1 /*
2 ** 2014 August 11
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 ******************************************************************************
12 **
13 */
14 
15 
16 
17 #include "fts5Int.h"
18 
19 typedef struct Fts5HashEntry Fts5HashEntry;
20 
21 /*
22 ** This file contains the implementation of an in-memory hash table used
23 ** to accumuluate "term -> doclist" content before it is flused to a level-0
24 ** segment.
25 */
26 
27 
28 struct Fts5Hash {
29   int eDetail;                    /* Copy of Fts5Config.eDetail */
30   int *pnByte;                    /* Pointer to bytes counter */
31   int nEntry;                     /* Number of entries currently in hash */
32   int nSlot;                      /* Size of aSlot[] array */
33   Fts5HashEntry *pScan;           /* Current ordered scan item */
34   Fts5HashEntry **aSlot;          /* Array of hash slots */
35 };
36 
37 /*
38 ** Each entry in the hash table is represented by an object of the
39 ** following type. Each object, its key (a nul-terminated string) and
40 ** its current data are stored in a single memory allocation. The
41 ** key immediately follows the object in memory. The position list
42 ** data immediately follows the key data in memory.
43 **
44 ** The data that follows the key is in a similar, but not identical format
45 ** to the doclist data stored in the database. It is:
46 **
47 **   * Rowid, as a varint
48 **   * Position list, without 0x00 terminator.
49 **   * Size of previous position list and rowid, as a 4 byte
50 **     big-endian integer.
51 **
52 ** iRowidOff:
53 **   Offset of last rowid written to data area. Relative to first byte of
54 **   structure.
55 **
56 ** nData:
57 **   Bytes of data written since iRowidOff.
58 */
59 struct Fts5HashEntry {
60   Fts5HashEntry *pHashNext;       /* Next hash entry with same hash-key */
61   Fts5HashEntry *pScanNext;       /* Next entry in sorted order */
62 
63   int nAlloc;                     /* Total size of allocation */
64   int iSzPoslist;                 /* Offset of space for 4-byte poslist size */
65   int nData;                      /* Total bytes of data (incl. structure) */
66   int nKey;                       /* Length of key in bytes */
67   u8 bDel;                        /* Set delete-flag @ iSzPoslist */
68   u8 bContent;                    /* Set content-flag (detail=none mode) */
69   i16 iCol;                       /* Column of last value written */
70   int iPos;                       /* Position of last value written */
71   i64 iRowid;                     /* Rowid of last value written */
72 };
73 
74 /*
75 ** Eqivalent to:
76 **
77 **   char *fts5EntryKey(Fts5HashEntry *pEntry){ return zKey; }
78 */
79 #define fts5EntryKey(p) ( ((char *)(&(p)[1])) )
80 
81 
82 /*
83 ** Allocate a new hash table.
84 */
sqlite3Fts5HashNew(Fts5Config * pConfig,Fts5Hash ** ppNew,int * pnByte)85 int sqlite3Fts5HashNew(Fts5Config *pConfig, Fts5Hash **ppNew, int *pnByte){
86   int rc = SQLITE_OK;
87   Fts5Hash *pNew;
88 
89   *ppNew = pNew = (Fts5Hash*)sqlite3_malloc(sizeof(Fts5Hash));
90   if( pNew==0 ){
91     rc = SQLITE_NOMEM;
92   }else{
93     int nByte;
94     memset(pNew, 0, sizeof(Fts5Hash));
95     pNew->pnByte = pnByte;
96     pNew->eDetail = pConfig->eDetail;
97 
98     pNew->nSlot = 1024;
99     nByte = sizeof(Fts5HashEntry*) * pNew->nSlot;
100     pNew->aSlot = (Fts5HashEntry**)sqlite3_malloc(nByte);
101     if( pNew->aSlot==0 ){
102       sqlite3_free(pNew);
103       *ppNew = 0;
104       rc = SQLITE_NOMEM;
105     }else{
106       memset(pNew->aSlot, 0, nByte);
107     }
108   }
109   return rc;
110 }
111 
112 /*
113 ** Free a hash table object.
114 */
sqlite3Fts5HashFree(Fts5Hash * pHash)115 void sqlite3Fts5HashFree(Fts5Hash *pHash){
116   if( pHash ){
117     sqlite3Fts5HashClear(pHash);
118     sqlite3_free(pHash->aSlot);
119     sqlite3_free(pHash);
120   }
121 }
122 
123 /*
124 ** Empty (but do not delete) a hash table.
125 */
sqlite3Fts5HashClear(Fts5Hash * pHash)126 void sqlite3Fts5HashClear(Fts5Hash *pHash){
127   int i;
128   for(i=0; i<pHash->nSlot; i++){
129     Fts5HashEntry *pNext;
130     Fts5HashEntry *pSlot;
131     for(pSlot=pHash->aSlot[i]; pSlot; pSlot=pNext){
132       pNext = pSlot->pHashNext;
133       sqlite3_free(pSlot);
134     }
135   }
136   memset(pHash->aSlot, 0, pHash->nSlot * sizeof(Fts5HashEntry*));
137   pHash->nEntry = 0;
138 }
139 
fts5HashKey(int nSlot,const u8 * p,int n)140 static unsigned int fts5HashKey(int nSlot, const u8 *p, int n){
141   int i;
142   unsigned int h = 13;
143   for(i=n-1; i>=0; i--){
144     h = (h << 3) ^ h ^ p[i];
145   }
146   return (h % nSlot);
147 }
148 
fts5HashKey2(int nSlot,u8 b,const u8 * p,int n)149 static unsigned int fts5HashKey2(int nSlot, u8 b, const u8 *p, int n){
150   int i;
151   unsigned int h = 13;
152   for(i=n-1; i>=0; i--){
153     h = (h << 3) ^ h ^ p[i];
154   }
155   h = (h << 3) ^ h ^ b;
156   return (h % nSlot);
157 }
158 
159 /*
160 ** Resize the hash table by doubling the number of slots.
161 */
fts5HashResize(Fts5Hash * pHash)162 static int fts5HashResize(Fts5Hash *pHash){
163   int nNew = pHash->nSlot*2;
164   int i;
165   Fts5HashEntry **apNew;
166   Fts5HashEntry **apOld = pHash->aSlot;
167 
168   apNew = (Fts5HashEntry**)sqlite3_malloc(nNew*sizeof(Fts5HashEntry*));
169   if( !apNew ) return SQLITE_NOMEM;
170   memset(apNew, 0, nNew*sizeof(Fts5HashEntry*));
171 
172   for(i=0; i<pHash->nSlot; i++){
173     while( apOld[i] ){
174       unsigned int iHash;
175       Fts5HashEntry *p = apOld[i];
176       apOld[i] = p->pHashNext;
177       iHash = fts5HashKey(nNew, (u8*)fts5EntryKey(p),
178                           (int)strlen(fts5EntryKey(p)));
179       p->pHashNext = apNew[iHash];
180       apNew[iHash] = p;
181     }
182   }
183 
184   sqlite3_free(apOld);
185   pHash->nSlot = nNew;
186   pHash->aSlot = apNew;
187   return SQLITE_OK;
188 }
189 
fts5HashAddPoslistSize(Fts5Hash * pHash,Fts5HashEntry * p)190 static void fts5HashAddPoslistSize(Fts5Hash *pHash, Fts5HashEntry *p){
191   if( p->iSzPoslist ){
192     u8 *pPtr = (u8*)p;
193     if( pHash->eDetail==FTS5_DETAIL_NONE ){
194       assert( p->nData==p->iSzPoslist );
195       if( p->bDel ){
196         pPtr[p->nData++] = 0x00;
197         if( p->bContent ){
198           pPtr[p->nData++] = 0x00;
199         }
200       }
201     }else{
202       int nSz = (p->nData - p->iSzPoslist - 1);       /* Size in bytes */
203       int nPos = nSz*2 + p->bDel;                     /* Value of nPos field */
204 
205       assert( p->bDel==0 || p->bDel==1 );
206       if( nPos<=127 ){
207         pPtr[p->iSzPoslist] = (u8)nPos;
208       }else{
209         int nByte = sqlite3Fts5GetVarintLen((u32)nPos);
210         memmove(&pPtr[p->iSzPoslist + nByte], &pPtr[p->iSzPoslist + 1], nSz);
211         sqlite3Fts5PutVarint(&pPtr[p->iSzPoslist], nPos);
212         p->nData += (nByte-1);
213       }
214     }
215 
216     p->iSzPoslist = 0;
217     p->bDel = 0;
218     p->bContent = 0;
219   }
220 }
221 
222 /*
223 ** Add an entry to the in-memory hash table. The key is the concatenation
224 ** of bByte and (pToken/nToken). The value is (iRowid/iCol/iPos).
225 **
226 **     (bByte || pToken) -> (iRowid,iCol,iPos)
227 **
228 ** Or, if iCol is negative, then the value is a delete marker.
229 */
sqlite3Fts5HashWrite(Fts5Hash * pHash,i64 iRowid,int iCol,int iPos,char bByte,const char * pToken,int nToken)230 int sqlite3Fts5HashWrite(
231   Fts5Hash *pHash,
232   i64 iRowid,                     /* Rowid for this entry */
233   int iCol,                       /* Column token appears in (-ve -> delete) */
234   int iPos,                       /* Position of token within column */
235   char bByte,                     /* First byte of token */
236   const char *pToken, int nToken  /* Token to add or remove to or from index */
237 ){
238   unsigned int iHash;
239   Fts5HashEntry *p;
240   u8 *pPtr;
241   int nIncr = 0;                  /* Amount to increment (*pHash->pnByte) by */
242   int bNew;                       /* If non-delete entry should be written */
243 
244   bNew = (pHash->eDetail==FTS5_DETAIL_FULL);
245 
246   /* Attempt to locate an existing hash entry */
247   iHash = fts5HashKey2(pHash->nSlot, (u8)bByte, (const u8*)pToken, nToken);
248   for(p=pHash->aSlot[iHash]; p; p=p->pHashNext){
249     char *zKey = fts5EntryKey(p);
250     if( zKey[0]==bByte
251      && p->nKey==nToken
252      && memcmp(&zKey[1], pToken, nToken)==0
253     ){
254       break;
255     }
256   }
257 
258   /* If an existing hash entry cannot be found, create a new one. */
259   if( p==0 ){
260     /* Figure out how much space to allocate */
261     char *zKey;
262     int nByte = sizeof(Fts5HashEntry) + (nToken+1) + 1 + 64;
263     if( nByte<128 ) nByte = 128;
264 
265     /* Grow the Fts5Hash.aSlot[] array if necessary. */
266     if( (pHash->nEntry*2)>=pHash->nSlot ){
267       int rc = fts5HashResize(pHash);
268       if( rc!=SQLITE_OK ) return rc;
269       iHash = fts5HashKey2(pHash->nSlot, (u8)bByte, (const u8*)pToken, nToken);
270     }
271 
272     /* Allocate new Fts5HashEntry and add it to the hash table. */
273     p = (Fts5HashEntry*)sqlite3_malloc(nByte);
274     if( !p ) return SQLITE_NOMEM;
275     memset(p, 0, sizeof(Fts5HashEntry));
276     p->nAlloc = nByte;
277     zKey = fts5EntryKey(p);
278     zKey[0] = bByte;
279     memcpy(&zKey[1], pToken, nToken);
280     assert( iHash==fts5HashKey(pHash->nSlot, (u8*)zKey, nToken+1) );
281     p->nKey = nToken;
282     zKey[nToken+1] = '\0';
283     p->nData = nToken+1 + 1 + sizeof(Fts5HashEntry);
284     p->pHashNext = pHash->aSlot[iHash];
285     pHash->aSlot[iHash] = p;
286     pHash->nEntry++;
287 
288     /* Add the first rowid field to the hash-entry */
289     p->nData += sqlite3Fts5PutVarint(&((u8*)p)[p->nData], iRowid);
290     p->iRowid = iRowid;
291 
292     p->iSzPoslist = p->nData;
293     if( pHash->eDetail!=FTS5_DETAIL_NONE ){
294       p->nData += 1;
295       p->iCol = (pHash->eDetail==FTS5_DETAIL_FULL ? 0 : -1);
296     }
297 
298     nIncr += p->nData;
299   }else{
300 
301     /* Appending to an existing hash-entry. Check that there is enough
302     ** space to append the largest possible new entry. Worst case scenario
303     ** is:
304     **
305     **     + 9 bytes for a new rowid,
306     **     + 4 byte reserved for the "poslist size" varint.
307     **     + 1 byte for a "new column" byte,
308     **     + 3 bytes for a new column number (16-bit max) as a varint,
309     **     + 5 bytes for the new position offset (32-bit max).
310     */
311     if( (p->nAlloc - p->nData) < (9 + 4 + 1 + 3 + 5) ){
312       int nNew = p->nAlloc * 2;
313       Fts5HashEntry *pNew;
314       Fts5HashEntry **pp;
315       pNew = (Fts5HashEntry*)sqlite3_realloc(p, nNew);
316       if( pNew==0 ) return SQLITE_NOMEM;
317       pNew->nAlloc = nNew;
318       for(pp=&pHash->aSlot[iHash]; *pp!=p; pp=&(*pp)->pHashNext);
319       *pp = pNew;
320       p = pNew;
321     }
322     nIncr -= p->nData;
323   }
324   assert( (p->nAlloc - p->nData) >= (9 + 4 + 1 + 3 + 5) );
325 
326   pPtr = (u8*)p;
327 
328   /* If this is a new rowid, append the 4-byte size field for the previous
329   ** entry, and the new rowid for this entry.  */
330   if( iRowid!=p->iRowid ){
331     fts5HashAddPoslistSize(pHash, p);
332     p->nData += sqlite3Fts5PutVarint(&pPtr[p->nData], iRowid - p->iRowid);
333     p->iRowid = iRowid;
334     bNew = 1;
335     p->iSzPoslist = p->nData;
336     if( pHash->eDetail!=FTS5_DETAIL_NONE ){
337       p->nData += 1;
338       p->iCol = (pHash->eDetail==FTS5_DETAIL_FULL ? 0 : -1);
339       p->iPos = 0;
340     }
341   }
342 
343   if( iCol>=0 ){
344     if( pHash->eDetail==FTS5_DETAIL_NONE ){
345       p->bContent = 1;
346     }else{
347       /* Append a new column value, if necessary */
348       assert( iCol>=p->iCol );
349       if( iCol!=p->iCol ){
350         if( pHash->eDetail==FTS5_DETAIL_FULL ){
351           pPtr[p->nData++] = 0x01;
352           p->nData += sqlite3Fts5PutVarint(&pPtr[p->nData], iCol);
353           p->iCol = (i16)iCol;
354           p->iPos = 0;
355         }else{
356           bNew = 1;
357           p->iCol = (i16)(iPos = iCol);
358         }
359       }
360 
361       /* Append the new position offset, if necessary */
362       if( bNew ){
363         p->nData += sqlite3Fts5PutVarint(&pPtr[p->nData], iPos - p->iPos + 2);
364         p->iPos = iPos;
365       }
366     }
367   }else{
368     /* This is a delete. Set the delete flag. */
369     p->bDel = 1;
370   }
371 
372   nIncr += p->nData;
373   *pHash->pnByte += nIncr;
374   return SQLITE_OK;
375 }
376 
377 
378 /*
379 ** Arguments pLeft and pRight point to linked-lists of hash-entry objects,
380 ** each sorted in key order. This function merges the two lists into a
381 ** single list and returns a pointer to its first element.
382 */
fts5HashEntryMerge(Fts5HashEntry * pLeft,Fts5HashEntry * pRight)383 static Fts5HashEntry *fts5HashEntryMerge(
384   Fts5HashEntry *pLeft,
385   Fts5HashEntry *pRight
386 ){
387   Fts5HashEntry *p1 = pLeft;
388   Fts5HashEntry *p2 = pRight;
389   Fts5HashEntry *pRet = 0;
390   Fts5HashEntry **ppOut = &pRet;
391 
392   while( p1 || p2 ){
393     if( p1==0 ){
394       *ppOut = p2;
395       p2 = 0;
396     }else if( p2==0 ){
397       *ppOut = p1;
398       p1 = 0;
399     }else{
400       int i = 0;
401       char *zKey1 = fts5EntryKey(p1);
402       char *zKey2 = fts5EntryKey(p2);
403       while( zKey1[i]==zKey2[i] ) i++;
404 
405       if( ((u8)zKey1[i])>((u8)zKey2[i]) ){
406         /* p2 is smaller */
407         *ppOut = p2;
408         ppOut = &p2->pScanNext;
409         p2 = p2->pScanNext;
410       }else{
411         /* p1 is smaller */
412         *ppOut = p1;
413         ppOut = &p1->pScanNext;
414         p1 = p1->pScanNext;
415       }
416       *ppOut = 0;
417     }
418   }
419 
420   return pRet;
421 }
422 
423 /*
424 ** Extract all tokens from hash table iHash and link them into a list
425 ** in sorted order. The hash table is cleared before returning. It is
426 ** the responsibility of the caller to free the elements of the returned
427 ** list.
428 */
fts5HashEntrySort(Fts5Hash * pHash,const char * pTerm,int nTerm,Fts5HashEntry ** ppSorted)429 static int fts5HashEntrySort(
430   Fts5Hash *pHash,
431   const char *pTerm, int nTerm,   /* Query prefix, if any */
432   Fts5HashEntry **ppSorted
433 ){
434   const int nMergeSlot = 32;
435   Fts5HashEntry **ap;
436   Fts5HashEntry *pList;
437   int iSlot;
438   int i;
439 
440   *ppSorted = 0;
441   ap = sqlite3_malloc(sizeof(Fts5HashEntry*) * nMergeSlot);
442   if( !ap ) return SQLITE_NOMEM;
443   memset(ap, 0, sizeof(Fts5HashEntry*) * nMergeSlot);
444 
445   for(iSlot=0; iSlot<pHash->nSlot; iSlot++){
446     Fts5HashEntry *pIter;
447     for(pIter=pHash->aSlot[iSlot]; pIter; pIter=pIter->pHashNext){
448       if( pTerm==0 || 0==memcmp(fts5EntryKey(pIter), pTerm, nTerm) ){
449         Fts5HashEntry *pEntry = pIter;
450         pEntry->pScanNext = 0;
451         for(i=0; ap[i]; i++){
452           pEntry = fts5HashEntryMerge(pEntry, ap[i]);
453           ap[i] = 0;
454         }
455         ap[i] = pEntry;
456       }
457     }
458   }
459 
460   pList = 0;
461   for(i=0; i<nMergeSlot; i++){
462     pList = fts5HashEntryMerge(pList, ap[i]);
463   }
464 
465   pHash->nEntry = 0;
466   sqlite3_free(ap);
467   *ppSorted = pList;
468   return SQLITE_OK;
469 }
470 
471 /*
472 ** Query the hash table for a doclist associated with term pTerm/nTerm.
473 */
sqlite3Fts5HashQuery(Fts5Hash * pHash,const char * pTerm,int nTerm,const u8 ** ppDoclist,int * pnDoclist)474 int sqlite3Fts5HashQuery(
475   Fts5Hash *pHash,                /* Hash table to query */
476   const char *pTerm, int nTerm,   /* Query term */
477   const u8 **ppDoclist,           /* OUT: Pointer to doclist for pTerm */
478   int *pnDoclist                  /* OUT: Size of doclist in bytes */
479 ){
480   unsigned int iHash = fts5HashKey(pHash->nSlot, (const u8*)pTerm, nTerm);
481   char *zKey = 0;
482   Fts5HashEntry *p;
483 
484   for(p=pHash->aSlot[iHash]; p; p=p->pHashNext){
485     zKey = fts5EntryKey(p);
486     if( memcmp(zKey, pTerm, nTerm)==0 && zKey[nTerm]==0 ) break;
487   }
488 
489   if( p ){
490     fts5HashAddPoslistSize(pHash, p);
491     *ppDoclist = (const u8*)&zKey[nTerm+1];
492     *pnDoclist = p->nData - (sizeof(Fts5HashEntry) + nTerm + 1);
493   }else{
494     *ppDoclist = 0;
495     *pnDoclist = 0;
496   }
497 
498   return SQLITE_OK;
499 }
500 
sqlite3Fts5HashScanInit(Fts5Hash * p,const char * pTerm,int nTerm)501 int sqlite3Fts5HashScanInit(
502   Fts5Hash *p,                    /* Hash table to query */
503   const char *pTerm, int nTerm    /* Query prefix */
504 ){
505   return fts5HashEntrySort(p, pTerm, nTerm, &p->pScan);
506 }
507 
sqlite3Fts5HashScanNext(Fts5Hash * p)508 void sqlite3Fts5HashScanNext(Fts5Hash *p){
509   assert( !sqlite3Fts5HashScanEof(p) );
510   p->pScan = p->pScan->pScanNext;
511 }
512 
sqlite3Fts5HashScanEof(Fts5Hash * p)513 int sqlite3Fts5HashScanEof(Fts5Hash *p){
514   return (p->pScan==0);
515 }
516 
sqlite3Fts5HashScanEntry(Fts5Hash * pHash,const char ** pzTerm,const u8 ** ppDoclist,int * pnDoclist)517 void sqlite3Fts5HashScanEntry(
518   Fts5Hash *pHash,
519   const char **pzTerm,            /* OUT: term (nul-terminated) */
520   const u8 **ppDoclist,           /* OUT: pointer to doclist */
521   int *pnDoclist                  /* OUT: size of doclist in bytes */
522 ){
523   Fts5HashEntry *p;
524   if( (p = pHash->pScan) ){
525     char *zKey = fts5EntryKey(p);
526     int nTerm = (int)strlen(zKey);
527     fts5HashAddPoslistSize(pHash, p);
528     *pzTerm = zKey;
529     *ppDoclist = (const u8*)&zKey[nTerm+1];
530     *pnDoclist = p->nData - (sizeof(Fts5HashEntry) + nTerm + 1);
531   }else{
532     *pzTerm = 0;
533     *ppDoclist = 0;
534     *pnDoclist = 0;
535   }
536 }
537 
538