1 /*
2 ** 2006 September 30
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Implementation of the full-text-search tokenizer that implements
13 ** a Porter stemmer.
14 */
15 
16 /*
17 ** The code in this file is only compiled if:
18 **
19 **     * The FTS3 module is being built as an extension
20 **       (in which case SQLITE_CORE is not defined), or
21 **
22 **     * The FTS3 module is being built into the core of
23 **       SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
24 */
25 #include "fts3Int.h"
26 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
27 
28 #include <assert.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <string.h>
32 
33 #include "fts3_tokenizer.h"
34 
35 /*
36 ** Class derived from sqlite3_tokenizer
37 */
38 typedef struct porter_tokenizer {
39   sqlite3_tokenizer base;      /* Base class */
40 } porter_tokenizer;
41 
42 /*
43 ** Class derived from sqlite3_tokenizer_cursor
44 */
45 typedef struct porter_tokenizer_cursor {
46   sqlite3_tokenizer_cursor base;
47   const char *zInput;          /* input we are tokenizing */
48   int nInput;                  /* size of the input */
49   int iOffset;                 /* current position in zInput */
50   int iToken;                  /* index of next token to be returned */
51   char *zToken;                /* storage for current token */
52   int nAllocated;              /* space allocated to zToken buffer */
53 } porter_tokenizer_cursor;
54 
55 
56 /*
57 ** Create a new tokenizer instance.
58 */
porterCreate(int argc,const char * const * argv,sqlite3_tokenizer ** ppTokenizer)59 static int porterCreate(
60   int argc, const char * const *argv,
61   sqlite3_tokenizer **ppTokenizer
62 ){
63   porter_tokenizer *t;
64 
65   UNUSED_PARAMETER(argc);
66   UNUSED_PARAMETER(argv);
67 
68   t = (porter_tokenizer *) sqlite3_malloc(sizeof(*t));
69   if( t==NULL ) return SQLITE_NOMEM;
70   memset(t, 0, sizeof(*t));
71   *ppTokenizer = &t->base;
72   return SQLITE_OK;
73 }
74 
75 /*
76 ** Destroy a tokenizer
77 */
porterDestroy(sqlite3_tokenizer * pTokenizer)78 static int porterDestroy(sqlite3_tokenizer *pTokenizer){
79   sqlite3_free(pTokenizer);
80   return SQLITE_OK;
81 }
82 
83 /*
84 ** Prepare to begin tokenizing a particular string.  The input
85 ** string to be tokenized is zInput[0..nInput-1].  A cursor
86 ** used to incrementally tokenize this string is returned in
87 ** *ppCursor.
88 */
porterOpen(sqlite3_tokenizer * pTokenizer,const char * zInput,int nInput,sqlite3_tokenizer_cursor ** ppCursor)89 static int porterOpen(
90   sqlite3_tokenizer *pTokenizer,         /* The tokenizer */
91   const char *zInput, int nInput,        /* String to be tokenized */
92   sqlite3_tokenizer_cursor **ppCursor    /* OUT: Tokenization cursor */
93 ){
94   porter_tokenizer_cursor *c;
95 
96   UNUSED_PARAMETER(pTokenizer);
97 
98   c = (porter_tokenizer_cursor *) sqlite3_malloc(sizeof(*c));
99   if( c==NULL ) return SQLITE_NOMEM;
100 
101   c->zInput = zInput;
102   if( zInput==0 ){
103     c->nInput = 0;
104   }else if( nInput<0 ){
105     c->nInput = (int)strlen(zInput);
106   }else{
107     c->nInput = nInput;
108   }
109   c->iOffset = 0;                 /* start tokenizing at the beginning */
110   c->iToken = 0;
111   c->zToken = NULL;               /* no space allocated, yet. */
112   c->nAllocated = 0;
113 
114   *ppCursor = &c->base;
115   return SQLITE_OK;
116 }
117 
118 /*
119 ** Close a tokenization cursor previously opened by a call to
120 ** porterOpen() above.
121 */
porterClose(sqlite3_tokenizer_cursor * pCursor)122 static int porterClose(sqlite3_tokenizer_cursor *pCursor){
123   porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
124   sqlite3_free(c->zToken);
125   sqlite3_free(c);
126   return SQLITE_OK;
127 }
128 /*
129 ** Vowel or consonant
130 */
131 static const char cType[] = {
132    0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
133    1, 1, 1, 2, 1
134 };
135 
136 /*
137 ** isConsonant() and isVowel() determine if their first character in
138 ** the string they point to is a consonant or a vowel, according
139 ** to Porter ruls.
140 **
141 ** A consonate is any letter other than 'a', 'e', 'i', 'o', or 'u'.
142 ** 'Y' is a consonant unless it follows another consonant,
143 ** in which case it is a vowel.
144 **
145 ** In these routine, the letters are in reverse order.  So the 'y' rule
146 ** is that 'y' is a consonant unless it is followed by another
147 ** consonent.
148 */
149 static int isVowel(const char*);
isConsonant(const char * z)150 static int isConsonant(const char *z){
151   int j;
152   char x = *z;
153   if( x==0 ) return 0;
154   assert( x>='a' && x<='z' );
155   j = cType[x-'a'];
156   if( j<2 ) return j;
157   return z[1]==0 || isVowel(z + 1);
158 }
isVowel(const char * z)159 static int isVowel(const char *z){
160   int j;
161   char x = *z;
162   if( x==0 ) return 0;
163   assert( x>='a' && x<='z' );
164   j = cType[x-'a'];
165   if( j<2 ) return 1-j;
166   return isConsonant(z + 1);
167 }
168 
169 /*
170 ** Let any sequence of one or more vowels be represented by V and let
171 ** C be sequence of one or more consonants.  Then every word can be
172 ** represented as:
173 **
174 **           [C] (VC){m} [V]
175 **
176 ** In prose:  A word is an optional consonant followed by zero or
177 ** vowel-consonant pairs followed by an optional vowel.  "m" is the
178 ** number of vowel consonant pairs.  This routine computes the value
179 ** of m for the first i bytes of a word.
180 **
181 ** Return true if the m-value for z is 1 or more.  In other words,
182 ** return true if z contains at least one vowel that is followed
183 ** by a consonant.
184 **
185 ** In this routine z[] is in reverse order.  So we are really looking
186 ** for an instance of a consonant followed by a vowel.
187 */
m_gt_0(const char * z)188 static int m_gt_0(const char *z){
189   while( isVowel(z) ){ z++; }
190   if( *z==0 ) return 0;
191   while( isConsonant(z) ){ z++; }
192   return *z!=0;
193 }
194 
195 /* Like mgt0 above except we are looking for a value of m which is
196 ** exactly 1
197 */
m_eq_1(const char * z)198 static int m_eq_1(const char *z){
199   while( isVowel(z) ){ z++; }
200   if( *z==0 ) return 0;
201   while( isConsonant(z) ){ z++; }
202   if( *z==0 ) return 0;
203   while( isVowel(z) ){ z++; }
204   if( *z==0 ) return 1;
205   while( isConsonant(z) ){ z++; }
206   return *z==0;
207 }
208 
209 /* Like mgt0 above except we are looking for a value of m>1 instead
210 ** or m>0
211 */
m_gt_1(const char * z)212 static int m_gt_1(const char *z){
213   while( isVowel(z) ){ z++; }
214   if( *z==0 ) return 0;
215   while( isConsonant(z) ){ z++; }
216   if( *z==0 ) return 0;
217   while( isVowel(z) ){ z++; }
218   if( *z==0 ) return 0;
219   while( isConsonant(z) ){ z++; }
220   return *z!=0;
221 }
222 
223 /*
224 ** Return TRUE if there is a vowel anywhere within z[0..n-1]
225 */
hasVowel(const char * z)226 static int hasVowel(const char *z){
227   while( isConsonant(z) ){ z++; }
228   return *z!=0;
229 }
230 
231 /*
232 ** Return TRUE if the word ends in a double consonant.
233 **
234 ** The text is reversed here. So we are really looking at
235 ** the first two characters of z[].
236 */
doubleConsonant(const char * z)237 static int doubleConsonant(const char *z){
238   return isConsonant(z) && z[0]==z[1];
239 }
240 
241 /*
242 ** Return TRUE if the word ends with three letters which
243 ** are consonant-vowel-consonent and where the final consonant
244 ** is not 'w', 'x', or 'y'.
245 **
246 ** The word is reversed here.  So we are really checking the
247 ** first three letters and the first one cannot be in [wxy].
248 */
star_oh(const char * z)249 static int star_oh(const char *z){
250   return
251     isConsonant(z) &&
252     z[0]!='w' && z[0]!='x' && z[0]!='y' &&
253     isVowel(z+1) &&
254     isConsonant(z+2);
255 }
256 
257 /*
258 ** If the word ends with zFrom and xCond() is true for the stem
259 ** of the word that preceeds the zFrom ending, then change the
260 ** ending to zTo.
261 **
262 ** The input word *pz and zFrom are both in reverse order.  zTo
263 ** is in normal order.
264 **
265 ** Return TRUE if zFrom matches.  Return FALSE if zFrom does not
266 ** match.  Not that TRUE is returned even if xCond() fails and
267 ** no substitution occurs.
268 */
stem(char ** pz,const char * zFrom,const char * zTo,int (* xCond)(const char *))269 static int stem(
270   char **pz,             /* The word being stemmed (Reversed) */
271   const char *zFrom,     /* If the ending matches this... (Reversed) */
272   const char *zTo,       /* ... change the ending to this (not reversed) */
273   int (*xCond)(const char*)   /* Condition that must be true */
274 ){
275   char *z = *pz;
276   while( *zFrom && *zFrom==*z ){ z++; zFrom++; }
277   if( *zFrom!=0 ) return 0;
278   if( xCond && !xCond(z) ) return 1;
279   while( *zTo ){
280     *(--z) = *(zTo++);
281   }
282   *pz = z;
283   return 1;
284 }
285 
286 /*
287 ** This is the fallback stemmer used when the porter stemmer is
288 ** inappropriate.  The input word is copied into the output with
289 ** US-ASCII case folding.  If the input word is too long (more
290 ** than 20 bytes if it contains no digits or more than 6 bytes if
291 ** it contains digits) then word is truncated to 20 or 6 bytes
292 ** by taking 10 or 3 bytes from the beginning and end.
293 */
copy_stemmer(const char * zIn,int nIn,char * zOut,int * pnOut)294 static void copy_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
295   int i, mx, j;
296   int hasDigit = 0;
297   for(i=0; i<nIn; i++){
298     char c = zIn[i];
299     if( c>='A' && c<='Z' ){
300       zOut[i] = c - 'A' + 'a';
301     }else{
302       if( c>='0' && c<='9' ) hasDigit = 1;
303       zOut[i] = c;
304     }
305   }
306   mx = hasDigit ? 3 : 10;
307   if( nIn>mx*2 ){
308     for(j=mx, i=nIn-mx; i<nIn; i++, j++){
309       zOut[j] = zOut[i];
310     }
311     i = j;
312   }
313   zOut[i] = 0;
314   *pnOut = i;
315 }
316 
317 
318 /*
319 ** Stem the input word zIn[0..nIn-1].  Store the output in zOut.
320 ** zOut is at least big enough to hold nIn bytes.  Write the actual
321 ** size of the output word (exclusive of the '\0' terminator) into *pnOut.
322 **
323 ** Any upper-case characters in the US-ASCII character set ([A-Z])
324 ** are converted to lower case.  Upper-case UTF characters are
325 ** unchanged.
326 **
327 ** Words that are longer than about 20 bytes are stemmed by retaining
328 ** a few bytes from the beginning and the end of the word.  If the
329 ** word contains digits, 3 bytes are taken from the beginning and
330 ** 3 bytes from the end.  For long words without digits, 10 bytes
331 ** are taken from each end.  US-ASCII case folding still applies.
332 **
333 ** If the input word contains not digits but does characters not
334 ** in [a-zA-Z] then no stemming is attempted and this routine just
335 ** copies the input into the input into the output with US-ASCII
336 ** case folding.
337 **
338 ** Stemming never increases the length of the word.  So there is
339 ** no chance of overflowing the zOut buffer.
340 */
porter_stemmer(const char * zIn,int nIn,char * zOut,int * pnOut)341 static void porter_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
342   int i, j;
343   char zReverse[28];
344   char *z, *z2;
345   if( nIn<3 || nIn>=(int)sizeof(zReverse)-7 ){
346     /* The word is too big or too small for the porter stemmer.
347     ** Fallback to the copy stemmer */
348     copy_stemmer(zIn, nIn, zOut, pnOut);
349     return;
350   }
351   for(i=0, j=sizeof(zReverse)-6; i<nIn; i++, j--){
352     char c = zIn[i];
353     if( c>='A' && c<='Z' ){
354       zReverse[j] = c + 'a' - 'A';
355     }else if( c>='a' && c<='z' ){
356       zReverse[j] = c;
357     }else{
358       /* The use of a character not in [a-zA-Z] means that we fallback
359       ** to the copy stemmer */
360       copy_stemmer(zIn, nIn, zOut, pnOut);
361       return;
362     }
363   }
364   memset(&zReverse[sizeof(zReverse)-5], 0, 5);
365   z = &zReverse[j+1];
366 
367 
368   /* Step 1a */
369   if( z[0]=='s' ){
370     if(
371      !stem(&z, "sess", "ss", 0) &&
372      !stem(&z, "sei", "i", 0)  &&
373      !stem(&z, "ss", "ss", 0)
374     ){
375       z++;
376     }
377   }
378 
379   /* Step 1b */
380   z2 = z;
381   if( stem(&z, "dee", "ee", m_gt_0) ){
382     /* Do nothing.  The work was all in the test */
383   }else if(
384      (stem(&z, "gni", "", hasVowel) || stem(&z, "de", "", hasVowel))
385       && z!=z2
386   ){
387      if( stem(&z, "ta", "ate", 0) ||
388          stem(&z, "lb", "ble", 0) ||
389          stem(&z, "zi", "ize", 0) ){
390        /* Do nothing.  The work was all in the test */
391      }else if( doubleConsonant(z) && (*z!='l' && *z!='s' && *z!='z') ){
392        z++;
393      }else if( m_eq_1(z) && star_oh(z) ){
394        *(--z) = 'e';
395      }
396   }
397 
398   /* Step 1c */
399   if( z[0]=='y' && hasVowel(z+1) ){
400     z[0] = 'i';
401   }
402 
403   /* Step 2 */
404   switch( z[1] ){
405    case 'a':
406      if( !stem(&z, "lanoita", "ate", m_gt_0) ){
407        stem(&z, "lanoit", "tion", m_gt_0);
408      }
409      break;
410    case 'c':
411      if( !stem(&z, "icne", "ence", m_gt_0) ){
412        stem(&z, "icna", "ance", m_gt_0);
413      }
414      break;
415    case 'e':
416      stem(&z, "rezi", "ize", m_gt_0);
417      break;
418    case 'g':
419      stem(&z, "igol", "log", m_gt_0);
420      break;
421    case 'l':
422      if( !stem(&z, "ilb", "ble", m_gt_0)
423       && !stem(&z, "illa", "al", m_gt_0)
424       && !stem(&z, "iltne", "ent", m_gt_0)
425       && !stem(&z, "ile", "e", m_gt_0)
426      ){
427        stem(&z, "ilsuo", "ous", m_gt_0);
428      }
429      break;
430    case 'o':
431      if( !stem(&z, "noitazi", "ize", m_gt_0)
432       && !stem(&z, "noita", "ate", m_gt_0)
433      ){
434        stem(&z, "rota", "ate", m_gt_0);
435      }
436      break;
437    case 's':
438      if( !stem(&z, "msila", "al", m_gt_0)
439       && !stem(&z, "ssenevi", "ive", m_gt_0)
440       && !stem(&z, "ssenluf", "ful", m_gt_0)
441      ){
442        stem(&z, "ssensuo", "ous", m_gt_0);
443      }
444      break;
445    case 't':
446      if( !stem(&z, "itila", "al", m_gt_0)
447       && !stem(&z, "itivi", "ive", m_gt_0)
448      ){
449        stem(&z, "itilib", "ble", m_gt_0);
450      }
451      break;
452   }
453 
454   /* Step 3 */
455   switch( z[0] ){
456    case 'e':
457      if( !stem(&z, "etaci", "ic", m_gt_0)
458       && !stem(&z, "evita", "", m_gt_0)
459      ){
460        stem(&z, "ezila", "al", m_gt_0);
461      }
462      break;
463    case 'i':
464      stem(&z, "itici", "ic", m_gt_0);
465      break;
466    case 'l':
467      if( !stem(&z, "laci", "ic", m_gt_0) ){
468        stem(&z, "luf", "", m_gt_0);
469      }
470      break;
471    case 's':
472      stem(&z, "ssen", "", m_gt_0);
473      break;
474   }
475 
476   /* Step 4 */
477   switch( z[1] ){
478    case 'a':
479      if( z[0]=='l' && m_gt_1(z+2) ){
480        z += 2;
481      }
482      break;
483    case 'c':
484      if( z[0]=='e' && z[2]=='n' && (z[3]=='a' || z[3]=='e')  && m_gt_1(z+4)  ){
485        z += 4;
486      }
487      break;
488    case 'e':
489      if( z[0]=='r' && m_gt_1(z+2) ){
490        z += 2;
491      }
492      break;
493    case 'i':
494      if( z[0]=='c' && m_gt_1(z+2) ){
495        z += 2;
496      }
497      break;
498    case 'l':
499      if( z[0]=='e' && z[2]=='b' && (z[3]=='a' || z[3]=='i') && m_gt_1(z+4) ){
500        z += 4;
501      }
502      break;
503    case 'n':
504      if( z[0]=='t' ){
505        if( z[2]=='a' ){
506          if( m_gt_1(z+3) ){
507            z += 3;
508          }
509        }else if( z[2]=='e' ){
510          if( !stem(&z, "tneme", "", m_gt_1)
511           && !stem(&z, "tnem", "", m_gt_1)
512          ){
513            stem(&z, "tne", "", m_gt_1);
514          }
515        }
516      }
517      break;
518    case 'o':
519      if( z[0]=='u' ){
520        if( m_gt_1(z+2) ){
521          z += 2;
522        }
523      }else if( z[3]=='s' || z[3]=='t' ){
524        stem(&z, "noi", "", m_gt_1);
525      }
526      break;
527    case 's':
528      if( z[0]=='m' && z[2]=='i' && m_gt_1(z+3) ){
529        z += 3;
530      }
531      break;
532    case 't':
533      if( !stem(&z, "eta", "", m_gt_1) ){
534        stem(&z, "iti", "", m_gt_1);
535      }
536      break;
537    case 'u':
538      if( z[0]=='s' && z[2]=='o' && m_gt_1(z+3) ){
539        z += 3;
540      }
541      break;
542    case 'v':
543    case 'z':
544      if( z[0]=='e' && z[2]=='i' && m_gt_1(z+3) ){
545        z += 3;
546      }
547      break;
548   }
549 
550   /* Step 5a */
551   if( z[0]=='e' ){
552     if( m_gt_1(z+1) ){
553       z++;
554     }else if( m_eq_1(z+1) && !star_oh(z+1) ){
555       z++;
556     }
557   }
558 
559   /* Step 5b */
560   if( m_gt_1(z) && z[0]=='l' && z[1]=='l' ){
561     z++;
562   }
563 
564   /* z[] is now the stemmed word in reverse order.  Flip it back
565   ** around into forward order and return.
566   */
567   *pnOut = i = (int)strlen(z);
568   zOut[i] = 0;
569   while( *z ){
570     zOut[--i] = *(z++);
571   }
572 }
573 
574 /*
575 ** Characters that can be part of a token.  We assume any character
576 ** whose value is greater than 0x80 (any UTF character) can be
577 ** part of a token.  In other words, delimiters all must have
578 ** values of 0x7f or lower.
579 */
580 static const char porterIdChar[] = {
581 /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
582     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,  /* 3x */
583     0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  /* 4x */
584     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1,  /* 5x */
585     0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  /* 6x */
586     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,  /* 7x */
587 };
588 #define isDelim(C) (((ch=C)&0x80)==0 && (ch<0x30 || !porterIdChar[ch-0x30]))
589 
590 /*
591 ** Extract the next token from a tokenization cursor.  The cursor must
592 ** have been opened by a prior call to porterOpen().
593 */
porterNext(sqlite3_tokenizer_cursor * pCursor,const char ** pzToken,int * pnBytes,int * piStartOffset,int * piEndOffset,int * piPosition)594 static int porterNext(
595   sqlite3_tokenizer_cursor *pCursor,  /* Cursor returned by porterOpen */
596   const char **pzToken,               /* OUT: *pzToken is the token text */
597   int *pnBytes,                       /* OUT: Number of bytes in token */
598   int *piStartOffset,                 /* OUT: Starting offset of token */
599   int *piEndOffset,                   /* OUT: Ending offset of token */
600   int *piPosition                     /* OUT: Position integer of token */
601 ){
602   porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
603   const char *z = c->zInput;
604 
605   while( c->iOffset<c->nInput ){
606     int iStartOffset, ch;
607 
608     /* Scan past delimiter characters */
609     while( c->iOffset<c->nInput && isDelim(z[c->iOffset]) ){
610       c->iOffset++;
611     }
612 
613     /* Count non-delimiter characters. */
614     iStartOffset = c->iOffset;
615     while( c->iOffset<c->nInput && !isDelim(z[c->iOffset]) ){
616       c->iOffset++;
617     }
618 
619     if( c->iOffset>iStartOffset ){
620       int n = c->iOffset-iStartOffset;
621       if( n>c->nAllocated ){
622         char *pNew;
623         c->nAllocated = n+20;
624         pNew = sqlite3_realloc(c->zToken, c->nAllocated);
625         if( !pNew ) return SQLITE_NOMEM;
626         c->zToken = pNew;
627       }
628       porter_stemmer(&z[iStartOffset], n, c->zToken, pnBytes);
629       *pzToken = c->zToken;
630       *piStartOffset = iStartOffset;
631       *piEndOffset = c->iOffset;
632       *piPosition = c->iToken++;
633       return SQLITE_OK;
634     }
635   }
636   return SQLITE_DONE;
637 }
638 
639 /*
640 ** The set of routines that implement the porter-stemmer tokenizer
641 */
642 static const sqlite3_tokenizer_module porterTokenizerModule = {
643   0,
644   porterCreate,
645   porterDestroy,
646   porterOpen,
647   porterClose,
648   porterNext,
649   0
650 };
651 
652 /*
653 ** Allocate a new porter tokenizer.  Return a pointer to the new
654 ** tokenizer in *ppModule
655 */
sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const ** ppModule)656 void sqlite3Fts3PorterTokenizerModule(
657   sqlite3_tokenizer_module const**ppModule
658 ){
659   *ppModule = &porterTokenizerModule;
660 }
661 
662 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
663