1 /* Copyright (c) 2013 Scott Lembcke and Howling Moon Software
2  *
3  * Permission is hereby granted, free of charge, to any person obtaining a copy
4  * of this software and associated documentation files (the "Software"), to deal
5  * in the Software without restriction, including without limitation the rights
6  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7  * copies of the Software, and to permit persons to whom the Software is
8  * furnished to do so, subject to the following conditions:
9  *
10  * The above copyright notice and this permission notice shall be included in
11  * all copies or substantial portions of the Software.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
19  * SOFTWARE.
20  */
21 
22 #include "chipmunk/chipmunk_private.h"
23 
24 static void
preStep(cpRotaryLimitJoint * joint,cpFloat dt)25 preStep(cpRotaryLimitJoint *joint, cpFloat dt)
26 {
27 	cpBody *a = joint->constraint.a;
28 	cpBody *b = joint->constraint.b;
29 
30 	cpFloat dist = b->a - a->a;
31 	cpFloat pdist = 0.0f;
32 	if(dist > joint->max) {
33 		pdist = joint->max - dist;
34 	} else if(dist < joint->min) {
35 		pdist = joint->min - dist;
36 	}
37 
38 	// calculate moment of inertia coefficient.
39 	joint->iSum = 1.0f/(a->i_inv + b->i_inv);
40 
41 	// calculate bias velocity
42 	cpFloat maxBias = joint->constraint.maxBias;
43 	joint->bias = cpfclamp(-bias_coef(joint->constraint.errorBias, dt)*pdist/dt, -maxBias, maxBias);
44 
45 	// If the bias is 0, the joint is not at a limit. Reset the impulse.
46 	if(!joint->bias) joint->jAcc = 0.0f;
47 }
48 
49 static void
applyCachedImpulse(cpRotaryLimitJoint * joint,cpFloat dt_coef)50 applyCachedImpulse(cpRotaryLimitJoint *joint, cpFloat dt_coef)
51 {
52 	cpBody *a = joint->constraint.a;
53 	cpBody *b = joint->constraint.b;
54 
55 	cpFloat j = joint->jAcc*dt_coef;
56 	a->w -= j*a->i_inv;
57 	b->w += j*b->i_inv;
58 }
59 
60 static void
applyImpulse(cpRotaryLimitJoint * joint,cpFloat dt)61 applyImpulse(cpRotaryLimitJoint *joint, cpFloat dt)
62 {
63 	if(!joint->bias) return; // early exit
64 
65 	cpBody *a = joint->constraint.a;
66 	cpBody *b = joint->constraint.b;
67 
68 	// compute relative rotational velocity
69 	cpFloat wr = b->w - a->w;
70 
71 	cpFloat jMax = joint->constraint.maxForce*dt;
72 
73 	// compute normal impulse
74 	cpFloat j = -(joint->bias + wr)*joint->iSum;
75 	cpFloat jOld = joint->jAcc;
76 	if(joint->bias < 0.0f){
77 		joint->jAcc = cpfclamp(jOld + j, 0.0f, jMax);
78 	} else {
79 		joint->jAcc = cpfclamp(jOld + j, -jMax, 0.0f);
80 	}
81 	j = joint->jAcc - jOld;
82 
83 	// apply impulse
84 	a->w -= j*a->i_inv;
85 	b->w += j*b->i_inv;
86 }
87 
88 static cpFloat
getImpulse(cpRotaryLimitJoint * joint)89 getImpulse(cpRotaryLimitJoint *joint)
90 {
91 	return cpfabs(joint->jAcc);
92 }
93 
94 static const cpConstraintClass klass = {
95 	(cpConstraintPreStepImpl)preStep,
96 	(cpConstraintApplyCachedImpulseImpl)applyCachedImpulse,
97 	(cpConstraintApplyImpulseImpl)applyImpulse,
98 	(cpConstraintGetImpulseImpl)getImpulse,
99 };
100 
101 cpRotaryLimitJoint *
cpRotaryLimitJointAlloc(void)102 cpRotaryLimitJointAlloc(void)
103 {
104 	return (cpRotaryLimitJoint *)cpcalloc(1, sizeof(cpRotaryLimitJoint));
105 }
106 
107 cpRotaryLimitJoint *
cpRotaryLimitJointInit(cpRotaryLimitJoint * joint,cpBody * a,cpBody * b,cpFloat min,cpFloat max)108 cpRotaryLimitJointInit(cpRotaryLimitJoint *joint, cpBody *a, cpBody *b, cpFloat min, cpFloat max)
109 {
110 	cpConstraintInit((cpConstraint *)joint, &klass, a, b);
111 
112 	joint->min = min;
113 	joint->max  = max;
114 
115 	joint->jAcc = 0.0f;
116 
117 	return joint;
118 }
119 
120 cpConstraint *
cpRotaryLimitJointNew(cpBody * a,cpBody * b,cpFloat min,cpFloat max)121 cpRotaryLimitJointNew(cpBody *a, cpBody *b, cpFloat min, cpFloat max)
122 {
123 	return (cpConstraint *)cpRotaryLimitJointInit(cpRotaryLimitJointAlloc(), a, b, min, max);
124 }
125 
126 cpBool
cpConstraintIsRotaryLimitJoint(const cpConstraint * constraint)127 cpConstraintIsRotaryLimitJoint(const cpConstraint *constraint)
128 {
129 	return (constraint->klass == &klass);
130 }
131 
132 cpFloat
cpRotaryLimitJointGetMin(const cpConstraint * constraint)133 cpRotaryLimitJointGetMin(const cpConstraint *constraint)
134 {
135 	cpAssertHard(cpConstraintIsRotaryLimitJoint(constraint), "Constraint is not a rotary limit joint.");
136 	return ((cpRotaryLimitJoint *)constraint)->min;
137 }
138 
139 void
cpRotaryLimitJointSetMin(cpConstraint * constraint,cpFloat min)140 cpRotaryLimitJointSetMin(cpConstraint *constraint, cpFloat min)
141 {
142 	cpAssertHard(cpConstraintIsRotaryLimitJoint(constraint), "Constraint is not a rotary limit joint.");
143 	cpConstraintActivateBodies(constraint);
144 	((cpRotaryLimitJoint *)constraint)->min = min;
145 }
146 
147 cpFloat
cpRotaryLimitJointGetMax(const cpConstraint * constraint)148 cpRotaryLimitJointGetMax(const cpConstraint *constraint)
149 {
150 	cpAssertHard(cpConstraintIsRotaryLimitJoint(constraint), "Constraint is not a rotary limit joint.");
151 	return ((cpRotaryLimitJoint *)constraint)->max;
152 }
153 
154 void
cpRotaryLimitJointSetMax(cpConstraint * constraint,cpFloat max)155 cpRotaryLimitJointSetMax(cpConstraint *constraint, cpFloat max)
156 {
157 	cpAssertHard(cpConstraintIsRotaryLimitJoint(constraint), "Constraint is not a rotary limit joint.");
158 	cpConstraintActivateBodies(constraint);
159 	((cpRotaryLimitJoint *)constraint)->max = max;
160 }
161