1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
14 */
15 #include "sqliteInt.h"
16 #include "vdbeInt.h"
17 
18 /* Forward references */
19 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef);
20 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
21 
22 /*
23 ** Create a new virtual database engine.
24 */
sqlite3VdbeCreate(Parse * pParse)25 Vdbe *sqlite3VdbeCreate(Parse *pParse){
26   sqlite3 *db = pParse->db;
27   Vdbe *p;
28   p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) );
29   if( p==0 ) return 0;
30   memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp));
31   p->db = db;
32   if( db->pVdbe ){
33     db->pVdbe->pPrev = p;
34   }
35   p->pNext = db->pVdbe;
36   p->pPrev = 0;
37   db->pVdbe = p;
38   p->iVdbeMagic = VDBE_MAGIC_INIT;
39   p->pParse = pParse;
40   pParse->pVdbe = p;
41   assert( pParse->aLabel==0 );
42   assert( pParse->nLabel==0 );
43   assert( p->nOpAlloc==0 );
44   assert( pParse->szOpAlloc==0 );
45   sqlite3VdbeAddOp2(p, OP_Init, 0, 1);
46   return p;
47 }
48 
49 /*
50 ** Return the Parse object that owns a Vdbe object.
51 */
sqlite3VdbeParser(Vdbe * p)52 Parse *sqlite3VdbeParser(Vdbe *p){
53   return p->pParse;
54 }
55 
56 /*
57 ** Change the error string stored in Vdbe.zErrMsg
58 */
sqlite3VdbeError(Vdbe * p,const char * zFormat,...)59 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
60   va_list ap;
61   sqlite3DbFree(p->db, p->zErrMsg);
62   va_start(ap, zFormat);
63   p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
64   va_end(ap);
65 }
66 
67 /*
68 ** Remember the SQL string for a prepared statement.
69 */
sqlite3VdbeSetSql(Vdbe * p,const char * z,int n,u8 prepFlags)70 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){
71   if( p==0 ) return;
72   p->prepFlags = prepFlags;
73   if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){
74     p->expmask = 0;
75   }
76   assert( p->zSql==0 );
77   p->zSql = sqlite3DbStrNDup(p->db, z, n);
78 }
79 
80 #ifdef SQLITE_ENABLE_NORMALIZE
81 /*
82 ** Add a new element to the Vdbe->pDblStr list.
83 */
sqlite3VdbeAddDblquoteStr(sqlite3 * db,Vdbe * p,const char * z)84 void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){
85   if( p ){
86     int n = sqlite3Strlen30(z);
87     DblquoteStr *pStr = sqlite3DbMallocRawNN(db,
88                             sizeof(*pStr)+n+1-sizeof(pStr->z));
89     if( pStr ){
90       pStr->pNextStr = p->pDblStr;
91       p->pDblStr = pStr;
92       memcpy(pStr->z, z, n+1);
93     }
94   }
95 }
96 #endif
97 
98 #ifdef SQLITE_ENABLE_NORMALIZE
99 /*
100 ** zId of length nId is a double-quoted identifier.  Check to see if
101 ** that identifier is really used as a string literal.
102 */
sqlite3VdbeUsesDoubleQuotedString(Vdbe * pVdbe,const char * zId)103 int sqlite3VdbeUsesDoubleQuotedString(
104   Vdbe *pVdbe,            /* The prepared statement */
105   const char *zId         /* The double-quoted identifier, already dequoted */
106 ){
107   DblquoteStr *pStr;
108   assert( zId!=0 );
109   if( pVdbe->pDblStr==0 ) return 0;
110   for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){
111     if( strcmp(zId, pStr->z)==0 ) return 1;
112   }
113   return 0;
114 }
115 #endif
116 
117 /*
118 ** Swap all content between two VDBE structures.
119 */
sqlite3VdbeSwap(Vdbe * pA,Vdbe * pB)120 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
121   Vdbe tmp, *pTmp;
122   char *zTmp;
123   assert( pA->db==pB->db );
124   tmp = *pA;
125   *pA = *pB;
126   *pB = tmp;
127   pTmp = pA->pNext;
128   pA->pNext = pB->pNext;
129   pB->pNext = pTmp;
130   pTmp = pA->pPrev;
131   pA->pPrev = pB->pPrev;
132   pB->pPrev = pTmp;
133   zTmp = pA->zSql;
134   pA->zSql = pB->zSql;
135   pB->zSql = zTmp;
136 #ifdef SQLITE_ENABLE_NORMALIZE
137   zTmp = pA->zNormSql;
138   pA->zNormSql = pB->zNormSql;
139   pB->zNormSql = zTmp;
140 #endif
141   pB->expmask = pA->expmask;
142   pB->prepFlags = pA->prepFlags;
143   memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter));
144   pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++;
145 }
146 
147 /*
148 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
149 ** than its current size. nOp is guaranteed to be less than or equal
150 ** to 1024/sizeof(Op).
151 **
152 ** If an out-of-memory error occurs while resizing the array, return
153 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
154 ** unchanged (this is so that any opcodes already allocated can be
155 ** correctly deallocated along with the rest of the Vdbe).
156 */
growOpArray(Vdbe * v,int nOp)157 static int growOpArray(Vdbe *v, int nOp){
158   VdbeOp *pNew;
159   Parse *p = v->pParse;
160 
161   /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
162   ** more frequent reallocs and hence provide more opportunities for
163   ** simulated OOM faults.  SQLITE_TEST_REALLOC_STRESS is generally used
164   ** during testing only.  With SQLITE_TEST_REALLOC_STRESS grow the op array
165   ** by the minimum* amount required until the size reaches 512.  Normal
166   ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
167   ** size of the op array or add 1KB of space, whichever is smaller. */
168 #ifdef SQLITE_TEST_REALLOC_STRESS
169   sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc
170                         : (sqlite3_int64)v->nOpAlloc+nOp);
171 #else
172   sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc
173                         : (sqlite3_int64)(1024/sizeof(Op)));
174   UNUSED_PARAMETER(nOp);
175 #endif
176 
177   /* Ensure that the size of a VDBE does not grow too large */
178   if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){
179     sqlite3OomFault(p->db);
180     return SQLITE_NOMEM;
181   }
182 
183   assert( nOp<=(1024/sizeof(Op)) );
184   assert( nNew>=(v->nOpAlloc+nOp) );
185   pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
186   if( pNew ){
187     p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
188     v->nOpAlloc = p->szOpAlloc/sizeof(Op);
189     v->aOp = pNew;
190   }
191   return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
192 }
193 
194 #ifdef SQLITE_DEBUG
195 /* This routine is just a convenient place to set a breakpoint that will
196 ** fire after each opcode is inserted and displayed using
197 ** "PRAGMA vdbe_addoptrace=on".  Parameters "pc" (program counter) and
198 ** pOp are available to make the breakpoint conditional.
199 **
200 ** Other useful labels for breakpoints include:
201 **   test_trace_breakpoint(pc,pOp)
202 **   sqlite3CorruptError(lineno)
203 **   sqlite3MisuseError(lineno)
204 **   sqlite3CantopenError(lineno)
205 */
test_addop_breakpoint(int pc,Op * pOp)206 static void test_addop_breakpoint(int pc, Op *pOp){
207   static int n = 0;
208   n++;
209 }
210 #endif
211 
212 /*
213 ** Add a new instruction to the list of instructions current in the
214 ** VDBE.  Return the address of the new instruction.
215 **
216 ** Parameters:
217 **
218 **    p               Pointer to the VDBE
219 **
220 **    op              The opcode for this instruction
221 **
222 **    p1, p2, p3      Operands
223 **
224 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
225 ** the sqlite3VdbeChangeP4() function to change the value of the P4
226 ** operand.
227 */
growOp3(Vdbe * p,int op,int p1,int p2,int p3)228 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
229   assert( p->nOpAlloc<=p->nOp );
230   if( growOpArray(p, 1) ) return 1;
231   assert( p->nOpAlloc>p->nOp );
232   return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
233 }
sqlite3VdbeAddOp3(Vdbe * p,int op,int p1,int p2,int p3)234 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
235   int i;
236   VdbeOp *pOp;
237 
238   i = p->nOp;
239   assert( p->iVdbeMagic==VDBE_MAGIC_INIT );
240   assert( op>=0 && op<0xff );
241   if( p->nOpAlloc<=i ){
242     return growOp3(p, op, p1, p2, p3);
243   }
244   p->nOp++;
245   pOp = &p->aOp[i];
246   pOp->opcode = (u8)op;
247   pOp->p5 = 0;
248   pOp->p1 = p1;
249   pOp->p2 = p2;
250   pOp->p3 = p3;
251   pOp->p4.p = 0;
252   pOp->p4type = P4_NOTUSED;
253 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
254   pOp->zComment = 0;
255 #endif
256 #ifdef SQLITE_DEBUG
257   if( p->db->flags & SQLITE_VdbeAddopTrace ){
258     sqlite3VdbePrintOp(0, i, &p->aOp[i]);
259     test_addop_breakpoint(i, &p->aOp[i]);
260   }
261 #endif
262 #ifdef VDBE_PROFILE
263   pOp->cycles = 0;
264   pOp->cnt = 0;
265 #endif
266 #ifdef SQLITE_VDBE_COVERAGE
267   pOp->iSrcLine = 0;
268 #endif
269   return i;
270 }
sqlite3VdbeAddOp0(Vdbe * p,int op)271 int sqlite3VdbeAddOp0(Vdbe *p, int op){
272   return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
273 }
sqlite3VdbeAddOp1(Vdbe * p,int op,int p1)274 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
275   return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
276 }
sqlite3VdbeAddOp2(Vdbe * p,int op,int p1,int p2)277 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
278   return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
279 }
280 
281 /* Generate code for an unconditional jump to instruction iDest
282 */
sqlite3VdbeGoto(Vdbe * p,int iDest)283 int sqlite3VdbeGoto(Vdbe *p, int iDest){
284   return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
285 }
286 
287 /* Generate code to cause the string zStr to be loaded into
288 ** register iDest
289 */
sqlite3VdbeLoadString(Vdbe * p,int iDest,const char * zStr)290 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
291   return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
292 }
293 
294 /*
295 ** Generate code that initializes multiple registers to string or integer
296 ** constants.  The registers begin with iDest and increase consecutively.
297 ** One register is initialized for each characgter in zTypes[].  For each
298 ** "s" character in zTypes[], the register is a string if the argument is
299 ** not NULL, or OP_Null if the value is a null pointer.  For each "i" character
300 ** in zTypes[], the register is initialized to an integer.
301 **
302 ** If the input string does not end with "X" then an OP_ResultRow instruction
303 ** is generated for the values inserted.
304 */
sqlite3VdbeMultiLoad(Vdbe * p,int iDest,const char * zTypes,...)305 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
306   va_list ap;
307   int i;
308   char c;
309   va_start(ap, zTypes);
310   for(i=0; (c = zTypes[i])!=0; i++){
311     if( c=='s' ){
312       const char *z = va_arg(ap, const char*);
313       sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0);
314     }else if( c=='i' ){
315       sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i);
316     }else{
317       goto skip_op_resultrow;
318     }
319   }
320   sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i);
321 skip_op_resultrow:
322   va_end(ap);
323 }
324 
325 /*
326 ** Add an opcode that includes the p4 value as a pointer.
327 */
sqlite3VdbeAddOp4(Vdbe * p,int op,int p1,int p2,int p3,const char * zP4,int p4type)328 int sqlite3VdbeAddOp4(
329   Vdbe *p,            /* Add the opcode to this VM */
330   int op,             /* The new opcode */
331   int p1,             /* The P1 operand */
332   int p2,             /* The P2 operand */
333   int p3,             /* The P3 operand */
334   const char *zP4,    /* The P4 operand */
335   int p4type          /* P4 operand type */
336 ){
337   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
338   sqlite3VdbeChangeP4(p, addr, zP4, p4type);
339   return addr;
340 }
341 
342 /*
343 ** Add an OP_Function or OP_PureFunc opcode.
344 **
345 ** The eCallCtx argument is information (typically taken from Expr.op2)
346 ** that describes the calling context of the function.  0 means a general
347 ** function call.  NC_IsCheck means called by a check constraint,
348 ** NC_IdxExpr means called as part of an index expression.  NC_PartIdx
349 ** means in the WHERE clause of a partial index.  NC_GenCol means called
350 ** while computing a generated column value.  0 is the usual case.
351 */
sqlite3VdbeAddFunctionCall(Parse * pParse,int p1,int p2,int p3,int nArg,const FuncDef * pFunc,int eCallCtx)352 int sqlite3VdbeAddFunctionCall(
353   Parse *pParse,        /* Parsing context */
354   int p1,               /* Constant argument mask */
355   int p2,               /* First argument register */
356   int p3,               /* Register into which results are written */
357   int nArg,             /* Number of argument */
358   const FuncDef *pFunc, /* The function to be invoked */
359   int eCallCtx          /* Calling context */
360 ){
361   Vdbe *v = pParse->pVdbe;
362   int nByte;
363   int addr;
364   sqlite3_context *pCtx;
365   assert( v );
366   nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*);
367   pCtx = sqlite3DbMallocRawNN(pParse->db, nByte);
368   if( pCtx==0 ){
369     assert( pParse->db->mallocFailed );
370     freeEphemeralFunction(pParse->db, (FuncDef*)pFunc);
371     return 0;
372   }
373   pCtx->pOut = 0;
374   pCtx->pFunc = (FuncDef*)pFunc;
375   pCtx->pVdbe = 0;
376   pCtx->isError = 0;
377   pCtx->argc = nArg;
378   pCtx->iOp = sqlite3VdbeCurrentAddr(v);
379   addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function,
380                            p1, p2, p3, (char*)pCtx, P4_FUNCCTX);
381   sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef);
382   return addr;
383 }
384 
385 /*
386 ** Add an opcode that includes the p4 value with a P4_INT64 or
387 ** P4_REAL type.
388 */
sqlite3VdbeAddOp4Dup8(Vdbe * p,int op,int p1,int p2,int p3,const u8 * zP4,int p4type)389 int sqlite3VdbeAddOp4Dup8(
390   Vdbe *p,            /* Add the opcode to this VM */
391   int op,             /* The new opcode */
392   int p1,             /* The P1 operand */
393   int p2,             /* The P2 operand */
394   int p3,             /* The P3 operand */
395   const u8 *zP4,      /* The P4 operand */
396   int p4type          /* P4 operand type */
397 ){
398   char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
399   if( p4copy ) memcpy(p4copy, zP4, 8);
400   return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
401 }
402 
403 #ifndef SQLITE_OMIT_EXPLAIN
404 /*
405 ** Return the address of the current EXPLAIN QUERY PLAN baseline.
406 ** 0 means "none".
407 */
sqlite3VdbeExplainParent(Parse * pParse)408 int sqlite3VdbeExplainParent(Parse *pParse){
409   VdbeOp *pOp;
410   if( pParse->addrExplain==0 ) return 0;
411   pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain);
412   return pOp->p2;
413 }
414 
415 /*
416 ** Set a debugger breakpoint on the following routine in order to
417 ** monitor the EXPLAIN QUERY PLAN code generation.
418 */
419 #if defined(SQLITE_DEBUG)
sqlite3ExplainBreakpoint(const char * z1,const char * z2)420 void sqlite3ExplainBreakpoint(const char *z1, const char *z2){
421   (void)z1;
422   (void)z2;
423 }
424 #endif
425 
426 /*
427 ** Add a new OP_Explain opcode.
428 **
429 ** If the bPush flag is true, then make this opcode the parent for
430 ** subsequent Explains until sqlite3VdbeExplainPop() is called.
431 */
sqlite3VdbeExplain(Parse * pParse,u8 bPush,const char * zFmt,...)432 void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){
433 #ifndef SQLITE_DEBUG
434   /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined.
435   ** But omit them (for performance) during production builds */
436   if( pParse->explain==2 )
437 #endif
438   {
439     char *zMsg;
440     Vdbe *v;
441     va_list ap;
442     int iThis;
443     va_start(ap, zFmt);
444     zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap);
445     va_end(ap);
446     v = pParse->pVdbe;
447     iThis = v->nOp;
448     sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0,
449                       zMsg, P4_DYNAMIC);
450     sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetOp(v,-1)->p4.z);
451     if( bPush){
452       pParse->addrExplain = iThis;
453     }
454   }
455 }
456 
457 /*
458 ** Pop the EXPLAIN QUERY PLAN stack one level.
459 */
sqlite3VdbeExplainPop(Parse * pParse)460 void sqlite3VdbeExplainPop(Parse *pParse){
461   sqlite3ExplainBreakpoint("POP", 0);
462   pParse->addrExplain = sqlite3VdbeExplainParent(pParse);
463 }
464 #endif /* SQLITE_OMIT_EXPLAIN */
465 
466 /*
467 ** Add an OP_ParseSchema opcode.  This routine is broken out from
468 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
469 ** as having been used.
470 **
471 ** The zWhere string must have been obtained from sqlite3_malloc().
472 ** This routine will take ownership of the allocated memory.
473 */
sqlite3VdbeAddParseSchemaOp(Vdbe * p,int iDb,char * zWhere,u16 p5)474 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere, u16 p5){
475   int j;
476   sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
477   sqlite3VdbeChangeP5(p, p5);
478   for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
479   sqlite3MayAbort(p->pParse);
480 }
481 
482 /*
483 ** Add an opcode that includes the p4 value as an integer.
484 */
sqlite3VdbeAddOp4Int(Vdbe * p,int op,int p1,int p2,int p3,int p4)485 int sqlite3VdbeAddOp4Int(
486   Vdbe *p,            /* Add the opcode to this VM */
487   int op,             /* The new opcode */
488   int p1,             /* The P1 operand */
489   int p2,             /* The P2 operand */
490   int p3,             /* The P3 operand */
491   int p4              /* The P4 operand as an integer */
492 ){
493   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
494   if( p->db->mallocFailed==0 ){
495     VdbeOp *pOp = &p->aOp[addr];
496     pOp->p4type = P4_INT32;
497     pOp->p4.i = p4;
498   }
499   return addr;
500 }
501 
502 /* Insert the end of a co-routine
503 */
sqlite3VdbeEndCoroutine(Vdbe * v,int regYield)504 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
505   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
506 
507   /* Clear the temporary register cache, thereby ensuring that each
508   ** co-routine has its own independent set of registers, because co-routines
509   ** might expect their registers to be preserved across an OP_Yield, and
510   ** that could cause problems if two or more co-routines are using the same
511   ** temporary register.
512   */
513   v->pParse->nTempReg = 0;
514   v->pParse->nRangeReg = 0;
515 }
516 
517 /*
518 ** Create a new symbolic label for an instruction that has yet to be
519 ** coded.  The symbolic label is really just a negative number.  The
520 ** label can be used as the P2 value of an operation.  Later, when
521 ** the label is resolved to a specific address, the VDBE will scan
522 ** through its operation list and change all values of P2 which match
523 ** the label into the resolved address.
524 **
525 ** The VDBE knows that a P2 value is a label because labels are
526 ** always negative and P2 values are suppose to be non-negative.
527 ** Hence, a negative P2 value is a label that has yet to be resolved.
528 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP
529 ** property.
530 **
531 ** Variable usage notes:
532 **
533 **     Parse.aLabel[x]     Stores the address that the x-th label resolves
534 **                         into.  For testing (SQLITE_DEBUG), unresolved
535 **                         labels stores -1, but that is not required.
536 **     Parse.nLabelAlloc   Number of slots allocated to Parse.aLabel[]
537 **     Parse.nLabel        The *negative* of the number of labels that have
538 **                         been issued.  The negative is stored because
539 **                         that gives a performance improvement over storing
540 **                         the equivalent positive value.
541 */
sqlite3VdbeMakeLabel(Parse * pParse)542 int sqlite3VdbeMakeLabel(Parse *pParse){
543   return --pParse->nLabel;
544 }
545 
546 /*
547 ** Resolve label "x" to be the address of the next instruction to
548 ** be inserted.  The parameter "x" must have been obtained from
549 ** a prior call to sqlite3VdbeMakeLabel().
550 */
resizeResolveLabel(Parse * p,Vdbe * v,int j)551 static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){
552   int nNewSize = 10 - p->nLabel;
553   p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
554                      nNewSize*sizeof(p->aLabel[0]));
555   if( p->aLabel==0 ){
556     p->nLabelAlloc = 0;
557   }else{
558 #ifdef SQLITE_DEBUG
559     int i;
560     for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1;
561 #endif
562     p->nLabelAlloc = nNewSize;
563     p->aLabel[j] = v->nOp;
564   }
565 }
sqlite3VdbeResolveLabel(Vdbe * v,int x)566 void sqlite3VdbeResolveLabel(Vdbe *v, int x){
567   Parse *p = v->pParse;
568   int j = ADDR(x);
569   assert( v->iVdbeMagic==VDBE_MAGIC_INIT );
570   assert( j<-p->nLabel );
571   assert( j>=0 );
572 #ifdef SQLITE_DEBUG
573   if( p->db->flags & SQLITE_VdbeAddopTrace ){
574     printf("RESOLVE LABEL %d to %d\n", x, v->nOp);
575   }
576 #endif
577   if( p->nLabelAlloc + p->nLabel < 0 ){
578     resizeResolveLabel(p,v,j);
579   }else{
580     assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */
581     p->aLabel[j] = v->nOp;
582   }
583 }
584 
585 /*
586 ** Mark the VDBE as one that can only be run one time.
587 */
sqlite3VdbeRunOnlyOnce(Vdbe * p)588 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
589   p->runOnlyOnce = 1;
590 }
591 
592 /*
593 ** Mark the VDBE as one that can only be run multiple times.
594 */
sqlite3VdbeReusable(Vdbe * p)595 void sqlite3VdbeReusable(Vdbe *p){
596   p->runOnlyOnce = 0;
597 }
598 
599 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
600 
601 /*
602 ** The following type and function are used to iterate through all opcodes
603 ** in a Vdbe main program and each of the sub-programs (triggers) it may
604 ** invoke directly or indirectly. It should be used as follows:
605 **
606 **   Op *pOp;
607 **   VdbeOpIter sIter;
608 **
609 **   memset(&sIter, 0, sizeof(sIter));
610 **   sIter.v = v;                            // v is of type Vdbe*
611 **   while( (pOp = opIterNext(&sIter)) ){
612 **     // Do something with pOp
613 **   }
614 **   sqlite3DbFree(v->db, sIter.apSub);
615 **
616 */
617 typedef struct VdbeOpIter VdbeOpIter;
618 struct VdbeOpIter {
619   Vdbe *v;                   /* Vdbe to iterate through the opcodes of */
620   SubProgram **apSub;        /* Array of subprograms */
621   int nSub;                  /* Number of entries in apSub */
622   int iAddr;                 /* Address of next instruction to return */
623   int iSub;                  /* 0 = main program, 1 = first sub-program etc. */
624 };
opIterNext(VdbeOpIter * p)625 static Op *opIterNext(VdbeOpIter *p){
626   Vdbe *v = p->v;
627   Op *pRet = 0;
628   Op *aOp;
629   int nOp;
630 
631   if( p->iSub<=p->nSub ){
632 
633     if( p->iSub==0 ){
634       aOp = v->aOp;
635       nOp = v->nOp;
636     }else{
637       aOp = p->apSub[p->iSub-1]->aOp;
638       nOp = p->apSub[p->iSub-1]->nOp;
639     }
640     assert( p->iAddr<nOp );
641 
642     pRet = &aOp[p->iAddr];
643     p->iAddr++;
644     if( p->iAddr==nOp ){
645       p->iSub++;
646       p->iAddr = 0;
647     }
648 
649     if( pRet->p4type==P4_SUBPROGRAM ){
650       int nByte = (p->nSub+1)*sizeof(SubProgram*);
651       int j;
652       for(j=0; j<p->nSub; j++){
653         if( p->apSub[j]==pRet->p4.pProgram ) break;
654       }
655       if( j==p->nSub ){
656         p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
657         if( !p->apSub ){
658           pRet = 0;
659         }else{
660           p->apSub[p->nSub++] = pRet->p4.pProgram;
661         }
662       }
663     }
664   }
665 
666   return pRet;
667 }
668 
669 /*
670 ** Check if the program stored in the VM associated with pParse may
671 ** throw an ABORT exception (causing the statement, but not entire transaction
672 ** to be rolled back). This condition is true if the main program or any
673 ** sub-programs contains any of the following:
674 **
675 **   *  OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
676 **   *  OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
677 **   *  OP_Destroy
678 **   *  OP_VUpdate
679 **   *  OP_VCreate
680 **   *  OP_VRename
681 **   *  OP_FkCounter with P2==0 (immediate foreign key constraint)
682 **   *  OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine
683 **      (for CREATE TABLE AS SELECT ...)
684 **
685 ** Then check that the value of Parse.mayAbort is true if an
686 ** ABORT may be thrown, or false otherwise. Return true if it does
687 ** match, or false otherwise. This function is intended to be used as
688 ** part of an assert statement in the compiler. Similar to:
689 **
690 **   assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
691 */
sqlite3VdbeAssertMayAbort(Vdbe * v,int mayAbort)692 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
693   int hasAbort = 0;
694   int hasFkCounter = 0;
695   int hasCreateTable = 0;
696   int hasCreateIndex = 0;
697   int hasInitCoroutine = 0;
698   Op *pOp;
699   VdbeOpIter sIter;
700   memset(&sIter, 0, sizeof(sIter));
701   sIter.v = v;
702 
703   while( (pOp = opIterNext(&sIter))!=0 ){
704     int opcode = pOp->opcode;
705     if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
706      || opcode==OP_VDestroy
707      || opcode==OP_VCreate
708      || opcode==OP_ParseSchema
709      || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
710       && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort))
711     ){
712       hasAbort = 1;
713       break;
714     }
715     if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1;
716     if( mayAbort ){
717       /* hasCreateIndex may also be set for some DELETE statements that use
718       ** OP_Clear. So this routine may end up returning true in the case
719       ** where a "DELETE FROM tbl" has a statement-journal but does not
720       ** require one. This is not so bad - it is an inefficiency, not a bug. */
721       if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1;
722       if( opcode==OP_Clear ) hasCreateIndex = 1;
723     }
724     if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
725 #ifndef SQLITE_OMIT_FOREIGN_KEY
726     if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
727       hasFkCounter = 1;
728     }
729 #endif
730   }
731   sqlite3DbFree(v->db, sIter.apSub);
732 
733   /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
734   ** If malloc failed, then the while() loop above may not have iterated
735   ** through all opcodes and hasAbort may be set incorrectly. Return
736   ** true for this case to prevent the assert() in the callers frame
737   ** from failing.  */
738   return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
739         || (hasCreateTable && hasInitCoroutine) || hasCreateIndex
740   );
741 }
742 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
743 
744 #ifdef SQLITE_DEBUG
745 /*
746 ** Increment the nWrite counter in the VDBE if the cursor is not an
747 ** ephemeral cursor, or if the cursor argument is NULL.
748 */
sqlite3VdbeIncrWriteCounter(Vdbe * p,VdbeCursor * pC)749 void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){
750   if( pC==0
751    || (pC->eCurType!=CURTYPE_SORTER
752        && pC->eCurType!=CURTYPE_PSEUDO
753        && !pC->isEphemeral)
754   ){
755     p->nWrite++;
756   }
757 }
758 #endif
759 
760 #ifdef SQLITE_DEBUG
761 /*
762 ** Assert if an Abort at this point in time might result in a corrupt
763 ** database.
764 */
sqlite3VdbeAssertAbortable(Vdbe * p)765 void sqlite3VdbeAssertAbortable(Vdbe *p){
766   assert( p->nWrite==0 || p->usesStmtJournal );
767 }
768 #endif
769 
770 /*
771 ** This routine is called after all opcodes have been inserted.  It loops
772 ** through all the opcodes and fixes up some details.
773 **
774 ** (1) For each jump instruction with a negative P2 value (a label)
775 **     resolve the P2 value to an actual address.
776 **
777 ** (2) Compute the maximum number of arguments used by any SQL function
778 **     and store that value in *pMaxFuncArgs.
779 **
780 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
781 **     indicate what the prepared statement actually does.
782 **
783 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it.
784 **
785 ** (5) Reclaim the memory allocated for storing labels.
786 **
787 ** This routine will only function correctly if the mkopcodeh.tcl generator
788 ** script numbers the opcodes correctly.  Changes to this routine must be
789 ** coordinated with changes to mkopcodeh.tcl.
790 */
resolveP2Values(Vdbe * p,int * pMaxFuncArgs)791 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
792   int nMaxArgs = *pMaxFuncArgs;
793   Op *pOp;
794   Parse *pParse = p->pParse;
795   int *aLabel = pParse->aLabel;
796   p->readOnly = 1;
797   p->bIsReader = 0;
798   pOp = &p->aOp[p->nOp-1];
799   while(1){
800 
801     /* Only JUMP opcodes and the short list of special opcodes in the switch
802     ** below need to be considered.  The mkopcodeh.tcl generator script groups
803     ** all these opcodes together near the front of the opcode list.  Skip
804     ** any opcode that does not need processing by virtual of the fact that
805     ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
806     */
807     if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){
808       /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
809       ** cases from this switch! */
810       switch( pOp->opcode ){
811         case OP_Transaction: {
812           if( pOp->p2!=0 ) p->readOnly = 0;
813           /* no break */ deliberate_fall_through
814         }
815         case OP_AutoCommit:
816         case OP_Savepoint: {
817           p->bIsReader = 1;
818           break;
819         }
820 #ifndef SQLITE_OMIT_WAL
821         case OP_Checkpoint:
822 #endif
823         case OP_Vacuum:
824         case OP_JournalMode: {
825           p->readOnly = 0;
826           p->bIsReader = 1;
827           break;
828         }
829         case OP_Next:
830         case OP_SorterNext: {
831           pOp->p4.xAdvance = sqlite3BtreeNext;
832           pOp->p4type = P4_ADVANCE;
833           /* The code generator never codes any of these opcodes as a jump
834           ** to a label.  They are always coded as a jump backwards to a
835           ** known address */
836           assert( pOp->p2>=0 );
837           break;
838         }
839         case OP_Prev: {
840           pOp->p4.xAdvance = sqlite3BtreePrevious;
841           pOp->p4type = P4_ADVANCE;
842           /* The code generator never codes any of these opcodes as a jump
843           ** to a label.  They are always coded as a jump backwards to a
844           ** known address */
845           assert( pOp->p2>=0 );
846           break;
847         }
848 #ifndef SQLITE_OMIT_VIRTUALTABLE
849         case OP_VUpdate: {
850           if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
851           break;
852         }
853         case OP_VFilter: {
854           int n;
855           assert( (pOp - p->aOp) >= 3 );
856           assert( pOp[-1].opcode==OP_Integer );
857           n = pOp[-1].p1;
858           if( n>nMaxArgs ) nMaxArgs = n;
859           /* Fall through into the default case */
860           /* no break */ deliberate_fall_through
861         }
862 #endif
863         default: {
864           if( pOp->p2<0 ){
865             /* The mkopcodeh.tcl script has so arranged things that the only
866             ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
867             ** have non-negative values for P2. */
868             assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 );
869             assert( ADDR(pOp->p2)<-pParse->nLabel );
870             pOp->p2 = aLabel[ADDR(pOp->p2)];
871           }
872           break;
873         }
874       }
875       /* The mkopcodeh.tcl script has so arranged things that the only
876       ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
877       ** have non-negative values for P2. */
878       assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0);
879     }
880     if( pOp==p->aOp ) break;
881     pOp--;
882   }
883   sqlite3DbFree(p->db, pParse->aLabel);
884   pParse->aLabel = 0;
885   pParse->nLabel = 0;
886   *pMaxFuncArgs = nMaxArgs;
887   assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
888 }
889 
890 /*
891 ** Return the address of the next instruction to be inserted.
892 */
sqlite3VdbeCurrentAddr(Vdbe * p)893 int sqlite3VdbeCurrentAddr(Vdbe *p){
894   assert( p->iVdbeMagic==VDBE_MAGIC_INIT );
895   return p->nOp;
896 }
897 
898 /*
899 ** Verify that at least N opcode slots are available in p without
900 ** having to malloc for more space (except when compiled using
901 ** SQLITE_TEST_REALLOC_STRESS).  This interface is used during testing
902 ** to verify that certain calls to sqlite3VdbeAddOpList() can never
903 ** fail due to a OOM fault and hence that the return value from
904 ** sqlite3VdbeAddOpList() will always be non-NULL.
905 */
906 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
sqlite3VdbeVerifyNoMallocRequired(Vdbe * p,int N)907 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
908   assert( p->nOp + N <= p->nOpAlloc );
909 }
910 #endif
911 
912 /*
913 ** Verify that the VM passed as the only argument does not contain
914 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used
915 ** by code in pragma.c to ensure that the implementation of certain
916 ** pragmas comports with the flags specified in the mkpragmatab.tcl
917 ** script.
918 */
919 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
sqlite3VdbeVerifyNoResultRow(Vdbe * p)920 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){
921   int i;
922   for(i=0; i<p->nOp; i++){
923     assert( p->aOp[i].opcode!=OP_ResultRow );
924   }
925 }
926 #endif
927 
928 /*
929 ** Generate code (a single OP_Abortable opcode) that will
930 ** verify that the VDBE program can safely call Abort in the current
931 ** context.
932 */
933 #if defined(SQLITE_DEBUG)
sqlite3VdbeVerifyAbortable(Vdbe * p,int onError)934 void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){
935   if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable);
936 }
937 #endif
938 
939 /*
940 ** This function returns a pointer to the array of opcodes associated with
941 ** the Vdbe passed as the first argument. It is the callers responsibility
942 ** to arrange for the returned array to be eventually freed using the
943 ** vdbeFreeOpArray() function.
944 **
945 ** Before returning, *pnOp is set to the number of entries in the returned
946 ** array. Also, *pnMaxArg is set to the larger of its current value and
947 ** the number of entries in the Vdbe.apArg[] array required to execute the
948 ** returned program.
949 */
sqlite3VdbeTakeOpArray(Vdbe * p,int * pnOp,int * pnMaxArg)950 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
951   VdbeOp *aOp = p->aOp;
952   assert( aOp && !p->db->mallocFailed );
953 
954   /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
955   assert( DbMaskAllZero(p->btreeMask) );
956 
957   resolveP2Values(p, pnMaxArg);
958   *pnOp = p->nOp;
959   p->aOp = 0;
960   return aOp;
961 }
962 
963 /*
964 ** Add a whole list of operations to the operation stack.  Return a
965 ** pointer to the first operation inserted.
966 **
967 ** Non-zero P2 arguments to jump instructions are automatically adjusted
968 ** so that the jump target is relative to the first operation inserted.
969 */
sqlite3VdbeAddOpList(Vdbe * p,int nOp,VdbeOpList const * aOp,int iLineno)970 VdbeOp *sqlite3VdbeAddOpList(
971   Vdbe *p,                     /* Add opcodes to the prepared statement */
972   int nOp,                     /* Number of opcodes to add */
973   VdbeOpList const *aOp,       /* The opcodes to be added */
974   int iLineno                  /* Source-file line number of first opcode */
975 ){
976   int i;
977   VdbeOp *pOut, *pFirst;
978   assert( nOp>0 );
979   assert( p->iVdbeMagic==VDBE_MAGIC_INIT );
980   if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){
981     return 0;
982   }
983   pFirst = pOut = &p->aOp[p->nOp];
984   for(i=0; i<nOp; i++, aOp++, pOut++){
985     pOut->opcode = aOp->opcode;
986     pOut->p1 = aOp->p1;
987     pOut->p2 = aOp->p2;
988     assert( aOp->p2>=0 );
989     if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
990       pOut->p2 += p->nOp;
991     }
992     pOut->p3 = aOp->p3;
993     pOut->p4type = P4_NOTUSED;
994     pOut->p4.p = 0;
995     pOut->p5 = 0;
996 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
997     pOut->zComment = 0;
998 #endif
999 #ifdef SQLITE_VDBE_COVERAGE
1000     pOut->iSrcLine = iLineno+i;
1001 #else
1002     (void)iLineno;
1003 #endif
1004 #ifdef SQLITE_DEBUG
1005     if( p->db->flags & SQLITE_VdbeAddopTrace ){
1006       sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
1007     }
1008 #endif
1009   }
1010   p->nOp += nOp;
1011   return pFirst;
1012 }
1013 
1014 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
1015 /*
1016 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
1017 */
sqlite3VdbeScanStatus(Vdbe * p,int addrExplain,int addrLoop,int addrVisit,LogEst nEst,const char * zName)1018 void sqlite3VdbeScanStatus(
1019   Vdbe *p,                        /* VM to add scanstatus() to */
1020   int addrExplain,                /* Address of OP_Explain (or 0) */
1021   int addrLoop,                   /* Address of loop counter */
1022   int addrVisit,                  /* Address of rows visited counter */
1023   LogEst nEst,                    /* Estimated number of output rows */
1024   const char *zName               /* Name of table or index being scanned */
1025 ){
1026   sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus);
1027   ScanStatus *aNew;
1028   aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
1029   if( aNew ){
1030     ScanStatus *pNew = &aNew[p->nScan++];
1031     pNew->addrExplain = addrExplain;
1032     pNew->addrLoop = addrLoop;
1033     pNew->addrVisit = addrVisit;
1034     pNew->nEst = nEst;
1035     pNew->zName = sqlite3DbStrDup(p->db, zName);
1036     p->aScan = aNew;
1037   }
1038 }
1039 #endif
1040 
1041 
1042 /*
1043 ** Change the value of the opcode, or P1, P2, P3, or P5 operands
1044 ** for a specific instruction.
1045 */
sqlite3VdbeChangeOpcode(Vdbe * p,int addr,u8 iNewOpcode)1046 void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){
1047   sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
1048 }
sqlite3VdbeChangeP1(Vdbe * p,int addr,int val)1049 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
1050   sqlite3VdbeGetOp(p,addr)->p1 = val;
1051 }
sqlite3VdbeChangeP2(Vdbe * p,int addr,int val)1052 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
1053   sqlite3VdbeGetOp(p,addr)->p2 = val;
1054 }
sqlite3VdbeChangeP3(Vdbe * p,int addr,int val)1055 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
1056   sqlite3VdbeGetOp(p,addr)->p3 = val;
1057 }
sqlite3VdbeChangeP5(Vdbe * p,u16 p5)1058 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){
1059   assert( p->nOp>0 || p->db->mallocFailed );
1060   if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
1061 }
1062 
1063 /*
1064 ** Change the P2 operand of instruction addr so that it points to
1065 ** the address of the next instruction to be coded.
1066 */
sqlite3VdbeJumpHere(Vdbe * p,int addr)1067 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
1068   sqlite3VdbeChangeP2(p, addr, p->nOp);
1069 }
1070 
1071 /*
1072 ** Change the P2 operand of the jump instruction at addr so that
1073 ** the jump lands on the next opcode.  Or if the jump instruction was
1074 ** the previous opcode (and is thus a no-op) then simply back up
1075 ** the next instruction counter by one slot so that the jump is
1076 ** overwritten by the next inserted opcode.
1077 **
1078 ** This routine is an optimization of sqlite3VdbeJumpHere() that
1079 ** strives to omit useless byte-code like this:
1080 **
1081 **        7   Once 0 8 0
1082 **        8   ...
1083 */
sqlite3VdbeJumpHereOrPopInst(Vdbe * p,int addr)1084 void sqlite3VdbeJumpHereOrPopInst(Vdbe *p, int addr){
1085   if( addr==p->nOp-1 ){
1086     assert( p->aOp[addr].opcode==OP_Once
1087          || p->aOp[addr].opcode==OP_If
1088          || p->aOp[addr].opcode==OP_FkIfZero );
1089     assert( p->aOp[addr].p4type==0 );
1090 #ifdef SQLITE_VDBE_COVERAGE
1091     sqlite3VdbeGetOp(p,-1)->iSrcLine = 0;  /* Erase VdbeCoverage() macros */
1092 #endif
1093     p->nOp--;
1094   }else{
1095     sqlite3VdbeChangeP2(p, addr, p->nOp);
1096   }
1097 }
1098 
1099 
1100 /*
1101 ** If the input FuncDef structure is ephemeral, then free it.  If
1102 ** the FuncDef is not ephermal, then do nothing.
1103 */
freeEphemeralFunction(sqlite3 * db,FuncDef * pDef)1104 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
1105   if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
1106     sqlite3DbFreeNN(db, pDef);
1107   }
1108 }
1109 
1110 /*
1111 ** Delete a P4 value if necessary.
1112 */
freeP4Mem(sqlite3 * db,Mem * p)1113 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){
1114   if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1115   sqlite3DbFreeNN(db, p);
1116 }
freeP4FuncCtx(sqlite3 * db,sqlite3_context * p)1117 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){
1118   freeEphemeralFunction(db, p->pFunc);
1119   sqlite3DbFreeNN(db, p);
1120 }
freeP4(sqlite3 * db,int p4type,void * p4)1121 static void freeP4(sqlite3 *db, int p4type, void *p4){
1122   assert( db );
1123   switch( p4type ){
1124     case P4_FUNCCTX: {
1125       freeP4FuncCtx(db, (sqlite3_context*)p4);
1126       break;
1127     }
1128     case P4_REAL:
1129     case P4_INT64:
1130     case P4_DYNAMIC:
1131     case P4_DYNBLOB:
1132     case P4_INTARRAY: {
1133       sqlite3DbFree(db, p4);
1134       break;
1135     }
1136     case P4_KEYINFO: {
1137       if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
1138       break;
1139     }
1140 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1141     case P4_EXPR: {
1142       sqlite3ExprDelete(db, (Expr*)p4);
1143       break;
1144     }
1145 #endif
1146     case P4_FUNCDEF: {
1147       freeEphemeralFunction(db, (FuncDef*)p4);
1148       break;
1149     }
1150     case P4_MEM: {
1151       if( db->pnBytesFreed==0 ){
1152         sqlite3ValueFree((sqlite3_value*)p4);
1153       }else{
1154         freeP4Mem(db, (Mem*)p4);
1155       }
1156       break;
1157     }
1158     case P4_VTAB : {
1159       if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
1160       break;
1161     }
1162   }
1163 }
1164 
1165 /*
1166 ** Free the space allocated for aOp and any p4 values allocated for the
1167 ** opcodes contained within. If aOp is not NULL it is assumed to contain
1168 ** nOp entries.
1169 */
vdbeFreeOpArray(sqlite3 * db,Op * aOp,int nOp)1170 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
1171   if( aOp ){
1172     Op *pOp;
1173     for(pOp=&aOp[nOp-1]; pOp>=aOp; pOp--){
1174       if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p);
1175 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1176       sqlite3DbFree(db, pOp->zComment);
1177 #endif
1178     }
1179     sqlite3DbFreeNN(db, aOp);
1180   }
1181 }
1182 
1183 /*
1184 ** Link the SubProgram object passed as the second argument into the linked
1185 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
1186 ** objects when the VM is no longer required.
1187 */
sqlite3VdbeLinkSubProgram(Vdbe * pVdbe,SubProgram * p)1188 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
1189   p->pNext = pVdbe->pProgram;
1190   pVdbe->pProgram = p;
1191 }
1192 
1193 /*
1194 ** Return true if the given Vdbe has any SubPrograms.
1195 */
sqlite3VdbeHasSubProgram(Vdbe * pVdbe)1196 int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){
1197   return pVdbe->pProgram!=0;
1198 }
1199 
1200 /*
1201 ** Change the opcode at addr into OP_Noop
1202 */
sqlite3VdbeChangeToNoop(Vdbe * p,int addr)1203 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
1204   VdbeOp *pOp;
1205   if( p->db->mallocFailed ) return 0;
1206   assert( addr>=0 && addr<p->nOp );
1207   pOp = &p->aOp[addr];
1208   freeP4(p->db, pOp->p4type, pOp->p4.p);
1209   pOp->p4type = P4_NOTUSED;
1210   pOp->p4.z = 0;
1211   pOp->opcode = OP_Noop;
1212   return 1;
1213 }
1214 
1215 /*
1216 ** If the last opcode is "op" and it is not a jump destination,
1217 ** then remove it.  Return true if and only if an opcode was removed.
1218 */
sqlite3VdbeDeletePriorOpcode(Vdbe * p,u8 op)1219 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
1220   if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){
1221     return sqlite3VdbeChangeToNoop(p, p->nOp-1);
1222   }else{
1223     return 0;
1224   }
1225 }
1226 
1227 #ifdef SQLITE_DEBUG
1228 /*
1229 ** Generate an OP_ReleaseReg opcode to indicate that a range of
1230 ** registers, except any identified by mask, are no longer in use.
1231 */
sqlite3VdbeReleaseRegisters(Parse * pParse,int iFirst,int N,u32 mask,int bUndefine)1232 void sqlite3VdbeReleaseRegisters(
1233   Parse *pParse,       /* Parsing context */
1234   int iFirst,          /* Index of first register to be released */
1235   int N,               /* Number of registers to release */
1236   u32 mask,            /* Mask of registers to NOT release */
1237   int bUndefine        /* If true, mark registers as undefined */
1238 ){
1239   if( N==0 ) return;
1240   assert( pParse->pVdbe );
1241   assert( iFirst>=1 );
1242   assert( iFirst+N-1<=pParse->nMem );
1243   if( N<=31 && mask!=0 ){
1244     while( N>0 && (mask&1)!=0 ){
1245       mask >>= 1;
1246       iFirst++;
1247       N--;
1248     }
1249     while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){
1250       mask &= ~MASKBIT32(N-1);
1251       N--;
1252     }
1253   }
1254   if( N>0 ){
1255     sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask);
1256     if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1);
1257   }
1258 }
1259 #endif /* SQLITE_DEBUG */
1260 
1261 
1262 /*
1263 ** Change the value of the P4 operand for a specific instruction.
1264 ** This routine is useful when a large program is loaded from a
1265 ** static array using sqlite3VdbeAddOpList but we want to make a
1266 ** few minor changes to the program.
1267 **
1268 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
1269 ** the string is made into memory obtained from sqlite3_malloc().
1270 ** A value of n==0 means copy bytes of zP4 up to and including the
1271 ** first null byte.  If n>0 then copy n+1 bytes of zP4.
1272 **
1273 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
1274 ** to a string or structure that is guaranteed to exist for the lifetime of
1275 ** the Vdbe. In these cases we can just copy the pointer.
1276 **
1277 ** If addr<0 then change P4 on the most recently inserted instruction.
1278 */
vdbeChangeP4Full(Vdbe * p,Op * pOp,const char * zP4,int n)1279 static void SQLITE_NOINLINE vdbeChangeP4Full(
1280   Vdbe *p,
1281   Op *pOp,
1282   const char *zP4,
1283   int n
1284 ){
1285   if( pOp->p4type ){
1286     freeP4(p->db, pOp->p4type, pOp->p4.p);
1287     pOp->p4type = 0;
1288     pOp->p4.p = 0;
1289   }
1290   if( n<0 ){
1291     sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
1292   }else{
1293     if( n==0 ) n = sqlite3Strlen30(zP4);
1294     pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
1295     pOp->p4type = P4_DYNAMIC;
1296   }
1297 }
sqlite3VdbeChangeP4(Vdbe * p,int addr,const char * zP4,int n)1298 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
1299   Op *pOp;
1300   sqlite3 *db;
1301   assert( p!=0 );
1302   db = p->db;
1303   assert( p->iVdbeMagic==VDBE_MAGIC_INIT );
1304   assert( p->aOp!=0 || db->mallocFailed );
1305   if( db->mallocFailed ){
1306     if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
1307     return;
1308   }
1309   assert( p->nOp>0 );
1310   assert( addr<p->nOp );
1311   if( addr<0 ){
1312     addr = p->nOp - 1;
1313   }
1314   pOp = &p->aOp[addr];
1315   if( n>=0 || pOp->p4type ){
1316     vdbeChangeP4Full(p, pOp, zP4, n);
1317     return;
1318   }
1319   if( n==P4_INT32 ){
1320     /* Note: this cast is safe, because the origin data point was an int
1321     ** that was cast to a (const char *). */
1322     pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
1323     pOp->p4type = P4_INT32;
1324   }else if( zP4!=0 ){
1325     assert( n<0 );
1326     pOp->p4.p = (void*)zP4;
1327     pOp->p4type = (signed char)n;
1328     if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
1329   }
1330 }
1331 
1332 /*
1333 ** Change the P4 operand of the most recently coded instruction
1334 ** to the value defined by the arguments.  This is a high-speed
1335 ** version of sqlite3VdbeChangeP4().
1336 **
1337 ** The P4 operand must not have been previously defined.  And the new
1338 ** P4 must not be P4_INT32.  Use sqlite3VdbeChangeP4() in either of
1339 ** those cases.
1340 */
sqlite3VdbeAppendP4(Vdbe * p,void * pP4,int n)1341 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){
1342   VdbeOp *pOp;
1343   assert( n!=P4_INT32 && n!=P4_VTAB );
1344   assert( n<=0 );
1345   if( p->db->mallocFailed ){
1346     freeP4(p->db, n, pP4);
1347   }else{
1348     assert( pP4!=0 );
1349     assert( p->nOp>0 );
1350     pOp = &p->aOp[p->nOp-1];
1351     assert( pOp->p4type==P4_NOTUSED );
1352     pOp->p4type = n;
1353     pOp->p4.p = pP4;
1354   }
1355 }
1356 
1357 /*
1358 ** Set the P4 on the most recently added opcode to the KeyInfo for the
1359 ** index given.
1360 */
sqlite3VdbeSetP4KeyInfo(Parse * pParse,Index * pIdx)1361 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
1362   Vdbe *v = pParse->pVdbe;
1363   KeyInfo *pKeyInfo;
1364   assert( v!=0 );
1365   assert( pIdx!=0 );
1366   pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx);
1367   if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1368 }
1369 
1370 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1371 /*
1372 ** Change the comment on the most recently coded instruction.  Or
1373 ** insert a No-op and add the comment to that new instruction.  This
1374 ** makes the code easier to read during debugging.  None of this happens
1375 ** in a production build.
1376 */
vdbeVComment(Vdbe * p,const char * zFormat,va_list ap)1377 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
1378   assert( p->nOp>0 || p->aOp==0 );
1379   assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed
1380           || p->pParse->nErr>0 );
1381   if( p->nOp ){
1382     assert( p->aOp );
1383     sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
1384     p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
1385   }
1386 }
sqlite3VdbeComment(Vdbe * p,const char * zFormat,...)1387 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
1388   va_list ap;
1389   if( p ){
1390     va_start(ap, zFormat);
1391     vdbeVComment(p, zFormat, ap);
1392     va_end(ap);
1393   }
1394 }
sqlite3VdbeNoopComment(Vdbe * p,const char * zFormat,...)1395 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
1396   va_list ap;
1397   if( p ){
1398     sqlite3VdbeAddOp0(p, OP_Noop);
1399     va_start(ap, zFormat);
1400     vdbeVComment(p, zFormat, ap);
1401     va_end(ap);
1402   }
1403 }
1404 #endif  /* NDEBUG */
1405 
1406 #ifdef SQLITE_VDBE_COVERAGE
1407 /*
1408 ** Set the value if the iSrcLine field for the previously coded instruction.
1409 */
sqlite3VdbeSetLineNumber(Vdbe * v,int iLine)1410 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
1411   sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
1412 }
1413 #endif /* SQLITE_VDBE_COVERAGE */
1414 
1415 /*
1416 ** Return the opcode for a given address.  If the address is -1, then
1417 ** return the most recently inserted opcode.
1418 **
1419 ** If a memory allocation error has occurred prior to the calling of this
1420 ** routine, then a pointer to a dummy VdbeOp will be returned.  That opcode
1421 ** is readable but not writable, though it is cast to a writable value.
1422 ** The return of a dummy opcode allows the call to continue functioning
1423 ** after an OOM fault without having to check to see if the return from
1424 ** this routine is a valid pointer.  But because the dummy.opcode is 0,
1425 ** dummy will never be written to.  This is verified by code inspection and
1426 ** by running with Valgrind.
1427 */
sqlite3VdbeGetOp(Vdbe * p,int addr)1428 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
1429   /* C89 specifies that the constant "dummy" will be initialized to all
1430   ** zeros, which is correct.  MSVC generates a warning, nevertheless. */
1431   static VdbeOp dummy;  /* Ignore the MSVC warning about no initializer */
1432   assert( p->iVdbeMagic==VDBE_MAGIC_INIT );
1433   if( addr<0 ){
1434     addr = p->nOp - 1;
1435   }
1436   assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
1437   if( p->db->mallocFailed ){
1438     return (VdbeOp*)&dummy;
1439   }else{
1440     return &p->aOp[addr];
1441   }
1442 }
1443 
1444 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
1445 /*
1446 ** Return an integer value for one of the parameters to the opcode pOp
1447 ** determined by character c.
1448 */
translateP(char c,const Op * pOp)1449 static int translateP(char c, const Op *pOp){
1450   if( c=='1' ) return pOp->p1;
1451   if( c=='2' ) return pOp->p2;
1452   if( c=='3' ) return pOp->p3;
1453   if( c=='4' ) return pOp->p4.i;
1454   return pOp->p5;
1455 }
1456 
1457 /*
1458 ** Compute a string for the "comment" field of a VDBE opcode listing.
1459 **
1460 ** The Synopsis: field in comments in the vdbe.c source file gets converted
1461 ** to an extra string that is appended to the sqlite3OpcodeName().  In the
1462 ** absence of other comments, this synopsis becomes the comment on the opcode.
1463 ** Some translation occurs:
1464 **
1465 **       "PX"      ->  "r[X]"
1466 **       "PX@PY"   ->  "r[X..X+Y-1]"  or "r[x]" if y is 0 or 1
1467 **       "PX@PY+1" ->  "r[X..X+Y]"    or "r[x]" if y is 0
1468 **       "PY..PY"  ->  "r[X..Y]"      or "r[x]" if y<=x
1469 */
sqlite3VdbeDisplayComment(sqlite3 * db,const Op * pOp,const char * zP4)1470 char *sqlite3VdbeDisplayComment(
1471   sqlite3 *db,       /* Optional - Oom error reporting only */
1472   const Op *pOp,     /* The opcode to be commented */
1473   const char *zP4    /* Previously obtained value for P4 */
1474 ){
1475   const char *zOpName;
1476   const char *zSynopsis;
1477   int nOpName;
1478   int ii;
1479   char zAlt[50];
1480   StrAccum x;
1481 
1482   sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
1483   zOpName = sqlite3OpcodeName(pOp->opcode);
1484   nOpName = sqlite3Strlen30(zOpName);
1485   if( zOpName[nOpName+1] ){
1486     int seenCom = 0;
1487     char c;
1488     zSynopsis = zOpName += nOpName + 1;
1489     if( strncmp(zSynopsis,"IF ",3)==0 ){
1490       if( pOp->p5 & SQLITE_STOREP2 ){
1491         sqlite3_snprintf(sizeof(zAlt), zAlt, "r[P2] = (%s)", zSynopsis+3);
1492       }else{
1493         sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3);
1494       }
1495       zSynopsis = zAlt;
1496     }
1497     for(ii=0; (c = zSynopsis[ii])!=0; ii++){
1498       if( c=='P' ){
1499         c = zSynopsis[++ii];
1500         if( c=='4' ){
1501           sqlite3_str_appendall(&x, zP4);
1502         }else if( c=='X' ){
1503           sqlite3_str_appendall(&x, pOp->zComment);
1504           seenCom = 1;
1505         }else{
1506           int v1 = translateP(c, pOp);
1507           int v2;
1508           if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1509             ii += 3;
1510             v2 = translateP(zSynopsis[ii], pOp);
1511             if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1512               ii += 2;
1513               v2++;
1514             }
1515             if( v2<2 ){
1516               sqlite3_str_appendf(&x, "%d", v1);
1517             }else{
1518               sqlite3_str_appendf(&x, "%d..%d", v1, v1+v2-1);
1519             }
1520           }else if( strncmp(zSynopsis+ii+1, "@NP", 3)==0 ){
1521             sqlite3_context *pCtx = pOp->p4.pCtx;
1522             if( pOp->p4type!=P4_FUNCCTX || pCtx->argc==1 ){
1523               sqlite3_str_appendf(&x, "%d", v1);
1524             }else if( pCtx->argc>1 ){
1525               sqlite3_str_appendf(&x, "%d..%d", v1, v1+pCtx->argc-1);
1526             }else if( x.accError==0 ){
1527               assert( x.nChar>2 );
1528               x.nChar -= 2;
1529               ii++;
1530             }
1531             ii += 3;
1532           }else{
1533             sqlite3_str_appendf(&x, "%d", v1);
1534             if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1535               ii += 4;
1536             }
1537           }
1538         }
1539       }else{
1540         sqlite3_str_appendchar(&x, 1, c);
1541       }
1542     }
1543     if( !seenCom && pOp->zComment ){
1544       sqlite3_str_appendf(&x, "; %s", pOp->zComment);
1545     }
1546   }else if( pOp->zComment ){
1547     sqlite3_str_appendall(&x, pOp->zComment);
1548   }
1549   if( (x.accError & SQLITE_NOMEM)!=0 && db!=0 ){
1550     sqlite3OomFault(db);
1551   }
1552   return sqlite3StrAccumFinish(&x);
1553 }
1554 #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */
1555 
1556 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1557 /*
1558 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1559 ** that can be displayed in the P4 column of EXPLAIN output.
1560 */
displayP4Expr(StrAccum * p,Expr * pExpr)1561 static void displayP4Expr(StrAccum *p, Expr *pExpr){
1562   const char *zOp = 0;
1563   switch( pExpr->op ){
1564     case TK_STRING:
1565       sqlite3_str_appendf(p, "%Q", pExpr->u.zToken);
1566       break;
1567     case TK_INTEGER:
1568       sqlite3_str_appendf(p, "%d", pExpr->u.iValue);
1569       break;
1570     case TK_NULL:
1571       sqlite3_str_appendf(p, "NULL");
1572       break;
1573     case TK_REGISTER: {
1574       sqlite3_str_appendf(p, "r[%d]", pExpr->iTable);
1575       break;
1576     }
1577     case TK_COLUMN: {
1578       if( pExpr->iColumn<0 ){
1579         sqlite3_str_appendf(p, "rowid");
1580       }else{
1581         sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn);
1582       }
1583       break;
1584     }
1585     case TK_LT:      zOp = "LT";      break;
1586     case TK_LE:      zOp = "LE";      break;
1587     case TK_GT:      zOp = "GT";      break;
1588     case TK_GE:      zOp = "GE";      break;
1589     case TK_NE:      zOp = "NE";      break;
1590     case TK_EQ:      zOp = "EQ";      break;
1591     case TK_IS:      zOp = "IS";      break;
1592     case TK_ISNOT:   zOp = "ISNOT";   break;
1593     case TK_AND:     zOp = "AND";     break;
1594     case TK_OR:      zOp = "OR";      break;
1595     case TK_PLUS:    zOp = "ADD";     break;
1596     case TK_STAR:    zOp = "MUL";     break;
1597     case TK_MINUS:   zOp = "SUB";     break;
1598     case TK_REM:     zOp = "REM";     break;
1599     case TK_BITAND:  zOp = "BITAND";  break;
1600     case TK_BITOR:   zOp = "BITOR";   break;
1601     case TK_SLASH:   zOp = "DIV";     break;
1602     case TK_LSHIFT:  zOp = "LSHIFT";  break;
1603     case TK_RSHIFT:  zOp = "RSHIFT";  break;
1604     case TK_CONCAT:  zOp = "CONCAT";  break;
1605     case TK_UMINUS:  zOp = "MINUS";   break;
1606     case TK_UPLUS:   zOp = "PLUS";    break;
1607     case TK_BITNOT:  zOp = "BITNOT";  break;
1608     case TK_NOT:     zOp = "NOT";     break;
1609     case TK_ISNULL:  zOp = "ISNULL";  break;
1610     case TK_NOTNULL: zOp = "NOTNULL"; break;
1611 
1612     default:
1613       sqlite3_str_appendf(p, "%s", "expr");
1614       break;
1615   }
1616 
1617   if( zOp ){
1618     sqlite3_str_appendf(p, "%s(", zOp);
1619     displayP4Expr(p, pExpr->pLeft);
1620     if( pExpr->pRight ){
1621       sqlite3_str_append(p, ",", 1);
1622       displayP4Expr(p, pExpr->pRight);
1623     }
1624     sqlite3_str_append(p, ")", 1);
1625   }
1626 }
1627 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1628 
1629 
1630 #if VDBE_DISPLAY_P4
1631 /*
1632 ** Compute a string that describes the P4 parameter for an opcode.
1633 ** Use zTemp for any required temporary buffer space.
1634 */
sqlite3VdbeDisplayP4(sqlite3 * db,Op * pOp)1635 char *sqlite3VdbeDisplayP4(sqlite3 *db, Op *pOp){
1636   char *zP4 = 0;
1637   StrAccum x;
1638 
1639   sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
1640   switch( pOp->p4type ){
1641     case P4_KEYINFO: {
1642       int j;
1643       KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
1644       assert( pKeyInfo->aSortFlags!=0 );
1645       sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField);
1646       for(j=0; j<pKeyInfo->nKeyField; j++){
1647         CollSeq *pColl = pKeyInfo->aColl[j];
1648         const char *zColl = pColl ? pColl->zName : "";
1649         if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
1650         sqlite3_str_appendf(&x, ",%s%s%s",
1651                (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "",
1652                (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "",
1653                zColl);
1654       }
1655       sqlite3_str_append(&x, ")", 1);
1656       break;
1657     }
1658 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1659     case P4_EXPR: {
1660       displayP4Expr(&x, pOp->p4.pExpr);
1661       break;
1662     }
1663 #endif
1664     case P4_COLLSEQ: {
1665       static const char *const encnames[] = {"?", "8", "16LE", "16BE"};
1666       CollSeq *pColl = pOp->p4.pColl;
1667       assert( pColl->enc>=0 && pColl->enc<4 );
1668       sqlite3_str_appendf(&x, "%.18s-%s", pColl->zName,
1669                           encnames[pColl->enc]);
1670       break;
1671     }
1672     case P4_FUNCDEF: {
1673       FuncDef *pDef = pOp->p4.pFunc;
1674       sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1675       break;
1676     }
1677     case P4_FUNCCTX: {
1678       FuncDef *pDef = pOp->p4.pCtx->pFunc;
1679       sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1680       break;
1681     }
1682     case P4_INT64: {
1683       sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64);
1684       break;
1685     }
1686     case P4_INT32: {
1687       sqlite3_str_appendf(&x, "%d", pOp->p4.i);
1688       break;
1689     }
1690     case P4_REAL: {
1691       sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal);
1692       break;
1693     }
1694     case P4_MEM: {
1695       Mem *pMem = pOp->p4.pMem;
1696       if( pMem->flags & MEM_Str ){
1697         zP4 = pMem->z;
1698       }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){
1699         sqlite3_str_appendf(&x, "%lld", pMem->u.i);
1700       }else if( pMem->flags & MEM_Real ){
1701         sqlite3_str_appendf(&x, "%.16g", pMem->u.r);
1702       }else if( pMem->flags & MEM_Null ){
1703         zP4 = "NULL";
1704       }else{
1705         assert( pMem->flags & MEM_Blob );
1706         zP4 = "(blob)";
1707       }
1708       break;
1709     }
1710 #ifndef SQLITE_OMIT_VIRTUALTABLE
1711     case P4_VTAB: {
1712       sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
1713       sqlite3_str_appendf(&x, "vtab:%p", pVtab);
1714       break;
1715     }
1716 #endif
1717     case P4_INTARRAY: {
1718       u32 i;
1719       u32 *ai = pOp->p4.ai;
1720       u32 n = ai[0];   /* The first element of an INTARRAY is always the
1721                        ** count of the number of elements to follow */
1722       for(i=1; i<=n; i++){
1723         sqlite3_str_appendf(&x, "%c%u", (i==1 ? '[' : ','), ai[i]);
1724       }
1725       sqlite3_str_append(&x, "]", 1);
1726       break;
1727     }
1728     case P4_SUBPROGRAM: {
1729       zP4 = "program";
1730       break;
1731     }
1732     case P4_DYNBLOB:
1733     case P4_ADVANCE: {
1734       break;
1735     }
1736     case P4_TABLE: {
1737       zP4 = pOp->p4.pTab->zName;
1738       break;
1739     }
1740     default: {
1741       zP4 = pOp->p4.z;
1742     }
1743   }
1744   if( zP4 ) sqlite3_str_appendall(&x, zP4);
1745   if( (x.accError & SQLITE_NOMEM)!=0 ){
1746     sqlite3OomFault(db);
1747   }
1748   return sqlite3StrAccumFinish(&x);
1749 }
1750 #endif /* VDBE_DISPLAY_P4 */
1751 
1752 /*
1753 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
1754 **
1755 ** The prepared statements need to know in advance the complete set of
1756 ** attached databases that will be use.  A mask of these databases
1757 ** is maintained in p->btreeMask.  The p->lockMask value is the subset of
1758 ** p->btreeMask of databases that will require a lock.
1759 */
sqlite3VdbeUsesBtree(Vdbe * p,int i)1760 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
1761   assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
1762   assert( i<(int)sizeof(p->btreeMask)*8 );
1763   DbMaskSet(p->btreeMask, i);
1764   if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
1765     DbMaskSet(p->lockMask, i);
1766   }
1767 }
1768 
1769 #if !defined(SQLITE_OMIT_SHARED_CACHE)
1770 /*
1771 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1772 ** this routine obtains the mutex associated with each BtShared structure
1773 ** that may be accessed by the VM passed as an argument. In doing so it also
1774 ** sets the BtShared.db member of each of the BtShared structures, ensuring
1775 ** that the correct busy-handler callback is invoked if required.
1776 **
1777 ** If SQLite is not threadsafe but does support shared-cache mode, then
1778 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1779 ** of all of BtShared structures accessible via the database handle
1780 ** associated with the VM.
1781 **
1782 ** If SQLite is not threadsafe and does not support shared-cache mode, this
1783 ** function is a no-op.
1784 **
1785 ** The p->btreeMask field is a bitmask of all btrees that the prepared
1786 ** statement p will ever use.  Let N be the number of bits in p->btreeMask
1787 ** corresponding to btrees that use shared cache.  Then the runtime of
1788 ** this routine is N*N.  But as N is rarely more than 1, this should not
1789 ** be a problem.
1790 */
sqlite3VdbeEnter(Vdbe * p)1791 void sqlite3VdbeEnter(Vdbe *p){
1792   int i;
1793   sqlite3 *db;
1794   Db *aDb;
1795   int nDb;
1796   if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */
1797   db = p->db;
1798   aDb = db->aDb;
1799   nDb = db->nDb;
1800   for(i=0; i<nDb; i++){
1801     if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1802       sqlite3BtreeEnter(aDb[i].pBt);
1803     }
1804   }
1805 }
1806 #endif
1807 
1808 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1809 /*
1810 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1811 */
vdbeLeave(Vdbe * p)1812 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
1813   int i;
1814   sqlite3 *db;
1815   Db *aDb;
1816   int nDb;
1817   db = p->db;
1818   aDb = db->aDb;
1819   nDb = db->nDb;
1820   for(i=0; i<nDb; i++){
1821     if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1822       sqlite3BtreeLeave(aDb[i].pBt);
1823     }
1824   }
1825 }
sqlite3VdbeLeave(Vdbe * p)1826 void sqlite3VdbeLeave(Vdbe *p){
1827   if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */
1828   vdbeLeave(p);
1829 }
1830 #endif
1831 
1832 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
1833 /*
1834 ** Print a single opcode.  This routine is used for debugging only.
1835 */
sqlite3VdbePrintOp(FILE * pOut,int pc,VdbeOp * pOp)1836 void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){
1837   char *zP4;
1838   char *zCom;
1839   sqlite3 dummyDb;
1840   static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
1841   if( pOut==0 ) pOut = stdout;
1842   sqlite3BeginBenignMalloc();
1843   dummyDb.mallocFailed = 1;
1844   zP4 = sqlite3VdbeDisplayP4(&dummyDb, pOp);
1845 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1846   zCom = sqlite3VdbeDisplayComment(0, pOp, zP4);
1847 #else
1848   zCom = 0;
1849 #endif
1850   /* NB:  The sqlite3OpcodeName() function is implemented by code created
1851   ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1852   ** information from the vdbe.c source text */
1853   fprintf(pOut, zFormat1, pc,
1854       sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3,
1855       zP4 ? zP4 : "", pOp->p5,
1856       zCom ? zCom : ""
1857   );
1858   fflush(pOut);
1859   sqlite3_free(zP4);
1860   sqlite3_free(zCom);
1861   sqlite3EndBenignMalloc();
1862 }
1863 #endif
1864 
1865 /*
1866 ** Initialize an array of N Mem element.
1867 */
initMemArray(Mem * p,int N,sqlite3 * db,u16 flags)1868 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){
1869   while( (N--)>0 ){
1870     p->db = db;
1871     p->flags = flags;
1872     p->szMalloc = 0;
1873 #ifdef SQLITE_DEBUG
1874     p->pScopyFrom = 0;
1875 #endif
1876     p++;
1877   }
1878 }
1879 
1880 /*
1881 ** Release an array of N Mem elements
1882 */
releaseMemArray(Mem * p,int N)1883 static void releaseMemArray(Mem *p, int N){
1884   if( p && N ){
1885     Mem *pEnd = &p[N];
1886     sqlite3 *db = p->db;
1887     if( db->pnBytesFreed ){
1888       do{
1889         if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1890       }while( (++p)<pEnd );
1891       return;
1892     }
1893     do{
1894       assert( (&p[1])==pEnd || p[0].db==p[1].db );
1895       assert( sqlite3VdbeCheckMemInvariants(p) );
1896 
1897       /* This block is really an inlined version of sqlite3VdbeMemRelease()
1898       ** that takes advantage of the fact that the memory cell value is
1899       ** being set to NULL after releasing any dynamic resources.
1900       **
1901       ** The justification for duplicating code is that according to
1902       ** callgrind, this causes a certain test case to hit the CPU 4.7
1903       ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1904       ** sqlite3MemRelease() were called from here. With -O2, this jumps
1905       ** to 6.6 percent. The test case is inserting 1000 rows into a table
1906       ** with no indexes using a single prepared INSERT statement, bind()
1907       ** and reset(). Inserts are grouped into a transaction.
1908       */
1909       testcase( p->flags & MEM_Agg );
1910       testcase( p->flags & MEM_Dyn );
1911       testcase( p->xDel==sqlite3VdbeFrameMemDel );
1912       if( p->flags&(MEM_Agg|MEM_Dyn) ){
1913         sqlite3VdbeMemRelease(p);
1914       }else if( p->szMalloc ){
1915         sqlite3DbFreeNN(db, p->zMalloc);
1916         p->szMalloc = 0;
1917       }
1918 
1919       p->flags = MEM_Undefined;
1920     }while( (++p)<pEnd );
1921   }
1922 }
1923 
1924 #ifdef SQLITE_DEBUG
1925 /*
1926 ** Verify that pFrame is a valid VdbeFrame pointer.  Return true if it is
1927 ** and false if something is wrong.
1928 **
1929 ** This routine is intended for use inside of assert() statements only.
1930 */
sqlite3VdbeFrameIsValid(VdbeFrame * pFrame)1931 int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){
1932   if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0;
1933   return 1;
1934 }
1935 #endif
1936 
1937 
1938 /*
1939 ** This is a destructor on a Mem object (which is really an sqlite3_value)
1940 ** that deletes the Frame object that is attached to it as a blob.
1941 **
1942 ** This routine does not delete the Frame right away.  It merely adds the
1943 ** frame to a list of frames to be deleted when the Vdbe halts.
1944 */
sqlite3VdbeFrameMemDel(void * pArg)1945 void sqlite3VdbeFrameMemDel(void *pArg){
1946   VdbeFrame *pFrame = (VdbeFrame*)pArg;
1947   assert( sqlite3VdbeFrameIsValid(pFrame) );
1948   pFrame->pParent = pFrame->v->pDelFrame;
1949   pFrame->v->pDelFrame = pFrame;
1950 }
1951 
1952 #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN)
1953 /*
1954 ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN
1955 ** QUERY PLAN output.
1956 **
1957 ** Return SQLITE_ROW on success.  Return SQLITE_DONE if there are no
1958 ** more opcodes to be displayed.
1959 */
sqlite3VdbeNextOpcode(Vdbe * p,Mem * pSub,int eMode,int * piPc,int * piAddr,Op ** paOp)1960 int sqlite3VdbeNextOpcode(
1961   Vdbe *p,         /* The statement being explained */
1962   Mem *pSub,       /* Storage for keeping track of subprogram nesting */
1963   int eMode,       /* 0: normal.  1: EQP.  2:  TablesUsed */
1964   int *piPc,       /* IN/OUT: Current rowid.  Overwritten with next rowid */
1965   int *piAddr,     /* OUT: Write index into (*paOp)[] here */
1966   Op **paOp        /* OUT: Write the opcode array here */
1967 ){
1968   int nRow;                            /* Stop when row count reaches this */
1969   int nSub = 0;                        /* Number of sub-vdbes seen so far */
1970   SubProgram **apSub = 0;              /* Array of sub-vdbes */
1971   int i;                               /* Next instruction address */
1972   int rc = SQLITE_OK;                  /* Result code */
1973   Op *aOp = 0;                         /* Opcode array */
1974   int iPc;                             /* Rowid.  Copy of value in *piPc */
1975 
1976   /* When the number of output rows reaches nRow, that means the
1977   ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1978   ** nRow is the sum of the number of rows in the main program, plus
1979   ** the sum of the number of rows in all trigger subprograms encountered
1980   ** so far.  The nRow value will increase as new trigger subprograms are
1981   ** encountered, but p->pc will eventually catch up to nRow.
1982   */
1983   nRow = p->nOp;
1984   if( pSub!=0 ){
1985     if( pSub->flags&MEM_Blob ){
1986       /* pSub is initiallly NULL.  It is initialized to a BLOB by
1987       ** the P4_SUBPROGRAM processing logic below */
1988       nSub = pSub->n/sizeof(Vdbe*);
1989       apSub = (SubProgram **)pSub->z;
1990     }
1991     for(i=0; i<nSub; i++){
1992       nRow += apSub[i]->nOp;
1993     }
1994   }
1995   iPc = *piPc;
1996   while(1){  /* Loop exits via break */
1997     i = iPc++;
1998     if( i>=nRow ){
1999       p->rc = SQLITE_OK;
2000       rc = SQLITE_DONE;
2001       break;
2002     }
2003     if( i<p->nOp ){
2004       /* The rowid is small enough that we are still in the
2005       ** main program. */
2006       aOp = p->aOp;
2007     }else{
2008       /* We are currently listing subprograms.  Figure out which one and
2009       ** pick up the appropriate opcode. */
2010       int j;
2011       i -= p->nOp;
2012       assert( apSub!=0 );
2013       assert( nSub>0 );
2014       for(j=0; i>=apSub[j]->nOp; j++){
2015         i -= apSub[j]->nOp;
2016         assert( i<apSub[j]->nOp || j+1<nSub );
2017       }
2018       aOp = apSub[j]->aOp;
2019     }
2020 
2021     /* When an OP_Program opcode is encounter (the only opcode that has
2022     ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
2023     ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
2024     ** has not already been seen.
2025     */
2026     if( pSub!=0 && aOp[i].p4type==P4_SUBPROGRAM ){
2027       int nByte = (nSub+1)*sizeof(SubProgram*);
2028       int j;
2029       for(j=0; j<nSub; j++){
2030         if( apSub[j]==aOp[i].p4.pProgram ) break;
2031       }
2032       if( j==nSub ){
2033         p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0);
2034         if( p->rc!=SQLITE_OK ){
2035           rc = SQLITE_ERROR;
2036           break;
2037         }
2038         apSub = (SubProgram **)pSub->z;
2039         apSub[nSub++] = aOp[i].p4.pProgram;
2040         MemSetTypeFlag(pSub, MEM_Blob);
2041         pSub->n = nSub*sizeof(SubProgram*);
2042         nRow += aOp[i].p4.pProgram->nOp;
2043       }
2044     }
2045     if( eMode==0 ) break;
2046 #ifdef SQLITE_ENABLE_BYTECODE_VTAB
2047     if( eMode==2 ){
2048       Op *pOp = aOp + i;
2049       if( pOp->opcode==OP_OpenRead ) break;
2050       if( pOp->opcode==OP_OpenWrite && (pOp->p5 & OPFLAG_P2ISREG)==0 ) break;
2051       if( pOp->opcode==OP_ReopenIdx ) break;
2052     }else
2053 #endif
2054     {
2055       assert( eMode==1 );
2056       if( aOp[i].opcode==OP_Explain ) break;
2057       if( aOp[i].opcode==OP_Init && iPc>1 ) break;
2058     }
2059   }
2060   *piPc = iPc;
2061   *piAddr = i;
2062   *paOp = aOp;
2063   return rc;
2064 }
2065 #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */
2066 
2067 
2068 /*
2069 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
2070 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
2071 */
sqlite3VdbeFrameDelete(VdbeFrame * p)2072 void sqlite3VdbeFrameDelete(VdbeFrame *p){
2073   int i;
2074   Mem *aMem = VdbeFrameMem(p);
2075   VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
2076   assert( sqlite3VdbeFrameIsValid(p) );
2077   for(i=0; i<p->nChildCsr; i++){
2078     sqlite3VdbeFreeCursor(p->v, apCsr[i]);
2079   }
2080   releaseMemArray(aMem, p->nChildMem);
2081   sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
2082   sqlite3DbFree(p->v->db, p);
2083 }
2084 
2085 #ifndef SQLITE_OMIT_EXPLAIN
2086 /*
2087 ** Give a listing of the program in the virtual machine.
2088 **
2089 ** The interface is the same as sqlite3VdbeExec().  But instead of
2090 ** running the code, it invokes the callback once for each instruction.
2091 ** This feature is used to implement "EXPLAIN".
2092 **
2093 ** When p->explain==1, each instruction is listed.  When
2094 ** p->explain==2, only OP_Explain instructions are listed and these
2095 ** are shown in a different format.  p->explain==2 is used to implement
2096 ** EXPLAIN QUERY PLAN.
2097 ** 2018-04-24:  In p->explain==2 mode, the OP_Init opcodes of triggers
2098 ** are also shown, so that the boundaries between the main program and
2099 ** each trigger are clear.
2100 **
2101 ** When p->explain==1, first the main program is listed, then each of
2102 ** the trigger subprograms are listed one by one.
2103 */
sqlite3VdbeList(Vdbe * p)2104 int sqlite3VdbeList(
2105   Vdbe *p                   /* The VDBE */
2106 ){
2107   Mem *pSub = 0;                       /* Memory cell hold array of subprogs */
2108   sqlite3 *db = p->db;                 /* The database connection */
2109   int i;                               /* Loop counter */
2110   int rc = SQLITE_OK;                  /* Return code */
2111   Mem *pMem = &p->aMem[1];             /* First Mem of result set */
2112   int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0);
2113   Op *aOp;                             /* Array of opcodes */
2114   Op *pOp;                             /* Current opcode */
2115 
2116   assert( p->explain );
2117   assert( p->iVdbeMagic==VDBE_MAGIC_RUN );
2118   assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
2119 
2120   /* Even though this opcode does not use dynamic strings for
2121   ** the result, result columns may become dynamic if the user calls
2122   ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
2123   */
2124   releaseMemArray(pMem, 8);
2125   p->pResultSet = 0;
2126 
2127   if( p->rc==SQLITE_NOMEM ){
2128     /* This happens if a malloc() inside a call to sqlite3_column_text() or
2129     ** sqlite3_column_text16() failed.  */
2130     sqlite3OomFault(db);
2131     return SQLITE_ERROR;
2132   }
2133 
2134   if( bListSubprogs ){
2135     /* The first 8 memory cells are used for the result set.  So we will
2136     ** commandeer the 9th cell to use as storage for an array of pointers
2137     ** to trigger subprograms.  The VDBE is guaranteed to have at least 9
2138     ** cells.  */
2139     assert( p->nMem>9 );
2140     pSub = &p->aMem[9];
2141   }else{
2142     pSub = 0;
2143   }
2144 
2145   /* Figure out which opcode is next to display */
2146   rc = sqlite3VdbeNextOpcode(p, pSub, p->explain==2, &p->pc, &i, &aOp);
2147 
2148   if( rc==SQLITE_OK ){
2149     pOp = aOp + i;
2150     if( AtomicLoad(&db->u1.isInterrupted) ){
2151       p->rc = SQLITE_INTERRUPT;
2152       rc = SQLITE_ERROR;
2153       sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
2154     }else{
2155       char *zP4 = sqlite3VdbeDisplayP4(db, pOp);
2156       if( p->explain==2 ){
2157         sqlite3VdbeMemSetInt64(pMem, pOp->p1);
2158         sqlite3VdbeMemSetInt64(pMem+1, pOp->p2);
2159         sqlite3VdbeMemSetInt64(pMem+2, pOp->p3);
2160         sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free);
2161         p->nResColumn = 4;
2162       }else{
2163         sqlite3VdbeMemSetInt64(pMem+0, i);
2164         sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode),
2165                              -1, SQLITE_UTF8, SQLITE_STATIC);
2166         sqlite3VdbeMemSetInt64(pMem+2, pOp->p1);
2167         sqlite3VdbeMemSetInt64(pMem+3, pOp->p2);
2168         sqlite3VdbeMemSetInt64(pMem+4, pOp->p3);
2169         /* pMem+5 for p4 is done last */
2170         sqlite3VdbeMemSetInt64(pMem+6, pOp->p5);
2171 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2172         {
2173           char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4);
2174           sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free);
2175         }
2176 #else
2177         sqlite3VdbeMemSetNull(pMem+7);
2178 #endif
2179         sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free);
2180         p->nResColumn = 8;
2181       }
2182       p->pResultSet = pMem;
2183       if( db->mallocFailed ){
2184         p->rc = SQLITE_NOMEM;
2185         rc = SQLITE_ERROR;
2186       }else{
2187         p->rc = SQLITE_OK;
2188         rc = SQLITE_ROW;
2189       }
2190     }
2191   }
2192   return rc;
2193 }
2194 #endif /* SQLITE_OMIT_EXPLAIN */
2195 
2196 #ifdef SQLITE_DEBUG
2197 /*
2198 ** Print the SQL that was used to generate a VDBE program.
2199 */
sqlite3VdbePrintSql(Vdbe * p)2200 void sqlite3VdbePrintSql(Vdbe *p){
2201   const char *z = 0;
2202   if( p->zSql ){
2203     z = p->zSql;
2204   }else if( p->nOp>=1 ){
2205     const VdbeOp *pOp = &p->aOp[0];
2206     if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2207       z = pOp->p4.z;
2208       while( sqlite3Isspace(*z) ) z++;
2209     }
2210   }
2211   if( z ) printf("SQL: [%s]\n", z);
2212 }
2213 #endif
2214 
2215 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
2216 /*
2217 ** Print an IOTRACE message showing SQL content.
2218 */
sqlite3VdbeIOTraceSql(Vdbe * p)2219 void sqlite3VdbeIOTraceSql(Vdbe *p){
2220   int nOp = p->nOp;
2221   VdbeOp *pOp;
2222   if( sqlite3IoTrace==0 ) return;
2223   if( nOp<1 ) return;
2224   pOp = &p->aOp[0];
2225   if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2226     int i, j;
2227     char z[1000];
2228     sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
2229     for(i=0; sqlite3Isspace(z[i]); i++){}
2230     for(j=0; z[i]; i++){
2231       if( sqlite3Isspace(z[i]) ){
2232         if( z[i-1]!=' ' ){
2233           z[j++] = ' ';
2234         }
2235       }else{
2236         z[j++] = z[i];
2237       }
2238     }
2239     z[j] = 0;
2240     sqlite3IoTrace("SQL %s\n", z);
2241   }
2242 }
2243 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
2244 
2245 /* An instance of this object describes bulk memory available for use
2246 ** by subcomponents of a prepared statement.  Space is allocated out
2247 ** of a ReusableSpace object by the allocSpace() routine below.
2248 */
2249 struct ReusableSpace {
2250   u8 *pSpace;            /* Available memory */
2251   sqlite3_int64 nFree;   /* Bytes of available memory */
2252   sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */
2253 };
2254 
2255 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
2256 ** from the ReusableSpace object.  Return a pointer to the allocated
2257 ** memory on success.  If insufficient memory is available in the
2258 ** ReusableSpace object, increase the ReusableSpace.nNeeded
2259 ** value by the amount needed and return NULL.
2260 **
2261 ** If pBuf is not initially NULL, that means that the memory has already
2262 ** been allocated by a prior call to this routine, so just return a copy
2263 ** of pBuf and leave ReusableSpace unchanged.
2264 **
2265 ** This allocator is employed to repurpose unused slots at the end of the
2266 ** opcode array of prepared state for other memory needs of the prepared
2267 ** statement.
2268 */
allocSpace(struct ReusableSpace * p,void * pBuf,sqlite3_int64 nByte)2269 static void *allocSpace(
2270   struct ReusableSpace *p,  /* Bulk memory available for allocation */
2271   void *pBuf,               /* Pointer to a prior allocation */
2272   sqlite3_int64 nByte       /* Bytes of memory needed */
2273 ){
2274   assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
2275   if( pBuf==0 ){
2276     nByte = ROUND8(nByte);
2277     if( nByte <= p->nFree ){
2278       p->nFree -= nByte;
2279       pBuf = &p->pSpace[p->nFree];
2280     }else{
2281       p->nNeeded += nByte;
2282     }
2283   }
2284   assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
2285   return pBuf;
2286 }
2287 
2288 /*
2289 ** Rewind the VDBE back to the beginning in preparation for
2290 ** running it.
2291 */
sqlite3VdbeRewind(Vdbe * p)2292 void sqlite3VdbeRewind(Vdbe *p){
2293 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
2294   int i;
2295 #endif
2296   assert( p!=0 );
2297   assert( p->iVdbeMagic==VDBE_MAGIC_INIT || p->iVdbeMagic==VDBE_MAGIC_RESET );
2298 
2299   /* There should be at least one opcode.
2300   */
2301   assert( p->nOp>0 );
2302 
2303   /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
2304   p->iVdbeMagic = VDBE_MAGIC_RUN;
2305 
2306 #ifdef SQLITE_DEBUG
2307   for(i=0; i<p->nMem; i++){
2308     assert( p->aMem[i].db==p->db );
2309   }
2310 #endif
2311   p->pc = -1;
2312   p->rc = SQLITE_OK;
2313   p->errorAction = OE_Abort;
2314   p->nChange = 0;
2315   p->cacheCtr = 1;
2316   p->minWriteFileFormat = 255;
2317   p->iStatement = 0;
2318   p->nFkConstraint = 0;
2319 #ifdef VDBE_PROFILE
2320   for(i=0; i<p->nOp; i++){
2321     p->aOp[i].cnt = 0;
2322     p->aOp[i].cycles = 0;
2323   }
2324 #endif
2325 }
2326 
2327 /*
2328 ** Prepare a virtual machine for execution for the first time after
2329 ** creating the virtual machine.  This involves things such
2330 ** as allocating registers and initializing the program counter.
2331 ** After the VDBE has be prepped, it can be executed by one or more
2332 ** calls to sqlite3VdbeExec().
2333 **
2334 ** This function may be called exactly once on each virtual machine.
2335 ** After this routine is called the VM has been "packaged" and is ready
2336 ** to run.  After this routine is called, further calls to
2337 ** sqlite3VdbeAddOp() functions are prohibited.  This routine disconnects
2338 ** the Vdbe from the Parse object that helped generate it so that the
2339 ** the Vdbe becomes an independent entity and the Parse object can be
2340 ** destroyed.
2341 **
2342 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
2343 ** to its initial state after it has been run.
2344 */
sqlite3VdbeMakeReady(Vdbe * p,Parse * pParse)2345 void sqlite3VdbeMakeReady(
2346   Vdbe *p,                       /* The VDBE */
2347   Parse *pParse                  /* Parsing context */
2348 ){
2349   sqlite3 *db;                   /* The database connection */
2350   int nVar;                      /* Number of parameters */
2351   int nMem;                      /* Number of VM memory registers */
2352   int nCursor;                   /* Number of cursors required */
2353   int nArg;                      /* Number of arguments in subprograms */
2354   int n;                         /* Loop counter */
2355   struct ReusableSpace x;        /* Reusable bulk memory */
2356 
2357   assert( p!=0 );
2358   assert( p->nOp>0 );
2359   assert( pParse!=0 );
2360   assert( p->iVdbeMagic==VDBE_MAGIC_INIT );
2361   assert( pParse==p->pParse );
2362   p->pVList = pParse->pVList;
2363   pParse->pVList =  0;
2364   db = p->db;
2365   assert( db->mallocFailed==0 );
2366   nVar = pParse->nVar;
2367   nMem = pParse->nMem;
2368   nCursor = pParse->nTab;
2369   nArg = pParse->nMaxArg;
2370 
2371   /* Each cursor uses a memory cell.  The first cursor (cursor 0) can
2372   ** use aMem[0] which is not otherwise used by the VDBE program.  Allocate
2373   ** space at the end of aMem[] for cursors 1 and greater.
2374   ** See also: allocateCursor().
2375   */
2376   nMem += nCursor;
2377   if( nCursor==0 && nMem>0 ) nMem++;  /* Space for aMem[0] even if not used */
2378 
2379   /* Figure out how much reusable memory is available at the end of the
2380   ** opcode array.  This extra memory will be reallocated for other elements
2381   ** of the prepared statement.
2382   */
2383   n = ROUND8(sizeof(Op)*p->nOp);              /* Bytes of opcode memory used */
2384   x.pSpace = &((u8*)p->aOp)[n];               /* Unused opcode memory */
2385   assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
2386   x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n);  /* Bytes of unused memory */
2387   assert( x.nFree>=0 );
2388   assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
2389 
2390   resolveP2Values(p, &nArg);
2391   p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
2392   if( pParse->explain ){
2393     static const char * const azColName[] = {
2394        "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment",
2395        "id", "parent", "notused", "detail"
2396     };
2397     int iFirst, mx, i;
2398     if( nMem<10 ) nMem = 10;
2399     p->explain = pParse->explain;
2400     if( pParse->explain==2 ){
2401       sqlite3VdbeSetNumCols(p, 4);
2402       iFirst = 8;
2403       mx = 12;
2404     }else{
2405       sqlite3VdbeSetNumCols(p, 8);
2406       iFirst = 0;
2407       mx = 8;
2408     }
2409     for(i=iFirst; i<mx; i++){
2410       sqlite3VdbeSetColName(p, i-iFirst, COLNAME_NAME,
2411                             azColName[i], SQLITE_STATIC);
2412     }
2413   }
2414   p->expired = 0;
2415 
2416   /* Memory for registers, parameters, cursor, etc, is allocated in one or two
2417   ** passes.  On the first pass, we try to reuse unused memory at the
2418   ** end of the opcode array.  If we are unable to satisfy all memory
2419   ** requirements by reusing the opcode array tail, then the second
2420   ** pass will fill in the remainder using a fresh memory allocation.
2421   **
2422   ** This two-pass approach that reuses as much memory as possible from
2423   ** the leftover memory at the end of the opcode array.  This can significantly
2424   ** reduce the amount of memory held by a prepared statement.
2425   */
2426   x.nNeeded = 0;
2427   p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem));
2428   p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem));
2429   p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*));
2430   p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*));
2431 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2432   p->anExec = allocSpace(&x, 0, p->nOp*sizeof(i64));
2433 #endif
2434   if( x.nNeeded ){
2435     x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded);
2436     x.nFree = x.nNeeded;
2437     if( !db->mallocFailed ){
2438       p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
2439       p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
2440       p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
2441       p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
2442 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2443       p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64));
2444 #endif
2445     }
2446   }
2447 
2448   if( db->mallocFailed ){
2449     p->nVar = 0;
2450     p->nCursor = 0;
2451     p->nMem = 0;
2452   }else{
2453     p->nCursor = nCursor;
2454     p->nVar = (ynVar)nVar;
2455     initMemArray(p->aVar, nVar, db, MEM_Null);
2456     p->nMem = nMem;
2457     initMemArray(p->aMem, nMem, db, MEM_Undefined);
2458     memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*));
2459 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2460     memset(p->anExec, 0, p->nOp*sizeof(i64));
2461 #endif
2462   }
2463   sqlite3VdbeRewind(p);
2464 }
2465 
2466 /*
2467 ** Close a VDBE cursor and release all the resources that cursor
2468 ** happens to hold.
2469 */
sqlite3VdbeFreeCursor(Vdbe * p,VdbeCursor * pCx)2470 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
2471   if( pCx==0 ){
2472     return;
2473   }
2474   assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE );
2475   assert( pCx->pBtx==0 || pCx->isEphemeral );
2476   switch( pCx->eCurType ){
2477     case CURTYPE_SORTER: {
2478       sqlite3VdbeSorterClose(p->db, pCx);
2479       break;
2480     }
2481     case CURTYPE_BTREE: {
2482       assert( pCx->uc.pCursor!=0 );
2483       sqlite3BtreeCloseCursor(pCx->uc.pCursor);
2484       break;
2485     }
2486 #ifndef SQLITE_OMIT_VIRTUALTABLE
2487     case CURTYPE_VTAB: {
2488       sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
2489       const sqlite3_module *pModule = pVCur->pVtab->pModule;
2490       assert( pVCur->pVtab->nRef>0 );
2491       pVCur->pVtab->nRef--;
2492       pModule->xClose(pVCur);
2493       break;
2494     }
2495 #endif
2496   }
2497 }
2498 
2499 /*
2500 ** Close all cursors in the current frame.
2501 */
closeCursorsInFrame(Vdbe * p)2502 static void closeCursorsInFrame(Vdbe *p){
2503   if( p->apCsr ){
2504     int i;
2505     for(i=0; i<p->nCursor; i++){
2506       VdbeCursor *pC = p->apCsr[i];
2507       if( pC ){
2508         sqlite3VdbeFreeCursor(p, pC);
2509         p->apCsr[i] = 0;
2510       }
2511     }
2512   }
2513 }
2514 
2515 /*
2516 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2517 ** is used, for example, when a trigger sub-program is halted to restore
2518 ** control to the main program.
2519 */
sqlite3VdbeFrameRestore(VdbeFrame * pFrame)2520 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
2521   Vdbe *v = pFrame->v;
2522   closeCursorsInFrame(v);
2523 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2524   v->anExec = pFrame->anExec;
2525 #endif
2526   v->aOp = pFrame->aOp;
2527   v->nOp = pFrame->nOp;
2528   v->aMem = pFrame->aMem;
2529   v->nMem = pFrame->nMem;
2530   v->apCsr = pFrame->apCsr;
2531   v->nCursor = pFrame->nCursor;
2532   v->db->lastRowid = pFrame->lastRowid;
2533   v->nChange = pFrame->nChange;
2534   v->db->nChange = pFrame->nDbChange;
2535   sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
2536   v->pAuxData = pFrame->pAuxData;
2537   pFrame->pAuxData = 0;
2538   return pFrame->pc;
2539 }
2540 
2541 /*
2542 ** Close all cursors.
2543 **
2544 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2545 ** cell array. This is necessary as the memory cell array may contain
2546 ** pointers to VdbeFrame objects, which may in turn contain pointers to
2547 ** open cursors.
2548 */
closeAllCursors(Vdbe * p)2549 static void closeAllCursors(Vdbe *p){
2550   if( p->pFrame ){
2551     VdbeFrame *pFrame;
2552     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
2553     sqlite3VdbeFrameRestore(pFrame);
2554     p->pFrame = 0;
2555     p->nFrame = 0;
2556   }
2557   assert( p->nFrame==0 );
2558   closeCursorsInFrame(p);
2559   if( p->aMem ){
2560     releaseMemArray(p->aMem, p->nMem);
2561   }
2562   while( p->pDelFrame ){
2563     VdbeFrame *pDel = p->pDelFrame;
2564     p->pDelFrame = pDel->pParent;
2565     sqlite3VdbeFrameDelete(pDel);
2566   }
2567 
2568   /* Delete any auxdata allocations made by the VM */
2569   if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
2570   assert( p->pAuxData==0 );
2571 }
2572 
2573 /*
2574 ** Set the number of result columns that will be returned by this SQL
2575 ** statement. This is now set at compile time, rather than during
2576 ** execution of the vdbe program so that sqlite3_column_count() can
2577 ** be called on an SQL statement before sqlite3_step().
2578 */
sqlite3VdbeSetNumCols(Vdbe * p,int nResColumn)2579 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
2580   int n;
2581   sqlite3 *db = p->db;
2582 
2583   if( p->nResColumn ){
2584     releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2585     sqlite3DbFree(db, p->aColName);
2586   }
2587   n = nResColumn*COLNAME_N;
2588   p->nResColumn = (u16)nResColumn;
2589   p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n );
2590   if( p->aColName==0 ) return;
2591   initMemArray(p->aColName, n, db, MEM_Null);
2592 }
2593 
2594 /*
2595 ** Set the name of the idx'th column to be returned by the SQL statement.
2596 ** zName must be a pointer to a nul terminated string.
2597 **
2598 ** This call must be made after a call to sqlite3VdbeSetNumCols().
2599 **
2600 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2601 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2602 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
2603 */
sqlite3VdbeSetColName(Vdbe * p,int idx,int var,const char * zName,void (* xDel)(void *))2604 int sqlite3VdbeSetColName(
2605   Vdbe *p,                         /* Vdbe being configured */
2606   int idx,                         /* Index of column zName applies to */
2607   int var,                         /* One of the COLNAME_* constants */
2608   const char *zName,               /* Pointer to buffer containing name */
2609   void (*xDel)(void*)              /* Memory management strategy for zName */
2610 ){
2611   int rc;
2612   Mem *pColName;
2613   assert( idx<p->nResColumn );
2614   assert( var<COLNAME_N );
2615   if( p->db->mallocFailed ){
2616     assert( !zName || xDel!=SQLITE_DYNAMIC );
2617     return SQLITE_NOMEM_BKPT;
2618   }
2619   assert( p->aColName!=0 );
2620   pColName = &(p->aColName[idx+var*p->nResColumn]);
2621   rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
2622   assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
2623   return rc;
2624 }
2625 
2626 /*
2627 ** A read or write transaction may or may not be active on database handle
2628 ** db. If a transaction is active, commit it. If there is a
2629 ** write-transaction spanning more than one database file, this routine
2630 ** takes care of the super-journal trickery.
2631 */
vdbeCommit(sqlite3 * db,Vdbe * p)2632 static int vdbeCommit(sqlite3 *db, Vdbe *p){
2633   int i;
2634   int nTrans = 0;  /* Number of databases with an active write-transaction
2635                    ** that are candidates for a two-phase commit using a
2636                    ** super-journal */
2637   int rc = SQLITE_OK;
2638   int needXcommit = 0;
2639 
2640 #ifdef SQLITE_OMIT_VIRTUALTABLE
2641   /* With this option, sqlite3VtabSync() is defined to be simply
2642   ** SQLITE_OK so p is not used.
2643   */
2644   UNUSED_PARAMETER(p);
2645 #endif
2646 
2647   /* Before doing anything else, call the xSync() callback for any
2648   ** virtual module tables written in this transaction. This has to
2649   ** be done before determining whether a super-journal file is
2650   ** required, as an xSync() callback may add an attached database
2651   ** to the transaction.
2652   */
2653   rc = sqlite3VtabSync(db, p);
2654 
2655   /* This loop determines (a) if the commit hook should be invoked and
2656   ** (b) how many database files have open write transactions, not
2657   ** including the temp database. (b) is important because if more than
2658   ** one database file has an open write transaction, a super-journal
2659   ** file is required for an atomic commit.
2660   */
2661   for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2662     Btree *pBt = db->aDb[i].pBt;
2663     if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
2664       /* Whether or not a database might need a super-journal depends upon
2665       ** its journal mode (among other things).  This matrix determines which
2666       ** journal modes use a super-journal and which do not */
2667       static const u8 aMJNeeded[] = {
2668         /* DELETE   */  1,
2669         /* PERSIST   */ 1,
2670         /* OFF       */ 0,
2671         /* TRUNCATE  */ 1,
2672         /* MEMORY    */ 0,
2673         /* WAL       */ 0
2674       };
2675       Pager *pPager;   /* Pager associated with pBt */
2676       needXcommit = 1;
2677       sqlite3BtreeEnter(pBt);
2678       pPager = sqlite3BtreePager(pBt);
2679       if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
2680        && aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
2681        && sqlite3PagerIsMemdb(pPager)==0
2682       ){
2683         assert( i!=1 );
2684         nTrans++;
2685       }
2686       rc = sqlite3PagerExclusiveLock(pPager);
2687       sqlite3BtreeLeave(pBt);
2688     }
2689   }
2690   if( rc!=SQLITE_OK ){
2691     return rc;
2692   }
2693 
2694   /* If there are any write-transactions at all, invoke the commit hook */
2695   if( needXcommit && db->xCommitCallback ){
2696     rc = db->xCommitCallback(db->pCommitArg);
2697     if( rc ){
2698       return SQLITE_CONSTRAINT_COMMITHOOK;
2699     }
2700   }
2701 
2702   /* The simple case - no more than one database file (not counting the
2703   ** TEMP database) has a transaction active.   There is no need for the
2704   ** super-journal.
2705   **
2706   ** If the return value of sqlite3BtreeGetFilename() is a zero length
2707   ** string, it means the main database is :memory: or a temp file.  In
2708   ** that case we do not support atomic multi-file commits, so use the
2709   ** simple case then too.
2710   */
2711   if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2712    || nTrans<=1
2713   ){
2714     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2715       Btree *pBt = db->aDb[i].pBt;
2716       if( pBt ){
2717         rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
2718       }
2719     }
2720 
2721     /* Do the commit only if all databases successfully complete phase 1.
2722     ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2723     ** IO error while deleting or truncating a journal file. It is unlikely,
2724     ** but could happen. In this case abandon processing and return the error.
2725     */
2726     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2727       Btree *pBt = db->aDb[i].pBt;
2728       if( pBt ){
2729         rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
2730       }
2731     }
2732     if( rc==SQLITE_OK ){
2733       sqlite3VtabCommit(db);
2734     }
2735   }
2736 
2737   /* The complex case - There is a multi-file write-transaction active.
2738   ** This requires a super-journal file to ensure the transaction is
2739   ** committed atomically.
2740   */
2741 #ifndef SQLITE_OMIT_DISKIO
2742   else{
2743     sqlite3_vfs *pVfs = db->pVfs;
2744     char *zSuper = 0;   /* File-name for the super-journal */
2745     char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
2746     sqlite3_file *pSuperJrnl = 0;
2747     i64 offset = 0;
2748     int res;
2749     int retryCount = 0;
2750     int nMainFile;
2751 
2752     /* Select a super-journal file name */
2753     nMainFile = sqlite3Strlen30(zMainFile);
2754     zSuper = sqlite3MPrintf(db, "%.4c%s%.16c", 0,zMainFile,0);
2755     if( zSuper==0 ) return SQLITE_NOMEM_BKPT;
2756     zSuper += 4;
2757     do {
2758       u32 iRandom;
2759       if( retryCount ){
2760         if( retryCount>100 ){
2761           sqlite3_log(SQLITE_FULL, "MJ delete: %s", zSuper);
2762           sqlite3OsDelete(pVfs, zSuper, 0);
2763           break;
2764         }else if( retryCount==1 ){
2765           sqlite3_log(SQLITE_FULL, "MJ collide: %s", zSuper);
2766         }
2767       }
2768       retryCount++;
2769       sqlite3_randomness(sizeof(iRandom), &iRandom);
2770       sqlite3_snprintf(13, &zSuper[nMainFile], "-mj%06X9%02X",
2771                                (iRandom>>8)&0xffffff, iRandom&0xff);
2772       /* The antipenultimate character of the super-journal name must
2773       ** be "9" to avoid name collisions when using 8+3 filenames. */
2774       assert( zSuper[sqlite3Strlen30(zSuper)-3]=='9' );
2775       sqlite3FileSuffix3(zMainFile, zSuper);
2776       rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res);
2777     }while( rc==SQLITE_OK && res );
2778     if( rc==SQLITE_OK ){
2779       /* Open the super-journal. */
2780       rc = sqlite3OsOpenMalloc(pVfs, zSuper, &pSuperJrnl,
2781           SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2782           SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_SUPER_JOURNAL, 0
2783       );
2784     }
2785     if( rc!=SQLITE_OK ){
2786       sqlite3DbFree(db, zSuper-4);
2787       return rc;
2788     }
2789 
2790     /* Write the name of each database file in the transaction into the new
2791     ** super-journal file. If an error occurs at this point close
2792     ** and delete the super-journal file. All the individual journal files
2793     ** still have 'null' as the super-journal pointer, so they will roll
2794     ** back independently if a failure occurs.
2795     */
2796     for(i=0; i<db->nDb; i++){
2797       Btree *pBt = db->aDb[i].pBt;
2798       if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
2799         char const *zFile = sqlite3BtreeGetJournalname(pBt);
2800         if( zFile==0 ){
2801           continue;  /* Ignore TEMP and :memory: databases */
2802         }
2803         assert( zFile[0]!=0 );
2804         rc = sqlite3OsWrite(pSuperJrnl, zFile, sqlite3Strlen30(zFile)+1,offset);
2805         offset += sqlite3Strlen30(zFile)+1;
2806         if( rc!=SQLITE_OK ){
2807           sqlite3OsCloseFree(pSuperJrnl);
2808           sqlite3OsDelete(pVfs, zSuper, 0);
2809           sqlite3DbFree(db, zSuper-4);
2810           return rc;
2811         }
2812       }
2813     }
2814 
2815     /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device
2816     ** flag is set this is not required.
2817     */
2818     if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl)&SQLITE_IOCAP_SEQUENTIAL)
2819      && SQLITE_OK!=(rc = sqlite3OsSync(pSuperJrnl, SQLITE_SYNC_NORMAL))
2820     ){
2821       sqlite3OsCloseFree(pSuperJrnl);
2822       sqlite3OsDelete(pVfs, zSuper, 0);
2823       sqlite3DbFree(db, zSuper-4);
2824       return rc;
2825     }
2826 
2827     /* Sync all the db files involved in the transaction. The same call
2828     ** sets the super-journal pointer in each individual journal. If
2829     ** an error occurs here, do not delete the super-journal file.
2830     **
2831     ** If the error occurs during the first call to
2832     ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2833     ** super-journal file will be orphaned. But we cannot delete it,
2834     ** in case the super-journal file name was written into the journal
2835     ** file before the failure occurred.
2836     */
2837     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2838       Btree *pBt = db->aDb[i].pBt;
2839       if( pBt ){
2840         rc = sqlite3BtreeCommitPhaseOne(pBt, zSuper);
2841       }
2842     }
2843     sqlite3OsCloseFree(pSuperJrnl);
2844     assert( rc!=SQLITE_BUSY );
2845     if( rc!=SQLITE_OK ){
2846       sqlite3DbFree(db, zSuper-4);
2847       return rc;
2848     }
2849 
2850     /* Delete the super-journal file. This commits the transaction. After
2851     ** doing this the directory is synced again before any individual
2852     ** transaction files are deleted.
2853     */
2854     rc = sqlite3OsDelete(pVfs, zSuper, 1);
2855     sqlite3DbFree(db, zSuper-4);
2856     zSuper = 0;
2857     if( rc ){
2858       return rc;
2859     }
2860 
2861     /* All files and directories have already been synced, so the following
2862     ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2863     ** deleting or truncating journals. If something goes wrong while
2864     ** this is happening we don't really care. The integrity of the
2865     ** transaction is already guaranteed, but some stray 'cold' journals
2866     ** may be lying around. Returning an error code won't help matters.
2867     */
2868     disable_simulated_io_errors();
2869     sqlite3BeginBenignMalloc();
2870     for(i=0; i<db->nDb; i++){
2871       Btree *pBt = db->aDb[i].pBt;
2872       if( pBt ){
2873         sqlite3BtreeCommitPhaseTwo(pBt, 1);
2874       }
2875     }
2876     sqlite3EndBenignMalloc();
2877     enable_simulated_io_errors();
2878 
2879     sqlite3VtabCommit(db);
2880   }
2881 #endif
2882 
2883   return rc;
2884 }
2885 
2886 /*
2887 ** This routine checks that the sqlite3.nVdbeActive count variable
2888 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
2889 ** currently active. An assertion fails if the two counts do not match.
2890 ** This is an internal self-check only - it is not an essential processing
2891 ** step.
2892 **
2893 ** This is a no-op if NDEBUG is defined.
2894 */
2895 #ifndef NDEBUG
checkActiveVdbeCnt(sqlite3 * db)2896 static void checkActiveVdbeCnt(sqlite3 *db){
2897   Vdbe *p;
2898   int cnt = 0;
2899   int nWrite = 0;
2900   int nRead = 0;
2901   p = db->pVdbe;
2902   while( p ){
2903     if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
2904       cnt++;
2905       if( p->readOnly==0 ) nWrite++;
2906       if( p->bIsReader ) nRead++;
2907     }
2908     p = p->pNext;
2909   }
2910   assert( cnt==db->nVdbeActive );
2911   assert( nWrite==db->nVdbeWrite );
2912   assert( nRead==db->nVdbeRead );
2913 }
2914 #else
2915 #define checkActiveVdbeCnt(x)
2916 #endif
2917 
2918 /*
2919 ** If the Vdbe passed as the first argument opened a statement-transaction,
2920 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
2921 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
2922 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
2923 ** statement transaction is committed.
2924 **
2925 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2926 ** Otherwise SQLITE_OK.
2927 */
vdbeCloseStatement(Vdbe * p,int eOp)2928 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){
2929   sqlite3 *const db = p->db;
2930   int rc = SQLITE_OK;
2931   int i;
2932   const int iSavepoint = p->iStatement-1;
2933 
2934   assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
2935   assert( db->nStatement>0 );
2936   assert( p->iStatement==(db->nStatement+db->nSavepoint) );
2937 
2938   for(i=0; i<db->nDb; i++){
2939     int rc2 = SQLITE_OK;
2940     Btree *pBt = db->aDb[i].pBt;
2941     if( pBt ){
2942       if( eOp==SAVEPOINT_ROLLBACK ){
2943         rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2944       }
2945       if( rc2==SQLITE_OK ){
2946         rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2947       }
2948       if( rc==SQLITE_OK ){
2949         rc = rc2;
2950       }
2951     }
2952   }
2953   db->nStatement--;
2954   p->iStatement = 0;
2955 
2956   if( rc==SQLITE_OK ){
2957     if( eOp==SAVEPOINT_ROLLBACK ){
2958       rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
2959     }
2960     if( rc==SQLITE_OK ){
2961       rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2962     }
2963   }
2964 
2965   /* If the statement transaction is being rolled back, also restore the
2966   ** database handles deferred constraint counter to the value it had when
2967   ** the statement transaction was opened.  */
2968   if( eOp==SAVEPOINT_ROLLBACK ){
2969     db->nDeferredCons = p->nStmtDefCons;
2970     db->nDeferredImmCons = p->nStmtDefImmCons;
2971   }
2972   return rc;
2973 }
sqlite3VdbeCloseStatement(Vdbe * p,int eOp)2974 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
2975   if( p->db->nStatement && p->iStatement ){
2976     return vdbeCloseStatement(p, eOp);
2977   }
2978   return SQLITE_OK;
2979 }
2980 
2981 
2982 /*
2983 ** This function is called when a transaction opened by the database
2984 ** handle associated with the VM passed as an argument is about to be
2985 ** committed. If there are outstanding deferred foreign key constraint
2986 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2987 **
2988 ** If there are outstanding FK violations and this function returns
2989 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
2990 ** and write an error message to it. Then return SQLITE_ERROR.
2991 */
2992 #ifndef SQLITE_OMIT_FOREIGN_KEY
sqlite3VdbeCheckFk(Vdbe * p,int deferred)2993 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
2994   sqlite3 *db = p->db;
2995   if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
2996    || (!deferred && p->nFkConstraint>0)
2997   ){
2998     p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2999     p->errorAction = OE_Abort;
3000     sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
3001     return SQLITE_ERROR;
3002   }
3003   return SQLITE_OK;
3004 }
3005 #endif
3006 
3007 /*
3008 ** This routine is called the when a VDBE tries to halt.  If the VDBE
3009 ** has made changes and is in autocommit mode, then commit those
3010 ** changes.  If a rollback is needed, then do the rollback.
3011 **
3012 ** This routine is the only way to move the state of a VM from
3013 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT.  It is harmless to
3014 ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
3015 **
3016 ** Return an error code.  If the commit could not complete because of
3017 ** lock contention, return SQLITE_BUSY.  If SQLITE_BUSY is returned, it
3018 ** means the close did not happen and needs to be repeated.
3019 */
sqlite3VdbeHalt(Vdbe * p)3020 int sqlite3VdbeHalt(Vdbe *p){
3021   int rc;                         /* Used to store transient return codes */
3022   sqlite3 *db = p->db;
3023 
3024   /* This function contains the logic that determines if a statement or
3025   ** transaction will be committed or rolled back as a result of the
3026   ** execution of this virtual machine.
3027   **
3028   ** If any of the following errors occur:
3029   **
3030   **     SQLITE_NOMEM
3031   **     SQLITE_IOERR
3032   **     SQLITE_FULL
3033   **     SQLITE_INTERRUPT
3034   **
3035   ** Then the internal cache might have been left in an inconsistent
3036   ** state.  We need to rollback the statement transaction, if there is
3037   ** one, or the complete transaction if there is no statement transaction.
3038   */
3039 
3040   if( p->iVdbeMagic!=VDBE_MAGIC_RUN ){
3041     return SQLITE_OK;
3042   }
3043   if( db->mallocFailed ){
3044     p->rc = SQLITE_NOMEM_BKPT;
3045   }
3046   closeAllCursors(p);
3047   checkActiveVdbeCnt(db);
3048 
3049   /* No commit or rollback needed if the program never started or if the
3050   ** SQL statement does not read or write a database file.  */
3051   if( p->pc>=0 && p->bIsReader ){
3052     int mrc;   /* Primary error code from p->rc */
3053     int eStatementOp = 0;
3054     int isSpecialError;            /* Set to true if a 'special' error */
3055 
3056     /* Lock all btrees used by the statement */
3057     sqlite3VdbeEnter(p);
3058 
3059     /* Check for one of the special errors */
3060     mrc = p->rc & 0xff;
3061     isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
3062                      || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
3063     if( isSpecialError ){
3064       /* If the query was read-only and the error code is SQLITE_INTERRUPT,
3065       ** no rollback is necessary. Otherwise, at least a savepoint
3066       ** transaction must be rolled back to restore the database to a
3067       ** consistent state.
3068       **
3069       ** Even if the statement is read-only, it is important to perform
3070       ** a statement or transaction rollback operation. If the error
3071       ** occurred while writing to the journal, sub-journal or database
3072       ** file as part of an effort to free up cache space (see function
3073       ** pagerStress() in pager.c), the rollback is required to restore
3074       ** the pager to a consistent state.
3075       */
3076       if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
3077         if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
3078           eStatementOp = SAVEPOINT_ROLLBACK;
3079         }else{
3080           /* We are forced to roll back the active transaction. Before doing
3081           ** so, abort any other statements this handle currently has active.
3082           */
3083           sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3084           sqlite3CloseSavepoints(db);
3085           db->autoCommit = 1;
3086           p->nChange = 0;
3087         }
3088       }
3089     }
3090 
3091     /* Check for immediate foreign key violations. */
3092     if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3093       sqlite3VdbeCheckFk(p, 0);
3094     }
3095 
3096     /* If the auto-commit flag is set and this is the only active writer
3097     ** VM, then we do either a commit or rollback of the current transaction.
3098     **
3099     ** Note: This block also runs if one of the special errors handled
3100     ** above has occurred.
3101     */
3102     if( !sqlite3VtabInSync(db)
3103      && db->autoCommit
3104      && db->nVdbeWrite==(p->readOnly==0)
3105     ){
3106       if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3107         rc = sqlite3VdbeCheckFk(p, 1);
3108         if( rc!=SQLITE_OK ){
3109           if( NEVER(p->readOnly) ){
3110             sqlite3VdbeLeave(p);
3111             return SQLITE_ERROR;
3112           }
3113           rc = SQLITE_CONSTRAINT_FOREIGNKEY;
3114         }else{
3115           /* The auto-commit flag is true, the vdbe program was successful
3116           ** or hit an 'OR FAIL' constraint and there are no deferred foreign
3117           ** key constraints to hold up the transaction. This means a commit
3118           ** is required. */
3119           rc = vdbeCommit(db, p);
3120         }
3121         if( rc==SQLITE_BUSY && p->readOnly ){
3122           sqlite3VdbeLeave(p);
3123           return SQLITE_BUSY;
3124         }else if( rc!=SQLITE_OK ){
3125           p->rc = rc;
3126           sqlite3RollbackAll(db, SQLITE_OK);
3127           p->nChange = 0;
3128         }else{
3129           db->nDeferredCons = 0;
3130           db->nDeferredImmCons = 0;
3131           db->flags &= ~(u64)SQLITE_DeferFKs;
3132           sqlite3CommitInternalChanges(db);
3133         }
3134       }else{
3135         sqlite3RollbackAll(db, SQLITE_OK);
3136         p->nChange = 0;
3137       }
3138       db->nStatement = 0;
3139     }else if( eStatementOp==0 ){
3140       if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
3141         eStatementOp = SAVEPOINT_RELEASE;
3142       }else if( p->errorAction==OE_Abort ){
3143         eStatementOp = SAVEPOINT_ROLLBACK;
3144       }else{
3145         sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3146         sqlite3CloseSavepoints(db);
3147         db->autoCommit = 1;
3148         p->nChange = 0;
3149       }
3150     }
3151 
3152     /* If eStatementOp is non-zero, then a statement transaction needs to
3153     ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
3154     ** do so. If this operation returns an error, and the current statement
3155     ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
3156     ** current statement error code.
3157     */
3158     if( eStatementOp ){
3159       rc = sqlite3VdbeCloseStatement(p, eStatementOp);
3160       if( rc ){
3161         if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
3162           p->rc = rc;
3163           sqlite3DbFree(db, p->zErrMsg);
3164           p->zErrMsg = 0;
3165         }
3166         sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3167         sqlite3CloseSavepoints(db);
3168         db->autoCommit = 1;
3169         p->nChange = 0;
3170       }
3171     }
3172 
3173     /* If this was an INSERT, UPDATE or DELETE and no statement transaction
3174     ** has been rolled back, update the database connection change-counter.
3175     */
3176     if( p->changeCntOn ){
3177       if( eStatementOp!=SAVEPOINT_ROLLBACK ){
3178         sqlite3VdbeSetChanges(db, p->nChange);
3179       }else{
3180         sqlite3VdbeSetChanges(db, 0);
3181       }
3182       p->nChange = 0;
3183     }
3184 
3185     /* Release the locks */
3186     sqlite3VdbeLeave(p);
3187   }
3188 
3189   /* We have successfully halted and closed the VM.  Record this fact. */
3190   if( p->pc>=0 ){
3191     db->nVdbeActive--;
3192     if( !p->readOnly ) db->nVdbeWrite--;
3193     if( p->bIsReader ) db->nVdbeRead--;
3194     assert( db->nVdbeActive>=db->nVdbeRead );
3195     assert( db->nVdbeRead>=db->nVdbeWrite );
3196     assert( db->nVdbeWrite>=0 );
3197   }
3198   p->iVdbeMagic = VDBE_MAGIC_HALT;
3199   checkActiveVdbeCnt(db);
3200   if( db->mallocFailed ){
3201     p->rc = SQLITE_NOMEM_BKPT;
3202   }
3203 
3204   /* If the auto-commit flag is set to true, then any locks that were held
3205   ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
3206   ** to invoke any required unlock-notify callbacks.
3207   */
3208   if( db->autoCommit ){
3209     sqlite3ConnectionUnlocked(db);
3210   }
3211 
3212   assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
3213   return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
3214 }
3215 
3216 
3217 /*
3218 ** Each VDBE holds the result of the most recent sqlite3_step() call
3219 ** in p->rc.  This routine sets that result back to SQLITE_OK.
3220 */
sqlite3VdbeResetStepResult(Vdbe * p)3221 void sqlite3VdbeResetStepResult(Vdbe *p){
3222   p->rc = SQLITE_OK;
3223 }
3224 
3225 /*
3226 ** Copy the error code and error message belonging to the VDBE passed
3227 ** as the first argument to its database handle (so that they will be
3228 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
3229 **
3230 ** This function does not clear the VDBE error code or message, just
3231 ** copies them to the database handle.
3232 */
sqlite3VdbeTransferError(Vdbe * p)3233 int sqlite3VdbeTransferError(Vdbe *p){
3234   sqlite3 *db = p->db;
3235   int rc = p->rc;
3236   if( p->zErrMsg ){
3237     db->bBenignMalloc++;
3238     sqlite3BeginBenignMalloc();
3239     if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
3240     sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
3241     sqlite3EndBenignMalloc();
3242     db->bBenignMalloc--;
3243   }else if( db->pErr ){
3244     sqlite3ValueSetNull(db->pErr);
3245   }
3246   db->errCode = rc;
3247   return rc;
3248 }
3249 
3250 #ifdef SQLITE_ENABLE_SQLLOG
3251 /*
3252 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
3253 ** invoke it.
3254 */
vdbeInvokeSqllog(Vdbe * v)3255 static void vdbeInvokeSqllog(Vdbe *v){
3256   if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
3257     char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
3258     assert( v->db->init.busy==0 );
3259     if( zExpanded ){
3260       sqlite3GlobalConfig.xSqllog(
3261           sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
3262       );
3263       sqlite3DbFree(v->db, zExpanded);
3264     }
3265   }
3266 }
3267 #else
3268 # define vdbeInvokeSqllog(x)
3269 #endif
3270 
3271 /*
3272 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
3273 ** Write any error messages into *pzErrMsg.  Return the result code.
3274 **
3275 ** After this routine is run, the VDBE should be ready to be executed
3276 ** again.
3277 **
3278 ** To look at it another way, this routine resets the state of the
3279 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
3280 ** VDBE_MAGIC_INIT.
3281 */
sqlite3VdbeReset(Vdbe * p)3282 int sqlite3VdbeReset(Vdbe *p){
3283 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
3284   int i;
3285 #endif
3286 
3287   sqlite3 *db;
3288   db = p->db;
3289 
3290   /* If the VM did not run to completion or if it encountered an
3291   ** error, then it might not have been halted properly.  So halt
3292   ** it now.
3293   */
3294   sqlite3VdbeHalt(p);
3295 
3296   /* If the VDBE has been run even partially, then transfer the error code
3297   ** and error message from the VDBE into the main database structure.  But
3298   ** if the VDBE has just been set to run but has not actually executed any
3299   ** instructions yet, leave the main database error information unchanged.
3300   */
3301   if( p->pc>=0 ){
3302     vdbeInvokeSqllog(p);
3303     if( db->pErr || p->zErrMsg ){
3304       sqlite3VdbeTransferError(p);
3305     }else{
3306       db->errCode = p->rc;
3307     }
3308     if( p->runOnlyOnce ) p->expired = 1;
3309   }else if( p->rc && p->expired ){
3310     /* The expired flag was set on the VDBE before the first call
3311     ** to sqlite3_step(). For consistency (since sqlite3_step() was
3312     ** called), set the database error in this case as well.
3313     */
3314     sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
3315   }
3316 
3317   /* Reset register contents and reclaim error message memory.
3318   */
3319 #ifdef SQLITE_DEBUG
3320   /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
3321   ** Vdbe.aMem[] arrays have already been cleaned up.  */
3322   if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
3323   if( p->aMem ){
3324     for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
3325   }
3326 #endif
3327   if( p->zErrMsg ){
3328     sqlite3DbFree(db, p->zErrMsg);
3329     p->zErrMsg = 0;
3330   }
3331   p->pResultSet = 0;
3332 #ifdef SQLITE_DEBUG
3333   p->nWrite = 0;
3334 #endif
3335 
3336   /* Save profiling information from this VDBE run.
3337   */
3338 #ifdef VDBE_PROFILE
3339   {
3340     FILE *out = fopen("vdbe_profile.out", "a");
3341     if( out ){
3342       fprintf(out, "---- ");
3343       for(i=0; i<p->nOp; i++){
3344         fprintf(out, "%02x", p->aOp[i].opcode);
3345       }
3346       fprintf(out, "\n");
3347       if( p->zSql ){
3348         char c, pc = 0;
3349         fprintf(out, "-- ");
3350         for(i=0; (c = p->zSql[i])!=0; i++){
3351           if( pc=='\n' ) fprintf(out, "-- ");
3352           putc(c, out);
3353           pc = c;
3354         }
3355         if( pc!='\n' ) fprintf(out, "\n");
3356       }
3357       for(i=0; i<p->nOp; i++){
3358         char zHdr[100];
3359         sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
3360            p->aOp[i].cnt,
3361            p->aOp[i].cycles,
3362            p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
3363         );
3364         fprintf(out, "%s", zHdr);
3365         sqlite3VdbePrintOp(out, i, &p->aOp[i]);
3366       }
3367       fclose(out);
3368     }
3369   }
3370 #endif
3371   p->iVdbeMagic = VDBE_MAGIC_RESET;
3372   return p->rc & db->errMask;
3373 }
3374 
3375 /*
3376 ** Clean up and delete a VDBE after execution.  Return an integer which is
3377 ** the result code.  Write any error message text into *pzErrMsg.
3378 */
sqlite3VdbeFinalize(Vdbe * p)3379 int sqlite3VdbeFinalize(Vdbe *p){
3380   int rc = SQLITE_OK;
3381   if( p->iVdbeMagic==VDBE_MAGIC_RUN || p->iVdbeMagic==VDBE_MAGIC_HALT ){
3382     rc = sqlite3VdbeReset(p);
3383     assert( (rc & p->db->errMask)==rc );
3384   }
3385   sqlite3VdbeDelete(p);
3386   return rc;
3387 }
3388 
3389 /*
3390 ** If parameter iOp is less than zero, then invoke the destructor for
3391 ** all auxiliary data pointers currently cached by the VM passed as
3392 ** the first argument.
3393 **
3394 ** Or, if iOp is greater than or equal to zero, then the destructor is
3395 ** only invoked for those auxiliary data pointers created by the user
3396 ** function invoked by the OP_Function opcode at instruction iOp of
3397 ** VM pVdbe, and only then if:
3398 **
3399 **    * the associated function parameter is the 32nd or later (counting
3400 **      from left to right), or
3401 **
3402 **    * the corresponding bit in argument mask is clear (where the first
3403 **      function parameter corresponds to bit 0 etc.).
3404 */
sqlite3VdbeDeleteAuxData(sqlite3 * db,AuxData ** pp,int iOp,int mask)3405 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
3406   while( *pp ){
3407     AuxData *pAux = *pp;
3408     if( (iOp<0)
3409      || (pAux->iAuxOp==iOp
3410           && pAux->iAuxArg>=0
3411           && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg))))
3412     ){
3413       testcase( pAux->iAuxArg==31 );
3414       if( pAux->xDeleteAux ){
3415         pAux->xDeleteAux(pAux->pAux);
3416       }
3417       *pp = pAux->pNextAux;
3418       sqlite3DbFree(db, pAux);
3419     }else{
3420       pp= &pAux->pNextAux;
3421     }
3422   }
3423 }
3424 
3425 /*
3426 ** Free all memory associated with the Vdbe passed as the second argument,
3427 ** except for object itself, which is preserved.
3428 **
3429 ** The difference between this function and sqlite3VdbeDelete() is that
3430 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
3431 ** the database connection and frees the object itself.
3432 */
sqlite3VdbeClearObject(sqlite3 * db,Vdbe * p)3433 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
3434   SubProgram *pSub, *pNext;
3435   assert( p->db==0 || p->db==db );
3436   releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
3437   for(pSub=p->pProgram; pSub; pSub=pNext){
3438     pNext = pSub->pNext;
3439     vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
3440     sqlite3DbFree(db, pSub);
3441   }
3442   if( p->iVdbeMagic!=VDBE_MAGIC_INIT ){
3443     releaseMemArray(p->aVar, p->nVar);
3444     sqlite3DbFree(db, p->pVList);
3445     sqlite3DbFree(db, p->pFree);
3446   }
3447   vdbeFreeOpArray(db, p->aOp, p->nOp);
3448   sqlite3DbFree(db, p->aColName);
3449   sqlite3DbFree(db, p->zSql);
3450 #ifdef SQLITE_ENABLE_NORMALIZE
3451   sqlite3DbFree(db, p->zNormSql);
3452   {
3453     DblquoteStr *pThis, *pNext;
3454     for(pThis=p->pDblStr; pThis; pThis=pNext){
3455       pNext = pThis->pNextStr;
3456       sqlite3DbFree(db, pThis);
3457     }
3458   }
3459 #endif
3460 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3461   {
3462     int i;
3463     for(i=0; i<p->nScan; i++){
3464       sqlite3DbFree(db, p->aScan[i].zName);
3465     }
3466     sqlite3DbFree(db, p->aScan);
3467   }
3468 #endif
3469 }
3470 
3471 /*
3472 ** Delete an entire VDBE.
3473 */
sqlite3VdbeDelete(Vdbe * p)3474 void sqlite3VdbeDelete(Vdbe *p){
3475   sqlite3 *db;
3476 
3477   assert( p!=0 );
3478   db = p->db;
3479   assert( sqlite3_mutex_held(db->mutex) );
3480   sqlite3VdbeClearObject(db, p);
3481   if( p->pPrev ){
3482     p->pPrev->pNext = p->pNext;
3483   }else{
3484     assert( db->pVdbe==p );
3485     db->pVdbe = p->pNext;
3486   }
3487   if( p->pNext ){
3488     p->pNext->pPrev = p->pPrev;
3489   }
3490   p->iVdbeMagic = VDBE_MAGIC_DEAD;
3491   p->db = 0;
3492   sqlite3DbFreeNN(db, p);
3493 }
3494 
3495 /*
3496 ** The cursor "p" has a pending seek operation that has not yet been
3497 ** carried out.  Seek the cursor now.  If an error occurs, return
3498 ** the appropriate error code.
3499 */
sqlite3VdbeFinishMoveto(VdbeCursor * p)3500 int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){
3501   int res, rc;
3502 #ifdef SQLITE_TEST
3503   extern int sqlite3_search_count;
3504 #endif
3505   assert( p->deferredMoveto );
3506   assert( p->isTable );
3507   assert( p->eCurType==CURTYPE_BTREE );
3508   rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res);
3509   if( rc ) return rc;
3510   if( res!=0 ) return SQLITE_CORRUPT_BKPT;
3511 #ifdef SQLITE_TEST
3512   sqlite3_search_count++;
3513 #endif
3514   p->deferredMoveto = 0;
3515   p->cacheStatus = CACHE_STALE;
3516   return SQLITE_OK;
3517 }
3518 
3519 /*
3520 ** Something has moved cursor "p" out of place.  Maybe the row it was
3521 ** pointed to was deleted out from under it.  Or maybe the btree was
3522 ** rebalanced.  Whatever the cause, try to restore "p" to the place it
3523 ** is supposed to be pointing.  If the row was deleted out from under the
3524 ** cursor, set the cursor to point to a NULL row.
3525 */
handleMovedCursor(VdbeCursor * p)3526 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
3527   int isDifferentRow, rc;
3528   assert( p->eCurType==CURTYPE_BTREE );
3529   assert( p->uc.pCursor!=0 );
3530   assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
3531   rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
3532   p->cacheStatus = CACHE_STALE;
3533   if( isDifferentRow ) p->nullRow = 1;
3534   return rc;
3535 }
3536 
3537 /*
3538 ** Check to ensure that the cursor is valid.  Restore the cursor
3539 ** if need be.  Return any I/O error from the restore operation.
3540 */
sqlite3VdbeCursorRestore(VdbeCursor * p)3541 int sqlite3VdbeCursorRestore(VdbeCursor *p){
3542   assert( p->eCurType==CURTYPE_BTREE );
3543   if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3544     return handleMovedCursor(p);
3545   }
3546   return SQLITE_OK;
3547 }
3548 
3549 /*
3550 ** Make sure the cursor p is ready to read or write the row to which it
3551 ** was last positioned.  Return an error code if an OOM fault or I/O error
3552 ** prevents us from positioning the cursor to its correct position.
3553 **
3554 ** If a MoveTo operation is pending on the given cursor, then do that
3555 ** MoveTo now.  If no move is pending, check to see if the row has been
3556 ** deleted out from under the cursor and if it has, mark the row as
3557 ** a NULL row.
3558 **
3559 ** If the cursor is already pointing to the correct row and that row has
3560 ** not been deleted out from under the cursor, then this routine is a no-op.
3561 */
sqlite3VdbeCursorMoveto(VdbeCursor ** pp,u32 * piCol)3562 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, u32 *piCol){
3563   VdbeCursor *p = *pp;
3564   assert( p->eCurType==CURTYPE_BTREE || p->eCurType==CURTYPE_PSEUDO );
3565   if( p->deferredMoveto ){
3566     u32 iMap;
3567     assert( !p->isEphemeral );
3568     if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 && !p->nullRow ){
3569       *pp = p->pAltCursor;
3570       *piCol = iMap - 1;
3571       return SQLITE_OK;
3572     }
3573     return sqlite3VdbeFinishMoveto(p);
3574   }
3575   if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3576     return handleMovedCursor(p);
3577   }
3578   return SQLITE_OK;
3579 }
3580 
3581 /*
3582 ** The following functions:
3583 **
3584 ** sqlite3VdbeSerialType()
3585 ** sqlite3VdbeSerialTypeLen()
3586 ** sqlite3VdbeSerialLen()
3587 ** sqlite3VdbeSerialPut()
3588 ** sqlite3VdbeSerialGet()
3589 **
3590 ** encapsulate the code that serializes values for storage in SQLite
3591 ** data and index records. Each serialized value consists of a
3592 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3593 ** integer, stored as a varint.
3594 **
3595 ** In an SQLite index record, the serial type is stored directly before
3596 ** the blob of data that it corresponds to. In a table record, all serial
3597 ** types are stored at the start of the record, and the blobs of data at
3598 ** the end. Hence these functions allow the caller to handle the
3599 ** serial-type and data blob separately.
3600 **
3601 ** The following table describes the various storage classes for data:
3602 **
3603 **   serial type        bytes of data      type
3604 **   --------------     ---------------    ---------------
3605 **      0                     0            NULL
3606 **      1                     1            signed integer
3607 **      2                     2            signed integer
3608 **      3                     3            signed integer
3609 **      4                     4            signed integer
3610 **      5                     6            signed integer
3611 **      6                     8            signed integer
3612 **      7                     8            IEEE float
3613 **      8                     0            Integer constant 0
3614 **      9                     0            Integer constant 1
3615 **     10,11                               reserved for expansion
3616 **    N>=12 and even       (N-12)/2        BLOB
3617 **    N>=13 and odd        (N-13)/2        text
3618 **
3619 ** The 8 and 9 types were added in 3.3.0, file format 4.  Prior versions
3620 ** of SQLite will not understand those serial types.
3621 */
3622 
3623 #if 0 /* Inlined into the OP_MakeRecord opcode */
3624 /*
3625 ** Return the serial-type for the value stored in pMem.
3626 **
3627 ** This routine might convert a large MEM_IntReal value into MEM_Real.
3628 **
3629 ** 2019-07-11:  The primary user of this subroutine was the OP_MakeRecord
3630 ** opcode in the byte-code engine.  But by moving this routine in-line, we
3631 ** can omit some redundant tests and make that opcode a lot faster.  So
3632 ** this routine is now only used by the STAT3 logic and STAT3 support has
3633 ** ended.  The code is kept here for historical reference only.
3634 */
3635 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
3636   int flags = pMem->flags;
3637   u32 n;
3638 
3639   assert( pLen!=0 );
3640   if( flags&MEM_Null ){
3641     *pLen = 0;
3642     return 0;
3643   }
3644   if( flags&(MEM_Int|MEM_IntReal) ){
3645     /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3646 #   define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
3647     i64 i = pMem->u.i;
3648     u64 u;
3649     testcase( flags & MEM_Int );
3650     testcase( flags & MEM_IntReal );
3651     if( i<0 ){
3652       u = ~i;
3653     }else{
3654       u = i;
3655     }
3656     if( u<=127 ){
3657       if( (i&1)==i && file_format>=4 ){
3658         *pLen = 0;
3659         return 8+(u32)u;
3660       }else{
3661         *pLen = 1;
3662         return 1;
3663       }
3664     }
3665     if( u<=32767 ){ *pLen = 2; return 2; }
3666     if( u<=8388607 ){ *pLen = 3; return 3; }
3667     if( u<=2147483647 ){ *pLen = 4; return 4; }
3668     if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
3669     *pLen = 8;
3670     if( flags&MEM_IntReal ){
3671       /* If the value is IntReal and is going to take up 8 bytes to store
3672       ** as an integer, then we might as well make it an 8-byte floating
3673       ** point value */
3674       pMem->u.r = (double)pMem->u.i;
3675       pMem->flags &= ~MEM_IntReal;
3676       pMem->flags |= MEM_Real;
3677       return 7;
3678     }
3679     return 6;
3680   }
3681   if( flags&MEM_Real ){
3682     *pLen = 8;
3683     return 7;
3684   }
3685   assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
3686   assert( pMem->n>=0 );
3687   n = (u32)pMem->n;
3688   if( flags & MEM_Zero ){
3689     n += pMem->u.nZero;
3690   }
3691   *pLen = n;
3692   return ((n*2) + 12 + ((flags&MEM_Str)!=0));
3693 }
3694 #endif /* inlined into OP_MakeRecord */
3695 
3696 /*
3697 ** The sizes for serial types less than 128
3698 */
3699 static const u8 sqlite3SmallTypeSizes[] = {
3700         /*  0   1   2   3   4   5   6   7   8   9 */
3701 /*   0 */   0,  1,  2,  3,  4,  6,  8,  8,  0,  0,
3702 /*  10 */   0,  0,  0,  0,  1,  1,  2,  2,  3,  3,
3703 /*  20 */   4,  4,  5,  5,  6,  6,  7,  7,  8,  8,
3704 /*  30 */   9,  9, 10, 10, 11, 11, 12, 12, 13, 13,
3705 /*  40 */  14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3706 /*  50 */  19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3707 /*  60 */  24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3708 /*  70 */  29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3709 /*  80 */  34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3710 /*  90 */  39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3711 /* 100 */  44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3712 /* 110 */  49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3713 /* 120 */  54, 54, 55, 55, 56, 56, 57, 57
3714 };
3715 
3716 /*
3717 ** Return the length of the data corresponding to the supplied serial-type.
3718 */
sqlite3VdbeSerialTypeLen(u32 serial_type)3719 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
3720   if( serial_type>=128 ){
3721     return (serial_type-12)/2;
3722   }else{
3723     assert( serial_type<12
3724             || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
3725     return sqlite3SmallTypeSizes[serial_type];
3726   }
3727 }
sqlite3VdbeOneByteSerialTypeLen(u8 serial_type)3728 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
3729   assert( serial_type<128 );
3730   return sqlite3SmallTypeSizes[serial_type];
3731 }
3732 
3733 /*
3734 ** If we are on an architecture with mixed-endian floating
3735 ** points (ex: ARM7) then swap the lower 4 bytes with the
3736 ** upper 4 bytes.  Return the result.
3737 **
3738 ** For most architectures, this is a no-op.
3739 **
3740 ** (later):  It is reported to me that the mixed-endian problem
3741 ** on ARM7 is an issue with GCC, not with the ARM7 chip.  It seems
3742 ** that early versions of GCC stored the two words of a 64-bit
3743 ** float in the wrong order.  And that error has been propagated
3744 ** ever since.  The blame is not necessarily with GCC, though.
3745 ** GCC might have just copying the problem from a prior compiler.
3746 ** I am also told that newer versions of GCC that follow a different
3747 ** ABI get the byte order right.
3748 **
3749 ** Developers using SQLite on an ARM7 should compile and run their
3750 ** application using -DSQLITE_DEBUG=1 at least once.  With DEBUG
3751 ** enabled, some asserts below will ensure that the byte order of
3752 ** floating point values is correct.
3753 **
3754 ** (2007-08-30)  Frank van Vugt has studied this problem closely
3755 ** and has send his findings to the SQLite developers.  Frank
3756 ** writes that some Linux kernels offer floating point hardware
3757 ** emulation that uses only 32-bit mantissas instead of a full
3758 ** 48-bits as required by the IEEE standard.  (This is the
3759 ** CONFIG_FPE_FASTFPE option.)  On such systems, floating point
3760 ** byte swapping becomes very complicated.  To avoid problems,
3761 ** the necessary byte swapping is carried out using a 64-bit integer
3762 ** rather than a 64-bit float.  Frank assures us that the code here
3763 ** works for him.  We, the developers, have no way to independently
3764 ** verify this, but Frank seems to know what he is talking about
3765 ** so we trust him.
3766 */
3767 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
floatSwap(u64 in)3768 static u64 floatSwap(u64 in){
3769   union {
3770     u64 r;
3771     u32 i[2];
3772   } u;
3773   u32 t;
3774 
3775   u.r = in;
3776   t = u.i[0];
3777   u.i[0] = u.i[1];
3778   u.i[1] = t;
3779   return u.r;
3780 }
3781 # define swapMixedEndianFloat(X)  X = floatSwap(X)
3782 #else
3783 # define swapMixedEndianFloat(X)
3784 #endif
3785 
3786 /*
3787 ** Write the serialized data blob for the value stored in pMem into
3788 ** buf. It is assumed that the caller has allocated sufficient space.
3789 ** Return the number of bytes written.
3790 **
3791 ** nBuf is the amount of space left in buf[].  The caller is responsible
3792 ** for allocating enough space to buf[] to hold the entire field, exclusive
3793 ** of the pMem->u.nZero bytes for a MEM_Zero value.
3794 **
3795 ** Return the number of bytes actually written into buf[].  The number
3796 ** of bytes in the zero-filled tail is included in the return value only
3797 ** if those bytes were zeroed in buf[].
3798 */
sqlite3VdbeSerialPut(u8 * buf,Mem * pMem,u32 serial_type)3799 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
3800   u32 len;
3801 
3802   /* Integer and Real */
3803   if( serial_type<=7 && serial_type>0 ){
3804     u64 v;
3805     u32 i;
3806     if( serial_type==7 ){
3807       assert( sizeof(v)==sizeof(pMem->u.r) );
3808       memcpy(&v, &pMem->u.r, sizeof(v));
3809       swapMixedEndianFloat(v);
3810     }else{
3811       v = pMem->u.i;
3812     }
3813     len = i = sqlite3SmallTypeSizes[serial_type];
3814     assert( i>0 );
3815     do{
3816       buf[--i] = (u8)(v&0xFF);
3817       v >>= 8;
3818     }while( i );
3819     return len;
3820   }
3821 
3822   /* String or blob */
3823   if( serial_type>=12 ){
3824     assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
3825              == (int)sqlite3VdbeSerialTypeLen(serial_type) );
3826     len = pMem->n;
3827     if( len>0 ) memcpy(buf, pMem->z, len);
3828     return len;
3829   }
3830 
3831   /* NULL or constants 0 or 1 */
3832   return 0;
3833 }
3834 
3835 /* Input "x" is a sequence of unsigned characters that represent a
3836 ** big-endian integer.  Return the equivalent native integer
3837 */
3838 #define ONE_BYTE_INT(x)    ((i8)(x)[0])
3839 #define TWO_BYTE_INT(x)    (256*(i8)((x)[0])|(x)[1])
3840 #define THREE_BYTE_INT(x)  (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3841 #define FOUR_BYTE_UINT(x)  (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3842 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3843 
3844 /*
3845 ** Deserialize the data blob pointed to by buf as serial type serial_type
3846 ** and store the result in pMem.  Return the number of bytes read.
3847 **
3848 ** This function is implemented as two separate routines for performance.
3849 ** The few cases that require local variables are broken out into a separate
3850 ** routine so that in most cases the overhead of moving the stack pointer
3851 ** is avoided.
3852 */
serialGet(const unsigned char * buf,u32 serial_type,Mem * pMem)3853 static u32 serialGet(
3854   const unsigned char *buf,     /* Buffer to deserialize from */
3855   u32 serial_type,              /* Serial type to deserialize */
3856   Mem *pMem                     /* Memory cell to write value into */
3857 ){
3858   u64 x = FOUR_BYTE_UINT(buf);
3859   u32 y = FOUR_BYTE_UINT(buf+4);
3860   x = (x<<32) + y;
3861   if( serial_type==6 ){
3862     /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3863     ** twos-complement integer. */
3864     pMem->u.i = *(i64*)&x;
3865     pMem->flags = MEM_Int;
3866     testcase( pMem->u.i<0 );
3867   }else{
3868     /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3869     ** floating point number. */
3870 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3871     /* Verify that integers and floating point values use the same
3872     ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3873     ** defined that 64-bit floating point values really are mixed
3874     ** endian.
3875     */
3876     static const u64 t1 = ((u64)0x3ff00000)<<32;
3877     static const double r1 = 1.0;
3878     u64 t2 = t1;
3879     swapMixedEndianFloat(t2);
3880     assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3881 #endif
3882     assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
3883     swapMixedEndianFloat(x);
3884     memcpy(&pMem->u.r, &x, sizeof(x));
3885     pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real;
3886   }
3887   return 8;
3888 }
sqlite3VdbeSerialGet(const unsigned char * buf,u32 serial_type,Mem * pMem)3889 u32 sqlite3VdbeSerialGet(
3890   const unsigned char *buf,     /* Buffer to deserialize from */
3891   u32 serial_type,              /* Serial type to deserialize */
3892   Mem *pMem                     /* Memory cell to write value into */
3893 ){
3894   switch( serial_type ){
3895     case 10: { /* Internal use only: NULL with virtual table
3896                ** UPDATE no-change flag set */
3897       pMem->flags = MEM_Null|MEM_Zero;
3898       pMem->n = 0;
3899       pMem->u.nZero = 0;
3900       break;
3901     }
3902     case 11:   /* Reserved for future use */
3903     case 0: {  /* Null */
3904       /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
3905       pMem->flags = MEM_Null;
3906       break;
3907     }
3908     case 1: {
3909       /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
3910       ** integer. */
3911       pMem->u.i = ONE_BYTE_INT(buf);
3912       pMem->flags = MEM_Int;
3913       testcase( pMem->u.i<0 );
3914       return 1;
3915     }
3916     case 2: { /* 2-byte signed integer */
3917       /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
3918       ** twos-complement integer. */
3919       pMem->u.i = TWO_BYTE_INT(buf);
3920       pMem->flags = MEM_Int;
3921       testcase( pMem->u.i<0 );
3922       return 2;
3923     }
3924     case 3: { /* 3-byte signed integer */
3925       /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
3926       ** twos-complement integer. */
3927       pMem->u.i = THREE_BYTE_INT(buf);
3928       pMem->flags = MEM_Int;
3929       testcase( pMem->u.i<0 );
3930       return 3;
3931     }
3932     case 4: { /* 4-byte signed integer */
3933       /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
3934       ** twos-complement integer. */
3935       pMem->u.i = FOUR_BYTE_INT(buf);
3936 #ifdef __HP_cc
3937       /* Work around a sign-extension bug in the HP compiler for HP/UX */
3938       if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
3939 #endif
3940       pMem->flags = MEM_Int;
3941       testcase( pMem->u.i<0 );
3942       return 4;
3943     }
3944     case 5: { /* 6-byte signed integer */
3945       /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
3946       ** twos-complement integer. */
3947       pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
3948       pMem->flags = MEM_Int;
3949       testcase( pMem->u.i<0 );
3950       return 6;
3951     }
3952     case 6:   /* 8-byte signed integer */
3953     case 7: { /* IEEE floating point */
3954       /* These use local variables, so do them in a separate routine
3955       ** to avoid having to move the frame pointer in the common case */
3956       return serialGet(buf,serial_type,pMem);
3957     }
3958     case 8:    /* Integer 0 */
3959     case 9: {  /* Integer 1 */
3960       /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
3961       /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
3962       pMem->u.i = serial_type-8;
3963       pMem->flags = MEM_Int;
3964       return 0;
3965     }
3966     default: {
3967       /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
3968       ** length.
3969       ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
3970       ** (N-13)/2 bytes in length. */
3971       static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
3972       pMem->z = (char *)buf;
3973       pMem->n = (serial_type-12)/2;
3974       pMem->flags = aFlag[serial_type&1];
3975       return pMem->n;
3976     }
3977   }
3978   return 0;
3979 }
3980 /*
3981 ** This routine is used to allocate sufficient space for an UnpackedRecord
3982 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
3983 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
3984 **
3985 ** The space is either allocated using sqlite3DbMallocRaw() or from within
3986 ** the unaligned buffer passed via the second and third arguments (presumably
3987 ** stack space). If the former, then *ppFree is set to a pointer that should
3988 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
3989 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
3990 ** before returning.
3991 **
3992 ** If an OOM error occurs, NULL is returned.
3993 */
sqlite3VdbeAllocUnpackedRecord(KeyInfo * pKeyInfo)3994 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
3995   KeyInfo *pKeyInfo               /* Description of the record */
3996 ){
3997   UnpackedRecord *p;              /* Unpacked record to return */
3998   int nByte;                      /* Number of bytes required for *p */
3999   nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1);
4000   p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
4001   if( !p ) return 0;
4002   p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
4003   assert( pKeyInfo->aSortFlags!=0 );
4004   p->pKeyInfo = pKeyInfo;
4005   p->nField = pKeyInfo->nKeyField + 1;
4006   return p;
4007 }
4008 
4009 /*
4010 ** Given the nKey-byte encoding of a record in pKey[], populate the
4011 ** UnpackedRecord structure indicated by the fourth argument with the
4012 ** contents of the decoded record.
4013 */
sqlite3VdbeRecordUnpack(KeyInfo * pKeyInfo,int nKey,const void * pKey,UnpackedRecord * p)4014 void sqlite3VdbeRecordUnpack(
4015   KeyInfo *pKeyInfo,     /* Information about the record format */
4016   int nKey,              /* Size of the binary record */
4017   const void *pKey,      /* The binary record */
4018   UnpackedRecord *p      /* Populate this structure before returning. */
4019 ){
4020   const unsigned char *aKey = (const unsigned char *)pKey;
4021   u32 d;
4022   u32 idx;                        /* Offset in aKey[] to read from */
4023   u16 u;                          /* Unsigned loop counter */
4024   u32 szHdr;
4025   Mem *pMem = p->aMem;
4026 
4027   p->default_rc = 0;
4028   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
4029   idx = getVarint32(aKey, szHdr);
4030   d = szHdr;
4031   u = 0;
4032   while( idx<szHdr && d<=(u32)nKey ){
4033     u32 serial_type;
4034 
4035     idx += getVarint32(&aKey[idx], serial_type);
4036     pMem->enc = pKeyInfo->enc;
4037     pMem->db = pKeyInfo->db;
4038     /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
4039     pMem->szMalloc = 0;
4040     pMem->z = 0;
4041     d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
4042     pMem++;
4043     if( (++u)>=p->nField ) break;
4044   }
4045   if( d>(u32)nKey && u ){
4046     assert( CORRUPT_DB );
4047     /* In a corrupt record entry, the last pMem might have been set up using
4048     ** uninitialized memory. Overwrite its value with NULL, to prevent
4049     ** warnings from MSAN. */
4050     sqlite3VdbeMemSetNull(pMem-1);
4051   }
4052   assert( u<=pKeyInfo->nKeyField + 1 );
4053   p->nField = u;
4054 }
4055 
4056 #ifdef SQLITE_DEBUG
4057 /*
4058 ** This function compares two index or table record keys in the same way
4059 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
4060 ** this function deserializes and compares values using the
4061 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
4062 ** in assert() statements to ensure that the optimized code in
4063 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
4064 **
4065 ** Return true if the result of comparison is equivalent to desiredResult.
4066 ** Return false if there is a disagreement.
4067 */
vdbeRecordCompareDebug(int nKey1,const void * pKey1,const UnpackedRecord * pPKey2,int desiredResult)4068 static int vdbeRecordCompareDebug(
4069   int nKey1, const void *pKey1, /* Left key */
4070   const UnpackedRecord *pPKey2, /* Right key */
4071   int desiredResult             /* Correct answer */
4072 ){
4073   u32 d1;            /* Offset into aKey[] of next data element */
4074   u32 idx1;          /* Offset into aKey[] of next header element */
4075   u32 szHdr1;        /* Number of bytes in header */
4076   int i = 0;
4077   int rc = 0;
4078   const unsigned char *aKey1 = (const unsigned char *)pKey1;
4079   KeyInfo *pKeyInfo;
4080   Mem mem1;
4081 
4082   pKeyInfo = pPKey2->pKeyInfo;
4083   if( pKeyInfo->db==0 ) return 1;
4084   mem1.enc = pKeyInfo->enc;
4085   mem1.db = pKeyInfo->db;
4086   /* mem1.flags = 0;  // Will be initialized by sqlite3VdbeSerialGet() */
4087   VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4088 
4089   /* Compilers may complain that mem1.u.i is potentially uninitialized.
4090   ** We could initialize it, as shown here, to silence those complaints.
4091   ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
4092   ** the unnecessary initialization has a measurable negative performance
4093   ** impact, since this routine is a very high runner.  And so, we choose
4094   ** to ignore the compiler warnings and leave this variable uninitialized.
4095   */
4096   /*  mem1.u.i = 0;  // not needed, here to silence compiler warning */
4097 
4098   idx1 = getVarint32(aKey1, szHdr1);
4099   if( szHdr1>98307 ) return SQLITE_CORRUPT;
4100   d1 = szHdr1;
4101   assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB );
4102   assert( pKeyInfo->aSortFlags!=0 );
4103   assert( pKeyInfo->nKeyField>0 );
4104   assert( idx1<=szHdr1 || CORRUPT_DB );
4105   do{
4106     u32 serial_type1;
4107 
4108     /* Read the serial types for the next element in each key. */
4109     idx1 += getVarint32( aKey1+idx1, serial_type1 );
4110 
4111     /* Verify that there is enough key space remaining to avoid
4112     ** a buffer overread.  The "d1+serial_type1+2" subexpression will
4113     ** always be greater than or equal to the amount of required key space.
4114     ** Use that approximation to avoid the more expensive call to
4115     ** sqlite3VdbeSerialTypeLen() in the common case.
4116     */
4117     if( d1+(u64)serial_type1+2>(u64)nKey1
4118      && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1
4119     ){
4120       break;
4121     }
4122 
4123     /* Extract the values to be compared.
4124     */
4125     d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
4126 
4127     /* Do the comparison
4128     */
4129     rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
4130                            pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0);
4131     if( rc!=0 ){
4132       assert( mem1.szMalloc==0 );  /* See comment below */
4133       if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
4134        && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null))
4135       ){
4136         rc = -rc;
4137       }
4138       if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){
4139         rc = -rc;  /* Invert the result for DESC sort order. */
4140       }
4141       goto debugCompareEnd;
4142     }
4143     i++;
4144   }while( idx1<szHdr1 && i<pPKey2->nField );
4145 
4146   /* No memory allocation is ever used on mem1.  Prove this using
4147   ** the following assert().  If the assert() fails, it indicates a
4148   ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
4149   */
4150   assert( mem1.szMalloc==0 );
4151 
4152   /* rc==0 here means that one of the keys ran out of fields and
4153   ** all the fields up to that point were equal. Return the default_rc
4154   ** value.  */
4155   rc = pPKey2->default_rc;
4156 
4157 debugCompareEnd:
4158   if( desiredResult==0 && rc==0 ) return 1;
4159   if( desiredResult<0 && rc<0 ) return 1;
4160   if( desiredResult>0 && rc>0 ) return 1;
4161   if( CORRUPT_DB ) return 1;
4162   if( pKeyInfo->db->mallocFailed ) return 1;
4163   return 0;
4164 }
4165 #endif
4166 
4167 #ifdef SQLITE_DEBUG
4168 /*
4169 ** Count the number of fields (a.k.a. columns) in the record given by
4170 ** pKey,nKey.  The verify that this count is less than or equal to the
4171 ** limit given by pKeyInfo->nAllField.
4172 **
4173 ** If this constraint is not satisfied, it means that the high-speed
4174 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
4175 ** not work correctly.  If this assert() ever fires, it probably means
4176 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed
4177 ** incorrectly.
4178 */
vdbeAssertFieldCountWithinLimits(int nKey,const void * pKey,const KeyInfo * pKeyInfo)4179 static void vdbeAssertFieldCountWithinLimits(
4180   int nKey, const void *pKey,   /* The record to verify */
4181   const KeyInfo *pKeyInfo       /* Compare size with this KeyInfo */
4182 ){
4183   int nField = 0;
4184   u32 szHdr;
4185   u32 idx;
4186   u32 notUsed;
4187   const unsigned char *aKey = (const unsigned char*)pKey;
4188 
4189   if( CORRUPT_DB ) return;
4190   idx = getVarint32(aKey, szHdr);
4191   assert( nKey>=0 );
4192   assert( szHdr<=(u32)nKey );
4193   while( idx<szHdr ){
4194     idx += getVarint32(aKey+idx, notUsed);
4195     nField++;
4196   }
4197   assert( nField <= pKeyInfo->nAllField );
4198 }
4199 #else
4200 # define vdbeAssertFieldCountWithinLimits(A,B,C)
4201 #endif
4202 
4203 /*
4204 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
4205 ** using the collation sequence pColl. As usual, return a negative , zero
4206 ** or positive value if *pMem1 is less than, equal to or greater than
4207 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
4208 */
vdbeCompareMemString(const Mem * pMem1,const Mem * pMem2,const CollSeq * pColl,u8 * prcErr)4209 static int vdbeCompareMemString(
4210   const Mem *pMem1,
4211   const Mem *pMem2,
4212   const CollSeq *pColl,
4213   u8 *prcErr                      /* If an OOM occurs, set to SQLITE_NOMEM */
4214 ){
4215   if( pMem1->enc==pColl->enc ){
4216     /* The strings are already in the correct encoding.  Call the
4217      ** comparison function directly */
4218     return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
4219   }else{
4220     int rc;
4221     const void *v1, *v2;
4222     Mem c1;
4223     Mem c2;
4224     sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
4225     sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
4226     sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
4227     sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
4228     v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
4229     v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
4230     if( (v1==0 || v2==0) ){
4231       if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
4232       rc = 0;
4233     }else{
4234       rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2);
4235     }
4236     sqlite3VdbeMemRelease(&c1);
4237     sqlite3VdbeMemRelease(&c2);
4238     return rc;
4239   }
4240 }
4241 
4242 /*
4243 ** The input pBlob is guaranteed to be a Blob that is not marked
4244 ** with MEM_Zero.  Return true if it could be a zero-blob.
4245 */
isAllZero(const char * z,int n)4246 static int isAllZero(const char *z, int n){
4247   int i;
4248   for(i=0; i<n; i++){
4249     if( z[i] ) return 0;
4250   }
4251   return 1;
4252 }
4253 
4254 /*
4255 ** Compare two blobs.  Return negative, zero, or positive if the first
4256 ** is less than, equal to, or greater than the second, respectively.
4257 ** If one blob is a prefix of the other, then the shorter is the lessor.
4258 */
sqlite3BlobCompare(const Mem * pB1,const Mem * pB2)4259 SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
4260   int c;
4261   int n1 = pB1->n;
4262   int n2 = pB2->n;
4263 
4264   /* It is possible to have a Blob value that has some non-zero content
4265   ** followed by zero content.  But that only comes up for Blobs formed
4266   ** by the OP_MakeRecord opcode, and such Blobs never get passed into
4267   ** sqlite3MemCompare(). */
4268   assert( (pB1->flags & MEM_Zero)==0 || n1==0 );
4269   assert( (pB2->flags & MEM_Zero)==0 || n2==0 );
4270 
4271   if( (pB1->flags|pB2->flags) & MEM_Zero ){
4272     if( pB1->flags & pB2->flags & MEM_Zero ){
4273       return pB1->u.nZero - pB2->u.nZero;
4274     }else if( pB1->flags & MEM_Zero ){
4275       if( !isAllZero(pB2->z, pB2->n) ) return -1;
4276       return pB1->u.nZero - n2;
4277     }else{
4278       if( !isAllZero(pB1->z, pB1->n) ) return +1;
4279       return n1 - pB2->u.nZero;
4280     }
4281   }
4282   c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1);
4283   if( c ) return c;
4284   return n1 - n2;
4285 }
4286 
4287 /*
4288 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
4289 ** number.  Return negative, zero, or positive if the first (i64) is less than,
4290 ** equal to, or greater than the second (double).
4291 */
sqlite3IntFloatCompare(i64 i,double r)4292 static int sqlite3IntFloatCompare(i64 i, double r){
4293   if( sizeof(LONGDOUBLE_TYPE)>8 ){
4294     LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
4295     testcase( x<r );
4296     testcase( x>r );
4297     testcase( x==r );
4298     if( x<r ) return -1;
4299     if( x>r ) return +1;  /*NO_TEST*/ /* work around bugs in gcov */
4300     return 0;             /*NO_TEST*/ /* work around bugs in gcov */
4301   }else{
4302     i64 y;
4303     double s;
4304     if( r<-9223372036854775808.0 ) return +1;
4305     if( r>=9223372036854775808.0 ) return -1;
4306     y = (i64)r;
4307     if( i<y ) return -1;
4308     if( i>y ) return +1;
4309     s = (double)i;
4310     if( s<r ) return -1;
4311     if( s>r ) return +1;
4312     return 0;
4313   }
4314 }
4315 
4316 /*
4317 ** Compare the values contained by the two memory cells, returning
4318 ** negative, zero or positive if pMem1 is less than, equal to, or greater
4319 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
4320 ** and reals) sorted numerically, followed by text ordered by the collating
4321 ** sequence pColl and finally blob's ordered by memcmp().
4322 **
4323 ** Two NULL values are considered equal by this function.
4324 */
sqlite3MemCompare(const Mem * pMem1,const Mem * pMem2,const CollSeq * pColl)4325 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
4326   int f1, f2;
4327   int combined_flags;
4328 
4329   f1 = pMem1->flags;
4330   f2 = pMem2->flags;
4331   combined_flags = f1|f2;
4332   assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) );
4333 
4334   /* If one value is NULL, it is less than the other. If both values
4335   ** are NULL, return 0.
4336   */
4337   if( combined_flags&MEM_Null ){
4338     return (f2&MEM_Null) - (f1&MEM_Null);
4339   }
4340 
4341   /* At least one of the two values is a number
4342   */
4343   if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){
4344     testcase( combined_flags & MEM_Int );
4345     testcase( combined_flags & MEM_Real );
4346     testcase( combined_flags & MEM_IntReal );
4347     if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){
4348       testcase( f1 & f2 & MEM_Int );
4349       testcase( f1 & f2 & MEM_IntReal );
4350       if( pMem1->u.i < pMem2->u.i ) return -1;
4351       if( pMem1->u.i > pMem2->u.i ) return +1;
4352       return 0;
4353     }
4354     if( (f1 & f2 & MEM_Real)!=0 ){
4355       if( pMem1->u.r < pMem2->u.r ) return -1;
4356       if( pMem1->u.r > pMem2->u.r ) return +1;
4357       return 0;
4358     }
4359     if( (f1&(MEM_Int|MEM_IntReal))!=0 ){
4360       testcase( f1 & MEM_Int );
4361       testcase( f1 & MEM_IntReal );
4362       if( (f2&MEM_Real)!=0 ){
4363         return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
4364       }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4365         if( pMem1->u.i < pMem2->u.i ) return -1;
4366         if( pMem1->u.i > pMem2->u.i ) return +1;
4367         return 0;
4368       }else{
4369         return -1;
4370       }
4371     }
4372     if( (f1&MEM_Real)!=0 ){
4373       if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4374         testcase( f2 & MEM_Int );
4375         testcase( f2 & MEM_IntReal );
4376         return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
4377       }else{
4378         return -1;
4379       }
4380     }
4381     return +1;
4382   }
4383 
4384   /* If one value is a string and the other is a blob, the string is less.
4385   ** If both are strings, compare using the collating functions.
4386   */
4387   if( combined_flags&MEM_Str ){
4388     if( (f1 & MEM_Str)==0 ){
4389       return 1;
4390     }
4391     if( (f2 & MEM_Str)==0 ){
4392       return -1;
4393     }
4394 
4395     assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
4396     assert( pMem1->enc==SQLITE_UTF8 ||
4397             pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
4398 
4399     /* The collation sequence must be defined at this point, even if
4400     ** the user deletes the collation sequence after the vdbe program is
4401     ** compiled (this was not always the case).
4402     */
4403     assert( !pColl || pColl->xCmp );
4404 
4405     if( pColl ){
4406       return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
4407     }
4408     /* If a NULL pointer was passed as the collate function, fall through
4409     ** to the blob case and use memcmp().  */
4410   }
4411 
4412   /* Both values must be blobs.  Compare using memcmp().  */
4413   return sqlite3BlobCompare(pMem1, pMem2);
4414 }
4415 
4416 
4417 /*
4418 ** The first argument passed to this function is a serial-type that
4419 ** corresponds to an integer - all values between 1 and 9 inclusive
4420 ** except 7. The second points to a buffer containing an integer value
4421 ** serialized according to serial_type. This function deserializes
4422 ** and returns the value.
4423 */
vdbeRecordDecodeInt(u32 serial_type,const u8 * aKey)4424 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
4425   u32 y;
4426   assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
4427   switch( serial_type ){
4428     case 0:
4429     case 1:
4430       testcase( aKey[0]&0x80 );
4431       return ONE_BYTE_INT(aKey);
4432     case 2:
4433       testcase( aKey[0]&0x80 );
4434       return TWO_BYTE_INT(aKey);
4435     case 3:
4436       testcase( aKey[0]&0x80 );
4437       return THREE_BYTE_INT(aKey);
4438     case 4: {
4439       testcase( aKey[0]&0x80 );
4440       y = FOUR_BYTE_UINT(aKey);
4441       return (i64)*(int*)&y;
4442     }
4443     case 5: {
4444       testcase( aKey[0]&0x80 );
4445       return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4446     }
4447     case 6: {
4448       u64 x = FOUR_BYTE_UINT(aKey);
4449       testcase( aKey[0]&0x80 );
4450       x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4451       return (i64)*(i64*)&x;
4452     }
4453   }
4454 
4455   return (serial_type - 8);
4456 }
4457 
4458 /*
4459 ** This function compares the two table rows or index records
4460 ** specified by {nKey1, pKey1} and pPKey2.  It returns a negative, zero
4461 ** or positive integer if key1 is less than, equal to or
4462 ** greater than key2.  The {nKey1, pKey1} key must be a blob
4463 ** created by the OP_MakeRecord opcode of the VDBE.  The pPKey2
4464 ** key must be a parsed key such as obtained from
4465 ** sqlite3VdbeParseRecord.
4466 **
4467 ** If argument bSkip is non-zero, it is assumed that the caller has already
4468 ** determined that the first fields of the keys are equal.
4469 **
4470 ** Key1 and Key2 do not have to contain the same number of fields. If all
4471 ** fields that appear in both keys are equal, then pPKey2->default_rc is
4472 ** returned.
4473 **
4474 ** If database corruption is discovered, set pPKey2->errCode to
4475 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
4476 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
4477 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
4478 */
sqlite3VdbeRecordCompareWithSkip(int nKey1,const void * pKey1,UnpackedRecord * pPKey2,int bSkip)4479 int sqlite3VdbeRecordCompareWithSkip(
4480   int nKey1, const void *pKey1,   /* Left key */
4481   UnpackedRecord *pPKey2,         /* Right key */
4482   int bSkip                       /* If true, skip the first field */
4483 ){
4484   u32 d1;                         /* Offset into aKey[] of next data element */
4485   int i;                          /* Index of next field to compare */
4486   u32 szHdr1;                     /* Size of record header in bytes */
4487   u32 idx1;                       /* Offset of first type in header */
4488   int rc = 0;                     /* Return value */
4489   Mem *pRhs = pPKey2->aMem;       /* Next field of pPKey2 to compare */
4490   KeyInfo *pKeyInfo;
4491   const unsigned char *aKey1 = (const unsigned char *)pKey1;
4492   Mem mem1;
4493 
4494   /* If bSkip is true, then the caller has already determined that the first
4495   ** two elements in the keys are equal. Fix the various stack variables so
4496   ** that this routine begins comparing at the second field. */
4497   if( bSkip ){
4498     u32 s1;
4499     idx1 = 1 + getVarint32(&aKey1[1], s1);
4500     szHdr1 = aKey1[0];
4501     d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
4502     i = 1;
4503     pRhs++;
4504   }else{
4505     idx1 = getVarint32(aKey1, szHdr1);
4506     d1 = szHdr1;
4507     i = 0;
4508   }
4509   if( d1>(unsigned)nKey1 ){
4510     pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4511     return 0;  /* Corruption */
4512   }
4513 
4514   VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4515   assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField
4516        || CORRUPT_DB );
4517   assert( pPKey2->pKeyInfo->aSortFlags!=0 );
4518   assert( pPKey2->pKeyInfo->nKeyField>0 );
4519   assert( idx1<=szHdr1 || CORRUPT_DB );
4520   do{
4521     u32 serial_type;
4522 
4523     /* RHS is an integer */
4524     if( pRhs->flags & (MEM_Int|MEM_IntReal) ){
4525       testcase( pRhs->flags & MEM_Int );
4526       testcase( pRhs->flags & MEM_IntReal );
4527       serial_type = aKey1[idx1];
4528       testcase( serial_type==12 );
4529       if( serial_type>=10 ){
4530         rc = +1;
4531       }else if( serial_type==0 ){
4532         rc = -1;
4533       }else if( serial_type==7 ){
4534         sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4535         rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
4536       }else{
4537         i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
4538         i64 rhs = pRhs->u.i;
4539         if( lhs<rhs ){
4540           rc = -1;
4541         }else if( lhs>rhs ){
4542           rc = +1;
4543         }
4544       }
4545     }
4546 
4547     /* RHS is real */
4548     else if( pRhs->flags & MEM_Real ){
4549       serial_type = aKey1[idx1];
4550       if( serial_type>=10 ){
4551         /* Serial types 12 or greater are strings and blobs (greater than
4552         ** numbers). Types 10 and 11 are currently "reserved for future
4553         ** use", so it doesn't really matter what the results of comparing
4554         ** them to numberic values are.  */
4555         rc = +1;
4556       }else if( serial_type==0 ){
4557         rc = -1;
4558       }else{
4559         sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4560         if( serial_type==7 ){
4561           if( mem1.u.r<pRhs->u.r ){
4562             rc = -1;
4563           }else if( mem1.u.r>pRhs->u.r ){
4564             rc = +1;
4565           }
4566         }else{
4567           rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
4568         }
4569       }
4570     }
4571 
4572     /* RHS is a string */
4573     else if( pRhs->flags & MEM_Str ){
4574       getVarint32NR(&aKey1[idx1], serial_type);
4575       testcase( serial_type==12 );
4576       if( serial_type<12 ){
4577         rc = -1;
4578       }else if( !(serial_type & 0x01) ){
4579         rc = +1;
4580       }else{
4581         mem1.n = (serial_type - 12) / 2;
4582         testcase( (d1+mem1.n)==(unsigned)nKey1 );
4583         testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
4584         if( (d1+mem1.n) > (unsigned)nKey1
4585          || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i
4586         ){
4587           pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4588           return 0;                /* Corruption */
4589         }else if( pKeyInfo->aColl[i] ){
4590           mem1.enc = pKeyInfo->enc;
4591           mem1.db = pKeyInfo->db;
4592           mem1.flags = MEM_Str;
4593           mem1.z = (char*)&aKey1[d1];
4594           rc = vdbeCompareMemString(
4595               &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
4596           );
4597         }else{
4598           int nCmp = MIN(mem1.n, pRhs->n);
4599           rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4600           if( rc==0 ) rc = mem1.n - pRhs->n;
4601         }
4602       }
4603     }
4604 
4605     /* RHS is a blob */
4606     else if( pRhs->flags & MEM_Blob ){
4607       assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 );
4608       getVarint32NR(&aKey1[idx1], serial_type);
4609       testcase( serial_type==12 );
4610       if( serial_type<12 || (serial_type & 0x01) ){
4611         rc = -1;
4612       }else{
4613         int nStr = (serial_type - 12) / 2;
4614         testcase( (d1+nStr)==(unsigned)nKey1 );
4615         testcase( (d1+nStr+1)==(unsigned)nKey1 );
4616         if( (d1+nStr) > (unsigned)nKey1 ){
4617           pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4618           return 0;                /* Corruption */
4619         }else if( pRhs->flags & MEM_Zero ){
4620           if( !isAllZero((const char*)&aKey1[d1],nStr) ){
4621             rc = 1;
4622           }else{
4623             rc = nStr - pRhs->u.nZero;
4624           }
4625         }else{
4626           int nCmp = MIN(nStr, pRhs->n);
4627           rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4628           if( rc==0 ) rc = nStr - pRhs->n;
4629         }
4630       }
4631     }
4632 
4633     /* RHS is null */
4634     else{
4635       serial_type = aKey1[idx1];
4636       rc = (serial_type!=0);
4637     }
4638 
4639     if( rc!=0 ){
4640       int sortFlags = pPKey2->pKeyInfo->aSortFlags[i];
4641       if( sortFlags ){
4642         if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0
4643          || ((sortFlags & KEYINFO_ORDER_DESC)
4644            !=(serial_type==0 || (pRhs->flags&MEM_Null)))
4645         ){
4646           rc = -rc;
4647         }
4648       }
4649       assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
4650       assert( mem1.szMalloc==0 );  /* See comment below */
4651       return rc;
4652     }
4653 
4654     i++;
4655     if( i==pPKey2->nField ) break;
4656     pRhs++;
4657     d1 += sqlite3VdbeSerialTypeLen(serial_type);
4658     idx1 += sqlite3VarintLen(serial_type);
4659   }while( idx1<(unsigned)szHdr1 && d1<=(unsigned)nKey1 );
4660 
4661   /* No memory allocation is ever used on mem1.  Prove this using
4662   ** the following assert().  If the assert() fails, it indicates a
4663   ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).  */
4664   assert( mem1.szMalloc==0 );
4665 
4666   /* rc==0 here means that one or both of the keys ran out of fields and
4667   ** all the fields up to that point were equal. Return the default_rc
4668   ** value.  */
4669   assert( CORRUPT_DB
4670        || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
4671        || pPKey2->pKeyInfo->db->mallocFailed
4672   );
4673   pPKey2->eqSeen = 1;
4674   return pPKey2->default_rc;
4675 }
sqlite3VdbeRecordCompare(int nKey1,const void * pKey1,UnpackedRecord * pPKey2)4676 int sqlite3VdbeRecordCompare(
4677   int nKey1, const void *pKey1,   /* Left key */
4678   UnpackedRecord *pPKey2          /* Right key */
4679 ){
4680   return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
4681 }
4682 
4683 
4684 /*
4685 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4686 ** that (a) the first field of pPKey2 is an integer, and (b) the
4687 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4688 ** byte (i.e. is less than 128).
4689 **
4690 ** To avoid concerns about buffer overreads, this routine is only used
4691 ** on schemas where the maximum valid header size is 63 bytes or less.
4692 */
vdbeRecordCompareInt(int nKey1,const void * pKey1,UnpackedRecord * pPKey2)4693 static int vdbeRecordCompareInt(
4694   int nKey1, const void *pKey1, /* Left key */
4695   UnpackedRecord *pPKey2        /* Right key */
4696 ){
4697   const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
4698   int serial_type = ((const u8*)pKey1)[1];
4699   int res;
4700   u32 y;
4701   u64 x;
4702   i64 v;
4703   i64 lhs;
4704 
4705   vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4706   assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
4707   switch( serial_type ){
4708     case 1: { /* 1-byte signed integer */
4709       lhs = ONE_BYTE_INT(aKey);
4710       testcase( lhs<0 );
4711       break;
4712     }
4713     case 2: { /* 2-byte signed integer */
4714       lhs = TWO_BYTE_INT(aKey);
4715       testcase( lhs<0 );
4716       break;
4717     }
4718     case 3: { /* 3-byte signed integer */
4719       lhs = THREE_BYTE_INT(aKey);
4720       testcase( lhs<0 );
4721       break;
4722     }
4723     case 4: { /* 4-byte signed integer */
4724       y = FOUR_BYTE_UINT(aKey);
4725       lhs = (i64)*(int*)&y;
4726       testcase( lhs<0 );
4727       break;
4728     }
4729     case 5: { /* 6-byte signed integer */
4730       lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4731       testcase( lhs<0 );
4732       break;
4733     }
4734     case 6: { /* 8-byte signed integer */
4735       x = FOUR_BYTE_UINT(aKey);
4736       x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4737       lhs = *(i64*)&x;
4738       testcase( lhs<0 );
4739       break;
4740     }
4741     case 8:
4742       lhs = 0;
4743       break;
4744     case 9:
4745       lhs = 1;
4746       break;
4747 
4748     /* This case could be removed without changing the results of running
4749     ** this code. Including it causes gcc to generate a faster switch
4750     ** statement (since the range of switch targets now starts at zero and
4751     ** is contiguous) but does not cause any duplicate code to be generated
4752     ** (as gcc is clever enough to combine the two like cases). Other
4753     ** compilers might be similar.  */
4754     case 0: case 7:
4755       return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4756 
4757     default:
4758       return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4759   }
4760 
4761   v = pPKey2->aMem[0].u.i;
4762   if( v>lhs ){
4763     res = pPKey2->r1;
4764   }else if( v<lhs ){
4765     res = pPKey2->r2;
4766   }else if( pPKey2->nField>1 ){
4767     /* The first fields of the two keys are equal. Compare the trailing
4768     ** fields.  */
4769     res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4770   }else{
4771     /* The first fields of the two keys are equal and there are no trailing
4772     ** fields. Return pPKey2->default_rc in this case. */
4773     res = pPKey2->default_rc;
4774     pPKey2->eqSeen = 1;
4775   }
4776 
4777   assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
4778   return res;
4779 }
4780 
4781 /*
4782 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4783 ** that (a) the first field of pPKey2 is a string, that (b) the first field
4784 ** uses the collation sequence BINARY and (c) that the size-of-header varint
4785 ** at the start of (pKey1/nKey1) fits in a single byte.
4786 */
vdbeRecordCompareString(int nKey1,const void * pKey1,UnpackedRecord * pPKey2)4787 static int vdbeRecordCompareString(
4788   int nKey1, const void *pKey1, /* Left key */
4789   UnpackedRecord *pPKey2        /* Right key */
4790 ){
4791   const u8 *aKey1 = (const u8*)pKey1;
4792   int serial_type;
4793   int res;
4794 
4795   assert( pPKey2->aMem[0].flags & MEM_Str );
4796   vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4797   serial_type = (u8)(aKey1[1]);
4798   if( serial_type >= 0x80 ){
4799     sqlite3GetVarint32(&aKey1[1], (u32*)&serial_type);
4800   }
4801   if( serial_type<12 ){
4802     res = pPKey2->r1;      /* (pKey1/nKey1) is a number or a null */
4803   }else if( !(serial_type & 0x01) ){
4804     res = pPKey2->r2;      /* (pKey1/nKey1) is a blob */
4805   }else{
4806     int nCmp;
4807     int nStr;
4808     int szHdr = aKey1[0];
4809 
4810     nStr = (serial_type-12) / 2;
4811     if( (szHdr + nStr) > nKey1 ){
4812       pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4813       return 0;    /* Corruption */
4814     }
4815     nCmp = MIN( pPKey2->aMem[0].n, nStr );
4816     res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
4817 
4818     if( res>0 ){
4819       res = pPKey2->r2;
4820     }else if( res<0 ){
4821       res = pPKey2->r1;
4822     }else{
4823       res = nStr - pPKey2->aMem[0].n;
4824       if( res==0 ){
4825         if( pPKey2->nField>1 ){
4826           res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4827         }else{
4828           res = pPKey2->default_rc;
4829           pPKey2->eqSeen = 1;
4830         }
4831       }else if( res>0 ){
4832         res = pPKey2->r2;
4833       }else{
4834         res = pPKey2->r1;
4835       }
4836     }
4837   }
4838 
4839   assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
4840        || CORRUPT_DB
4841        || pPKey2->pKeyInfo->db->mallocFailed
4842   );
4843   return res;
4844 }
4845 
4846 /*
4847 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4848 ** suitable for comparing serialized records to the unpacked record passed
4849 ** as the only argument.
4850 */
sqlite3VdbeFindCompare(UnpackedRecord * p)4851 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
4852   /* varintRecordCompareInt() and varintRecordCompareString() both assume
4853   ** that the size-of-header varint that occurs at the start of each record
4854   ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4855   ** also assumes that it is safe to overread a buffer by at least the
4856   ** maximum possible legal header size plus 8 bytes. Because there is
4857   ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4858   ** buffer passed to varintRecordCompareInt() this makes it convenient to
4859   ** limit the size of the header to 64 bytes in cases where the first field
4860   ** is an integer.
4861   **
4862   ** The easiest way to enforce this limit is to consider only records with
4863   ** 13 fields or less. If the first field is an integer, the maximum legal
4864   ** header size is (12*5 + 1 + 1) bytes.  */
4865   if( p->pKeyInfo->nAllField<=13 ){
4866     int flags = p->aMem[0].flags;
4867     if( p->pKeyInfo->aSortFlags[0] ){
4868       if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){
4869         return sqlite3VdbeRecordCompare;
4870       }
4871       p->r1 = 1;
4872       p->r2 = -1;
4873     }else{
4874       p->r1 = -1;
4875       p->r2 = 1;
4876     }
4877     if( (flags & MEM_Int) ){
4878       return vdbeRecordCompareInt;
4879     }
4880     testcase( flags & MEM_Real );
4881     testcase( flags & MEM_Null );
4882     testcase( flags & MEM_Blob );
4883     if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0
4884      && p->pKeyInfo->aColl[0]==0
4885     ){
4886       assert( flags & MEM_Str );
4887       return vdbeRecordCompareString;
4888     }
4889   }
4890 
4891   return sqlite3VdbeRecordCompare;
4892 }
4893 
4894 /*
4895 ** pCur points at an index entry created using the OP_MakeRecord opcode.
4896 ** Read the rowid (the last field in the record) and store it in *rowid.
4897 ** Return SQLITE_OK if everything works, or an error code otherwise.
4898 **
4899 ** pCur might be pointing to text obtained from a corrupt database file.
4900 ** So the content cannot be trusted.  Do appropriate checks on the content.
4901 */
sqlite3VdbeIdxRowid(sqlite3 * db,BtCursor * pCur,i64 * rowid)4902 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
4903   i64 nCellKey = 0;
4904   int rc;
4905   u32 szHdr;        /* Size of the header */
4906   u32 typeRowid;    /* Serial type of the rowid */
4907   u32 lenRowid;     /* Size of the rowid */
4908   Mem m, v;
4909 
4910   /* Get the size of the index entry.  Only indices entries of less
4911   ** than 2GiB are support - anything large must be database corruption.
4912   ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
4913   ** this code can safely assume that nCellKey is 32-bits
4914   */
4915   assert( sqlite3BtreeCursorIsValid(pCur) );
4916   nCellKey = sqlite3BtreePayloadSize(pCur);
4917   assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
4918 
4919   /* Read in the complete content of the index entry */
4920   sqlite3VdbeMemInit(&m, db, 0);
4921   rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
4922   if( rc ){
4923     return rc;
4924   }
4925 
4926   /* The index entry must begin with a header size */
4927   getVarint32NR((u8*)m.z, szHdr);
4928   testcase( szHdr==3 );
4929   testcase( szHdr==m.n );
4930   testcase( szHdr>0x7fffffff );
4931   assert( m.n>=0 );
4932   if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){
4933     goto idx_rowid_corruption;
4934   }
4935 
4936   /* The last field of the index should be an integer - the ROWID.
4937   ** Verify that the last entry really is an integer. */
4938   getVarint32NR((u8*)&m.z[szHdr-1], typeRowid);
4939   testcase( typeRowid==1 );
4940   testcase( typeRowid==2 );
4941   testcase( typeRowid==3 );
4942   testcase( typeRowid==4 );
4943   testcase( typeRowid==5 );
4944   testcase( typeRowid==6 );
4945   testcase( typeRowid==8 );
4946   testcase( typeRowid==9 );
4947   if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
4948     goto idx_rowid_corruption;
4949   }
4950   lenRowid = sqlite3SmallTypeSizes[typeRowid];
4951   testcase( (u32)m.n==szHdr+lenRowid );
4952   if( unlikely((u32)m.n<szHdr+lenRowid) ){
4953     goto idx_rowid_corruption;
4954   }
4955 
4956   /* Fetch the integer off the end of the index record */
4957   sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
4958   *rowid = v.u.i;
4959   sqlite3VdbeMemRelease(&m);
4960   return SQLITE_OK;
4961 
4962   /* Jump here if database corruption is detected after m has been
4963   ** allocated.  Free the m object and return SQLITE_CORRUPT. */
4964 idx_rowid_corruption:
4965   testcase( m.szMalloc!=0 );
4966   sqlite3VdbeMemRelease(&m);
4967   return SQLITE_CORRUPT_BKPT;
4968 }
4969 
4970 /*
4971 ** Compare the key of the index entry that cursor pC is pointing to against
4972 ** the key string in pUnpacked.  Write into *pRes a number
4973 ** that is negative, zero, or positive if pC is less than, equal to,
4974 ** or greater than pUnpacked.  Return SQLITE_OK on success.
4975 **
4976 ** pUnpacked is either created without a rowid or is truncated so that it
4977 ** omits the rowid at the end.  The rowid at the end of the index entry
4978 ** is ignored as well.  Hence, this routine only compares the prefixes
4979 ** of the keys prior to the final rowid, not the entire key.
4980 */
sqlite3VdbeIdxKeyCompare(sqlite3 * db,VdbeCursor * pC,UnpackedRecord * pUnpacked,int * res)4981 int sqlite3VdbeIdxKeyCompare(
4982   sqlite3 *db,                     /* Database connection */
4983   VdbeCursor *pC,                  /* The cursor to compare against */
4984   UnpackedRecord *pUnpacked,       /* Unpacked version of key */
4985   int *res                         /* Write the comparison result here */
4986 ){
4987   i64 nCellKey = 0;
4988   int rc;
4989   BtCursor *pCur;
4990   Mem m;
4991 
4992   assert( pC->eCurType==CURTYPE_BTREE );
4993   pCur = pC->uc.pCursor;
4994   assert( sqlite3BtreeCursorIsValid(pCur) );
4995   nCellKey = sqlite3BtreePayloadSize(pCur);
4996   /* nCellKey will always be between 0 and 0xffffffff because of the way
4997   ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
4998   if( nCellKey<=0 || nCellKey>0x7fffffff ){
4999     *res = 0;
5000     return SQLITE_CORRUPT_BKPT;
5001   }
5002   sqlite3VdbeMemInit(&m, db, 0);
5003   rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
5004   if( rc ){
5005     return rc;
5006   }
5007   *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0);
5008   sqlite3VdbeMemRelease(&m);
5009   return SQLITE_OK;
5010 }
5011 
5012 /*
5013 ** This routine sets the value to be returned by subsequent calls to
5014 ** sqlite3_changes() on the database handle 'db'.
5015 */
sqlite3VdbeSetChanges(sqlite3 * db,int nChange)5016 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
5017   assert( sqlite3_mutex_held(db->mutex) );
5018   db->nChange = nChange;
5019   db->nTotalChange += nChange;
5020 }
5021 
5022 /*
5023 ** Set a flag in the vdbe to update the change counter when it is finalised
5024 ** or reset.
5025 */
sqlite3VdbeCountChanges(Vdbe * v)5026 void sqlite3VdbeCountChanges(Vdbe *v){
5027   v->changeCntOn = 1;
5028 }
5029 
5030 /*
5031 ** Mark every prepared statement associated with a database connection
5032 ** as expired.
5033 **
5034 ** An expired statement means that recompilation of the statement is
5035 ** recommend.  Statements expire when things happen that make their
5036 ** programs obsolete.  Removing user-defined functions or collating
5037 ** sequences, or changing an authorization function are the types of
5038 ** things that make prepared statements obsolete.
5039 **
5040 ** If iCode is 1, then expiration is advisory.  The statement should
5041 ** be reprepared before being restarted, but if it is already running
5042 ** it is allowed to run to completion.
5043 **
5044 ** Internally, this function just sets the Vdbe.expired flag on all
5045 ** prepared statements.  The flag is set to 1 for an immediate expiration
5046 ** and set to 2 for an advisory expiration.
5047 */
sqlite3ExpirePreparedStatements(sqlite3 * db,int iCode)5048 void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){
5049   Vdbe *p;
5050   for(p = db->pVdbe; p; p=p->pNext){
5051     p->expired = iCode+1;
5052   }
5053 }
5054 
5055 /*
5056 ** Return the database associated with the Vdbe.
5057 */
sqlite3VdbeDb(Vdbe * v)5058 sqlite3 *sqlite3VdbeDb(Vdbe *v){
5059   return v->db;
5060 }
5061 
5062 /*
5063 ** Return the SQLITE_PREPARE flags for a Vdbe.
5064 */
sqlite3VdbePrepareFlags(Vdbe * v)5065 u8 sqlite3VdbePrepareFlags(Vdbe *v){
5066   return v->prepFlags;
5067 }
5068 
5069 /*
5070 ** Return a pointer to an sqlite3_value structure containing the value bound
5071 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
5072 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
5073 ** constants) to the value before returning it.
5074 **
5075 ** The returned value must be freed by the caller using sqlite3ValueFree().
5076 */
sqlite3VdbeGetBoundValue(Vdbe * v,int iVar,u8 aff)5077 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
5078   assert( iVar>0 );
5079   if( v ){
5080     Mem *pMem = &v->aVar[iVar-1];
5081     assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
5082     if( 0==(pMem->flags & MEM_Null) ){
5083       sqlite3_value *pRet = sqlite3ValueNew(v->db);
5084       if( pRet ){
5085         sqlite3VdbeMemCopy((Mem *)pRet, pMem);
5086         sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
5087       }
5088       return pRet;
5089     }
5090   }
5091   return 0;
5092 }
5093 
5094 /*
5095 ** Configure SQL variable iVar so that binding a new value to it signals
5096 ** to sqlite3_reoptimize() that re-preparing the statement may result
5097 ** in a better query plan.
5098 */
sqlite3VdbeSetVarmask(Vdbe * v,int iVar)5099 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
5100   assert( iVar>0 );
5101   assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
5102   if( iVar>=32 ){
5103     v->expmask |= 0x80000000;
5104   }else{
5105     v->expmask |= ((u32)1 << (iVar-1));
5106   }
5107 }
5108 
5109 /*
5110 ** Cause a function to throw an error if it was call from OP_PureFunc
5111 ** rather than OP_Function.
5112 **
5113 ** OP_PureFunc means that the function must be deterministic, and should
5114 ** throw an error if it is given inputs that would make it non-deterministic.
5115 ** This routine is invoked by date/time functions that use non-deterministic
5116 ** features such as 'now'.
5117 */
sqlite3NotPureFunc(sqlite3_context * pCtx)5118 int sqlite3NotPureFunc(sqlite3_context *pCtx){
5119   const VdbeOp *pOp;
5120 #ifdef SQLITE_ENABLE_STAT4
5121   if( pCtx->pVdbe==0 ) return 1;
5122 #endif
5123   pOp = pCtx->pVdbe->aOp + pCtx->iOp;
5124   if( pOp->opcode==OP_PureFunc ){
5125     const char *zContext;
5126     char *zMsg;
5127     if( pOp->p5 & NC_IsCheck ){
5128       zContext = "a CHECK constraint";
5129     }else if( pOp->p5 & NC_GenCol ){
5130       zContext = "a generated column";
5131     }else{
5132       zContext = "an index";
5133     }
5134     zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s",
5135                            pCtx->pFunc->zName, zContext);
5136     sqlite3_result_error(pCtx, zMsg, -1);
5137     sqlite3_free(zMsg);
5138     return 0;
5139   }
5140   return 1;
5141 }
5142 
5143 #ifndef SQLITE_OMIT_VIRTUALTABLE
5144 /*
5145 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
5146 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
5147 ** in memory obtained from sqlite3DbMalloc).
5148 */
sqlite3VtabImportErrmsg(Vdbe * p,sqlite3_vtab * pVtab)5149 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
5150   if( pVtab->zErrMsg ){
5151     sqlite3 *db = p->db;
5152     sqlite3DbFree(db, p->zErrMsg);
5153     p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
5154     sqlite3_free(pVtab->zErrMsg);
5155     pVtab->zErrMsg = 0;
5156   }
5157 }
5158 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5159 
5160 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5161 
5162 /*
5163 ** If the second argument is not NULL, release any allocations associated
5164 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
5165 ** structure itself, using sqlite3DbFree().
5166 **
5167 ** This function is used to free UnpackedRecord structures allocated by
5168 ** the vdbeUnpackRecord() function found in vdbeapi.c.
5169 */
vdbeFreeUnpacked(sqlite3 * db,int nField,UnpackedRecord * p)5170 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){
5171   if( p ){
5172     int i;
5173     for(i=0; i<nField; i++){
5174       Mem *pMem = &p->aMem[i];
5175       if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem);
5176     }
5177     sqlite3DbFreeNN(db, p);
5178   }
5179 }
5180 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
5181 
5182 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5183 /*
5184 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
5185 ** then cursor passed as the second argument should point to the row about
5186 ** to be update or deleted. If the application calls sqlite3_preupdate_old(),
5187 ** the required value will be read from the row the cursor points to.
5188 */
sqlite3VdbePreUpdateHook(Vdbe * v,VdbeCursor * pCsr,int op,const char * zDb,Table * pTab,i64 iKey1,int iReg)5189 void sqlite3VdbePreUpdateHook(
5190   Vdbe *v,                        /* Vdbe pre-update hook is invoked by */
5191   VdbeCursor *pCsr,               /* Cursor to grab old.* values from */
5192   int op,                         /* SQLITE_INSERT, UPDATE or DELETE */
5193   const char *zDb,                /* Database name */
5194   Table *pTab,                    /* Modified table */
5195   i64 iKey1,                      /* Initial key value */
5196   int iReg                        /* Register for new.* record */
5197 ){
5198   sqlite3 *db = v->db;
5199   i64 iKey2;
5200   PreUpdate preupdate;
5201   const char *zTbl = pTab->zName;
5202   static const u8 fakeSortOrder = 0;
5203 
5204   assert( db->pPreUpdate==0 );
5205   memset(&preupdate, 0, sizeof(PreUpdate));
5206   if( HasRowid(pTab)==0 ){
5207     iKey1 = iKey2 = 0;
5208     preupdate.pPk = sqlite3PrimaryKeyIndex(pTab);
5209   }else{
5210     if( op==SQLITE_UPDATE ){
5211       iKey2 = v->aMem[iReg].u.i;
5212     }else{
5213       iKey2 = iKey1;
5214     }
5215   }
5216 
5217   assert( pCsr->nField==pTab->nCol
5218        || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1)
5219   );
5220 
5221   preupdate.v = v;
5222   preupdate.pCsr = pCsr;
5223   preupdate.op = op;
5224   preupdate.iNewReg = iReg;
5225   preupdate.keyinfo.db = db;
5226   preupdate.keyinfo.enc = ENC(db);
5227   preupdate.keyinfo.nKeyField = pTab->nCol;
5228   preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder;
5229   preupdate.iKey1 = iKey1;
5230   preupdate.iKey2 = iKey2;
5231   preupdate.pTab = pTab;
5232 
5233   db->pPreUpdate = &preupdate;
5234   db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
5235   db->pPreUpdate = 0;
5236   sqlite3DbFree(db, preupdate.aRecord);
5237   vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked);
5238   vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked);
5239   if( preupdate.aNew ){
5240     int i;
5241     for(i=0; i<pCsr->nField; i++){
5242       sqlite3VdbeMemRelease(&preupdate.aNew[i]);
5243     }
5244     sqlite3DbFreeNN(db, preupdate.aNew);
5245   }
5246 }
5247 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
5248