkeys = 3;
1094 	}
1095 	else
1096 		nkeys = 2;
1097 
1098 	scan = systable_beginscan(*depRel, DependDependerIndexId, true,
1099 							  NULL, nkeys, key);
1100 
1101 	while (HeapTupleIsValid(tup = systable_getnext(scan)))
1102 	{
1103 		simple_heap_delete(*depRel, &tup->t_self);
1104 	}
1105 
1106 	systable_endscan(scan);
1107 
1108 	/*
1109 	 * Delete shared dependency references related to this object.  Again, if
1110 	 * subId = 0, remove records for sub-objects too.
1111 	 */
1112 	deleteSharedDependencyRecordsFor(object->classId, object->objectId,
1113 									 object->objectSubId);
1114 
1115 
1116 	/*
1117 	 * Delete any comments, security labels, or initial privileges associated
1118 	 * with this object.  (This is a convenient place to do these things,
1119 	 * rather than having every object type know to do it.)
1120 	 */
1121 	DeleteComments(object->objectId, object->classId, object->objectSubId);
1122 	DeleteSecurityLabel(object);
1123 	DeleteInitPrivs(object);
1124 
1125 	/*
1126 	 * CommandCounterIncrement here to ensure that preceding changes are all
1127 	 * visible to the next deletion step.
1128 	 */
1129 	CommandCounterIncrement();
1130 
1131 	/*
1132 	 * And we're done!
1133 	 */
1134 }
1135 
1136 /*
1137  * doDeletion: actually delete a single object
1138  */
1139 static void
doDeletion(const ObjectAddress * object,int flags)1140 doDeletion(const ObjectAddress *object, int flags)
1141 {
1142 	switch (getObjectClass(object))
1143 	{
1144 		case OCLASS_CLASS:
1145 			{
1146 				char		relKind = get_rel_relkind(object->objectId);
1147 
1148 				if (relKind == RELKIND_INDEX)
1149 				{
1150 					bool		concurrent = ((flags & PERFORM_DELETION_CONCURRENTLY)
1151 										   == PERFORM_DELETION_CONCURRENTLY);
1152 
1153 					Assert(object->objectSubId == 0);
1154 					index_drop(object->objectId, concurrent);
1155 				}
1156 				else
1157 				{
1158 					if (object->objectSubId != 0)
1159 						RemoveAttributeById(object->objectId,
1160 											object->objectSubId);
1161 					else
1162 						heap_drop_with_catalog(object->objectId);
1163 				}
1164 				break;
1165 			}
1166 
1167 		case OCLASS_PROC:
1168 			RemoveFunctionById(object->objectId);
1169 			break;
1170 
1171 		case OCLASS_TYPE:
1172 			RemoveTypeById(object->objectId);
1173 			break;
1174 
1175 		case OCLASS_CAST:
1176 			DropCastById(object->objectId);
1177 			break;
1178 
1179 		case OCLASS_COLLATION:
1180 			RemoveCollationById(object->objectId);
1181 			break;
1182 
1183 		case OCLASS_CONSTRAINT:
1184 			RemoveConstraintById(object->objectId);
1185 			break;
1186 
1187 		case OCLASS_CONVERSION:
1188 			RemoveConversionById(object->objectId);
1189 			break;
1190 
1191 		case OCLASS_DEFAULT:
1192 			RemoveAttrDefaultById(object->objectId);
1193 			break;
1194 
1195 		case OCLASS_LANGUAGE:
1196 			DropProceduralLanguageById(object->objectId);
1197 			break;
1198 
1199 		case OCLASS_LARGEOBJECT:
1200 			LargeObjectDrop(object->objectId);
1201 			break;
1202 
1203 		case OCLASS_OPERATOR:
1204 			RemoveOperatorById(object->objectId);
1205 			break;
1206 
1207 		case OCLASS_OPCLASS:
1208 			RemoveOpClassById(object->objectId);
1209 			break;
1210 
1211 		case OCLASS_OPFAMILY:
1212 			RemoveOpFamilyById(object->objectId);
1213 			break;
1214 
1215 		case OCLASS_AM:
1216 			RemoveAccessMethodById(object->objectId);
1217 			break;
1218 
1219 		case OCLASS_AMOP:
1220 			RemoveAmOpEntryById(object->objectId);
1221 			break;
1222 
1223 		case OCLASS_AMPROC:
1224 			RemoveAmProcEntryById(object->objectId);
1225 			break;
1226 
1227 		case OCLASS_REWRITE:
1228 			RemoveRewriteRuleById(object->objectId);
1229 			break;
1230 
1231 		case OCLASS_TRIGGER:
1232 			RemoveTriggerById(object->objectId);
1233 			break;
1234 
1235 		case OCLASS_SCHEMA:
1236 			RemoveSchemaById(object->objectId);
1237 			break;
1238 
1239 		case OCLASS_TSPARSER:
1240 			RemoveTSParserById(object->objectId);
1241 			break;
1242 
1243 		case OCLASS_TSDICT:
1244 			RemoveTSDictionaryById(object->objectId);
1245 			break;
1246 
1247 		case OCLASS_TSTEMPLATE:
1248 			RemoveTSTemplateById(object->objectId);
1249 			break;
1250 
1251 		case OCLASS_TSCONFIG:
1252 			RemoveTSConfigurationById(object->objectId);
1253 			break;
1254 
1255 			/*
1256 			 * OCLASS_ROLE, OCLASS_DATABASE, OCLASS_TBLSPACE intentionally not
1257 			 * handled here
1258 			 */
1259 
1260 		case OCLASS_FDW:
1261 			RemoveForeignDataWrapperById(object->objectId);
1262 			break;
1263 
1264 		case OCLASS_FOREIGN_SERVER:
1265 			RemoveForeignServerById(object->objectId);
1266 			break;
1267 
1268 		case OCLASS_USER_MAPPING:
1269 			RemoveUserMappingById(object->objectId);
1270 			break;
1271 
1272 		case OCLASS_DEFACL:
1273 			RemoveDefaultACLById(object->objectId);
1274 			break;
1275 
1276 		case OCLASS_EXTENSION:
1277 			RemoveExtensionById(object->objectId);
1278 			break;
1279 
1280 		case OCLASS_EVENT_TRIGGER:
1281 			RemoveEventTriggerById(object->objectId);
1282 			break;
1283 
1284 		case OCLASS_POLICY:
1285 			RemovePolicyById(object->objectId);
1286 			break;
1287 
1288 		case OCLASS_TRANSFORM:
1289 			DropTransformById(object->objectId);
1290 			break;
1291 
1292 		default:
1293 			elog(ERROR, "unrecognized object class: %u",
1294 				 object->classId);
1295 	}
1296 }
1297 
1298 /*
1299  * AcquireDeletionLock - acquire a suitable lock for deleting an object
1300  *
1301  * Accepts the same flags as performDeletion (though currently only
1302  * PERFORM_DELETION_CONCURRENTLY does anything).
1303  *
1304  * We use LockRelation for relations, LockDatabaseObject for everything
1305  * else.  Shared-across-databases objects are not currently supported
1306  * because no caller cares, but could be modified to use LockSharedObject.
1307  */
1308 void
AcquireDeletionLock(const ObjectAddress * object,int flags)1309 AcquireDeletionLock(const ObjectAddress *object, int flags)
1310 {
1311 	if (object->classId == RelationRelationId)
1312 	{
1313 		/*
1314 		 * In DROP INDEX CONCURRENTLY, take only ShareUpdateExclusiveLock on
1315 		 * the index for the moment.  index_drop() will promote the lock once
1316 		 * it's safe to do so.  In all other cases we need full exclusive
1317 		 * lock.
1318 		 */
1319 		if (flags & PERFORM_DELETION_CONCURRENTLY)
1320 			LockRelationOid(object->objectId, ShareUpdateExclusiveLock);
1321 		else
1322 			LockRelationOid(object->objectId, AccessExclusiveLock);
1323 	}
1324 	else
1325 	{
1326 		/* assume we should lock the whole object not a sub-object */
1327 		LockDatabaseObject(object->classId, object->objectId, 0,
1328 						   AccessExclusiveLock);
1329 	}
1330 }
1331 
1332 /*
1333  * ReleaseDeletionLock - release an object deletion lock
1334  *
1335  * Companion to AcquireDeletionLock.
1336  */
1337 void
ReleaseDeletionLock(const ObjectAddress * object)1338 ReleaseDeletionLock(const ObjectAddress *object)
1339 {
1340 	if (object->classId == RelationRelationId)
1341 		UnlockRelationOid(object->objectId, AccessExclusiveLock);
1342 	else
1343 		/* assume we should lock the whole object not a sub-object */
1344 		UnlockDatabaseObject(object->classId, object->objectId, 0,
1345 							 AccessExclusiveLock);
1346 }
1347 
1348 /*
1349  * recordDependencyOnExpr - find expression dependencies
1350  *
1351  * This is used to find the dependencies of rules, constraint expressions,
1352  * etc.
1353  *
1354  * Given an expression or query in node-tree form, find all the objects
1355  * it refers to (tables, columns, operators, functions, etc).  Record
1356  * a dependency of the specified type from the given depender object
1357  * to each object mentioned in the expression.
1358  *
1359  * rtable is the rangetable to be used to interpret Vars with varlevelsup=0.
1360  * It can be NIL if no such variables are expected.
1361  */
1362 void
recordDependencyOnExpr(const ObjectAddress * depender,Node * expr,List * rtable,DependencyType behavior)1363 recordDependencyOnExpr(const ObjectAddress *depender,
1364 					   Node *expr, List *rtable,
1365 					   DependencyType behavior)
1366 {
1367 	find_expr_references_context context;
1368 
1369 	context.addrs = new_object_addresses();
1370 
1371 	/* Set up interpretation for Vars at varlevelsup = 0 */
1372 	context.rtables = list_make1(rtable);
1373 
1374 	/* Scan the expression tree for referenceable objects */
1375 	find_expr_references_walker(expr, &context);
1376 
1377 	/* Remove any duplicates */
1378 	eliminate_duplicate_dependencies(context.addrs);
1379 
1380 	/* And record 'em */
1381 	recordMultipleDependencies(depender,
1382 							   context.addrs->refs, context.addrs->numrefs,
1383 							   behavior);
1384 
1385 	free_object_addresses(context.addrs);
1386 }
1387 
1388 /*
1389  * recordDependencyOnSingleRelExpr - find expression dependencies
1390  *
1391  * As above, but only one relation is expected to be referenced (with
1392  * varno = 1 and varlevelsup = 0).  Pass the relation OID instead of a
1393  * range table.  An additional frammish is that dependencies on that
1394  * relation (or its component columns) will be marked with 'self_behavior',
1395  * whereas 'behavior' is used for everything else.
1396  *
1397  * NOTE: the caller should ensure that a whole-table dependency on the
1398  * specified relation is created separately, if one is needed.  In particular,
1399  * a whole-row Var "relation.*" will not cause this routine to emit any
1400  * dependency item.  This is appropriate behavior for subexpressions of an
1401  * ordinary query, so other cases need to cope as necessary.
1402  */
1403 void
recordDependencyOnSingleRelExpr(const ObjectAddress * depender,Node * expr,Oid relId,DependencyType behavior,DependencyType self_behavior)1404 recordDependencyOnSingleRelExpr(const ObjectAddress *depender,
1405 								Node *expr, Oid relId,
1406 								DependencyType behavior,
1407 								DependencyType self_behavior)
1408 {
1409 	find_expr_references_context context;
1410 	RangeTblEntry rte;
1411 
1412 	context.addrs = new_object_addresses();
1413 
1414 	/* We gin up a rather bogus rangetable list to handle Vars */
1415 	MemSet(&rte, 0, sizeof(rte));
1416 	rte.type = T_RangeTblEntry;
1417 	rte.rtekind = RTE_RELATION;
1418 	rte.relid = relId;
1419 	rte.relkind = RELKIND_RELATION;		/* no need for exactness here */
1420 
1421 	context.rtables = list_make1(list_make1(&rte));
1422 
1423 	/* Scan the expression tree for referenceable objects */
1424 	find_expr_references_walker(expr, &context);
1425 
1426 	/* Remove any duplicates */
1427 	eliminate_duplicate_dependencies(context.addrs);
1428 
1429 	/* Separate self-dependencies if necessary */
1430 	if (behavior != self_behavior && context.addrs->numrefs > 0)
1431 	{
1432 		ObjectAddresses *self_addrs;
1433 		ObjectAddress *outobj;
1434 		int			oldref,
1435 					outrefs;
1436 
1437 		self_addrs = new_object_addresses();
1438 
1439 		outobj = context.addrs->refs;
1440 		outrefs = 0;
1441 		for (oldref = 0; oldref < context.addrs->numrefs; oldref++)
1442 		{
1443 			ObjectAddress *thisobj = context.addrs->refs + oldref;
1444 
1445 			if (thisobj->classId == RelationRelationId &&
1446 				thisobj->objectId == relId)
1447 			{
1448 				/* Move this ref into self_addrs */
1449 				add_exact_object_address(thisobj, self_addrs);
1450 			}
1451 			else
1452 			{
1453 				/* Keep it in context.addrs */
1454 				*outobj = *thisobj;
1455 				outobj++;
1456 				outrefs++;
1457 			}
1458 		}
1459 		context.addrs->numrefs = outrefs;
1460 
1461 		/* Record the self-dependencies */
1462 		recordMultipleDependencies(depender,
1463 								   self_addrs->refs, self_addrs->numrefs,
1464 								   self_behavior);
1465 
1466 		free_object_addresses(self_addrs);
1467 	}
1468 
1469 	/* Record the external dependencies */
1470 	recordMultipleDependencies(depender,
1471 							   context.addrs->refs, context.addrs->numrefs,
1472 							   behavior);
1473 
1474 	free_object_addresses(context.addrs);
1475 }
1476 
1477 /*
1478  * Recursively search an expression tree for object references.
1479  *
1480  * Note: we avoid creating references to columns of tables that participate
1481  * in an SQL JOIN construct, but are not actually used anywhere in the query.
1482  * To do so, we do not scan the joinaliasvars list of a join RTE while
1483  * scanning the query rangetable, but instead scan each individual entry
1484  * of the alias list when we find a reference to it.
1485  *
1486  * Note: in many cases we do not need to create dependencies on the datatypes
1487  * involved in an expression, because we'll have an indirect dependency via
1488  * some other object.  For instance Var nodes depend on a column which depends
1489  * on the datatype, and OpExpr nodes depend on the operator which depends on
1490  * the datatype.  However we do need a type dependency if there is no such
1491  * indirect dependency, as for example in Const and CoerceToDomain nodes.
1492  *
1493  * Similarly, we don't need to create dependencies on collations except where
1494  * the collation is being freshly introduced to the expression.
1495  */
1496 static bool
find_expr_references_walker(Node * node,find_expr_references_context * context)1497 find_expr_references_walker(Node *node,
1498 							find_expr_references_context *context)
1499 {
1500 	if (node == NULL)
1501 		return false;
1502 	if (IsA(node, Var))
1503 	{
1504 		Var		   *var = (Var *) node;
1505 		List	   *rtable;
1506 		RangeTblEntry *rte;
1507 
1508 		/* Find matching rtable entry, or complain if not found */
1509 		if (var->varlevelsup >= list_length(context->rtables))
1510 			elog(ERROR, "invalid varlevelsup %d", var->varlevelsup);
1511 		rtable = (List *) list_nth(context->rtables, var->varlevelsup);
1512 		if (var->varno <= 0 || var->varno > list_length(rtable))
1513 			elog(ERROR, "invalid varno %d", var->varno);
1514 		rte = rt_fetch(var->varno, rtable);
1515 
1516 		/*
1517 		 * A whole-row Var references no specific columns, so adds no new
1518 		 * dependency.  (We assume that there is a whole-table dependency
1519 		 * arising from each underlying rangetable entry.  While we could
1520 		 * record such a dependency when finding a whole-row Var that
1521 		 * references a relation directly, it's quite unclear how to extend
1522 		 * that to whole-row Vars for JOINs, so it seems better to leave the
1523 		 * responsibility with the range table.  Note that this poses some
1524 		 * risks for identifying dependencies of stand-alone expressions:
1525 		 * whole-table references may need to be created separately.)
1526 		 */
1527 		if (var->varattno == InvalidAttrNumber)
1528 			return false;
1529 		if (rte->rtekind == RTE_RELATION)
1530 		{
1531 			/* If it's a plain relation, reference this column */
1532 			add_object_address(OCLASS_CLASS, rte->relid, var->varattno,
1533 							   context->addrs);
1534 		}
1535 		else if (rte->rtekind == RTE_JOIN)
1536 		{
1537 			/* Scan join output column to add references to join inputs */
1538 			List	   *save_rtables;
1539 
1540 			/* We must make the context appropriate for join's level */
1541 			save_rtables = context->rtables;
1542 			context->rtables = list_copy_tail(context->rtables,
1543 											  var->varlevelsup);
1544 			if (var->varattno <= 0 ||
1545 				var->varattno > list_length(rte->joinaliasvars))
1546 				elog(ERROR, "invalid varattno %d", var->varattno);
1547 			find_expr_references_walker((Node *) list_nth(rte->joinaliasvars,
1548 														  var->varattno - 1),
1549 										context);
1550 			list_free(context->rtables);
1551 			context->rtables = save_rtables;
1552 		}
1553 		return false;
1554 	}
1555 	else if (IsA(node, Const))
1556 	{
1557 		Const	   *con = (Const *) node;
1558 		Oid			objoid;
1559 
1560 		/* A constant must depend on the constant's datatype */
1561 		add_object_address(OCLASS_TYPE, con->consttype, 0,
1562 						   context->addrs);
1563 
1564 		/*
1565 		 * We must also depend on the constant's collation: it could be
1566 		 * different from the datatype's, if a CollateExpr was const-folded to
1567 		 * a simple constant.  However we can save work in the most common
1568 		 * case where the collation is "default", since we know that's pinned.
1569 		 */
1570 		if (OidIsValid(con->constcollid) &&
1571 			con->constcollid != DEFAULT_COLLATION_OID)
1572 			add_object_address(OCLASS_COLLATION, con->constcollid, 0,
1573 							   context->addrs);
1574 
1575 		/*
1576 		 * If it's a regclass or similar literal referring to an existing
1577 		 * object, add a reference to that object.  (Currently, only the
1578 		 * regclass and regconfig cases have any likely use, but we may as
1579 		 * well handle all the OID-alias datatypes consistently.)
1580 		 */
1581 		if (!con->constisnull)
1582 		{
1583 			switch (con->consttype)
1584 			{
1585 				case REGPROCOID:
1586 				case REGPROCEDUREOID:
1587 					objoid = DatumGetObjectId(con->constvalue);
1588 					if (SearchSysCacheExists1(PROCOID,
1589 											  ObjectIdGetDatum(objoid)))
1590 						add_object_address(OCLASS_PROC, objoid, 0,
1591 										   context->addrs);
1592 					break;
1593 				case REGOPEROID:
1594 				case REGOPERATOROID:
1595 					objoid = DatumGetObjectId(con->constvalue);
1596 					if (SearchSysCacheExists1(OPEROID,
1597 											  ObjectIdGetDatum(objoid)))
1598 						add_object_address(OCLASS_OPERATOR, objoid, 0,
1599 										   context->addrs);
1600 					break;
1601 				case REGCLASSOID:
1602 					objoid = DatumGetObjectId(con->constvalue);
1603 					if (SearchSysCacheExists1(RELOID,
1604 											  ObjectIdGetDatum(objoid)))
1605 						add_object_address(OCLASS_CLASS, objoid, 0,
1606 										   context->addrs);
1607 					break;
1608 				case REGTYPEOID:
1609 					objoid = DatumGetObjectId(con->constvalue);
1610 					if (SearchSysCacheExists1(TYPEOID,
1611 											  ObjectIdGetDatum(objoid)))
1612 						add_object_address(OCLASS_TYPE, objoid, 0,
1613 										   context->addrs);
1614 					break;
1615 				case REGCONFIGOID:
1616 					objoid = DatumGetObjectId(con->constvalue);
1617 					if (SearchSysCacheExists1(TSCONFIGOID,
1618 											  ObjectIdGetDatum(objoid)))
1619 						add_object_address(OCLASS_TSCONFIG, objoid, 0,
1620 										   context->addrs);
1621 					break;
1622 				case REGDICTIONARYOID:
1623 					objoid = DatumGetObjectId(con->constvalue);
1624 					if (SearchSysCacheExists1(TSDICTOID,
1625 											  ObjectIdGetDatum(objoid)))
1626 						add_object_address(OCLASS_TSDICT, objoid, 0,
1627 										   context->addrs);
1628 					break;
1629 
1630 				case REGNAMESPACEOID:
1631 					objoid = DatumGetObjectId(con->constvalue);
1632 					if (SearchSysCacheExists1(NAMESPACEOID,
1633 											  ObjectIdGetDatum(objoid)))
1634 						add_object_address(OCLASS_SCHEMA, objoid, 0,
1635 										   context->addrs);
1636 					break;
1637 
1638 					/*
1639 					 * Dependencies for regrole should be shared among all
1640 					 * databases, so explicitly inhibit to have dependencies.
1641 					 */
1642 				case REGROLEOID:
1643 					ereport(ERROR,
1644 							(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1645 							 errmsg("constant of the type \"regrole\" cannot be used here")));
1646 					break;
1647 			}
1648 		}
1649 		return false;
1650 	}
1651 	else if (IsA(node, Param))
1652 	{
1653 		Param	   *param = (Param *) node;
1654 
1655 		/* A parameter must depend on the parameter's datatype */
1656 		add_object_address(OCLASS_TYPE, param->paramtype, 0,
1657 						   context->addrs);
1658 		/* and its collation, just as for Consts */
1659 		if (OidIsValid(param->paramcollid) &&
1660 			param->paramcollid != DEFAULT_COLLATION_OID)
1661 			add_object_address(OCLASS_COLLATION, param->paramcollid, 0,
1662 							   context->addrs);
1663 	}
1664 	else if (IsA(node, FuncExpr))
1665 	{
1666 		FuncExpr   *funcexpr = (FuncExpr *) node;
1667 
1668 		add_object_address(OCLASS_PROC, funcexpr->funcid, 0,
1669 						   context->addrs);
1670 		/* fall through to examine arguments */
1671 	}
1672 	else if (IsA(node, OpExpr))
1673 	{
1674 		OpExpr	   *opexpr = (OpExpr *) node;
1675 
1676 		add_object_address(OCLASS_OPERATOR, opexpr->opno, 0,
1677 						   context->addrs);
1678 		/* fall through to examine arguments */
1679 	}
1680 	else if (IsA(node, DistinctExpr))
1681 	{
1682 		DistinctExpr *distinctexpr = (DistinctExpr *) node;
1683 
1684 		add_object_address(OCLASS_OPERATOR, distinctexpr->opno, 0,
1685 						   context->addrs);
1686 		/* fall through to examine arguments */
1687 	}
1688 	else if (IsA(node, NullIfExpr))
1689 	{
1690 		NullIfExpr *nullifexpr = (NullIfExpr *) node;
1691 
1692 		add_object_address(OCLASS_OPERATOR, nullifexpr->opno, 0,
1693 						   context->addrs);
1694 		/* fall through to examine arguments */
1695 	}
1696 	else if (IsA(node, ScalarArrayOpExpr))
1697 	{
1698 		ScalarArrayOpExpr *opexpr = (ScalarArrayOpExpr *) node;
1699 
1700 		add_object_address(OCLASS_OPERATOR, opexpr->opno, 0,
1701 						   context->addrs);
1702 		/* fall through to examine arguments */
1703 	}
1704 	else if (IsA(node, Aggref))
1705 	{
1706 		Aggref	   *aggref = (Aggref *) node;
1707 
1708 		add_object_address(OCLASS_PROC, aggref->aggfnoid, 0,
1709 						   context->addrs);
1710 		/* fall through to examine arguments */
1711 	}
1712 	else if (IsA(node, WindowFunc))
1713 	{
1714 		WindowFunc *wfunc = (WindowFunc *) node;
1715 
1716 		add_object_address(OCLASS_PROC, wfunc->winfnoid, 0,
1717 						   context->addrs);
1718 		/* fall through to examine arguments */
1719 	}
1720 	else if (IsA(node, SubPlan))
1721 	{
1722 		/* Extra work needed here if we ever need this case */
1723 		elog(ERROR, "already-planned subqueries not supported");
1724 	}
1725 	else if (IsA(node, FieldSelect))
1726 	{
1727 		FieldSelect *fselect = (FieldSelect *) node;
1728 		Oid			argtype = exprType((Node *) fselect->arg);
1729 		Oid			reltype = get_typ_typrelid(argtype);
1730 
1731 		/*
1732 		 * We need a dependency on the specific column named in FieldSelect,
1733 		 * assuming we can identify the pg_class OID for it.  (Probably we
1734 		 * always can at the moment, but in future it might be possible for
1735 		 * argtype to be RECORDOID.)  If we can make a column dependency then
1736 		 * we shouldn't need a dependency on the column's type; but if we
1737 		 * can't, make a dependency on the type, as it might not appear
1738 		 * anywhere else in the expression.
1739 		 */
1740 		if (OidIsValid(reltype))
1741 			add_object_address(OCLASS_CLASS, reltype, fselect->fieldnum,
1742 							   context->addrs);
1743 		else
1744 			add_object_address(OCLASS_TYPE, fselect->resulttype, 0,
1745 							   context->addrs);
1746 		/* the collation might not be referenced anywhere else, either */
1747 		if (OidIsValid(fselect->resultcollid) &&
1748 			fselect->resultcollid != DEFAULT_COLLATION_OID)
1749 			add_object_address(OCLASS_COLLATION, fselect->resultcollid, 0,
1750 							   context->addrs);
1751 	}
1752 	else if (IsA(node, FieldStore))
1753 	{
1754 		FieldStore *fstore = (FieldStore *) node;
1755 		Oid			reltype = get_typ_typrelid(fstore->resulttype);
1756 
1757 		/* similar considerations to FieldSelect, but multiple column(s) */
1758 		if (OidIsValid(reltype))
1759 		{
1760 			ListCell   *l;
1761 
1762 			foreach(l, fstore->fieldnums)
1763 				add_object_address(OCLASS_CLASS, reltype, lfirst_int(l),
1764 								   context->addrs);
1765 		}
1766 		else
1767 			add_object_address(OCLASS_TYPE, fstore->resulttype, 0,
1768 							   context->addrs);
1769 	}
1770 	else if (IsA(node, RelabelType))
1771 	{
1772 		RelabelType *relab = (RelabelType *) node;
1773 
1774 		/* since there is no function dependency, need to depend on type */
1775 		add_object_address(OCLASS_TYPE, relab->resulttype, 0,
1776 						   context->addrs);
1777 		/* the collation might not be referenced anywhere else, either */
1778 		if (OidIsValid(relab->resultcollid) &&
1779 			relab->resultcollid != DEFAULT_COLLATION_OID)
1780 			add_object_address(OCLASS_COLLATION, relab->resultcollid, 0,
1781 							   context->addrs);
1782 	}
1783 	else if (IsA(node, CoerceViaIO))
1784 	{
1785 		CoerceViaIO *iocoerce = (CoerceViaIO *) node;
1786 
1787 		/* since there is no exposed function, need to depend on type */
1788 		add_object_address(OCLASS_TYPE, iocoerce->resulttype, 0,
1789 						   context->addrs);
1790 		/* the collation might not be referenced anywhere else, either */
1791 		if (OidIsValid(iocoerce->resultcollid) &&
1792 			iocoerce->resultcollid != DEFAULT_COLLATION_OID)
1793 			add_object_address(OCLASS_COLLATION, iocoerce->resultcollid, 0,
1794 							   context->addrs);
1795 	}
1796 	else if (IsA(node, ArrayCoerceExpr))
1797 	{
1798 		ArrayCoerceExpr *acoerce = (ArrayCoerceExpr *) node;
1799 
1800 		if (OidIsValid(acoerce->elemfuncid))
1801 			add_object_address(OCLASS_PROC, acoerce->elemfuncid, 0,
1802 							   context->addrs);
1803 		add_object_address(OCLASS_TYPE, acoerce->resulttype, 0,
1804 						   context->addrs);
1805 		/* fall through to examine arguments */
1806 	}
1807 	else if (IsA(node, ConvertRowtypeExpr))
1808 	{
1809 		ConvertRowtypeExpr *cvt = (ConvertRowtypeExpr *) node;
1810 
1811 		/* since there is no function dependency, need to depend on type */
1812 		add_object_address(OCLASS_TYPE, cvt->resulttype, 0,
1813 						   context->addrs);
1814 	}
1815 	else if (IsA(node, CollateExpr))
1816 	{
1817 		CollateExpr *coll = (CollateExpr *) node;
1818 
1819 		add_object_address(OCLASS_COLLATION, coll->collOid, 0,
1820 						   context->addrs);
1821 	}
1822 	else if (IsA(node, RowExpr))
1823 	{
1824 		RowExpr    *rowexpr = (RowExpr *) node;
1825 
1826 		add_object_address(OCLASS_TYPE, rowexpr->row_typeid, 0,
1827 						   context->addrs);
1828 	}
1829 	else if (IsA(node, RowCompareExpr))
1830 	{
1831 		RowCompareExpr *rcexpr = (RowCompareExpr *) node;
1832 		ListCell   *l;
1833 
1834 		foreach(l, rcexpr->opnos)
1835 		{
1836 			add_object_address(OCLASS_OPERATOR, lfirst_oid(l), 0,
1837 							   context->addrs);
1838 		}
1839 		foreach(l, rcexpr->opfamilies)
1840 		{
1841 			add_object_address(OCLASS_OPFAMILY, lfirst_oid(l), 0,
1842 							   context->addrs);
1843 		}
1844 		/* fall through to examine arguments */
1845 	}
1846 	else if (IsA(node, CoerceToDomain))
1847 	{
1848 		CoerceToDomain *cd = (CoerceToDomain *) node;
1849 
1850 		add_object_address(OCLASS_TYPE, cd->resulttype, 0,
1851 						   context->addrs);
1852 	}
1853 	else if (IsA(node, OnConflictExpr))
1854 	{
1855 		OnConflictExpr *onconflict = (OnConflictExpr *) node;
1856 
1857 		if (OidIsValid(onconflict->constraint))
1858 			add_object_address(OCLASS_CONSTRAINT, onconflict->constraint, 0,
1859 							   context->addrs);
1860 		/* fall through to examine arguments */
1861 	}
1862 	else if (IsA(node, SortGroupClause))
1863 	{
1864 		SortGroupClause *sgc = (SortGroupClause *) node;
1865 
1866 		add_object_address(OCLASS_OPERATOR, sgc->eqop, 0,
1867 						   context->addrs);
1868 		if (OidIsValid(sgc->sortop))
1869 			add_object_address(OCLASS_OPERATOR, sgc->sortop, 0,
1870 							   context->addrs);
1871 		return false;
1872 	}
1873 	else if (IsA(node, Query))
1874 	{
1875 		/* Recurse into RTE subquery or not-yet-planned sublink subquery */
1876 		Query	   *query = (Query *) node;
1877 		ListCell   *lc;
1878 		bool		result;
1879 
1880 		/*
1881 		 * Add whole-relation refs for each plain relation mentioned in the
1882 		 * subquery's rtable.
1883 		 *
1884 		 * Note: query_tree_walker takes care of recursing into RTE_FUNCTION
1885 		 * RTEs, subqueries, etc, so no need to do that here.  But keep it
1886 		 * from looking at join alias lists.
1887 		 *
1888 		 * Note: we don't need to worry about collations mentioned in
1889 		 * RTE_VALUES or RTE_CTE RTEs, because those must just duplicate
1890 		 * collations referenced in other parts of the Query.  We do have to
1891 		 * worry about collations mentioned in RTE_FUNCTION, but we take care
1892 		 * of those when we recurse to the RangeTblFunction node(s).
1893 		 */
1894 		foreach(lc, query->rtable)
1895 		{
1896 			RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
1897 
1898 			switch (rte->rtekind)
1899 			{
1900 				case RTE_RELATION:
1901 					add_object_address(OCLASS_CLASS, rte->relid, 0,
1902 									   context->addrs);
1903 					break;
1904 				default:
1905 					break;
1906 			}
1907 		}
1908 
1909 		/*
1910 		 * If the query is an INSERT or UPDATE, we should create a dependency
1911 		 * on each target column, to prevent the specific target column from
1912 		 * being dropped.  Although we will visit the TargetEntry nodes again
1913 		 * during query_tree_walker, we won't have enough context to do this
1914 		 * conveniently, so do it here.
1915 		 */
1916 		if (query->commandType == CMD_INSERT ||
1917 			query->commandType == CMD_UPDATE)
1918 		{
1919 			RangeTblEntry *rte;
1920 
1921 			if (query->resultRelation <= 0 ||
1922 				query->resultRelation > list_length(query->rtable))
1923 				elog(ERROR, "invalid resultRelation %d",
1924 					 query->resultRelation);
1925 			rte = rt_fetch(query->resultRelation, query->rtable);
1926 			if (rte->rtekind == RTE_RELATION)
1927 			{
1928 				foreach(lc, query->targetList)
1929 				{
1930 					TargetEntry *tle = (TargetEntry *) lfirst(lc);
1931 
1932 					if (tle->resjunk)
1933 						continue;		/* ignore junk tlist items */
1934 					add_object_address(OCLASS_CLASS, rte->relid, tle->resno,
1935 									   context->addrs);
1936 				}
1937 			}
1938 		}
1939 
1940 		/*
1941 		 * Add dependencies on constraints listed in query's constraintDeps
1942 		 */
1943 		foreach(lc, query->constraintDeps)
1944 		{
1945 			add_object_address(OCLASS_CONSTRAINT, lfirst_oid(lc), 0,
1946 							   context->addrs);
1947 		}
1948 
1949 		/* Examine substructure of query */
1950 		context->rtables = lcons(query->rtable, context->rtables);
1951 		result = query_tree_walker(query,
1952 								   find_expr_references_walker,
1953 								   (void *) context,
1954 								   QTW_IGNORE_JOINALIASES |
1955 								   QTW_EXAMINE_SORTGROUP);
1956 		context->rtables = list_delete_first(context->rtables);
1957 		return result;
1958 	}
1959 	else if (IsA(node, SetOperationStmt))
1960 	{
1961 		SetOperationStmt *setop = (SetOperationStmt *) node;
1962 
1963 		/* we need to look at the groupClauses for operator references */
1964 		find_expr_references_walker((Node *) setop->groupClauses, context);
1965 		/* fall through to examine child nodes */
1966 	}
1967 	else if (IsA(node, RangeTblFunction))
1968 	{
1969 		RangeTblFunction *rtfunc = (RangeTblFunction *) node;
1970 		ListCell   *ct;
1971 
1972 		/*
1973 		 * Add refs for any datatypes and collations used in a column
1974 		 * definition list for a RECORD function.  (For other cases, it should
1975 		 * be enough to depend on the function itself.)
1976 		 */
1977 		foreach(ct, rtfunc->funccoltypes)
1978 		{
1979 			add_object_address(OCLASS_TYPE, lfirst_oid(ct), 0,
1980 							   context->addrs);
1981 		}
1982 		foreach(ct, rtfunc->funccolcollations)
1983 		{
1984 			Oid			collid = lfirst_oid(ct);
1985 
1986 			if (OidIsValid(collid) && collid != DEFAULT_COLLATION_OID)
1987 				add_object_address(OCLASS_COLLATION, collid, 0,
1988 								   context->addrs);
1989 		}
1990 	}
1991 	else if (IsA(node, TableSampleClause))
1992 	{
1993 		TableSampleClause *tsc = (TableSampleClause *) node;
1994 
1995 		add_object_address(OCLASS_PROC, tsc->tsmhandler, 0,
1996 						   context->addrs);
1997 		/* fall through to examine arguments */
1998 	}
1999 
2000 	return expression_tree_walker(node, find_expr_references_walker,
2001 								  (void *) context);
2002 }
2003 
2004 /*
2005  * Given an array of dependency references, eliminate any duplicates.
2006  */
2007 static void
eliminate_duplicate_dependencies(ObjectAddresses * addrs)2008 eliminate_duplicate_dependencies(ObjectAddresses *addrs)
2009 {
2010 	ObjectAddress *priorobj;
2011 	int			oldref,
2012 				newrefs;
2013 
2014 	/*
2015 	 * We can't sort if the array has "extra" data, because there's no way to
2016 	 * keep it in sync.  Fortunately that combination of features is not
2017 	 * needed.
2018 	 */
2019 	Assert(!addrs->extras);
2020 
2021 	if (addrs->numrefs <= 1)
2022 		return;					/* nothing to do */
2023 
2024 	/* Sort the refs so that duplicates are adjacent */
2025 	qsort((void *) addrs->refs, addrs->numrefs, sizeof(ObjectAddress),
2026 		  object_address_comparator);
2027 
2028 	/* Remove dups */
2029 	priorobj = addrs->refs;
2030 	newrefs = 1;
2031 	for (oldref = 1; oldref < addrs->numrefs; oldref++)
2032 	{
2033 		ObjectAddress *thisobj = addrs->refs + oldref;
2034 
2035 		if (priorobj->classId == thisobj->classId &&
2036 			priorobj->objectId == thisobj->objectId)
2037 		{
2038 			if (priorobj->objectSubId == thisobj->objectSubId)
2039 				continue;		/* identical, so drop thisobj */
2040 
2041 			/*
2042 			 * If we have a whole-object reference and a reference to a part
2043 			 * of the same object, we don't need the whole-object reference
2044 			 * (for example, we don't need to reference both table foo and
2045 			 * column foo.bar).  The whole-object reference will always appear
2046 			 * first in the sorted list.
2047 			 */
2048 			if (priorobj->objectSubId == 0)
2049 			{
2050 				/* replace whole ref with partial */
2051 				priorobj->objectSubId = thisobj->objectSubId;
2052 				continue;
2053 			}
2054 		}
2055 		/* Not identical, so add thisobj to output set */
2056 		priorobj++;
2057 		*priorobj = *thisobj;
2058 		newrefs++;
2059 	}
2060 
2061 	addrs->numrefs = newrefs;
2062 }
2063 
2064 /*
2065  * qsort comparator for ObjectAddress items
2066  */
2067 static int
object_address_comparator(const void * a,const void * b)2068 object_address_comparator(const void *a, const void *b)
2069 {
2070 	const ObjectAddress *obja = (const ObjectAddress *) a;
2071 	const ObjectAddress *objb = (const ObjectAddress *) b;
2072 
2073 	if (obja->classId < objb->classId)
2074 		return -1;
2075 	if (obja->classId > objb->classId)
2076 		return 1;
2077 	if (obja->objectId < objb->objectId)
2078 		return -1;
2079 	if (obja->objectId > objb->objectId)
2080 		return 1;
2081 
2082 	/*
2083 	 * We sort the subId as an unsigned int so that 0 will come first. See
2084 	 * logic in eliminate_duplicate_dependencies.
2085 	 */
2086 	if ((unsigned int) obja->objectSubId < (unsigned int) objb->objectSubId)
2087 		return -1;
2088 	if ((unsigned int) obja->objectSubId > (unsigned int) objb->objectSubId)
2089 		return 1;
2090 	return 0;
2091 }
2092 
2093 /*
2094  * Routines for handling an expansible array of ObjectAddress items.
2095  *
2096  * new_object_addresses: create a new ObjectAddresses array.
2097  */
2098 ObjectAddresses *
new_object_addresses(void)2099 new_object_addresses(void)
2100 {
2101 	ObjectAddresses *addrs;
2102 
2103 	addrs = palloc(sizeof(ObjectAddresses));
2104 
2105 	addrs->numrefs = 0;
2106 	addrs->maxrefs = 32;
2107 	addrs->refs = (ObjectAddress *)
2108 		palloc(addrs->maxrefs * sizeof(ObjectAddress));
2109 	addrs->extras = NULL;		/* until/unless needed */
2110 
2111 	return addrs;
2112 }
2113 
2114 /*
2115  * Add an entry to an ObjectAddresses array.
2116  *
2117  * It is convenient to specify the class by ObjectClass rather than directly
2118  * by catalog OID.
2119  */
2120 static void
add_object_address(ObjectClass oclass,Oid objectId,int32 subId,ObjectAddresses * addrs)2121 add_object_address(ObjectClass oclass, Oid objectId, int32 subId,
2122 				   ObjectAddresses *addrs)
2123 {
2124 	ObjectAddress *item;
2125 
2126 	/*
2127 	 * Make sure object_classes is kept up to date with the ObjectClass enum.
2128 	 */
2129 	StaticAssertStmt(lengthof(object_classes) == LAST_OCLASS + 1,
2130 					 "object_classes[] must cover all ObjectClasses");
2131 
2132 	/* enlarge array if needed */
2133 	if (addrs->numrefs >= addrs->maxrefs)
2134 	{
2135 		addrs->maxrefs *= 2;
2136 		addrs->refs = (ObjectAddress *)
2137 			repalloc(addrs->refs, addrs->maxrefs * sizeof(ObjectAddress));
2138 		Assert(!addrs->extras);
2139 	}
2140 	/* record this item */
2141 	item = addrs->refs + addrs->numrefs;
2142 	item->classId = object_classes[oclass];
2143 	item->objectId = objectId;
2144 	item->objectSubId = subId;
2145 	addrs->numrefs++;
2146 }
2147 
2148 /*
2149  * Add an entry to an ObjectAddresses array.
2150  *
2151  * As above, but specify entry exactly.
2152  */
2153 void
add_exact_object_address(const ObjectAddress * object,ObjectAddresses * addrs)2154 add_exact_object_address(const ObjectAddress *object,
2155 						 ObjectAddresses *addrs)
2156 {
2157 	ObjectAddress *item;
2158 
2159 	/* enlarge array if needed */
2160 	if (addrs->numrefs >= addrs->maxrefs)
2161 	{
2162 		addrs->maxrefs *= 2;
2163 		addrs->refs = (ObjectAddress *)
2164 			repalloc(addrs->refs, addrs->maxrefs * sizeof(ObjectAddress));
2165 		Assert(!addrs->extras);
2166 	}
2167 	/* record this item */
2168 	item = addrs->refs + addrs->numrefs;
2169 	*item = *object;
2170 	addrs->numrefs++;
2171 }
2172 
2173 /*
2174  * Add an entry to an ObjectAddresses array.
2175  *
2176  * As above, but specify entry exactly and provide some "extra" data too.
2177  */
2178 static void
add_exact_object_address_extra(const ObjectAddress * object,const ObjectAddressExtra * extra,ObjectAddresses * addrs)2179 add_exact_object_address_extra(const ObjectAddress *object,
2180 							   const ObjectAddressExtra *extra,
2181 							   ObjectAddresses *addrs)
2182 {
2183 	ObjectAddress *item;
2184 	ObjectAddressExtra *itemextra;
2185 
2186 	/* allocate extra space if first time */
2187 	if (!addrs->extras)
2188 		addrs->extras = (ObjectAddressExtra *)
2189 			palloc(addrs->maxrefs * sizeof(ObjectAddressExtra));
2190 
2191 	/* enlarge array if needed */
2192 	if (addrs->numrefs >= addrs->maxrefs)
2193 	{
2194 		addrs->maxrefs *= 2;
2195 		addrs->refs = (ObjectAddress *)
2196 			repalloc(addrs->refs, addrs->maxrefs * sizeof(ObjectAddress));
2197 		addrs->extras = (ObjectAddressExtra *)
2198 			repalloc(addrs->extras, addrs->maxrefs * sizeof(ObjectAddressExtra));
2199 	}
2200 	/* record this item */
2201 	item = addrs->refs + addrs->numrefs;
2202 	*item = *object;
2203 	itemextra = addrs->extras + addrs->numrefs;
2204 	*itemextra = *extra;
2205 	addrs->numrefs++;
2206 }
2207 
2208 /*
2209  * Test whether an object is present in an ObjectAddresses array.
2210  *
2211  * We return "true" if object is a subobject of something in the array, too.
2212  */
2213 bool
object_address_present(const ObjectAddress * object,const ObjectAddresses * addrs)2214 object_address_present(const ObjectAddress *object,
2215 					   const ObjectAddresses *addrs)
2216 {
2217 	int			i;
2218 
2219 	for (i = addrs->numrefs - 1; i >= 0; i--)
2220 	{
2221 		const ObjectAddress *thisobj = addrs->refs + i;
2222 
2223 		if (object->classId == thisobj->classId &&
2224 			object->objectId == thisobj->objectId)
2225 		{
2226 			if (object->objectSubId == thisobj->objectSubId ||
2227 				thisobj->objectSubId == 0)
2228 				return true;
2229 		}
2230 	}
2231 
2232 	return false;
2233 }
2234 
2235 /*
2236  * As above, except that if the object is present then also OR the given
2237  * flags into its associated extra data (which must exist).
2238  */
2239 static bool
object_address_present_add_flags(const ObjectAddress * object,int flags,ObjectAddresses * addrs)2240 object_address_present_add_flags(const ObjectAddress *object,
2241 								 int flags,
2242 								 ObjectAddresses *addrs)
2243 {
2244 	bool		result = false;
2245 	int			i;
2246 
2247 	for (i = addrs->numrefs - 1; i >= 0; i--)
2248 	{
2249 		ObjectAddress *thisobj = addrs->refs + i;
2250 
2251 		if (object->classId == thisobj->classId &&
2252 			object->objectId == thisobj->objectId)
2253 		{
2254 			if (object->objectSubId == thisobj->objectSubId)
2255 			{
2256 				ObjectAddressExtra *thisextra = addrs->extras + i;
2257 
2258 				thisextra->flags |= flags;
2259 				result = true;
2260 			}
2261 			else if (thisobj->objectSubId == 0)
2262 			{
2263 				/*
2264 				 * We get here if we find a need to delete a column after
2265 				 * having already decided to drop its whole table.  Obviously
2266 				 * we no longer need to drop the subobject, so report that we
2267 				 * found the subobject in the array.  But don't plaster its
2268 				 * flags on the whole object.
2269 				 */
2270 				result = true;
2271 			}
2272 			else if (object->objectSubId == 0)
2273 			{
2274 				/*
2275 				 * We get here if we find a need to delete a whole table after
2276 				 * having already decided to drop one of its columns.  We
2277 				 * can't report that the whole object is in the array, but we
2278 				 * should mark the subobject with the whole object's flags.
2279 				 *
2280 				 * It might seem attractive to physically delete the column's
2281 				 * array entry, or at least mark it as no longer needing
2282 				 * separate deletion.  But that could lead to, e.g., dropping
2283 				 * the column's datatype before we drop the table, which does
2284 				 * not seem like a good idea.  This is a very rare situation
2285 				 * in practice, so we just take the hit of doing a separate
2286 				 * DROP COLUMN action even though we know we're gonna delete
2287 				 * the table later.
2288 				 *
2289 				 * Because there could be other subobjects of this object in
2290 				 * the array, this case means we always have to loop through
2291 				 * the whole array; we cannot exit early on a match.
2292 				 */
2293 				ObjectAddressExtra *thisextra = addrs->extras + i;
2294 
2295 				thisextra->flags |= flags;
2296 			}
2297 		}
2298 	}
2299 
2300 	return result;
2301 }
2302 
2303 /*
2304  * Similar to above, except we search an ObjectAddressStack.
2305  */
2306 static bool
stack_address_present_add_flags(const ObjectAddress * object,int flags,ObjectAddressStack * stack)2307 stack_address_present_add_flags(const ObjectAddress *object,
2308 								int flags,
2309 								ObjectAddressStack *stack)
2310 {
2311 	bool		result = false;
2312 	ObjectAddressStack *stackptr;
2313 
2314 	for (stackptr = stack; stackptr; stackptr = stackptr->next)
2315 	{
2316 		const ObjectAddress *thisobj = stackptr->object;
2317 
2318 		if (object->classId == thisobj->classId &&
2319 			object->objectId == thisobj->objectId)
2320 		{
2321 			if (object->objectSubId == thisobj->objectSubId)
2322 			{
2323 				stackptr->flags |= flags;
2324 				result = true;
2325 			}
2326 			else if (thisobj->objectSubId == 0)
2327 			{
2328 				/*
2329 				 * We're visiting a column with whole table already on stack.
2330 				 * As in object_address_present_add_flags(), we can skip
2331 				 * further processing of the subobject, but we don't want to
2332 				 * propagate flags for the subobject to the whole object.
2333 				 */
2334 				result = true;
2335 			}
2336 			else if (object->objectSubId == 0)
2337 			{
2338 				/*
2339 				 * We're visiting a table with column already on stack.  As in
2340 				 * object_address_present_add_flags(), we should propagate
2341 				 * flags for the whole object to each of its subobjects.
2342 				 */
2343 				stackptr->flags |= flags;
2344 			}
2345 		}
2346 	}
2347 
2348 	return result;
2349 }
2350 
2351 /*
2352  * Record multiple dependencies from an ObjectAddresses array, after first
2353  * removing any duplicates.
2354  */
2355 void
record_object_address_dependencies(const ObjectAddress * depender,ObjectAddresses * referenced,DependencyType behavior)2356 record_object_address_dependencies(const ObjectAddress *depender,
2357 								   ObjectAddresses *referenced,
2358 								   DependencyType behavior)
2359 {
2360 	eliminate_duplicate_dependencies(referenced);
2361 	recordMultipleDependencies(depender,
2362 							   referenced->refs, referenced->numrefs,
2363 							   behavior);
2364 }
2365 
2366 /*
2367  * Clean up when done with an ObjectAddresses array.
2368  */
2369 void
free_object_addresses(ObjectAddresses * addrs)2370 free_object_addresses(ObjectAddresses *addrs)
2371 {
2372 	pfree(addrs->refs);
2373 	if (addrs->extras)
2374 		pfree(addrs->extras);
2375 	pfree(addrs);
2376 }
2377 
2378 /*
2379  * Determine the class of a given object identified by objectAddress.
2380  *
2381  * This function is essentially the reverse mapping for the object_classes[]
2382  * table.  We implement it as a function because the OIDs aren't consecutive.
2383  */
2384 ObjectClass
getObjectClass(const ObjectAddress * object)2385 getObjectClass(const ObjectAddress *object)
2386 {
2387 	/* only pg_class entries can have nonzero objectSubId */
2388 	if (object->classId != RelationRelationId &&
2389 		object->objectSubId != 0)
2390 		elog(ERROR, "invalid non-zero objectSubId for object class %u",
2391 			 object->classId);
2392 
2393 	switch (object->classId)
2394 	{
2395 		case RelationRelationId:
2396 			/* caller must check objectSubId */
2397 			return OCLASS_CLASS;
2398 
2399 		case ProcedureRelationId:
2400 			return OCLASS_PROC;
2401 
2402 		case TypeRelationId:
2403 			return OCLASS_TYPE;
2404 
2405 		case CastRelationId:
2406 			return OCLASS_CAST;
2407 
2408 		case CollationRelationId:
2409 			return OCLASS_COLLATION;
2410 
2411 		case ConstraintRelationId:
2412 			return OCLASS_CONSTRAINT;
2413 
2414 		case ConversionRelationId:
2415 			return OCLASS_CONVERSION;
2416 
2417 		case AttrDefaultRelationId:
2418 			return OCLASS_DEFAULT;
2419 
2420 		case LanguageRelationId:
2421 			return OCLASS_LANGUAGE;
2422 
2423 		case LargeObjectRelationId:
2424 			return OCLASS_LARGEOBJECT;
2425 
2426 		case OperatorRelationId:
2427 			return OCLASS_OPERATOR;
2428 
2429 		case OperatorClassRelationId:
2430 			return OCLASS_OPCLASS;
2431 
2432 		case OperatorFamilyRelationId:
2433 			return OCLASS_OPFAMILY;
2434 
2435 		case AccessMethodRelationId:
2436 			return OCLASS_AM;
2437 
2438 		case AccessMethodOperatorRelationId:
2439 			return OCLASS_AMOP;
2440 
2441 		case AccessMethodProcedureRelationId:
2442 			return OCLASS_AMPROC;
2443 
2444 		case RewriteRelationId:
2445 			return OCLASS_REWRITE;
2446 
2447 		case TriggerRelationId:
2448 			return OCLASS_TRIGGER;
2449 
2450 		case NamespaceRelationId:
2451 			return OCLASS_SCHEMA;
2452 
2453 		case TSParserRelationId:
2454 			return OCLASS_TSPARSER;
2455 
2456 		case TSDictionaryRelationId:
2457 			return OCLASS_TSDICT;
2458 
2459 		case TSTemplateRelationId:
2460 			return OCLASS_TSTEMPLATE;
2461 
2462 		case TSConfigRelationId:
2463 			return OCLASS_TSCONFIG;
2464 
2465 		case AuthIdRelationId:
2466 			return OCLASS_ROLE;
2467 
2468 		case DatabaseRelationId:
2469 			return OCLASS_DATABASE;
2470 
2471 		case TableSpaceRelationId:
2472 			return OCLASS_TBLSPACE;
2473 
2474 		case ForeignDataWrapperRelationId:
2475 			return OCLASS_FDW;
2476 
2477 		case ForeignServerRelationId:
2478 			return OCLASS_FOREIGN_SERVER;
2479 
2480 		case UserMappingRelationId:
2481 			return OCLASS_USER_MAPPING;
2482 
2483 		case DefaultAclRelationId:
2484 			return OCLASS_DEFACL;
2485 
2486 		case ExtensionRelationId:
2487 			return OCLASS_EXTENSION;
2488 
2489 		case EventTriggerRelationId:
2490 			return OCLASS_EVENT_TRIGGER;
2491 
2492 		case PolicyRelationId:
2493 			return OCLASS_POLICY;
2494 
2495 		case TransformRelationId:
2496 			return OCLASS_TRANSFORM;
2497 	}
2498 
2499 	/* shouldn't get here */
2500 	elog(ERROR, "unrecognized object class: %u", object->classId);
2501 	return OCLASS_CLASS;		/* keep compiler quiet */
2502 }
2503 
2504 /*
2505  * delete initial ACL for extension objects
2506  */
2507 static void
DeleteInitPrivs(const ObjectAddress * object)2508 DeleteInitPrivs(const ObjectAddress *object)
2509 {
2510 	Relation	relation;
2511 	ScanKeyData key[3];
2512 	SysScanDesc scan;
2513 	HeapTuple	oldtuple;
2514 
2515 	relation = heap_open(InitPrivsRelationId, RowExclusiveLock);
2516 
2517 	ScanKeyInit(&key[0],
2518 				Anum_pg_init_privs_objoid,
2519 				BTEqualStrategyNumber, F_OIDEQ,
2520 				ObjectIdGetDatum(object->objectId));
2521 	ScanKeyInit(&key[1],
2522 				Anum_pg_init_privs_classoid,
2523 				BTEqualStrategyNumber, F_OIDEQ,
2524 				ObjectIdGetDatum(object->classId));
2525 	ScanKeyInit(&key[2],
2526 				Anum_pg_init_privs_objsubid,
2527 				BTEqualStrategyNumber, F_INT4EQ,
2528 				Int32GetDatum(object->objectSubId));
2529 
2530 	scan = systable_beginscan(relation, InitPrivsObjIndexId, true,
2531 							  NULL, 3, key);
2532 
2533 	while (HeapTupleIsValid(oldtuple = systable_getnext(scan)))
2534 		simple_heap_delete(relation, &oldtuple->t_self);
2535 
2536 	systable_endscan(scan);
2537 
2538 	heap_close(relation, RowExclusiveLock);
2539 }
2540