1 //  Copyright (c) 2006 Xiaogang Zhang
2 //  Copyright (c) 2006 John Maddock
3 //  Use, modification and distribution are subject to the
4 //  Boost Software License, Version 1.0. (See accompanying file
5 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
6 //
7 //  History:
8 //  XZ wrote the original of this file as part of the Google
9 //  Summer of Code 2006.  JM modified it to fit into the
10 //  Boost.Math conceptual framework better, and to ensure
11 //  that the code continues to work no matter how many digits
12 //  type T has.
13 
14 #ifndef BOOST_MATH_ELLINT_2_HPP
15 #define BOOST_MATH_ELLINT_2_HPP
16 
17 #ifdef _MSC_VER
18 #pragma once
19 #endif
20 
21 #include <boost/math/special_functions/math_fwd.hpp>
22 #include <boost/math/special_functions/ellint_rf.hpp>
23 #include <boost/math/special_functions/ellint_rd.hpp>
24 #include <boost/math/special_functions/ellint_rg.hpp>
25 #include <boost/math/constants/constants.hpp>
26 #include <boost/math/policies/error_handling.hpp>
27 #include <boost/math/tools/workaround.hpp>
28 #include <boost/math/special_functions/round.hpp>
29 
30 // Elliptic integrals (complete and incomplete) of the second kind
31 // Carlson, Numerische Mathematik, vol 33, 1 (1979)
32 
33 namespace boost { namespace math {
34 
35 template <class T1, class T2, class Policy>
36 typename tools::promote_args<T1, T2>::type ellint_2(T1 k, T2 phi, const Policy& pol);
37 
38 namespace detail{
39 
40 template <typename T, typename Policy>
41 T ellint_e_imp(T k, const Policy& pol);
42 
43 // Elliptic integral (Legendre form) of the second kind
44 template <typename T, typename Policy>
45 T ellint_e_imp(T phi, T k, const Policy& pol)
46 {
47     BOOST_MATH_STD_USING
48     using namespace boost::math::tools;
49     using namespace boost::math::constants;
50 
51     bool invert = false;
52     if (phi == 0)
53        return 0;
54 
55     if(phi < 0)
56     {
57        phi = fabs(phi);
58        invert = true;
59     }
60 
61     T result;
62 
63     if(phi >= tools::max_value<T>())
64     {
65        // Need to handle infinity as a special case:
66        result = policies::raise_overflow_error<T>("boost::math::ellint_e<%1%>(%1%,%1%)", 0, pol);
67     }
68     else if(phi > 1 / tools::epsilon<T>())
69     {
70        // Phi is so large that phi%pi is necessarily zero (or garbage),
71        // just return the second part of the duplication formula:
72        result = 2 * phi * ellint_e_imp(k, pol) / constants::pi<T>();
73     }
74     else if(k == 0)
75     {
76        return invert ? T(-phi) : phi;
77     }
78     else if(fabs(k) == 1)
79     {
80        //
81        // For k = 1 ellipse actually turns to a line and every pi/2 in phi is exactly 1 in arc length
82        // Periodicity though is in pi, curve follows sin(pi) for 0 <= phi <= pi/2 and then
83        // 2 - sin(pi- phi) = 2 + sin(phi - pi) for pi/2 <= phi <= pi, so general form is:
84        //
85        // 2n + sin(phi - n * pi) ; |phi - n * pi| <= pi / 2
86        //
87        T m = boost::math::round(phi / boost::math::constants::pi<T>());
88        T remains = phi - m * boost::math::constants::pi<T>();
89        T value = 2 * m + sin(remains);
90 
91        // negative arc length for negative phi
92        return invert ? -value : value;
93     }
94     else
95     {
96        // Carlson's algorithm works only for |phi| <= pi/2,
97        // use the integrand's periodicity to normalize phi
98        //
99        // Xiaogang's original code used a cast to long long here
100        // but that fails if T has more digits than a long long,
101        // so rewritten to use fmod instead:
102        //
103        T rphi = boost::math::tools::fmod_workaround(phi, T(constants::half_pi<T>()));
104        T m = boost::math::round((phi - rphi) / constants::half_pi<T>());
105        int s = 1;
106        if(boost::math::tools::fmod_workaround(m, T(2)) > 0.5)
107        {
108           m += 1;
109           s = -1;
110           rphi = constants::half_pi<T>() - rphi;
111        }
112        T k2 = k * k;
113        if(boost::math::pow<3>(rphi) * k2 / 6 < tools::epsilon<T>() * fabs(rphi))
114        {
115           // See http://functions.wolfram.com/EllipticIntegrals/EllipticE2/06/01/03/0001/
116           result = s * rphi;
117        }
118        else
119        {
120           // http://dlmf.nist.gov/19.25#E10
121           T sinp = sin(rphi);
122           if (k2 * sinp * sinp >= 1)
123           {
124              return policies::raise_domain_error<T>("boost::math::ellint_2<%1%>(%1%, %1%)", "The parameter k is out of range, got k = %1%", k, pol);
125           }
126           T cosp = cos(rphi);
127           T c = 1 / (sinp * sinp);
128           T cm1 = cosp * cosp / (sinp * sinp);  // c - 1
129           result = s * ((1 - k2) * ellint_rf_imp(cm1, T(c - k2), c, pol) + k2 * (1 - k2) * ellint_rd(cm1, c, T(c - k2), pol) / 3 + k2 * sqrt(cm1 / (c * (c - k2))));
130        }
131        if(m != 0)
132           result += m * ellint_e_imp(k, pol);
133     }
134     return invert ? T(-result) : result;
135 }
136 
137 // Complete elliptic integral (Legendre form) of the second kind
138 template <typename T, typename Policy>
139 T ellint_e_imp(T k, const Policy& pol)
140 {
141     BOOST_MATH_STD_USING
142     using namespace boost::math::tools;
143 
144     if (abs(k) > 1)
145     {
146        return policies::raise_domain_error<T>("boost::math::ellint_e<%1%>(%1%)",
147             "Got k = %1%, function requires |k| <= 1", k, pol);
148     }
149     if (abs(k) == 1)
150     {
151         return static_cast<T>(1);
152     }
153 
154     T x = 0;
155     T t = k * k;
156     T y = 1 - t;
157     T z = 1;
158     T value = 2 * ellint_rg_imp(x, y, z, pol);
159 
160     return value;
161 }
162 
163 template <typename T, typename Policy>
ellint_2(T k,const Policy & pol,const std::true_type &)164 inline typename tools::promote_args<T>::type ellint_2(T k, const Policy& pol, const std::true_type&)
165 {
166    typedef typename tools::promote_args<T>::type result_type;
167    typedef typename policies::evaluation<result_type, Policy>::type value_type;
168    return policies::checked_narrowing_cast<result_type, Policy>(detail::ellint_e_imp(static_cast<value_type>(k), pol), "boost::math::ellint_2<%1%>(%1%)");
169 }
170 
171 // Elliptic integral (Legendre form) of the second kind
172 template <class T1, class T2>
ellint_2(T1 k,T2 phi,const std::false_type &)173 inline typename tools::promote_args<T1, T2>::type ellint_2(T1 k, T2 phi, const std::false_type&)
174 {
175    return boost::math::ellint_2(k, phi, policies::policy<>());
176 }
177 
178 } // detail
179 
180 // Complete elliptic integral (Legendre form) of the second kind
181 template <typename T>
ellint_2(T k)182 inline typename tools::promote_args<T>::type ellint_2(T k)
183 {
184    return ellint_2(k, policies::policy<>());
185 }
186 
187 // Elliptic integral (Legendre form) of the second kind
188 template <class T1, class T2>
ellint_2(T1 k,T2 phi)189 inline typename tools::promote_args<T1, T2>::type ellint_2(T1 k, T2 phi)
190 {
191    typedef typename policies::is_policy<T2>::type tag_type;
192    return detail::ellint_2(k, phi, tag_type());
193 }
194 
195 template <class T1, class T2, class Policy>
ellint_2(T1 k,T2 phi,const Policy & pol)196 inline typename tools::promote_args<T1, T2>::type ellint_2(T1 k, T2 phi, const Policy& pol)
197 {
198    typedef typename tools::promote_args<T1, T2>::type result_type;
199    typedef typename policies::evaluation<result_type, Policy>::type value_type;
200    return policies::checked_narrowing_cast<result_type, Policy>(detail::ellint_e_imp(static_cast<value_type>(phi), static_cast<value_type>(k), pol), "boost::math::ellint_2<%1%>(%1%,%1%)");
201 }
202 
203 }} // namespaces
204 
205 #endif // BOOST_MATH_ELLINT_2_HPP
206 
207