1 /*
2 ** 2007 October 14
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains the C functions that implement a memory
13 ** allocation subsystem for use by SQLite.
14 **
15 ** This version of the memory allocation subsystem omits all
16 ** use of malloc(). The application gives SQLite a block of memory
17 ** before calling sqlite3_initialize() from which allocations
18 ** are made and returned by the xMalloc() and xRealloc()
19 ** implementations. Once sqlite3_initialize() has been called,
20 ** the amount of memory available to SQLite is fixed and cannot
21 ** be changed.
22 **
23 ** This version of the memory allocation subsystem is included
24 ** in the build only if SQLITE_ENABLE_MEMSYS5 is defined.
25 **
26 ** This memory allocator uses the following algorithm:
27 **
28 **   1.  All memory allocation sizes are rounded up to a power of 2.
29 **
30 **   2.  If two adjacent free blocks are the halves of a larger block,
31 **       then the two blocks are coalesced into the single larger block.
32 **
33 **   3.  New memory is allocated from the first available free block.
34 **
35 ** This algorithm is described in: J. M. Robson. "Bounds for Some Functions
36 ** Concerning Dynamic Storage Allocation". Journal of the Association for
37 ** Computing Machinery, Volume 21, Number 8, July 1974, pages 491-499.
38 **
39 ** Let n be the size of the largest allocation divided by the minimum
40 ** allocation size (after rounding all sizes up to a power of 2.)  Let M
41 ** be the maximum amount of memory ever outstanding at one time.  Let
42 ** N be the total amount of memory available for allocation.  Robson
43 ** proved that this memory allocator will never breakdown due to
44 ** fragmentation as long as the following constraint holds:
45 **
46 **      N >=  M*(1 + log2(n)/2) - n + 1
47 **
48 ** The sqlite3_status() logic tracks the maximum values of n and M so
49 ** that an application can, at any time, verify this constraint.
50 */
51 #include "sqliteInt.h"
52 
53 /*
54 ** This version of the memory allocator is used only when
55 ** SQLITE_ENABLE_MEMSYS5 is defined.
56 */
57 #ifdef SQLITE_ENABLE_MEMSYS5
58 
59 /*
60 ** A minimum allocation is an instance of the following structure.
61 ** Larger allocations are an array of these structures where the
62 ** size of the array is a power of 2.
63 **
64 ** The size of this object must be a power of two.  That fact is
65 ** verified in memsys5Init().
66 */
67 typedef struct Mem5Link Mem5Link;
68 struct Mem5Link {
69   int next;       /* Index of next free chunk */
70   int prev;       /* Index of previous free chunk */
71 };
72 
73 /*
74 ** Maximum size of any allocation is ((1<<LOGMAX)*mem5.szAtom). Since
75 ** mem5.szAtom is always at least 8 and 32-bit integers are used,
76 ** it is not actually possible to reach this limit.
77 */
78 #define LOGMAX 30
79 
80 /*
81 ** Masks used for mem5.aCtrl[] elements.
82 */
83 #define CTRL_LOGSIZE  0x1f    /* Log2 Size of this block */
84 #define CTRL_FREE     0x20    /* True if not checked out */
85 
86 /*
87 ** All of the static variables used by this module are collected
88 ** into a single structure named "mem5".  This is to keep the
89 ** static variables organized and to reduce namespace pollution
90 ** when this module is combined with other in the amalgamation.
91 */
92 static SQLITE_WSD struct Mem5Global {
93   /*
94   ** Memory available for allocation
95   */
96   int szAtom;      /* Smallest possible allocation in bytes */
97   int nBlock;      /* Number of szAtom sized blocks in zPool */
98   u8 *zPool;       /* Memory available to be allocated */
99 
100   /*
101   ** Mutex to control access to the memory allocation subsystem.
102   */
103   sqlite3_mutex *mutex;
104 
105 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
106   /*
107   ** Performance statistics
108   */
109   u64 nAlloc;         /* Total number of calls to malloc */
110   u64 totalAlloc;     /* Total of all malloc calls - includes internal frag */
111   u64 totalExcess;    /* Total internal fragmentation */
112   u32 currentOut;     /* Current checkout, including internal fragmentation */
113   u32 currentCount;   /* Current number of distinct checkouts */
114   u32 maxOut;         /* Maximum instantaneous currentOut */
115   u32 maxCount;       /* Maximum instantaneous currentCount */
116   u32 maxRequest;     /* Largest allocation (exclusive of internal frag) */
117 #endif
118 
119   /*
120   ** Lists of free blocks.  aiFreelist[0] is a list of free blocks of
121   ** size mem5.szAtom.  aiFreelist[1] holds blocks of size szAtom*2.
122   ** aiFreelist[2] holds free blocks of size szAtom*4.  And so forth.
123   */
124   int aiFreelist[LOGMAX+1];
125 
126   /*
127   ** Space for tracking which blocks are checked out and the size
128   ** of each block.  One byte per block.
129   */
130   u8 *aCtrl;
131 
132 } mem5;
133 
134 /*
135 ** Access the static variable through a macro for SQLITE_OMIT_WSD.
136 */
137 #define mem5 GLOBAL(struct Mem5Global, mem5)
138 
139 /*
140 ** Assuming mem5.zPool is divided up into an array of Mem5Link
141 ** structures, return a pointer to the idx-th such link.
142 */
143 #define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.szAtom]))
144 
145 /*
146 ** Unlink the chunk at mem5.aPool[i] from list it is currently
147 ** on.  It should be found on mem5.aiFreelist[iLogsize].
148 */
memsys5Unlink(int i,int iLogsize)149 static void memsys5Unlink(int i, int iLogsize){
150   int next, prev;
151   assert( i>=0 && i<mem5.nBlock );
152   assert( iLogsize>=0 && iLogsize<=LOGMAX );
153   assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
154 
155   next = MEM5LINK(i)->next;
156   prev = MEM5LINK(i)->prev;
157   if( prev<0 ){
158     mem5.aiFreelist[iLogsize] = next;
159   }else{
160     MEM5LINK(prev)->next = next;
161   }
162   if( next>=0 ){
163     MEM5LINK(next)->prev = prev;
164   }
165 }
166 
167 /*
168 ** Link the chunk at mem5.aPool[i] so that is on the iLogsize
169 ** free list.
170 */
memsys5Link(int i,int iLogsize)171 static void memsys5Link(int i, int iLogsize){
172   int x;
173   assert( sqlite3_mutex_held(mem5.mutex) );
174   assert( i>=0 && i<mem5.nBlock );
175   assert( iLogsize>=0 && iLogsize<=LOGMAX );
176   assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
177 
178   x = MEM5LINK(i)->next = mem5.aiFreelist[iLogsize];
179   MEM5LINK(i)->prev = -1;
180   if( x>=0 ){
181     assert( x<mem5.nBlock );
182     MEM5LINK(x)->prev = i;
183   }
184   mem5.aiFreelist[iLogsize] = i;
185 }
186 
187 /*
188 ** Obtain or release the mutex needed to access global data structures.
189 */
memsys5Enter(void)190 static void memsys5Enter(void){
191   sqlite3_mutex_enter(mem5.mutex);
192 }
memsys5Leave(void)193 static void memsys5Leave(void){
194   sqlite3_mutex_leave(mem5.mutex);
195 }
196 
197 /*
198 ** Return the size of an outstanding allocation, in bytes.
199 ** This only works for chunks that are currently checked out.
200 */
memsys5Size(void * p)201 static int memsys5Size(void *p){
202   int iSize, i;
203   assert( p!=0 );
204   i = (int)(((u8 *)p-mem5.zPool)/mem5.szAtom);
205   assert( i>=0 && i<mem5.nBlock );
206   iSize = mem5.szAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE));
207   return iSize;
208 }
209 
210 /*
211 ** Return a block of memory of at least nBytes in size.
212 ** Return NULL if unable.  Return NULL if nBytes==0.
213 **
214 ** The caller guarantees that nByte is positive.
215 **
216 ** The caller has obtained a mutex prior to invoking this
217 ** routine so there is never any chance that two or more
218 ** threads can be in this routine at the same time.
219 */
memsys5MallocUnsafe(int nByte)220 static void *memsys5MallocUnsafe(int nByte){
221   int i;           /* Index of a mem5.aPool[] slot */
222   int iBin;        /* Index into mem5.aiFreelist[] */
223   int iFullSz;     /* Size of allocation rounded up to power of 2 */
224   int iLogsize;    /* Log2 of iFullSz/POW2_MIN */
225 
226   /* nByte must be a positive */
227   assert( nByte>0 );
228 
229   /* No more than 1GiB per allocation */
230   if( nByte > 0x40000000 ) return 0;
231 
232 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
233   /* Keep track of the maximum allocation request.  Even unfulfilled
234   ** requests are counted */
235   if( (u32)nByte>mem5.maxRequest ){
236     mem5.maxRequest = nByte;
237   }
238 #endif
239 
240 
241   /* Round nByte up to the next valid power of two */
242   for(iFullSz=mem5.szAtom,iLogsize=0; iFullSz<nByte; iFullSz*=2,iLogsize++){}
243 
244   /* Make sure mem5.aiFreelist[iLogsize] contains at least one free
245   ** block.  If not, then split a block of the next larger power of
246   ** two in order to create a new free block of size iLogsize.
247   */
248   for(iBin=iLogsize; iBin<=LOGMAX && mem5.aiFreelist[iBin]<0; iBin++){}
249   if( iBin>LOGMAX ){
250     testcase( sqlite3GlobalConfig.xLog!=0 );
251     sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes", nByte);
252     return 0;
253   }
254   i = mem5.aiFreelist[iBin];
255   memsys5Unlink(i, iBin);
256   while( iBin>iLogsize ){
257     int newSize;
258 
259     iBin--;
260     newSize = 1 << iBin;
261     mem5.aCtrl[i+newSize] = CTRL_FREE | iBin;
262     memsys5Link(i+newSize, iBin);
263   }
264   mem5.aCtrl[i] = iLogsize;
265 
266 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
267   /* Update allocator performance statistics. */
268   mem5.nAlloc++;
269   mem5.totalAlloc += iFullSz;
270   mem5.totalExcess += iFullSz - nByte;
271   mem5.currentCount++;
272   mem5.currentOut += iFullSz;
273   if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount;
274   if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut;
275 #endif
276 
277 #ifdef SQLITE_DEBUG
278   /* Make sure the allocated memory does not assume that it is set to zero
279   ** or retains a value from a previous allocation */
280   memset(&mem5.zPool[i*mem5.szAtom], 0xAA, iFullSz);
281 #endif
282 
283   /* Return a pointer to the allocated memory. */
284   return (void*)&mem5.zPool[i*mem5.szAtom];
285 }
286 
287 /*
288 ** Free an outstanding memory allocation.
289 */
memsys5FreeUnsafe(void * pOld)290 static void memsys5FreeUnsafe(void *pOld){
291   u32 size, iLogsize;
292   int iBlock;
293 
294   /* Set iBlock to the index of the block pointed to by pOld in
295   ** the array of mem5.szAtom byte blocks pointed to by mem5.zPool.
296   */
297   iBlock = (int)(((u8 *)pOld-mem5.zPool)/mem5.szAtom);
298 
299   /* Check that the pointer pOld points to a valid, non-free block. */
300   assert( iBlock>=0 && iBlock<mem5.nBlock );
301   assert( ((u8 *)pOld-mem5.zPool)%mem5.szAtom==0 );
302   assert( (mem5.aCtrl[iBlock] & CTRL_FREE)==0 );
303 
304   iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE;
305   size = 1<<iLogsize;
306   assert( iBlock+size-1<(u32)mem5.nBlock );
307 
308   mem5.aCtrl[iBlock] |= CTRL_FREE;
309   mem5.aCtrl[iBlock+size-1] |= CTRL_FREE;
310 
311 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
312   assert( mem5.currentCount>0 );
313   assert( mem5.currentOut>=(size*mem5.szAtom) );
314   mem5.currentCount--;
315   mem5.currentOut -= size*mem5.szAtom;
316   assert( mem5.currentOut>0 || mem5.currentCount==0 );
317   assert( mem5.currentCount>0 || mem5.currentOut==0 );
318 #endif
319 
320   mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
321   while( ALWAYS(iLogsize<LOGMAX) ){
322     int iBuddy;
323     if( (iBlock>>iLogsize) & 1 ){
324       iBuddy = iBlock - size;
325       assert( iBuddy>=0 );
326     }else{
327       iBuddy = iBlock + size;
328       if( iBuddy>=mem5.nBlock ) break;
329     }
330     if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break;
331     memsys5Unlink(iBuddy, iLogsize);
332     iLogsize++;
333     if( iBuddy<iBlock ){
334       mem5.aCtrl[iBuddy] = CTRL_FREE | iLogsize;
335       mem5.aCtrl[iBlock] = 0;
336       iBlock = iBuddy;
337     }else{
338       mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
339       mem5.aCtrl[iBuddy] = 0;
340     }
341     size *= 2;
342   }
343 
344 #ifdef SQLITE_DEBUG
345   /* Overwrite freed memory with the 0x55 bit pattern to verify that it is
346   ** not used after being freed */
347   memset(&mem5.zPool[iBlock*mem5.szAtom], 0x55, size);
348 #endif
349 
350   memsys5Link(iBlock, iLogsize);
351 }
352 
353 /*
354 ** Allocate nBytes of memory.
355 */
memsys5Malloc(int nBytes)356 static void *memsys5Malloc(int nBytes){
357   sqlite3_int64 *p = 0;
358   if( nBytes>0 ){
359     memsys5Enter();
360     p = memsys5MallocUnsafe(nBytes);
361     memsys5Leave();
362   }
363   return (void*)p;
364 }
365 
366 /*
367 ** Free memory.
368 **
369 ** The outer layer memory allocator prevents this routine from
370 ** being called with pPrior==0.
371 */
memsys5Free(void * pPrior)372 static void memsys5Free(void *pPrior){
373   assert( pPrior!=0 );
374   memsys5Enter();
375   memsys5FreeUnsafe(pPrior);
376   memsys5Leave();
377 }
378 
379 /*
380 ** Change the size of an existing memory allocation.
381 **
382 ** The outer layer memory allocator prevents this routine from
383 ** being called with pPrior==0.
384 **
385 ** nBytes is always a value obtained from a prior call to
386 ** memsys5Round().  Hence nBytes is always a non-negative power
387 ** of two.  If nBytes==0 that means that an oversize allocation
388 ** (an allocation larger than 0x40000000) was requested and this
389 ** routine should return 0 without freeing pPrior.
390 */
memsys5Realloc(void * pPrior,int nBytes)391 static void *memsys5Realloc(void *pPrior, int nBytes){
392   int nOld;
393   void *p;
394   assert( pPrior!=0 );
395   assert( (nBytes&(nBytes-1))==0 );  /* EV: R-46199-30249 */
396   assert( nBytes>=0 );
397   if( nBytes==0 ){
398     return 0;
399   }
400   nOld = memsys5Size(pPrior);
401   if( nBytes<=nOld ){
402     return pPrior;
403   }
404   p = memsys5Malloc(nBytes);
405   if( p ){
406     memcpy(p, pPrior, nOld);
407     memsys5Free(pPrior);
408   }
409   return p;
410 }
411 
412 /*
413 ** Round up a request size to the next valid allocation size.  If
414 ** the allocation is too large to be handled by this allocation system,
415 ** return 0.
416 **
417 ** All allocations must be a power of two and must be expressed by a
418 ** 32-bit signed integer.  Hence the largest allocation is 0x40000000
419 ** or 1073741824 bytes.
420 */
memsys5Roundup(int n)421 static int memsys5Roundup(int n){
422   int iFullSz;
423   if( n > 0x40000000 ) return 0;
424   for(iFullSz=mem5.szAtom; iFullSz<n; iFullSz *= 2);
425   return iFullSz;
426 }
427 
428 /*
429 ** Return the ceiling of the logarithm base 2 of iValue.
430 **
431 ** Examples:   memsys5Log(1) -> 0
432 **             memsys5Log(2) -> 1
433 **             memsys5Log(4) -> 2
434 **             memsys5Log(5) -> 3
435 **             memsys5Log(8) -> 3
436 **             memsys5Log(9) -> 4
437 */
memsys5Log(int iValue)438 static int memsys5Log(int iValue){
439   int iLog;
440   for(iLog=0; (iLog<(int)((sizeof(int)*8)-1)) && (1<<iLog)<iValue; iLog++);
441   return iLog;
442 }
443 
444 /*
445 ** Initialize the memory allocator.
446 **
447 ** This routine is not threadsafe.  The caller must be holding a mutex
448 ** to prevent multiple threads from entering at the same time.
449 */
memsys5Init(void * NotUsed)450 static int memsys5Init(void *NotUsed){
451   int ii;            /* Loop counter */
452   int nByte;         /* Number of bytes of memory available to this allocator */
453   u8 *zByte;         /* Memory usable by this allocator */
454   int nMinLog;       /* Log base 2 of minimum allocation size in bytes */
455   int iOffset;       /* An offset into mem5.aCtrl[] */
456 
457   UNUSED_PARAMETER(NotUsed);
458 
459   /* For the purposes of this routine, disable the mutex */
460   mem5.mutex = 0;
461 
462   /* The size of a Mem5Link object must be a power of two.  Verify that
463   ** this is case.
464   */
465   assert( (sizeof(Mem5Link)&(sizeof(Mem5Link)-1))==0 );
466 
467   nByte = sqlite3GlobalConfig.nHeap;
468   zByte = (u8*)sqlite3GlobalConfig.pHeap;
469   assert( zByte!=0 );  /* sqlite3_config() does not allow otherwise */
470 
471   /* boundaries on sqlite3GlobalConfig.mnReq are enforced in sqlite3_config() */
472   nMinLog = memsys5Log(sqlite3GlobalConfig.mnReq);
473   mem5.szAtom = (1<<nMinLog);
474   while( (int)sizeof(Mem5Link)>mem5.szAtom ){
475     mem5.szAtom = mem5.szAtom << 1;
476   }
477 
478   mem5.nBlock = (nByte / (mem5.szAtom+sizeof(u8)));
479   mem5.zPool = zByte;
480   mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.szAtom];
481 
482   for(ii=0; ii<=LOGMAX; ii++){
483     mem5.aiFreelist[ii] = -1;
484   }
485 
486   iOffset = 0;
487   for(ii=LOGMAX; ii>=0; ii--){
488     int nAlloc = (1<<ii);
489     if( (iOffset+nAlloc)<=mem5.nBlock ){
490       mem5.aCtrl[iOffset] = ii | CTRL_FREE;
491       memsys5Link(iOffset, ii);
492       iOffset += nAlloc;
493     }
494     assert((iOffset+nAlloc)>mem5.nBlock);
495   }
496 
497   /* If a mutex is required for normal operation, allocate one */
498   if( sqlite3GlobalConfig.bMemstat==0 ){
499     mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
500   }
501 
502   return SQLITE_OK;
503 }
504 
505 /*
506 ** Deinitialize this module.
507 */
memsys5Shutdown(void * NotUsed)508 static void memsys5Shutdown(void *NotUsed){
509   UNUSED_PARAMETER(NotUsed);
510   mem5.mutex = 0;
511   return;
512 }
513 
514 #ifdef SQLITE_TEST
515 /*
516 ** Open the file indicated and write a log of all unfreed memory
517 ** allocations into that log.
518 */
sqlite3Memsys5Dump(const char * zFilename)519 void sqlite3Memsys5Dump(const char *zFilename){
520   FILE *out;
521   int i, j, n;
522   int nMinLog;
523 
524   if( zFilename==0 || zFilename[0]==0 ){
525     out = stdout;
526   }else{
527     out = fopen(zFilename, "w");
528     if( out==0 ){
529       fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
530                       zFilename);
531       return;
532     }
533   }
534   memsys5Enter();
535   nMinLog = memsys5Log(mem5.szAtom);
536   for(i=0; i<=LOGMAX && i+nMinLog<32; i++){
537     for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){}
538     fprintf(out, "freelist items of size %d: %d\n", mem5.szAtom << i, n);
539   }
540   fprintf(out, "mem5.nAlloc       = %llu\n", mem5.nAlloc);
541   fprintf(out, "mem5.totalAlloc   = %llu\n", mem5.totalAlloc);
542   fprintf(out, "mem5.totalExcess  = %llu\n", mem5.totalExcess);
543   fprintf(out, "mem5.currentOut   = %u\n", mem5.currentOut);
544   fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount);
545   fprintf(out, "mem5.maxOut       = %u\n", mem5.maxOut);
546   fprintf(out, "mem5.maxCount     = %u\n", mem5.maxCount);
547   fprintf(out, "mem5.maxRequest   = %u\n", mem5.maxRequest);
548   memsys5Leave();
549   if( out==stdout ){
550     fflush(stdout);
551   }else{
552     fclose(out);
553   }
554 }
555 #endif
556 
557 /*
558 ** This routine is the only routine in this file with external
559 ** linkage. It returns a pointer to a static sqlite3_mem_methods
560 ** struct populated with the memsys5 methods.
561 */
sqlite3MemGetMemsys5(void)562 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){
563   static const sqlite3_mem_methods memsys5Methods = {
564      memsys5Malloc,
565      memsys5Free,
566      memsys5Realloc,
567      memsys5Size,
568      memsys5Roundup,
569      memsys5Init,
570      memsys5Shutdown,
571      0
572   };
573   return &memsys5Methods;
574 }
575 
576 #endif /* SQLITE_ENABLE_MEMSYS5 */
577