1 /*
2 ** 2007 August 28
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains the C functions that implement mutexes for pthreads
13 */
14 #include "sqliteInt.h"
15 
16 /*
17 ** The code in this file is only used if we are compiling threadsafe
18 ** under unix with pthreads.
19 **
20 ** Note that this implementation requires a version of pthreads that
21 ** supports recursive mutexes.
22 */
23 #ifdef SQLITE_MUTEX_PTHREADS
24 
25 #include <pthread.h>
26 
27 /*
28 ** The sqlite3_mutex.id, sqlite3_mutex.nRef, and sqlite3_mutex.owner fields
29 ** are necessary under two condidtions:  (1) Debug builds and (2) using
30 ** home-grown mutexes.  Encapsulate these conditions into a single #define.
31 */
32 #if defined(SQLITE_DEBUG) || defined(SQLITE_HOMEGROWN_RECURSIVE_MUTEX)
33 # define SQLITE_MUTEX_NREF 1
34 #else
35 # define SQLITE_MUTEX_NREF 0
36 #endif
37 
38 /*
39 ** Each recursive mutex is an instance of the following structure.
40 */
41 struct sqlite3_mutex {
42   pthread_mutex_t mutex;     /* Mutex controlling the lock */
43 #if SQLITE_MUTEX_NREF || defined(SQLITE_ENABLE_API_ARMOR)
44   int id;                    /* Mutex type */
45 #endif
46 #if SQLITE_MUTEX_NREF
47   volatile int nRef;         /* Number of entrances */
48   volatile pthread_t owner;  /* Thread that is within this mutex */
49   int trace;                 /* True to trace changes */
50 #endif
51 };
52 #if SQLITE_MUTEX_NREF
53 # define SQLITE3_MUTEX_INITIALIZER(id) \
54      {PTHREAD_MUTEX_INITIALIZER,id,0,(pthread_t)0,0}
55 #elif defined(SQLITE_ENABLE_API_ARMOR)
56 # define SQLITE3_MUTEX_INITIALIZER(id) { PTHREAD_MUTEX_INITIALIZER, id }
57 #else
58 #define SQLITE3_MUTEX_INITIALIZER(id) { PTHREAD_MUTEX_INITIALIZER }
59 #endif
60 
61 /*
62 ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
63 ** intended for use only inside assert() statements.  On some platforms,
64 ** there might be race conditions that can cause these routines to
65 ** deliver incorrect results.  In particular, if pthread_equal() is
66 ** not an atomic operation, then these routines might delivery
67 ** incorrect results.  On most platforms, pthread_equal() is a
68 ** comparison of two integers and is therefore atomic.  But we are
69 ** told that HPUX is not such a platform.  If so, then these routines
70 ** will not always work correctly on HPUX.
71 **
72 ** On those platforms where pthread_equal() is not atomic, SQLite
73 ** should be compiled without -DSQLITE_DEBUG and with -DNDEBUG to
74 ** make sure no assert() statements are evaluated and hence these
75 ** routines are never called.
76 */
77 #if !defined(NDEBUG) || defined(SQLITE_DEBUG)
pthreadMutexHeld(sqlite3_mutex * p)78 static int pthreadMutexHeld(sqlite3_mutex *p){
79   return (p->nRef!=0 && pthread_equal(p->owner, pthread_self()));
80 }
pthreadMutexNotheld(sqlite3_mutex * p)81 static int pthreadMutexNotheld(sqlite3_mutex *p){
82   return p->nRef==0 || pthread_equal(p->owner, pthread_self())==0;
83 }
84 #endif
85 
86 /*
87 ** Try to provide a memory barrier operation, needed for initialization
88 ** and also for the implementation of xShmBarrier in the VFS in cases
89 ** where SQLite is compiled without mutexes.
90 */
sqlite3MemoryBarrier(void)91 void sqlite3MemoryBarrier(void){
92 #if defined(SQLITE_MEMORY_BARRIER)
93   SQLITE_MEMORY_BARRIER;
94 #elif defined(__GNUC__) && GCC_VERSION>=4001000
95   __sync_synchronize();
96 #endif
97 }
98 
99 /*
100 ** Initialize and deinitialize the mutex subsystem.
101 */
pthreadMutexInit(void)102 static int pthreadMutexInit(void){ return SQLITE_OK; }
pthreadMutexEnd(void)103 static int pthreadMutexEnd(void){ return SQLITE_OK; }
104 
105 /*
106 ** The sqlite3_mutex_alloc() routine allocates a new
107 ** mutex and returns a pointer to it.  If it returns NULL
108 ** that means that a mutex could not be allocated.  SQLite
109 ** will unwind its stack and return an error.  The argument
110 ** to sqlite3_mutex_alloc() is one of these integer constants:
111 **
112 ** <ul>
113 ** <li>  SQLITE_MUTEX_FAST
114 ** <li>  SQLITE_MUTEX_RECURSIVE
115 ** <li>  SQLITE_MUTEX_STATIC_MAIN
116 ** <li>  SQLITE_MUTEX_STATIC_MEM
117 ** <li>  SQLITE_MUTEX_STATIC_OPEN
118 ** <li>  SQLITE_MUTEX_STATIC_PRNG
119 ** <li>  SQLITE_MUTEX_STATIC_LRU
120 ** <li>  SQLITE_MUTEX_STATIC_PMEM
121 ** <li>  SQLITE_MUTEX_STATIC_APP1
122 ** <li>  SQLITE_MUTEX_STATIC_APP2
123 ** <li>  SQLITE_MUTEX_STATIC_APP3
124 ** <li>  SQLITE_MUTEX_STATIC_VFS1
125 ** <li>  SQLITE_MUTEX_STATIC_VFS2
126 ** <li>  SQLITE_MUTEX_STATIC_VFS3
127 ** </ul>
128 **
129 ** The first two constants cause sqlite3_mutex_alloc() to create
130 ** a new mutex.  The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
131 ** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
132 ** The mutex implementation does not need to make a distinction
133 ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
134 ** not want to.  But SQLite will only request a recursive mutex in
135 ** cases where it really needs one.  If a faster non-recursive mutex
136 ** implementation is available on the host platform, the mutex subsystem
137 ** might return such a mutex in response to SQLITE_MUTEX_FAST.
138 **
139 ** The other allowed parameters to sqlite3_mutex_alloc() each return
140 ** a pointer to a static preexisting mutex.  Six static mutexes are
141 ** used by the current version of SQLite.  Future versions of SQLite
142 ** may add additional static mutexes.  Static mutexes are for internal
143 ** use by SQLite only.  Applications that use SQLite mutexes should
144 ** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
145 ** SQLITE_MUTEX_RECURSIVE.
146 **
147 ** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
148 ** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
149 ** returns a different mutex on every call.  But for the static
150 ** mutex types, the same mutex is returned on every call that has
151 ** the same type number.
152 */
pthreadMutexAlloc(int iType)153 static sqlite3_mutex *pthreadMutexAlloc(int iType){
154   static sqlite3_mutex staticMutexes[] = {
155     SQLITE3_MUTEX_INITIALIZER(2),
156     SQLITE3_MUTEX_INITIALIZER(3),
157     SQLITE3_MUTEX_INITIALIZER(4),
158     SQLITE3_MUTEX_INITIALIZER(5),
159     SQLITE3_MUTEX_INITIALIZER(6),
160     SQLITE3_MUTEX_INITIALIZER(7),
161     SQLITE3_MUTEX_INITIALIZER(8),
162     SQLITE3_MUTEX_INITIALIZER(9),
163     SQLITE3_MUTEX_INITIALIZER(10),
164     SQLITE3_MUTEX_INITIALIZER(11),
165     SQLITE3_MUTEX_INITIALIZER(12),
166     SQLITE3_MUTEX_INITIALIZER(13)
167   };
168   sqlite3_mutex *p;
169   switch( iType ){
170     case SQLITE_MUTEX_RECURSIVE: {
171       p = sqlite3MallocZero( sizeof(*p) );
172       if( p ){
173 #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
174         /* If recursive mutexes are not available, we will have to
175         ** build our own.  See below. */
176         pthread_mutex_init(&p->mutex, 0);
177 #else
178         /* Use a recursive mutex if it is available */
179         pthread_mutexattr_t recursiveAttr;
180         pthread_mutexattr_init(&recursiveAttr);
181         pthread_mutexattr_settype(&recursiveAttr, PTHREAD_MUTEX_RECURSIVE);
182         pthread_mutex_init(&p->mutex, &recursiveAttr);
183         pthread_mutexattr_destroy(&recursiveAttr);
184 #endif
185 #if SQLITE_MUTEX_NREF || defined(SQLITE_ENABLE_API_ARMOR)
186         p->id = SQLITE_MUTEX_RECURSIVE;
187 #endif
188       }
189       break;
190     }
191     case SQLITE_MUTEX_FAST: {
192       p = sqlite3MallocZero( sizeof(*p) );
193       if( p ){
194         pthread_mutex_init(&p->mutex, 0);
195 #if SQLITE_MUTEX_NREF || defined(SQLITE_ENABLE_API_ARMOR)
196         p->id = SQLITE_MUTEX_FAST;
197 #endif
198       }
199       break;
200     }
201     default: {
202 #ifdef SQLITE_ENABLE_API_ARMOR
203       if( iType-2<0 || iType-2>=ArraySize(staticMutexes) ){
204         (void)SQLITE_MISUSE_BKPT;
205         return 0;
206       }
207 #endif
208       p = &staticMutexes[iType-2];
209       break;
210     }
211   }
212 #if SQLITE_MUTEX_NREF || defined(SQLITE_ENABLE_API_ARMOR)
213   assert( p==0 || p->id==iType );
214 #endif
215   return p;
216 }
217 
218 
219 /*
220 ** This routine deallocates a previously
221 ** allocated mutex.  SQLite is careful to deallocate every
222 ** mutex that it allocates.
223 */
pthreadMutexFree(sqlite3_mutex * p)224 static void pthreadMutexFree(sqlite3_mutex *p){
225   assert( p->nRef==0 );
226 #if SQLITE_ENABLE_API_ARMOR
227   if( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE )
228 #endif
229   {
230     pthread_mutex_destroy(&p->mutex);
231     sqlite3_free(p);
232   }
233 #ifdef SQLITE_ENABLE_API_ARMOR
234   else{
235     (void)SQLITE_MISUSE_BKPT;
236   }
237 #endif
238 }
239 
240 /*
241 ** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
242 ** to enter a mutex.  If another thread is already within the mutex,
243 ** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
244 ** SQLITE_BUSY.  The sqlite3_mutex_try() interface returns SQLITE_OK
245 ** upon successful entry.  Mutexes created using SQLITE_MUTEX_RECURSIVE can
246 ** be entered multiple times by the same thread.  In such cases the,
247 ** mutex must be exited an equal number of times before another thread
248 ** can enter.  If the same thread tries to enter any other kind of mutex
249 ** more than once, the behavior is undefined.
250 */
pthreadMutexEnter(sqlite3_mutex * p)251 static void pthreadMutexEnter(sqlite3_mutex *p){
252   assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) );
253 
254 #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
255   /* If recursive mutexes are not available, then we have to grow
256   ** our own.  This implementation assumes that pthread_equal()
257   ** is atomic - that it cannot be deceived into thinking self
258   ** and p->owner are equal if p->owner changes between two values
259   ** that are not equal to self while the comparison is taking place.
260   ** This implementation also assumes a coherent cache - that
261   ** separate processes cannot read different values from the same
262   ** address at the same time.  If either of these two conditions
263   ** are not met, then the mutexes will fail and problems will result.
264   */
265   {
266     pthread_t self = pthread_self();
267     if( p->nRef>0 && pthread_equal(p->owner, self) ){
268       p->nRef++;
269     }else{
270       pthread_mutex_lock(&p->mutex);
271       assert( p->nRef==0 );
272       p->owner = self;
273       p->nRef = 1;
274     }
275   }
276 #else
277   /* Use the built-in recursive mutexes if they are available.
278   */
279   pthread_mutex_lock(&p->mutex);
280 #if SQLITE_MUTEX_NREF
281   assert( p->nRef>0 || p->owner==0 );
282   p->owner = pthread_self();
283   p->nRef++;
284 #endif
285 #endif
286 
287 #ifdef SQLITE_DEBUG
288   if( p->trace ){
289     printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
290   }
291 #endif
292 }
pthreadMutexTry(sqlite3_mutex * p)293 static int pthreadMutexTry(sqlite3_mutex *p){
294   int rc;
295   assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) );
296 
297 #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
298   /* If recursive mutexes are not available, then we have to grow
299   ** our own.  This implementation assumes that pthread_equal()
300   ** is atomic - that it cannot be deceived into thinking self
301   ** and p->owner are equal if p->owner changes between two values
302   ** that are not equal to self while the comparison is taking place.
303   ** This implementation also assumes a coherent cache - that
304   ** separate processes cannot read different values from the same
305   ** address at the same time.  If either of these two conditions
306   ** are not met, then the mutexes will fail and problems will result.
307   */
308   {
309     pthread_t self = pthread_self();
310     if( p->nRef>0 && pthread_equal(p->owner, self) ){
311       p->nRef++;
312       rc = SQLITE_OK;
313     }else if( pthread_mutex_trylock(&p->mutex)==0 ){
314       assert( p->nRef==0 );
315       p->owner = self;
316       p->nRef = 1;
317       rc = SQLITE_OK;
318     }else{
319       rc = SQLITE_BUSY;
320     }
321   }
322 #else
323   /* Use the built-in recursive mutexes if they are available.
324   */
325   if( pthread_mutex_trylock(&p->mutex)==0 ){
326 #if SQLITE_MUTEX_NREF
327     p->owner = pthread_self();
328     p->nRef++;
329 #endif
330     rc = SQLITE_OK;
331   }else{
332     rc = SQLITE_BUSY;
333   }
334 #endif
335 
336 #ifdef SQLITE_DEBUG
337   if( rc==SQLITE_OK && p->trace ){
338     printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
339   }
340 #endif
341   return rc;
342 }
343 
344 /*
345 ** The sqlite3_mutex_leave() routine exits a mutex that was
346 ** previously entered by the same thread.  The behavior
347 ** is undefined if the mutex is not currently entered or
348 ** is not currently allocated.  SQLite will never do either.
349 */
pthreadMutexLeave(sqlite3_mutex * p)350 static void pthreadMutexLeave(sqlite3_mutex *p){
351   assert( pthreadMutexHeld(p) );
352 #if SQLITE_MUTEX_NREF
353   p->nRef--;
354   if( p->nRef==0 ) p->owner = 0;
355 #endif
356   assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
357 
358 #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
359   if( p->nRef==0 ){
360     pthread_mutex_unlock(&p->mutex);
361   }
362 #else
363   pthread_mutex_unlock(&p->mutex);
364 #endif
365 
366 #ifdef SQLITE_DEBUG
367   if( p->trace ){
368     printf("leave mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
369   }
370 #endif
371 }
372 
sqlite3DefaultMutex(void)373 sqlite3_mutex_methods const *sqlite3DefaultMutex(void){
374   static const sqlite3_mutex_methods sMutex = {
375     pthreadMutexInit,
376     pthreadMutexEnd,
377     pthreadMutexAlloc,
378     pthreadMutexFree,
379     pthreadMutexEnter,
380     pthreadMutexTry,
381     pthreadMutexLeave,
382 #ifdef SQLITE_DEBUG
383     pthreadMutexHeld,
384     pthreadMutexNotheld
385 #else
386     0,
387     0
388 #endif
389   };
390 
391   return &sMutex;
392 }
393 
394 #endif /* SQLITE_MUTEX_PTHREADS */
395