1 /*
2 ** 2007 October 14
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains the C functions that implement a memory
13 ** allocation subsystem for use by SQLite.
14 **
15 ** This version of the memory allocation subsystem omits all
16 ** use of malloc(). The SQLite user supplies a block of memory
17 ** before calling sqlite3_initialize() from which allocations
18 ** are made and returned by the xMalloc() and xRealloc()
19 ** implementations. Once sqlite3_initialize() has been called,
20 ** the amount of memory available to SQLite is fixed and cannot
21 ** be changed.
22 **
23 ** This version of the memory allocation subsystem is included
24 ** in the build only if SQLITE_ENABLE_MEMSYS3 is defined.
25 */
26 #include "sqliteInt.h"
27 
28 /*
29 ** This version of the memory allocator is only built into the library
30 ** SQLITE_ENABLE_MEMSYS3 is defined. Defining this symbol does not
31 ** mean that the library will use a memory-pool by default, just that
32 ** it is available. The mempool allocator is activated by calling
33 ** sqlite3_config().
34 */
35 #ifdef SQLITE_ENABLE_MEMSYS3
36 
37 /*
38 ** Maximum size (in Mem3Blocks) of a "small" chunk.
39 */
40 #define MX_SMALL 10
41 
42 
43 /*
44 ** Number of freelist hash slots
45 */
46 #define N_HASH  61
47 
48 /*
49 ** A memory allocation (also called a "chunk") consists of two or
50 ** more blocks where each block is 8 bytes.  The first 8 bytes are
51 ** a header that is not returned to the user.
52 **
53 ** A chunk is two or more blocks that is either checked out or
54 ** free.  The first block has format u.hdr.  u.hdr.size4x is 4 times the
55 ** size of the allocation in blocks if the allocation is free.
56 ** The u.hdr.size4x&1 bit is true if the chunk is checked out and
57 ** false if the chunk is on the freelist.  The u.hdr.size4x&2 bit
58 ** is true if the previous chunk is checked out and false if the
59 ** previous chunk is free.  The u.hdr.prevSize field is the size of
60 ** the previous chunk in blocks if the previous chunk is on the
61 ** freelist. If the previous chunk is checked out, then
62 ** u.hdr.prevSize can be part of the data for that chunk and should
63 ** not be read or written.
64 **
65 ** We often identify a chunk by its index in mem3.aPool[].  When
66 ** this is done, the chunk index refers to the second block of
67 ** the chunk.  In this way, the first chunk has an index of 1.
68 ** A chunk index of 0 means "no such chunk" and is the equivalent
69 ** of a NULL pointer.
70 **
71 ** The second block of free chunks is of the form u.list.  The
72 ** two fields form a double-linked list of chunks of related sizes.
73 ** Pointers to the head of the list are stored in mem3.aiSmall[]
74 ** for smaller chunks and mem3.aiHash[] for larger chunks.
75 **
76 ** The second block of a chunk is user data if the chunk is checked
77 ** out.  If a chunk is checked out, the user data may extend into
78 ** the u.hdr.prevSize value of the following chunk.
79 */
80 typedef struct Mem3Block Mem3Block;
81 struct Mem3Block {
82   union {
83     struct {
84       u32 prevSize;   /* Size of previous chunk in Mem3Block elements */
85       u32 size4x;     /* 4x the size of current chunk in Mem3Block elements */
86     } hdr;
87     struct {
88       u32 next;       /* Index in mem3.aPool[] of next free chunk */
89       u32 prev;       /* Index in mem3.aPool[] of previous free chunk */
90     } list;
91   } u;
92 };
93 
94 /*
95 ** All of the static variables used by this module are collected
96 ** into a single structure named "mem3".  This is to keep the
97 ** static variables organized and to reduce namespace pollution
98 ** when this module is combined with other in the amalgamation.
99 */
100 static SQLITE_WSD struct Mem3Global {
101   /*
102   ** Memory available for allocation. nPool is the size of the array
103   ** (in Mem3Blocks) pointed to by aPool less 2.
104   */
105   u32 nPool;
106   Mem3Block *aPool;
107 
108   /*
109   ** True if we are evaluating an out-of-memory callback.
110   */
111   int alarmBusy;
112 
113   /*
114   ** Mutex to control access to the memory allocation subsystem.
115   */
116   sqlite3_mutex *mutex;
117 
118   /*
119   ** The minimum amount of free space that we have seen.
120   */
121   u32 mnKeyBlk;
122 
123   /*
124   ** iKeyBlk is the index of the key chunk.  Most new allocations
125   ** occur off of this chunk.  szKeyBlk is the size (in Mem3Blocks)
126   ** of the current key chunk.  iKeyBlk is 0 if there is no key chunk.
127   ** The key chunk is not in either the aiHash[] or aiSmall[].
128   */
129   u32 iKeyBlk;
130   u32 szKeyBlk;
131 
132   /*
133   ** Array of lists of free blocks according to the block size
134   ** for smaller chunks, or a hash on the block size for larger
135   ** chunks.
136   */
137   u32 aiSmall[MX_SMALL-1];   /* For sizes 2 through MX_SMALL, inclusive */
138   u32 aiHash[N_HASH];        /* For sizes MX_SMALL+1 and larger */
139 } mem3 = { 97535575 };
140 
141 #define mem3 GLOBAL(struct Mem3Global, mem3)
142 
143 /*
144 ** Unlink the chunk at mem3.aPool[i] from list it is currently
145 ** on.  *pRoot is the list that i is a member of.
146 */
memsys3UnlinkFromList(u32 i,u32 * pRoot)147 static void memsys3UnlinkFromList(u32 i, u32 *pRoot){
148   u32 next = mem3.aPool[i].u.list.next;
149   u32 prev = mem3.aPool[i].u.list.prev;
150   assert( sqlite3_mutex_held(mem3.mutex) );
151   if( prev==0 ){
152     *pRoot = next;
153   }else{
154     mem3.aPool[prev].u.list.next = next;
155   }
156   if( next ){
157     mem3.aPool[next].u.list.prev = prev;
158   }
159   mem3.aPool[i].u.list.next = 0;
160   mem3.aPool[i].u.list.prev = 0;
161 }
162 
163 /*
164 ** Unlink the chunk at index i from
165 ** whatever list is currently a member of.
166 */
memsys3Unlink(u32 i)167 static void memsys3Unlink(u32 i){
168   u32 size, hash;
169   assert( sqlite3_mutex_held(mem3.mutex) );
170   assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
171   assert( i>=1 );
172   size = mem3.aPool[i-1].u.hdr.size4x/4;
173   assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
174   assert( size>=2 );
175   if( size <= MX_SMALL ){
176     memsys3UnlinkFromList(i, &mem3.aiSmall[size-2]);
177   }else{
178     hash = size % N_HASH;
179     memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
180   }
181 }
182 
183 /*
184 ** Link the chunk at mem3.aPool[i] so that is on the list rooted
185 ** at *pRoot.
186 */
memsys3LinkIntoList(u32 i,u32 * pRoot)187 static void memsys3LinkIntoList(u32 i, u32 *pRoot){
188   assert( sqlite3_mutex_held(mem3.mutex) );
189   mem3.aPool[i].u.list.next = *pRoot;
190   mem3.aPool[i].u.list.prev = 0;
191   if( *pRoot ){
192     mem3.aPool[*pRoot].u.list.prev = i;
193   }
194   *pRoot = i;
195 }
196 
197 /*
198 ** Link the chunk at index i into either the appropriate
199 ** small chunk list, or into the large chunk hash table.
200 */
memsys3Link(u32 i)201 static void memsys3Link(u32 i){
202   u32 size, hash;
203   assert( sqlite3_mutex_held(mem3.mutex) );
204   assert( i>=1 );
205   assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
206   size = mem3.aPool[i-1].u.hdr.size4x/4;
207   assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
208   assert( size>=2 );
209   if( size <= MX_SMALL ){
210     memsys3LinkIntoList(i, &mem3.aiSmall[size-2]);
211   }else{
212     hash = size % N_HASH;
213     memsys3LinkIntoList(i, &mem3.aiHash[hash]);
214   }
215 }
216 
217 /*
218 ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
219 ** will already be held (obtained by code in malloc.c) if
220 ** sqlite3GlobalConfig.bMemStat is true.
221 */
memsys3Enter(void)222 static void memsys3Enter(void){
223   if( sqlite3GlobalConfig.bMemstat==0 && mem3.mutex==0 ){
224     mem3.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
225   }
226   sqlite3_mutex_enter(mem3.mutex);
227 }
memsys3Leave(void)228 static void memsys3Leave(void){
229   sqlite3_mutex_leave(mem3.mutex);
230 }
231 
232 /*
233 ** Called when we are unable to satisfy an allocation of nBytes.
234 */
memsys3OutOfMemory(int nByte)235 static void memsys3OutOfMemory(int nByte){
236   if( !mem3.alarmBusy ){
237     mem3.alarmBusy = 1;
238     assert( sqlite3_mutex_held(mem3.mutex) );
239     sqlite3_mutex_leave(mem3.mutex);
240     sqlite3_release_memory(nByte);
241     sqlite3_mutex_enter(mem3.mutex);
242     mem3.alarmBusy = 0;
243   }
244 }
245 
246 
247 /*
248 ** Chunk i is a free chunk that has been unlinked.  Adjust its
249 ** size parameters for check-out and return a pointer to the
250 ** user portion of the chunk.
251 */
memsys3Checkout(u32 i,u32 nBlock)252 static void *memsys3Checkout(u32 i, u32 nBlock){
253   u32 x;
254   assert( sqlite3_mutex_held(mem3.mutex) );
255   assert( i>=1 );
256   assert( mem3.aPool[i-1].u.hdr.size4x/4==nBlock );
257   assert( mem3.aPool[i+nBlock-1].u.hdr.prevSize==nBlock );
258   x = mem3.aPool[i-1].u.hdr.size4x;
259   mem3.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2);
260   mem3.aPool[i+nBlock-1].u.hdr.prevSize = nBlock;
261   mem3.aPool[i+nBlock-1].u.hdr.size4x |= 2;
262   return &mem3.aPool[i];
263 }
264 
265 /*
266 ** Carve a piece off of the end of the mem3.iKeyBlk free chunk.
267 ** Return a pointer to the new allocation.  Or, if the key chunk
268 ** is not large enough, return 0.
269 */
memsys3FromKeyBlk(u32 nBlock)270 static void *memsys3FromKeyBlk(u32 nBlock){
271   assert( sqlite3_mutex_held(mem3.mutex) );
272   assert( mem3.szKeyBlk>=nBlock );
273   if( nBlock>=mem3.szKeyBlk-1 ){
274     /* Use the entire key chunk */
275     void *p = memsys3Checkout(mem3.iKeyBlk, mem3.szKeyBlk);
276     mem3.iKeyBlk = 0;
277     mem3.szKeyBlk = 0;
278     mem3.mnKeyBlk = 0;
279     return p;
280   }else{
281     /* Split the key block.  Return the tail. */
282     u32 newi, x;
283     newi = mem3.iKeyBlk + mem3.szKeyBlk - nBlock;
284     assert( newi > mem3.iKeyBlk+1 );
285     mem3.aPool[mem3.iKeyBlk+mem3.szKeyBlk-1].u.hdr.prevSize = nBlock;
286     mem3.aPool[mem3.iKeyBlk+mem3.szKeyBlk-1].u.hdr.size4x |= 2;
287     mem3.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1;
288     mem3.szKeyBlk -= nBlock;
289     mem3.aPool[newi-1].u.hdr.prevSize = mem3.szKeyBlk;
290     x = mem3.aPool[mem3.iKeyBlk-1].u.hdr.size4x & 2;
291     mem3.aPool[mem3.iKeyBlk-1].u.hdr.size4x = mem3.szKeyBlk*4 | x;
292     if( mem3.szKeyBlk < mem3.mnKeyBlk ){
293       mem3.mnKeyBlk = mem3.szKeyBlk;
294     }
295     return (void*)&mem3.aPool[newi];
296   }
297 }
298 
299 /*
300 ** *pRoot is the head of a list of free chunks of the same size
301 ** or same size hash.  In other words, *pRoot is an entry in either
302 ** mem3.aiSmall[] or mem3.aiHash[].
303 **
304 ** This routine examines all entries on the given list and tries
305 ** to coalesce each entries with adjacent free chunks.
306 **
307 ** If it sees a chunk that is larger than mem3.iKeyBlk, it replaces
308 ** the current mem3.iKeyBlk with the new larger chunk.  In order for
309 ** this mem3.iKeyBlk replacement to work, the key chunk must be
310 ** linked into the hash tables.  That is not the normal state of
311 ** affairs, of course.  The calling routine must link the key
312 ** chunk before invoking this routine, then must unlink the (possibly
313 ** changed) key chunk once this routine has finished.
314 */
memsys3Merge(u32 * pRoot)315 static void memsys3Merge(u32 *pRoot){
316   u32 iNext, prev, size, i, x;
317 
318   assert( sqlite3_mutex_held(mem3.mutex) );
319   for(i=*pRoot; i>0; i=iNext){
320     iNext = mem3.aPool[i].u.list.next;
321     size = mem3.aPool[i-1].u.hdr.size4x;
322     assert( (size&1)==0 );
323     if( (size&2)==0 ){
324       memsys3UnlinkFromList(i, pRoot);
325       assert( i > mem3.aPool[i-1].u.hdr.prevSize );
326       prev = i - mem3.aPool[i-1].u.hdr.prevSize;
327       if( prev==iNext ){
328         iNext = mem3.aPool[prev].u.list.next;
329       }
330       memsys3Unlink(prev);
331       size = i + size/4 - prev;
332       x = mem3.aPool[prev-1].u.hdr.size4x & 2;
333       mem3.aPool[prev-1].u.hdr.size4x = size*4 | x;
334       mem3.aPool[prev+size-1].u.hdr.prevSize = size;
335       memsys3Link(prev);
336       i = prev;
337     }else{
338       size /= 4;
339     }
340     if( size>mem3.szKeyBlk ){
341       mem3.iKeyBlk = i;
342       mem3.szKeyBlk = size;
343     }
344   }
345 }
346 
347 /*
348 ** Return a block of memory of at least nBytes in size.
349 ** Return NULL if unable.
350 **
351 ** This function assumes that the necessary mutexes, if any, are
352 ** already held by the caller. Hence "Unsafe".
353 */
memsys3MallocUnsafe(int nByte)354 static void *memsys3MallocUnsafe(int nByte){
355   u32 i;
356   u32 nBlock;
357   u32 toFree;
358 
359   assert( sqlite3_mutex_held(mem3.mutex) );
360   assert( sizeof(Mem3Block)==8 );
361   if( nByte<=12 ){
362     nBlock = 2;
363   }else{
364     nBlock = (nByte + 11)/8;
365   }
366   assert( nBlock>=2 );
367 
368   /* STEP 1:
369   ** Look for an entry of the correct size in either the small
370   ** chunk table or in the large chunk hash table.  This is
371   ** successful most of the time (about 9 times out of 10).
372   */
373   if( nBlock <= MX_SMALL ){
374     i = mem3.aiSmall[nBlock-2];
375     if( i>0 ){
376       memsys3UnlinkFromList(i, &mem3.aiSmall[nBlock-2]);
377       return memsys3Checkout(i, nBlock);
378     }
379   }else{
380     int hash = nBlock % N_HASH;
381     for(i=mem3.aiHash[hash]; i>0; i=mem3.aPool[i].u.list.next){
382       if( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ){
383         memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
384         return memsys3Checkout(i, nBlock);
385       }
386     }
387   }
388 
389   /* STEP 2:
390   ** Try to satisfy the allocation by carving a piece off of the end
391   ** of the key chunk.  This step usually works if step 1 fails.
392   */
393   if( mem3.szKeyBlk>=nBlock ){
394     return memsys3FromKeyBlk(nBlock);
395   }
396 
397 
398   /* STEP 3:
399   ** Loop through the entire memory pool.  Coalesce adjacent free
400   ** chunks.  Recompute the key chunk as the largest free chunk.
401   ** Then try again to satisfy the allocation by carving a piece off
402   ** of the end of the key chunk.  This step happens very
403   ** rarely (we hope!)
404   */
405   for(toFree=nBlock*16; toFree<(mem3.nPool*16); toFree *= 2){
406     memsys3OutOfMemory(toFree);
407     if( mem3.iKeyBlk ){
408       memsys3Link(mem3.iKeyBlk);
409       mem3.iKeyBlk = 0;
410       mem3.szKeyBlk = 0;
411     }
412     for(i=0; i<N_HASH; i++){
413       memsys3Merge(&mem3.aiHash[i]);
414     }
415     for(i=0; i<MX_SMALL-1; i++){
416       memsys3Merge(&mem3.aiSmall[i]);
417     }
418     if( mem3.szKeyBlk ){
419       memsys3Unlink(mem3.iKeyBlk);
420       if( mem3.szKeyBlk>=nBlock ){
421         return memsys3FromKeyBlk(nBlock);
422       }
423     }
424   }
425 
426   /* If none of the above worked, then we fail. */
427   return 0;
428 }
429 
430 /*
431 ** Free an outstanding memory allocation.
432 **
433 ** This function assumes that the necessary mutexes, if any, are
434 ** already held by the caller. Hence "Unsafe".
435 */
memsys3FreeUnsafe(void * pOld)436 static void memsys3FreeUnsafe(void *pOld){
437   Mem3Block *p = (Mem3Block*)pOld;
438   int i;
439   u32 size, x;
440   assert( sqlite3_mutex_held(mem3.mutex) );
441   assert( p>mem3.aPool && p<&mem3.aPool[mem3.nPool] );
442   i = p - mem3.aPool;
443   assert( (mem3.aPool[i-1].u.hdr.size4x&1)==1 );
444   size = mem3.aPool[i-1].u.hdr.size4x/4;
445   assert( i+size<=mem3.nPool+1 );
446   mem3.aPool[i-1].u.hdr.size4x &= ~1;
447   mem3.aPool[i+size-1].u.hdr.prevSize = size;
448   mem3.aPool[i+size-1].u.hdr.size4x &= ~2;
449   memsys3Link(i);
450 
451   /* Try to expand the key using the newly freed chunk */
452   if( mem3.iKeyBlk ){
453     while( (mem3.aPool[mem3.iKeyBlk-1].u.hdr.size4x&2)==0 ){
454       size = mem3.aPool[mem3.iKeyBlk-1].u.hdr.prevSize;
455       mem3.iKeyBlk -= size;
456       mem3.szKeyBlk += size;
457       memsys3Unlink(mem3.iKeyBlk);
458       x = mem3.aPool[mem3.iKeyBlk-1].u.hdr.size4x & 2;
459       mem3.aPool[mem3.iKeyBlk-1].u.hdr.size4x = mem3.szKeyBlk*4 | x;
460       mem3.aPool[mem3.iKeyBlk+mem3.szKeyBlk-1].u.hdr.prevSize = mem3.szKeyBlk;
461     }
462     x = mem3.aPool[mem3.iKeyBlk-1].u.hdr.size4x & 2;
463     while( (mem3.aPool[mem3.iKeyBlk+mem3.szKeyBlk-1].u.hdr.size4x&1)==0 ){
464       memsys3Unlink(mem3.iKeyBlk+mem3.szKeyBlk);
465       mem3.szKeyBlk += mem3.aPool[mem3.iKeyBlk+mem3.szKeyBlk-1].u.hdr.size4x/4;
466       mem3.aPool[mem3.iKeyBlk-1].u.hdr.size4x = mem3.szKeyBlk*4 | x;
467       mem3.aPool[mem3.iKeyBlk+mem3.szKeyBlk-1].u.hdr.prevSize = mem3.szKeyBlk;
468     }
469   }
470 }
471 
472 /*
473 ** Return the size of an outstanding allocation, in bytes.  The
474 ** size returned omits the 8-byte header overhead.  This only
475 ** works for chunks that are currently checked out.
476 */
memsys3Size(void * p)477 static int memsys3Size(void *p){
478   Mem3Block *pBlock;
479   assert( p!=0 );
480   pBlock = (Mem3Block*)p;
481   assert( (pBlock[-1].u.hdr.size4x&1)!=0 );
482   return (pBlock[-1].u.hdr.size4x&~3)*2 - 4;
483 }
484 
485 /*
486 ** Round up a request size to the next valid allocation size.
487 */
memsys3Roundup(int n)488 static int memsys3Roundup(int n){
489   if( n<=12 ){
490     return 12;
491   }else{
492     return ((n+11)&~7) - 4;
493   }
494 }
495 
496 /*
497 ** Allocate nBytes of memory.
498 */
memsys3Malloc(int nBytes)499 static void *memsys3Malloc(int nBytes){
500   sqlite3_int64 *p;
501   assert( nBytes>0 );          /* malloc.c filters out 0 byte requests */
502   memsys3Enter();
503   p = memsys3MallocUnsafe(nBytes);
504   memsys3Leave();
505   return (void*)p;
506 }
507 
508 /*
509 ** Free memory.
510 */
memsys3Free(void * pPrior)511 static void memsys3Free(void *pPrior){
512   assert( pPrior );
513   memsys3Enter();
514   memsys3FreeUnsafe(pPrior);
515   memsys3Leave();
516 }
517 
518 /*
519 ** Change the size of an existing memory allocation
520 */
memsys3Realloc(void * pPrior,int nBytes)521 static void *memsys3Realloc(void *pPrior, int nBytes){
522   int nOld;
523   void *p;
524   if( pPrior==0 ){
525     return sqlite3_malloc(nBytes);
526   }
527   if( nBytes<=0 ){
528     sqlite3_free(pPrior);
529     return 0;
530   }
531   nOld = memsys3Size(pPrior);
532   if( nBytes<=nOld && nBytes>=nOld-128 ){
533     return pPrior;
534   }
535   memsys3Enter();
536   p = memsys3MallocUnsafe(nBytes);
537   if( p ){
538     if( nOld<nBytes ){
539       memcpy(p, pPrior, nOld);
540     }else{
541       memcpy(p, pPrior, nBytes);
542     }
543     memsys3FreeUnsafe(pPrior);
544   }
545   memsys3Leave();
546   return p;
547 }
548 
549 /*
550 ** Initialize this module.
551 */
memsys3Init(void * NotUsed)552 static int memsys3Init(void *NotUsed){
553   UNUSED_PARAMETER(NotUsed);
554   if( !sqlite3GlobalConfig.pHeap ){
555     return SQLITE_ERROR;
556   }
557 
558   /* Store a pointer to the memory block in global structure mem3. */
559   assert( sizeof(Mem3Block)==8 );
560   mem3.aPool = (Mem3Block *)sqlite3GlobalConfig.pHeap;
561   mem3.nPool = (sqlite3GlobalConfig.nHeap / sizeof(Mem3Block)) - 2;
562 
563   /* Initialize the key block. */
564   mem3.szKeyBlk = mem3.nPool;
565   mem3.mnKeyBlk = mem3.szKeyBlk;
566   mem3.iKeyBlk = 1;
567   mem3.aPool[0].u.hdr.size4x = (mem3.szKeyBlk<<2) + 2;
568   mem3.aPool[mem3.nPool].u.hdr.prevSize = mem3.nPool;
569   mem3.aPool[mem3.nPool].u.hdr.size4x = 1;
570 
571   return SQLITE_OK;
572 }
573 
574 /*
575 ** Deinitialize this module.
576 */
memsys3Shutdown(void * NotUsed)577 static void memsys3Shutdown(void *NotUsed){
578   UNUSED_PARAMETER(NotUsed);
579   mem3.mutex = 0;
580   return;
581 }
582 
583 
584 
585 /*
586 ** Open the file indicated and write a log of all unfreed memory
587 ** allocations into that log.
588 */
sqlite3Memsys3Dump(const char * zFilename)589 void sqlite3Memsys3Dump(const char *zFilename){
590 #ifdef SQLITE_DEBUG
591   FILE *out;
592   u32 i, j;
593   u32 size;
594   if( zFilename==0 || zFilename[0]==0 ){
595     out = stdout;
596   }else{
597     out = fopen(zFilename, "w");
598     if( out==0 ){
599       fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
600                       zFilename);
601       return;
602     }
603   }
604   memsys3Enter();
605   fprintf(out, "CHUNKS:\n");
606   for(i=1; i<=mem3.nPool; i+=size/4){
607     size = mem3.aPool[i-1].u.hdr.size4x;
608     if( size/4<=1 ){
609       fprintf(out, "%p size error\n", &mem3.aPool[i]);
610       assert( 0 );
611       break;
612     }
613     if( (size&1)==0 && mem3.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){
614       fprintf(out, "%p tail size does not match\n", &mem3.aPool[i]);
615       assert( 0 );
616       break;
617     }
618     if( ((mem3.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){
619       fprintf(out, "%p tail checkout bit is incorrect\n", &mem3.aPool[i]);
620       assert( 0 );
621       break;
622     }
623     if( size&1 ){
624       fprintf(out, "%p %6d bytes checked out\n", &mem3.aPool[i], (size/4)*8-8);
625     }else{
626       fprintf(out, "%p %6d bytes free%s\n", &mem3.aPool[i], (size/4)*8-8,
627                   i==mem3.iKeyBlk ? " **key**" : "");
628     }
629   }
630   for(i=0; i<MX_SMALL-1; i++){
631     if( mem3.aiSmall[i]==0 ) continue;
632     fprintf(out, "small(%2d):", i);
633     for(j = mem3.aiSmall[i]; j>0; j=mem3.aPool[j].u.list.next){
634       fprintf(out, " %p(%d)", &mem3.aPool[j],
635               (mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
636     }
637     fprintf(out, "\n");
638   }
639   for(i=0; i<N_HASH; i++){
640     if( mem3.aiHash[i]==0 ) continue;
641     fprintf(out, "hash(%2d):", i);
642     for(j = mem3.aiHash[i]; j>0; j=mem3.aPool[j].u.list.next){
643       fprintf(out, " %p(%d)", &mem3.aPool[j],
644               (mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
645     }
646     fprintf(out, "\n");
647   }
648   fprintf(out, "key=%d\n", mem3.iKeyBlk);
649   fprintf(out, "nowUsed=%d\n", mem3.nPool*8 - mem3.szKeyBlk*8);
650   fprintf(out, "mxUsed=%d\n", mem3.nPool*8 - mem3.mnKeyBlk*8);
651   sqlite3_mutex_leave(mem3.mutex);
652   if( out==stdout ){
653     fflush(stdout);
654   }else{
655     fclose(out);
656   }
657 #else
658   UNUSED_PARAMETER(zFilename);
659 #endif
660 }
661 
662 /*
663 ** This routine is the only routine in this file with external
664 ** linkage.
665 **
666 ** Populate the low-level memory allocation function pointers in
667 ** sqlite3GlobalConfig.m with pointers to the routines in this file. The
668 ** arguments specify the block of memory to manage.
669 **
670 ** This routine is only called by sqlite3_config(), and therefore
671 ** is not required to be threadsafe (it is not).
672 */
sqlite3MemGetMemsys3(void)673 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void){
674   static const sqlite3_mem_methods mempoolMethods = {
675      memsys3Malloc,
676      memsys3Free,
677      memsys3Realloc,
678      memsys3Size,
679      memsys3Roundup,
680      memsys3Init,
681      memsys3Shutdown,
682      0
683   };
684   return &mempoolMethods;
685 }
686 
687 #endif /* SQLITE_ENABLE_MEMSYS3 */
688