1 /*
2  *
3  * Copyright (c) 2004
4  * John Maddock
5  *
6  * Use, modification and distribution are subject to the
7  * Boost Software License, Version 1.0. (See accompanying file
8  * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
9  *
10  */
11 
12  /*
13   *   LOCATION:    see http://www.boost.org for most recent version.
14   *   FILE         basic_regex_creator.cpp
15   *   VERSION      see <boost/version.hpp>
16   *   DESCRIPTION: Declares template class basic_regex_creator which fills in
17   *                the data members of a regex_data object.
18   */
19 
20 #ifndef BOOST_REGEX_V4_BASIC_REGEX_CREATOR_HPP
21 #define BOOST_REGEX_V4_BASIC_REGEX_CREATOR_HPP
22 
23 #include <boost/regex/v4/indexed_bit_flag.hpp>
24 
25 #ifdef BOOST_MSVC
26 #pragma warning(push)
27 #pragma warning(disable: 4103)
28 #endif
29 #ifdef BOOST_HAS_ABI_HEADERS
30 #  include BOOST_ABI_PREFIX
31 #endif
32 #ifdef BOOST_MSVC
33 #pragma warning(pop)
34 #endif
35 
36 #ifdef BOOST_MSVC
37 #  pragma warning(push)
38 #if BOOST_MSVC < 1910
39 #pragma warning(disable:4800)
40 #endif
41 #endif
42 
43 namespace boost{
44 
45 namespace BOOST_REGEX_DETAIL_NS{
46 
47 template <class charT>
48 struct digraph : public std::pair<charT, charT>
49 {
digraphboost::BOOST_REGEX_DETAIL_NS::digraph50    digraph() : std::pair<charT, charT>(charT(0), charT(0)){}
digraphboost::BOOST_REGEX_DETAIL_NS::digraph51    digraph(charT c1) : std::pair<charT, charT>(c1, charT(0)){}
digraphboost::BOOST_REGEX_DETAIL_NS::digraph52    digraph(charT c1, charT c2) : std::pair<charT, charT>(c1, c2)
53    {}
digraphboost::BOOST_REGEX_DETAIL_NS::digraph54    digraph(const digraph<charT>& d) : std::pair<charT, charT>(d.first, d.second){}
55 #ifndef BOOST_NO_CXX11_DEFAULTED_FUNCTIONS
56    digraph<charT>& operator=(const digraph<charT>&) = default;
57 #endif
58    template <class Seq>
digraphboost::BOOST_REGEX_DETAIL_NS::digraph59    digraph(const Seq& s) : std::pair<charT, charT>()
60    {
61       BOOST_REGEX_ASSERT(s.size() <= 2);
62       BOOST_REGEX_ASSERT(s.size());
63       this->first = s[0];
64       this->second = (s.size() > 1) ? s[1] : 0;
65    }
66 };
67 
68 template <class charT, class traits>
69 class basic_char_set
70 {
71 public:
72    typedef digraph<charT>                   digraph_type;
73    typedef typename traits::string_type     string_type;
74    typedef typename traits::char_class_type m_type;
75 
basic_char_set()76    basic_char_set()
77    {
78       m_negate = false;
79       m_has_digraphs = false;
80       m_classes = 0;
81       m_negated_classes = 0;
82       m_empty = true;
83    }
84 
add_single(const digraph_type & s)85    void add_single(const digraph_type& s)
86    {
87       m_singles.insert(s);
88       if(s.second)
89          m_has_digraphs = true;
90       m_empty = false;
91    }
add_range(const digraph_type & first,const digraph_type & end)92    void add_range(const digraph_type& first, const digraph_type& end)
93    {
94       m_ranges.push_back(first);
95       m_ranges.push_back(end);
96       if(first.second)
97       {
98          m_has_digraphs = true;
99          add_single(first);
100       }
101       if(end.second)
102       {
103          m_has_digraphs = true;
104          add_single(end);
105       }
106       m_empty = false;
107    }
add_class(m_type m)108    void add_class(m_type m)
109    {
110       m_classes |= m;
111       m_empty = false;
112    }
add_negated_class(m_type m)113    void add_negated_class(m_type m)
114    {
115       m_negated_classes |= m;
116       m_empty = false;
117    }
add_equivalent(const digraph_type & s)118    void add_equivalent(const digraph_type& s)
119    {
120       m_equivalents.insert(s);
121       if(s.second)
122       {
123          m_has_digraphs = true;
124          add_single(s);
125       }
126       m_empty = false;
127    }
negate()128    void negate()
129    {
130       m_negate = true;
131       //m_empty = false;
132    }
133 
134    //
135    // accessor functions:
136    //
has_digraphs() const137    bool has_digraphs()const
138    {
139       return m_has_digraphs;
140    }
is_negated() const141    bool is_negated()const
142    {
143       return m_negate;
144    }
145    typedef typename std::vector<digraph_type>::const_iterator  list_iterator;
146    typedef typename std::set<digraph_type>::const_iterator     set_iterator;
singles_begin() const147    set_iterator singles_begin()const
148    {
149       return m_singles.begin();
150    }
singles_end() const151    set_iterator singles_end()const
152    {
153       return m_singles.end();
154    }
ranges_begin() const155    list_iterator ranges_begin()const
156    {
157       return m_ranges.begin();
158    }
ranges_end() const159    list_iterator ranges_end()const
160    {
161       return m_ranges.end();
162    }
equivalents_begin() const163    set_iterator equivalents_begin()const
164    {
165       return m_equivalents.begin();
166    }
equivalents_end() const167    set_iterator equivalents_end()const
168    {
169       return m_equivalents.end();
170    }
classes() const171    m_type classes()const
172    {
173       return m_classes;
174    }
negated_classes() const175    m_type negated_classes()const
176    {
177       return m_negated_classes;
178    }
empty() const179    bool empty()const
180    {
181       return m_empty;
182    }
183 private:
184    std::set<digraph_type>    m_singles;         // a list of single characters to match
185    std::vector<digraph_type> m_ranges;          // a list of end points of our ranges
186    bool                      m_negate;          // true if the set is to be negated
187    bool                      m_has_digraphs;    // true if we have digraphs present
188    m_type                    m_classes;         // character classes to match
189    m_type                    m_negated_classes; // negated character classes to match
190    bool                      m_empty;           // whether we've added anything yet
191    std::set<digraph_type>    m_equivalents;     // a list of equivalence classes
192 };
193 
194 template <class charT, class traits>
195 class basic_regex_creator
196 {
197 public:
198    basic_regex_creator(regex_data<charT, traits>* data);
getoffset(void * addr)199    std::ptrdiff_t getoffset(void* addr)
200    {
201       return getoffset(addr, m_pdata->m_data.data());
202    }
getoffset(const void * addr,const void * base)203    std::ptrdiff_t getoffset(const void* addr, const void* base)
204    {
205       return static_cast<const char*>(addr) - static_cast<const char*>(base);
206    }
getaddress(std::ptrdiff_t off)207    re_syntax_base* getaddress(std::ptrdiff_t off)
208    {
209       return getaddress(off, m_pdata->m_data.data());
210    }
getaddress(std::ptrdiff_t off,void * base)211    re_syntax_base* getaddress(std::ptrdiff_t off, void* base)
212    {
213       return static_cast<re_syntax_base*>(static_cast<void*>(static_cast<char*>(base) + off));
214    }
init(unsigned l_flags)215    void init(unsigned l_flags)
216    {
217       m_pdata->m_flags = l_flags;
218       m_icase = l_flags & regex_constants::icase;
219    }
flags()220    regbase::flag_type flags()
221    {
222       return m_pdata->m_flags;
223    }
flags(regbase::flag_type f)224    void flags(regbase::flag_type f)
225    {
226       m_pdata->m_flags = f;
227       if(m_icase != static_cast<bool>(f & regbase::icase))
228       {
229          m_icase = static_cast<bool>(f & regbase::icase);
230       }
231    }
232    re_syntax_base* append_state(syntax_element_type t, std::size_t s = sizeof(re_syntax_base));
233    re_syntax_base* insert_state(std::ptrdiff_t pos, syntax_element_type t, std::size_t s = sizeof(re_syntax_base));
234    re_literal* append_literal(charT c);
235    re_syntax_base* append_set(const basic_char_set<charT, traits>& char_set);
236    re_syntax_base* append_set(const basic_char_set<charT, traits>& char_set, mpl::false_*);
237    re_syntax_base* append_set(const basic_char_set<charT, traits>& char_set, mpl::true_*);
238    void finalize(const charT* p1, const charT* p2);
239 protected:
240    regex_data<charT, traits>*    m_pdata;              // pointer to the basic_regex_data struct we are filling in
241    const ::boost::regex_traits_wrapper<traits>&
242                                  m_traits;             // convenience reference to traits class
243    re_syntax_base*               m_last_state;         // the last state we added
244    bool                          m_icase;              // true for case insensitive matches
245    unsigned                      m_repeater_id;        // the state_id of the next repeater
246    bool                          m_has_backrefs;       // true if there are actually any backrefs
247    indexed_bit_flag              m_backrefs;           // bitmask of permitted backrefs
248    boost::uintmax_t              m_bad_repeats;        // bitmask of repeats we can't deduce a startmap for;
249    bool                          m_has_recursions;     // set when we have recursive expressions to fixup
250    std::vector<unsigned char>    m_recursion_checks;   // notes which recursions we've followed while analysing this expression
251    typename traits::char_class_type m_word_mask;       // mask used to determine if a character is a word character
252    typename traits::char_class_type m_mask_space;      // mask used to determine if a character is a word character
253    typename traits::char_class_type m_lower_mask;       // mask used to determine if a character is a lowercase character
254    typename traits::char_class_type m_upper_mask;      // mask used to determine if a character is an uppercase character
255    typename traits::char_class_type m_alpha_mask;      // mask used to determine if a character is an alphabetic character
256 private:
257    basic_regex_creator& operator=(const basic_regex_creator&);
258    basic_regex_creator(const basic_regex_creator&);
259 
260    void fixup_pointers(re_syntax_base* state);
261    void fixup_recursions(re_syntax_base* state);
262    void create_startmaps(re_syntax_base* state);
263    int calculate_backstep(re_syntax_base* state);
264    void create_startmap(re_syntax_base* state, unsigned char* l_map, unsigned int* pnull, unsigned char mask);
265    unsigned get_restart_type(re_syntax_base* state);
266    void set_all_masks(unsigned char* bits, unsigned char);
267    bool is_bad_repeat(re_syntax_base* pt);
268    void set_bad_repeat(re_syntax_base* pt);
269    syntax_element_type get_repeat_type(re_syntax_base* state);
270    void probe_leading_repeat(re_syntax_base* state);
271 };
272 
273 template <class charT, class traits>
basic_regex_creator(regex_data<charT,traits> * data)274 basic_regex_creator<charT, traits>::basic_regex_creator(regex_data<charT, traits>* data)
275    : m_pdata(data), m_traits(*(data->m_ptraits)), m_last_state(0), m_icase(false), m_repeater_id(0),
276    m_has_backrefs(false), m_bad_repeats(0), m_has_recursions(false), m_word_mask(0), m_mask_space(0), m_lower_mask(0), m_upper_mask(0), m_alpha_mask(0)
277 {
278    m_pdata->m_data.clear();
279    m_pdata->m_status = ::boost::regex_constants::error_ok;
280    static const charT w = 'w';
281    static const charT s = 's';
282    static const charT l[5] = { 'l', 'o', 'w', 'e', 'r', };
283    static const charT u[5] = { 'u', 'p', 'p', 'e', 'r', };
284    static const charT a[5] = { 'a', 'l', 'p', 'h', 'a', };
285    m_word_mask = m_traits.lookup_classname(&w, &w +1);
286    m_mask_space = m_traits.lookup_classname(&s, &s +1);
287    m_lower_mask = m_traits.lookup_classname(l, l + 5);
288    m_upper_mask = m_traits.lookup_classname(u, u + 5);
289    m_alpha_mask = m_traits.lookup_classname(a, a + 5);
290    m_pdata->m_word_mask = m_word_mask;
291    BOOST_REGEX_ASSERT(m_word_mask != 0);
292    BOOST_REGEX_ASSERT(m_mask_space != 0);
293    BOOST_REGEX_ASSERT(m_lower_mask != 0);
294    BOOST_REGEX_ASSERT(m_upper_mask != 0);
295    BOOST_REGEX_ASSERT(m_alpha_mask != 0);
296 }
297 
298 template <class charT, class traits>
append_state(syntax_element_type t,std::size_t s)299 re_syntax_base* basic_regex_creator<charT, traits>::append_state(syntax_element_type t, std::size_t s)
300 {
301    // if the state is a backref then make a note of it:
302    if(t == syntax_element_backref)
303       this->m_has_backrefs = true;
304    // append a new state, start by aligning our last one:
305    m_pdata->m_data.align();
306    // set the offset to the next state in our last one:
307    if(m_last_state)
308       m_last_state->next.i = m_pdata->m_data.size() - getoffset(m_last_state);
309    // now actually extend our data:
310    m_last_state = static_cast<re_syntax_base*>(m_pdata->m_data.extend(s));
311    // fill in boilerplate options in the new state:
312    m_last_state->next.i = 0;
313    m_last_state->type = t;
314    return m_last_state;
315 }
316 
317 template <class charT, class traits>
insert_state(std::ptrdiff_t pos,syntax_element_type t,std::size_t s)318 re_syntax_base* basic_regex_creator<charT, traits>::insert_state(std::ptrdiff_t pos, syntax_element_type t, std::size_t s)
319 {
320    // append a new state, start by aligning our last one:
321    m_pdata->m_data.align();
322    // set the offset to the next state in our last one:
323    if(m_last_state)
324       m_last_state->next.i = m_pdata->m_data.size() - getoffset(m_last_state);
325    // remember the last state position:
326    std::ptrdiff_t off = getoffset(m_last_state) + s;
327    // now actually insert our data:
328    re_syntax_base* new_state = static_cast<re_syntax_base*>(m_pdata->m_data.insert(pos, s));
329    // fill in boilerplate options in the new state:
330    new_state->next.i = s;
331    new_state->type = t;
332    m_last_state = getaddress(off);
333    return new_state;
334 }
335 
336 template <class charT, class traits>
append_literal(charT c)337 re_literal* basic_regex_creator<charT, traits>::append_literal(charT c)
338 {
339    re_literal* result;
340    // start by seeing if we have an existing re_literal we can extend:
341    if((0 == m_last_state) || (m_last_state->type != syntax_element_literal))
342    {
343       // no existing re_literal, create a new one:
344       result = static_cast<re_literal*>(append_state(syntax_element_literal, sizeof(re_literal) + sizeof(charT)));
345       result->length = 1;
346       *static_cast<charT*>(static_cast<void*>(result+1)) = m_traits.translate(c, m_icase);
347    }
348    else
349    {
350       // we have an existing re_literal, extend it:
351       std::ptrdiff_t off = getoffset(m_last_state);
352       m_pdata->m_data.extend(sizeof(charT));
353       m_last_state = result = static_cast<re_literal*>(getaddress(off));
354       charT* characters = static_cast<charT*>(static_cast<void*>(result+1));
355       characters[result->length] = m_traits.translate(c, m_icase);
356       result->length += 1;
357    }
358    return result;
359 }
360 
361 template <class charT, class traits>
append_set(const basic_char_set<charT,traits> & char_set)362 inline re_syntax_base* basic_regex_creator<charT, traits>::append_set(
363    const basic_char_set<charT, traits>& char_set)
364 {
365    typedef mpl::bool_< (sizeof(charT) == 1) > truth_type;
366    return char_set.has_digraphs()
367       ? append_set(char_set, static_cast<mpl::false_*>(0))
368       : append_set(char_set, static_cast<truth_type*>(0));
369 }
370 
371 template <class charT, class traits>
append_set(const basic_char_set<charT,traits> & char_set,mpl::false_ *)372 re_syntax_base* basic_regex_creator<charT, traits>::append_set(
373    const basic_char_set<charT, traits>& char_set, mpl::false_*)
374 {
375    typedef typename traits::string_type string_type;
376    typedef typename basic_char_set<charT, traits>::list_iterator item_iterator;
377    typedef typename basic_char_set<charT, traits>::set_iterator  set_iterator;
378    typedef typename traits::char_class_type m_type;
379 
380    re_set_long<m_type>* result = static_cast<re_set_long<m_type>*>(append_state(syntax_element_long_set, sizeof(re_set_long<m_type>)));
381    //
382    // fill in the basics:
383    //
384    result->csingles = static_cast<unsigned int>(::boost::BOOST_REGEX_DETAIL_NS::distance(char_set.singles_begin(), char_set.singles_end()));
385    result->cranges = static_cast<unsigned int>(::boost::BOOST_REGEX_DETAIL_NS::distance(char_set.ranges_begin(), char_set.ranges_end())) / 2;
386    result->cequivalents = static_cast<unsigned int>(::boost::BOOST_REGEX_DETAIL_NS::distance(char_set.equivalents_begin(), char_set.equivalents_end()));
387    result->cclasses = char_set.classes();
388    result->cnclasses = char_set.negated_classes();
389    if(flags() & regbase::icase)
390    {
391       // adjust classes as needed:
392       if(((result->cclasses & m_lower_mask) == m_lower_mask) || ((result->cclasses & m_upper_mask) == m_upper_mask))
393          result->cclasses |= m_alpha_mask;
394       if(((result->cnclasses & m_lower_mask) == m_lower_mask) || ((result->cnclasses & m_upper_mask) == m_upper_mask))
395          result->cnclasses |= m_alpha_mask;
396    }
397 
398    result->isnot = char_set.is_negated();
399    result->singleton = !char_set.has_digraphs();
400    //
401    // remember where the state is for later:
402    //
403    std::ptrdiff_t offset = getoffset(result);
404    //
405    // now extend with all the singles:
406    //
407    item_iterator first, last;
408    set_iterator sfirst, slast;
409    sfirst = char_set.singles_begin();
410    slast = char_set.singles_end();
411    while(sfirst != slast)
412    {
413       charT* p = static_cast<charT*>(this->m_pdata->m_data.extend(sizeof(charT) * (sfirst->first == static_cast<charT>(0) ? 1 : sfirst->second ? 3 : 2)));
414       p[0] = m_traits.translate(sfirst->first, m_icase);
415       if(sfirst->first == static_cast<charT>(0))
416       {
417          p[0] = 0;
418       }
419       else if(sfirst->second)
420       {
421          p[1] = m_traits.translate(sfirst->second, m_icase);
422          p[2] = 0;
423       }
424       else
425          p[1] = 0;
426       ++sfirst;
427    }
428    //
429    // now extend with all the ranges:
430    //
431    first = char_set.ranges_begin();
432    last = char_set.ranges_end();
433    while(first != last)
434    {
435       // first grab the endpoints of the range:
436       digraph<charT> c1 = *first;
437       c1.first = this->m_traits.translate(c1.first, this->m_icase);
438       c1.second = this->m_traits.translate(c1.second, this->m_icase);
439       ++first;
440       digraph<charT> c2 = *first;
441       c2.first = this->m_traits.translate(c2.first, this->m_icase);
442       c2.second = this->m_traits.translate(c2.second, this->m_icase);
443       ++first;
444       string_type s1, s2;
445       // different actions now depending upon whether collation is turned on:
446       if(flags() & regex_constants::collate)
447       {
448          // we need to transform our range into sort keys:
449          charT a1[3] = { c1.first, c1.second, charT(0), };
450          charT a2[3] = { c2.first, c2.second, charT(0), };
451          s1 = this->m_traits.transform(a1, (a1[1] ? a1+2 : a1+1));
452          s2 = this->m_traits.transform(a2, (a2[1] ? a2+2 : a2+1));
453          if(s1.empty())
454             s1 = string_type(1, charT(0));
455          if(s2.empty())
456             s2 = string_type(1, charT(0));
457       }
458       else
459       {
460          if(c1.second)
461          {
462             s1.insert(s1.end(), c1.first);
463             s1.insert(s1.end(), c1.second);
464          }
465          else
466             s1 = string_type(1, c1.first);
467          if(c2.second)
468          {
469             s2.insert(s2.end(), c2.first);
470             s2.insert(s2.end(), c2.second);
471          }
472          else
473             s2.insert(s2.end(), c2.first);
474       }
475       if(s1 > s2)
476       {
477          // Oops error:
478          return 0;
479       }
480       charT* p = static_cast<charT*>(this->m_pdata->m_data.extend(sizeof(charT) * (s1.size() + s2.size() + 2) ) );
481       BOOST_REGEX_DETAIL_NS::copy(s1.begin(), s1.end(), p);
482       p[s1.size()] = charT(0);
483       p += s1.size() + 1;
484       BOOST_REGEX_DETAIL_NS::copy(s2.begin(), s2.end(), p);
485       p[s2.size()] = charT(0);
486    }
487    //
488    // now process the equivalence classes:
489    //
490    sfirst = char_set.equivalents_begin();
491    slast = char_set.equivalents_end();
492    while(sfirst != slast)
493    {
494       string_type s;
495       if(sfirst->second)
496       {
497          charT cs[3] = { sfirst->first, sfirst->second, charT(0), };
498          s = m_traits.transform_primary(cs, cs+2);
499       }
500       else
501          s = m_traits.transform_primary(&sfirst->first, &sfirst->first+1);
502       if(s.empty())
503          return 0;  // invalid or unsupported equivalence class
504       charT* p = static_cast<charT*>(this->m_pdata->m_data.extend(sizeof(charT) * (s.size()+1) ) );
505       BOOST_REGEX_DETAIL_NS::copy(s.begin(), s.end(), p);
506       p[s.size()] = charT(0);
507       ++sfirst;
508    }
509    //
510    // finally reset the address of our last state:
511    //
512    m_last_state = result = static_cast<re_set_long<m_type>*>(getaddress(offset));
513    return result;
514 }
515 
516 template<class T>
char_less(T t1,T t2)517 inline bool char_less(T t1, T t2)
518 {
519    return t1 < t2;
520 }
char_less(char t1,char t2)521 inline bool char_less(char t1, char t2)
522 {
523    return static_cast<unsigned char>(t1) < static_cast<unsigned char>(t2);
524 }
char_less(signed char t1,signed char t2)525 inline bool char_less(signed char t1, signed char t2)
526 {
527    return static_cast<unsigned char>(t1) < static_cast<unsigned char>(t2);
528 }
529 
530 template <class charT, class traits>
append_set(const basic_char_set<charT,traits> & char_set,mpl::true_ *)531 re_syntax_base* basic_regex_creator<charT, traits>::append_set(
532    const basic_char_set<charT, traits>& char_set, mpl::true_*)
533 {
534    typedef typename traits::string_type string_type;
535    typedef typename basic_char_set<charT, traits>::list_iterator item_iterator;
536    typedef typename basic_char_set<charT, traits>::set_iterator set_iterator;
537 
538    re_set* result = static_cast<re_set*>(append_state(syntax_element_set, sizeof(re_set)));
539    bool negate = char_set.is_negated();
540    std::memset(result->_map, 0, sizeof(result->_map));
541    //
542    // handle singles first:
543    //
544    item_iterator first, last;
545    set_iterator sfirst, slast;
546    sfirst = char_set.singles_begin();
547    slast = char_set.singles_end();
548    while(sfirst != slast)
549    {
550       for(unsigned int i = 0; i < (1 << CHAR_BIT); ++i)
551       {
552          if(this->m_traits.translate(static_cast<charT>(i), this->m_icase)
553             == this->m_traits.translate(sfirst->first, this->m_icase))
554             result->_map[i] = true;
555       }
556       ++sfirst;
557    }
558    //
559    // OK now handle ranges:
560    //
561    first = char_set.ranges_begin();
562    last = char_set.ranges_end();
563    while(first != last)
564    {
565       // first grab the endpoints of the range:
566       charT c1 = this->m_traits.translate(first->first, this->m_icase);
567       ++first;
568       charT c2 = this->m_traits.translate(first->first, this->m_icase);
569       ++first;
570       // different actions now depending upon whether collation is turned on:
571       if(flags() & regex_constants::collate)
572       {
573          // we need to transform our range into sort keys:
574          charT c3[2] = { c1, charT(0), };
575          string_type s1 = this->m_traits.transform(c3, c3+1);
576          c3[0] = c2;
577          string_type s2 = this->m_traits.transform(c3, c3+1);
578          if(s1 > s2)
579          {
580             // Oops error:
581             return 0;
582          }
583          BOOST_REGEX_ASSERT(c3[1] == charT(0));
584          for(unsigned i = 0; i < (1u << CHAR_BIT); ++i)
585          {
586             c3[0] = static_cast<charT>(i);
587             string_type s3 = this->m_traits.transform(c3, c3 +1);
588             if((s1 <= s3) && (s3 <= s2))
589                result->_map[i] = true;
590          }
591       }
592       else
593       {
594          if(char_less(c2, c1))
595          {
596             // Oops error:
597             return 0;
598          }
599          // everything in range matches:
600          std::memset(result->_map + static_cast<unsigned char>(c1), true, static_cast<unsigned char>(1u) + static_cast<unsigned char>(static_cast<unsigned char>(c2) - static_cast<unsigned char>(c1)));
601       }
602    }
603    //
604    // and now the classes:
605    //
606    typedef typename traits::char_class_type m_type;
607    m_type m = char_set.classes();
608    if(flags() & regbase::icase)
609    {
610       // adjust m as needed:
611       if(((m & m_lower_mask) == m_lower_mask) || ((m & m_upper_mask) == m_upper_mask))
612          m |= m_alpha_mask;
613    }
614    if(m != 0)
615    {
616       for(unsigned i = 0; i < (1u << CHAR_BIT); ++i)
617       {
618          if(this->m_traits.isctype(static_cast<charT>(i), m))
619             result->_map[i] = true;
620       }
621    }
622    //
623    // and now the negated classes:
624    //
625    m = char_set.negated_classes();
626    if(flags() & regbase::icase)
627    {
628       // adjust m as needed:
629       if(((m & m_lower_mask) == m_lower_mask) || ((m & m_upper_mask) == m_upper_mask))
630          m |= m_alpha_mask;
631    }
632    if(m != 0)
633    {
634       for(unsigned i = 0; i < (1u << CHAR_BIT); ++i)
635       {
636          if(0 == this->m_traits.isctype(static_cast<charT>(i), m))
637             result->_map[i] = true;
638       }
639    }
640    //
641    // now process the equivalence classes:
642    //
643    sfirst = char_set.equivalents_begin();
644    slast = char_set.equivalents_end();
645    while(sfirst != slast)
646    {
647       string_type s;
648       BOOST_REGEX_ASSERT(static_cast<charT>(0) == sfirst->second);
649       s = m_traits.transform_primary(&sfirst->first, &sfirst->first+1);
650       if(s.empty())
651          return 0;  // invalid or unsupported equivalence class
652       for(unsigned i = 0; i < (1u << CHAR_BIT); ++i)
653       {
654          charT c[2] = { (static_cast<charT>(i)), charT(0), };
655          string_type s2 = this->m_traits.transform_primary(c, c+1);
656          if(s == s2)
657             result->_map[i] = true;
658       }
659       ++sfirst;
660    }
661    if(negate)
662    {
663       for(unsigned i = 0; i < (1u << CHAR_BIT); ++i)
664       {
665          result->_map[i] = !(result->_map[i]);
666       }
667    }
668    return result;
669 }
670 
671 template <class charT, class traits>
finalize(const charT * p1,const charT * p2)672 void basic_regex_creator<charT, traits>::finalize(const charT* p1, const charT* p2)
673 {
674    if(this->m_pdata->m_status)
675       return;
676    // we've added all the states we need, now finish things off.
677    // start by adding a terminating state:
678    append_state(syntax_element_match);
679    // extend storage to store original expression:
680    std::ptrdiff_t len = p2 - p1;
681    m_pdata->m_expression_len = len;
682    charT* ps = static_cast<charT*>(m_pdata->m_data.extend(sizeof(charT) * (1 + (p2 - p1))));
683    m_pdata->m_expression = ps;
684    BOOST_REGEX_DETAIL_NS::copy(p1, p2, ps);
685    ps[p2 - p1] = 0;
686    // fill in our other data...
687    // successful parsing implies a zero status:
688    m_pdata->m_status = 0;
689    // get the first state of the machine:
690    m_pdata->m_first_state = static_cast<re_syntax_base*>(m_pdata->m_data.data());
691    // fixup pointers in the machine:
692    fixup_pointers(m_pdata->m_first_state);
693    if(m_has_recursions)
694    {
695       m_pdata->m_has_recursions = true;
696       fixup_recursions(m_pdata->m_first_state);
697       if(this->m_pdata->m_status)
698          return;
699    }
700    else
701       m_pdata->m_has_recursions = false;
702    // create nested startmaps:
703    create_startmaps(m_pdata->m_first_state);
704    // create main startmap:
705    std::memset(m_pdata->m_startmap, 0, sizeof(m_pdata->m_startmap));
706    m_pdata->m_can_be_null = 0;
707 
708    m_bad_repeats = 0;
709    if(m_has_recursions)
710       m_recursion_checks.assign(1 + m_pdata->m_mark_count, 0u);
711    create_startmap(m_pdata->m_first_state, m_pdata->m_startmap, &(m_pdata->m_can_be_null), mask_all);
712    // get the restart type:
713    m_pdata->m_restart_type = get_restart_type(m_pdata->m_first_state);
714    // optimise a leading repeat if there is one:
715    probe_leading_repeat(m_pdata->m_first_state);
716 }
717 
718 template <class charT, class traits>
fixup_pointers(re_syntax_base * state)719 void basic_regex_creator<charT, traits>::fixup_pointers(re_syntax_base* state)
720 {
721    while(state)
722    {
723       switch(state->type)
724       {
725       case syntax_element_recurse:
726          m_has_recursions = true;
727          if(state->next.i)
728             state->next.p = getaddress(state->next.i, state);
729          else
730             state->next.p = 0;
731          break;
732       case syntax_element_rep:
733       case syntax_element_dot_rep:
734       case syntax_element_char_rep:
735       case syntax_element_short_set_rep:
736       case syntax_element_long_set_rep:
737          // set the state_id of this repeat:
738          static_cast<re_repeat*>(state)->state_id = m_repeater_id++;
739          BOOST_FALLTHROUGH;
740       case syntax_element_alt:
741          std::memset(static_cast<re_alt*>(state)->_map, 0, sizeof(static_cast<re_alt*>(state)->_map));
742          static_cast<re_alt*>(state)->can_be_null = 0;
743          BOOST_FALLTHROUGH;
744       case syntax_element_jump:
745          static_cast<re_jump*>(state)->alt.p = getaddress(static_cast<re_jump*>(state)->alt.i, state);
746          BOOST_FALLTHROUGH;
747       default:
748          if(state->next.i)
749             state->next.p = getaddress(state->next.i, state);
750          else
751             state->next.p = 0;
752       }
753       state = state->next.p;
754    }
755 }
756 
757 template <class charT, class traits>
fixup_recursions(re_syntax_base * state)758 void basic_regex_creator<charT, traits>::fixup_recursions(re_syntax_base* state)
759 {
760    re_syntax_base* base = state;
761    while(state)
762    {
763       switch(state->type)
764       {
765       case syntax_element_assert_backref:
766          {
767             // just check that the index is valid:
768             int idx = static_cast<const re_brace*>(state)->index;
769             if(idx < 0)
770             {
771                idx = -idx-1;
772                if(idx >= hash_value_mask)
773                {
774                   idx = m_pdata->get_id(idx);
775                   if(idx <= 0)
776                   {
777                      // check of sub-expression that doesn't exist:
778                      if(0 == this->m_pdata->m_status) // update the error code if not already set
779                         this->m_pdata->m_status = boost::regex_constants::error_bad_pattern;
780                      //
781                      // clear the expression, we should be empty:
782                      //
783                      this->m_pdata->m_expression = 0;
784                      this->m_pdata->m_expression_len = 0;
785                      //
786                      // and throw if required:
787                      //
788                      if(0 == (this->flags() & regex_constants::no_except))
789                      {
790                         std::string message = "Encountered a forward reference to a marked sub-expression that does not exist.";
791                         boost::regex_error e(message, boost::regex_constants::error_bad_pattern, 0);
792                         e.raise();
793                      }
794                   }
795                }
796             }
797          }
798          break;
799       case syntax_element_recurse:
800          {
801             bool ok = false;
802             re_syntax_base* p = base;
803             std::ptrdiff_t idx = static_cast<re_jump*>(state)->alt.i;
804             if(idx >= hash_value_mask)
805             {
806                //
807                // There may be more than one capture group with this hash, just do what Perl
808                // does and recurse to the leftmost:
809                //
810                idx = m_pdata->get_id(static_cast<int>(idx));
811             }
812             if(idx < 0)
813             {
814                ok = false;
815             }
816             else
817             {
818                while(p)
819                {
820                   if((p->type == syntax_element_startmark) && (static_cast<re_brace*>(p)->index == idx))
821                   {
822                      //
823                      // We've found the target of the recursion, set the jump target:
824                      //
825                      static_cast<re_jump*>(state)->alt.p = p;
826                      ok = true;
827                      //
828                      // Now scan the target for nested repeats:
829                      //
830                      p = p->next.p;
831                      int next_rep_id = 0;
832                      while(p)
833                      {
834                         switch(p->type)
835                         {
836                         case syntax_element_rep:
837                         case syntax_element_dot_rep:
838                         case syntax_element_char_rep:
839                         case syntax_element_short_set_rep:
840                         case syntax_element_long_set_rep:
841                            next_rep_id = static_cast<re_repeat*>(p)->state_id;
842                            break;
843                         case syntax_element_endmark:
844                            if(static_cast<const re_brace*>(p)->index == idx)
845                               next_rep_id = -1;
846                            break;
847                         default:
848                            break;
849                         }
850                         if(next_rep_id)
851                            break;
852                         p = p->next.p;
853                      }
854                      if(next_rep_id > 0)
855                      {
856                         static_cast<re_recurse*>(state)->state_id = next_rep_id - 1;
857                      }
858 
859                      break;
860                   }
861                   p = p->next.p;
862                }
863             }
864             if(!ok)
865             {
866                // recursion to sub-expression that doesn't exist:
867                if(0 == this->m_pdata->m_status) // update the error code if not already set
868                   this->m_pdata->m_status = boost::regex_constants::error_bad_pattern;
869                //
870                // clear the expression, we should be empty:
871                //
872                this->m_pdata->m_expression = 0;
873                this->m_pdata->m_expression_len = 0;
874                //
875                // and throw if required:
876                //
877                if(0 == (this->flags() & regex_constants::no_except))
878                {
879                   std::string message = "Encountered a forward reference to a recursive sub-expression that does not exist.";
880                   boost::regex_error e(message, boost::regex_constants::error_bad_pattern, 0);
881                   e.raise();
882                }
883             }
884          }
885          break;
886       default:
887          break;
888       }
889       state = state->next.p;
890    }
891 }
892 
893 template <class charT, class traits>
create_startmaps(re_syntax_base * state)894 void basic_regex_creator<charT, traits>::create_startmaps(re_syntax_base* state)
895 {
896    // non-recursive implementation:
897    // create the last map in the machine first, so that earlier maps
898    // can make use of the result...
899    //
900    // This was originally a recursive implementation, but that caused stack
901    // overflows with complex expressions on small stacks (think COM+).
902 
903    // start by saving the case setting:
904    bool l_icase = m_icase;
905    std::vector<std::pair<bool, re_syntax_base*> > v;
906 
907    while(state)
908    {
909       switch(state->type)
910       {
911       case syntax_element_toggle_case:
912          // we need to track case changes here:
913          m_icase = static_cast<re_case*>(state)->icase;
914          state = state->next.p;
915          continue;
916       case syntax_element_alt:
917       case syntax_element_rep:
918       case syntax_element_dot_rep:
919       case syntax_element_char_rep:
920       case syntax_element_short_set_rep:
921       case syntax_element_long_set_rep:
922          // just push the state onto our stack for now:
923          v.push_back(std::pair<bool, re_syntax_base*>(m_icase, state));
924          state = state->next.p;
925          break;
926       case syntax_element_backstep:
927          // we need to calculate how big the backstep is:
928          static_cast<re_brace*>(state)->index
929             = this->calculate_backstep(state->next.p);
930          if(static_cast<re_brace*>(state)->index < 0)
931          {
932             // Oops error:
933             if(0 == this->m_pdata->m_status) // update the error code if not already set
934                this->m_pdata->m_status = boost::regex_constants::error_bad_pattern;
935             //
936             // clear the expression, we should be empty:
937             //
938             this->m_pdata->m_expression = 0;
939             this->m_pdata->m_expression_len = 0;
940             //
941             // and throw if required:
942             //
943             if(0 == (this->flags() & regex_constants::no_except))
944             {
945                std::string message = "Invalid lookbehind assertion encountered in the regular expression.";
946                boost::regex_error e(message, boost::regex_constants::error_bad_pattern, 0);
947                e.raise();
948             }
949          }
950          BOOST_FALLTHROUGH;
951       default:
952          state = state->next.p;
953       }
954    }
955 
956    // now work through our list, building all the maps as we go:
957    while(!v.empty())
958    {
959       // Initialize m_recursion_checks if we need it:
960       if(m_has_recursions)
961          m_recursion_checks.assign(1 + m_pdata->m_mark_count, 0u);
962 
963       const std::pair<bool, re_syntax_base*>& p = v.back();
964       m_icase = p.first;
965       state = p.second;
966       v.pop_back();
967 
968       // Build maps:
969       m_bad_repeats = 0;
970       create_startmap(state->next.p, static_cast<re_alt*>(state)->_map, &static_cast<re_alt*>(state)->can_be_null, mask_take);
971       m_bad_repeats = 0;
972 
973       if(m_has_recursions)
974          m_recursion_checks.assign(1 + m_pdata->m_mark_count, 0u);
975       create_startmap(static_cast<re_alt*>(state)->alt.p, static_cast<re_alt*>(state)->_map, &static_cast<re_alt*>(state)->can_be_null, mask_skip);
976       // adjust the type of the state to allow for faster matching:
977       state->type = this->get_repeat_type(state);
978    }
979    // restore case sensitivity:
980    m_icase = l_icase;
981 }
982 
983 template <class charT, class traits>
calculate_backstep(re_syntax_base * state)984 int basic_regex_creator<charT, traits>::calculate_backstep(re_syntax_base* state)
985 {
986    typedef typename traits::char_class_type m_type;
987    int result = 0;
988    while(state)
989    {
990       switch(state->type)
991       {
992       case syntax_element_startmark:
993          if((static_cast<re_brace*>(state)->index == -1)
994             || (static_cast<re_brace*>(state)->index == -2))
995          {
996             state = static_cast<re_jump*>(state->next.p)->alt.p->next.p;
997             continue;
998          }
999          else if(static_cast<re_brace*>(state)->index == -3)
1000          {
1001             state = state->next.p->next.p;
1002             continue;
1003          }
1004          break;
1005       case syntax_element_endmark:
1006          if((static_cast<re_brace*>(state)->index == -1)
1007             || (static_cast<re_brace*>(state)->index == -2))
1008             return result;
1009          break;
1010       case syntax_element_literal:
1011          result += static_cast<re_literal*>(state)->length;
1012          break;
1013       case syntax_element_wild:
1014       case syntax_element_set:
1015          result += 1;
1016          break;
1017       case syntax_element_dot_rep:
1018       case syntax_element_char_rep:
1019       case syntax_element_short_set_rep:
1020       case syntax_element_backref:
1021       case syntax_element_rep:
1022       case syntax_element_combining:
1023       case syntax_element_long_set_rep:
1024       case syntax_element_backstep:
1025          {
1026             re_repeat* rep = static_cast<re_repeat *>(state);
1027             // adjust the type of the state to allow for faster matching:
1028             state->type = this->get_repeat_type(state);
1029             if((state->type == syntax_element_dot_rep)
1030                || (state->type == syntax_element_char_rep)
1031                || (state->type == syntax_element_short_set_rep))
1032             {
1033                if(rep->max != rep->min)
1034                   return -1;
1035                result += static_cast<int>(rep->min);
1036                state = rep->alt.p;
1037                continue;
1038             }
1039             else if(state->type == syntax_element_long_set_rep)
1040             {
1041                BOOST_REGEX_ASSERT(rep->next.p->type == syntax_element_long_set);
1042                if(static_cast<re_set_long<m_type>*>(rep->next.p)->singleton == 0)
1043                   return -1;
1044                if(rep->max != rep->min)
1045                   return -1;
1046                result += static_cast<int>(rep->min);
1047                state = rep->alt.p;
1048                continue;
1049             }
1050          }
1051          return -1;
1052       case syntax_element_long_set:
1053          if(static_cast<re_set_long<m_type>*>(state)->singleton == 0)
1054             return -1;
1055          result += 1;
1056          break;
1057       case syntax_element_jump:
1058          state = static_cast<re_jump*>(state)->alt.p;
1059          continue;
1060       case syntax_element_alt:
1061          {
1062             int r1 = calculate_backstep(state->next.p);
1063             int r2 = calculate_backstep(static_cast<re_alt*>(state)->alt.p);
1064             if((r1 < 0) || (r1 != r2))
1065                return -1;
1066             return result + r1;
1067          }
1068       default:
1069          break;
1070       }
1071       state = state->next.p;
1072    }
1073    return -1;
1074 }
1075 
1076 struct recursion_saver
1077 {
1078    std::vector<unsigned char> saved_state;
1079    std::vector<unsigned char>* state;
recursion_saverboost::BOOST_REGEX_DETAIL_NS::recursion_saver1080    recursion_saver(std::vector<unsigned char>* p) : saved_state(*p), state(p) {}
~recursion_saverboost::BOOST_REGEX_DETAIL_NS::recursion_saver1081    ~recursion_saver()
1082    {
1083       state->swap(saved_state);
1084    }
1085 };
1086 
1087 template <class charT, class traits>
create_startmap(re_syntax_base * state,unsigned char * l_map,unsigned int * pnull,unsigned char mask)1088 void basic_regex_creator<charT, traits>::create_startmap(re_syntax_base* state, unsigned char* l_map, unsigned int* pnull, unsigned char mask)
1089 {
1090    recursion_saver saved_recursions(&m_recursion_checks);
1091    int not_last_jump = 1;
1092    re_syntax_base* recursion_start = 0;
1093    int recursion_sub = 0;
1094    re_syntax_base* recursion_restart = 0;
1095 
1096    // track case sensitivity:
1097    bool l_icase = m_icase;
1098 
1099    while(state)
1100    {
1101       switch(state->type)
1102       {
1103       case syntax_element_toggle_case:
1104          l_icase = static_cast<re_case*>(state)->icase;
1105          state = state->next.p;
1106          break;
1107       case syntax_element_literal:
1108       {
1109          // don't set anything in *pnull, set each element in l_map
1110          // that could match the first character in the literal:
1111          if(l_map)
1112          {
1113             l_map[0] |= mask_init;
1114             charT first_char = *static_cast<charT*>(static_cast<void*>(static_cast<re_literal*>(state) + 1));
1115             for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i)
1116             {
1117                if(m_traits.translate(static_cast<charT>(i), l_icase) == first_char)
1118                   l_map[i] |= mask;
1119             }
1120          }
1121          return;
1122       }
1123       case syntax_element_end_line:
1124       {
1125          // next character must be a line separator (if there is one):
1126          if(l_map)
1127          {
1128             l_map[0] |= mask_init;
1129             l_map[static_cast<unsigned>('\n')] |= mask;
1130             l_map[static_cast<unsigned>('\r')] |= mask;
1131             l_map[static_cast<unsigned>('\f')] |= mask;
1132             l_map[0x85] |= mask;
1133          }
1134          // now figure out if we can match a NULL string at this point:
1135          if(pnull)
1136             create_startmap(state->next.p, 0, pnull, mask);
1137          return;
1138       }
1139       case syntax_element_recurse:
1140          {
1141             BOOST_REGEX_ASSERT(static_cast<const re_jump*>(state)->alt.p->type == syntax_element_startmark);
1142             recursion_sub = static_cast<re_brace*>(static_cast<const re_jump*>(state)->alt.p)->index;
1143             if(m_recursion_checks[recursion_sub] & 1u)
1144             {
1145                // Infinite recursion!!
1146                if(0 == this->m_pdata->m_status) // update the error code if not already set
1147                   this->m_pdata->m_status = boost::regex_constants::error_bad_pattern;
1148                //
1149                // clear the expression, we should be empty:
1150                //
1151                this->m_pdata->m_expression = 0;
1152                this->m_pdata->m_expression_len = 0;
1153                //
1154                // and throw if required:
1155                //
1156                if(0 == (this->flags() & regex_constants::no_except))
1157                {
1158                   std::string message = "Encountered an infinite recursion.";
1159                   boost::regex_error e(message, boost::regex_constants::error_bad_pattern, 0);
1160                   e.raise();
1161                }
1162             }
1163             else if(recursion_start == 0)
1164             {
1165                recursion_start = state;
1166                recursion_restart = state->next.p;
1167                state = static_cast<re_jump*>(state)->alt.p;
1168                m_recursion_checks[recursion_sub] |= 1u;
1169                break;
1170             }
1171             m_recursion_checks[recursion_sub] |= 1u;
1172             // can't handle nested recursion here...
1173             BOOST_FALLTHROUGH;
1174          }
1175       case syntax_element_backref:
1176          // can be null, and any character can match:
1177          if(pnull)
1178             *pnull |= mask;
1179          BOOST_FALLTHROUGH;
1180       case syntax_element_wild:
1181       {
1182          // can't be null, any character can match:
1183          set_all_masks(l_map, mask);
1184          return;
1185       }
1186       case syntax_element_accept:
1187       case syntax_element_match:
1188       {
1189          // must be null, any character can match:
1190          set_all_masks(l_map, mask);
1191          if(pnull)
1192             *pnull |= mask;
1193          return;
1194       }
1195       case syntax_element_word_start:
1196       {
1197          // recurse, then AND with all the word characters:
1198          create_startmap(state->next.p, l_map, pnull, mask);
1199          if(l_map)
1200          {
1201             l_map[0] |= mask_init;
1202             for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i)
1203             {
1204                if(!m_traits.isctype(static_cast<charT>(i), m_word_mask))
1205                   l_map[i] &= static_cast<unsigned char>(~mask);
1206             }
1207          }
1208          return;
1209       }
1210       case syntax_element_word_end:
1211       {
1212          // recurse, then AND with all the word characters:
1213          create_startmap(state->next.p, l_map, pnull, mask);
1214          if(l_map)
1215          {
1216             l_map[0] |= mask_init;
1217             for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i)
1218             {
1219                if(m_traits.isctype(static_cast<charT>(i), m_word_mask))
1220                   l_map[i] &= static_cast<unsigned char>(~mask);
1221             }
1222          }
1223          return;
1224       }
1225       case syntax_element_buffer_end:
1226       {
1227          // we *must be null* :
1228          if(pnull)
1229             *pnull |= mask;
1230          return;
1231       }
1232       case syntax_element_long_set:
1233          if(l_map)
1234          {
1235             typedef typename traits::char_class_type m_type;
1236             if(static_cast<re_set_long<m_type>*>(state)->singleton)
1237             {
1238                l_map[0] |= mask_init;
1239                for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i)
1240                {
1241                   charT c = static_cast<charT>(i);
1242                   if(&c != re_is_set_member(&c, &c + 1, static_cast<re_set_long<m_type>*>(state), *m_pdata, l_icase))
1243                      l_map[i] |= mask;
1244                }
1245             }
1246             else
1247                set_all_masks(l_map, mask);
1248          }
1249          return;
1250       case syntax_element_set:
1251          if(l_map)
1252          {
1253             l_map[0] |= mask_init;
1254             for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i)
1255             {
1256                if(static_cast<re_set*>(state)->_map[
1257                   static_cast<unsigned char>(m_traits.translate(static_cast<charT>(i), l_icase))])
1258                   l_map[i] |= mask;
1259             }
1260          }
1261          return;
1262       case syntax_element_jump:
1263          // take the jump:
1264          state = static_cast<re_alt*>(state)->alt.p;
1265          not_last_jump = -1;
1266          break;
1267       case syntax_element_alt:
1268       case syntax_element_rep:
1269       case syntax_element_dot_rep:
1270       case syntax_element_char_rep:
1271       case syntax_element_short_set_rep:
1272       case syntax_element_long_set_rep:
1273          {
1274             re_alt* rep = static_cast<re_alt*>(state);
1275             if(rep->_map[0] & mask_init)
1276             {
1277                if(l_map)
1278                {
1279                   // copy previous results:
1280                   l_map[0] |= mask_init;
1281                   for(unsigned int i = 0; i <= UCHAR_MAX; ++i)
1282                   {
1283                      if(rep->_map[i] & mask_any)
1284                         l_map[i] |= mask;
1285                   }
1286                }
1287                if(pnull)
1288                {
1289                   if(rep->can_be_null & mask_any)
1290                      *pnull |= mask;
1291                }
1292             }
1293             else
1294             {
1295                // we haven't created a startmap for this alternative yet
1296                // so take the union of the two options:
1297                if(is_bad_repeat(state))
1298                {
1299                   set_all_masks(l_map, mask);
1300                   if(pnull)
1301                      *pnull |= mask;
1302                   return;
1303                }
1304                set_bad_repeat(state);
1305                create_startmap(state->next.p, l_map, pnull, mask);
1306                if((state->type == syntax_element_alt)
1307                   || (static_cast<re_repeat*>(state)->min == 0)
1308                   || (not_last_jump == 0))
1309                   create_startmap(rep->alt.p, l_map, pnull, mask);
1310             }
1311          }
1312          return;
1313       case syntax_element_soft_buffer_end:
1314          // match newline or null:
1315          if(l_map)
1316          {
1317             l_map[0] |= mask_init;
1318             l_map[static_cast<unsigned>('\n')] |= mask;
1319             l_map[static_cast<unsigned>('\r')] |= mask;
1320          }
1321          if(pnull)
1322             *pnull |= mask;
1323          return;
1324       case syntax_element_endmark:
1325          // need to handle independent subs as a special case:
1326          if(static_cast<re_brace*>(state)->index < 0)
1327          {
1328             // can be null, any character can match:
1329             set_all_masks(l_map, mask);
1330             if(pnull)
1331                *pnull |= mask;
1332             return;
1333          }
1334          else if(recursion_start && (recursion_sub != 0) && (recursion_sub == static_cast<re_brace*>(state)->index))
1335          {
1336             // recursion termination:
1337             recursion_start = 0;
1338             state = recursion_restart;
1339             break;
1340          }
1341 
1342          //
1343          // Normally we just go to the next state... but if this sub-expression is
1344          // the target of a recursion, then we might be ending a recursion, in which
1345          // case we should check whatever follows that recursion, as well as whatever
1346          // follows this state:
1347          //
1348          if(m_pdata->m_has_recursions && static_cast<re_brace*>(state)->index)
1349          {
1350             bool ok = false;
1351             re_syntax_base* p = m_pdata->m_first_state;
1352             while(p)
1353             {
1354                if(p->type == syntax_element_recurse)
1355                {
1356                   re_brace* p2 = static_cast<re_brace*>(static_cast<re_jump*>(p)->alt.p);
1357                   if((p2->type == syntax_element_startmark) && (p2->index == static_cast<re_brace*>(state)->index))
1358                   {
1359                      ok = true;
1360                      break;
1361                   }
1362                }
1363                p = p->next.p;
1364             }
1365             if(ok && ((m_recursion_checks[static_cast<re_brace*>(state)->index] & 2u) == 0))
1366             {
1367                m_recursion_checks[static_cast<re_brace*>(state)->index] |= 2u;
1368                create_startmap(p->next.p, l_map, pnull, mask);
1369             }
1370          }
1371          state = state->next.p;
1372          break;
1373 
1374       case syntax_element_commit:
1375          set_all_masks(l_map, mask);
1376          // Continue scanning so we can figure out whether we can be null:
1377          state = state->next.p;
1378          break;
1379       case syntax_element_startmark:
1380          // need to handle independent subs as a special case:
1381          if(static_cast<re_brace*>(state)->index == -3)
1382          {
1383             state = state->next.p->next.p;
1384             break;
1385          }
1386          BOOST_FALLTHROUGH;
1387       default:
1388          state = state->next.p;
1389       }
1390       ++not_last_jump;
1391    }
1392 }
1393 
1394 template <class charT, class traits>
get_restart_type(re_syntax_base * state)1395 unsigned basic_regex_creator<charT, traits>::get_restart_type(re_syntax_base* state)
1396 {
1397    //
1398    // find out how the machine starts, so we can optimise the search:
1399    //
1400    while(state)
1401    {
1402       switch(state->type)
1403       {
1404       case syntax_element_startmark:
1405       case syntax_element_endmark:
1406          state = state->next.p;
1407          continue;
1408       case syntax_element_start_line:
1409          return regbase::restart_line;
1410       case syntax_element_word_start:
1411          return regbase::restart_word;
1412       case syntax_element_buffer_start:
1413          return regbase::restart_buf;
1414       case syntax_element_restart_continue:
1415          return regbase::restart_continue;
1416       default:
1417          state = 0;
1418          continue;
1419       }
1420    }
1421    return regbase::restart_any;
1422 }
1423 
1424 template <class charT, class traits>
set_all_masks(unsigned char * bits,unsigned char mask)1425 void basic_regex_creator<charT, traits>::set_all_masks(unsigned char* bits, unsigned char mask)
1426 {
1427    //
1428    // set mask in all of bits elements,
1429    // if bits[0] has mask_init not set then we can
1430    // optimise this to a call to memset:
1431    //
1432    if(bits)
1433    {
1434       if(bits[0] == 0)
1435          (std::memset)(bits, mask, 1u << CHAR_BIT);
1436       else
1437       {
1438          for(unsigned i = 0; i < (1u << CHAR_BIT); ++i)
1439             bits[i] |= mask;
1440       }
1441       bits[0] |= mask_init;
1442    }
1443 }
1444 
1445 template <class charT, class traits>
is_bad_repeat(re_syntax_base * pt)1446 bool basic_regex_creator<charT, traits>::is_bad_repeat(re_syntax_base* pt)
1447 {
1448    switch(pt->type)
1449    {
1450    case syntax_element_rep:
1451    case syntax_element_dot_rep:
1452    case syntax_element_char_rep:
1453    case syntax_element_short_set_rep:
1454    case syntax_element_long_set_rep:
1455       {
1456          unsigned state_id = static_cast<re_repeat*>(pt)->state_id;
1457          if(state_id >= sizeof(m_bad_repeats) * CHAR_BIT)
1458             return true;  // run out of bits, assume we can't traverse this one.
1459          static const boost::uintmax_t one = 1uL;
1460          return m_bad_repeats & (one << state_id);
1461       }
1462    default:
1463       return false;
1464    }
1465 }
1466 
1467 template <class charT, class traits>
set_bad_repeat(re_syntax_base * pt)1468 void basic_regex_creator<charT, traits>::set_bad_repeat(re_syntax_base* pt)
1469 {
1470    switch(pt->type)
1471    {
1472    case syntax_element_rep:
1473    case syntax_element_dot_rep:
1474    case syntax_element_char_rep:
1475    case syntax_element_short_set_rep:
1476    case syntax_element_long_set_rep:
1477       {
1478          unsigned state_id = static_cast<re_repeat*>(pt)->state_id;
1479          static const boost::uintmax_t one = 1uL;
1480          if(state_id <= sizeof(m_bad_repeats) * CHAR_BIT)
1481             m_bad_repeats |= (one << state_id);
1482       }
1483       break;
1484    default:
1485       break;
1486    }
1487 }
1488 
1489 template <class charT, class traits>
get_repeat_type(re_syntax_base * state)1490 syntax_element_type basic_regex_creator<charT, traits>::get_repeat_type(re_syntax_base* state)
1491 {
1492    typedef typename traits::char_class_type m_type;
1493    if(state->type == syntax_element_rep)
1494    {
1495       // check to see if we are repeating a single state:
1496       if(state->next.p->next.p->next.p == static_cast<re_alt*>(state)->alt.p)
1497       {
1498          switch(state->next.p->type)
1499          {
1500          case BOOST_REGEX_DETAIL_NS::syntax_element_wild:
1501             return BOOST_REGEX_DETAIL_NS::syntax_element_dot_rep;
1502          case BOOST_REGEX_DETAIL_NS::syntax_element_literal:
1503             return BOOST_REGEX_DETAIL_NS::syntax_element_char_rep;
1504          case BOOST_REGEX_DETAIL_NS::syntax_element_set:
1505             return BOOST_REGEX_DETAIL_NS::syntax_element_short_set_rep;
1506          case BOOST_REGEX_DETAIL_NS::syntax_element_long_set:
1507             if(static_cast<BOOST_REGEX_DETAIL_NS::re_set_long<m_type>*>(state->next.p)->singleton)
1508                return BOOST_REGEX_DETAIL_NS::syntax_element_long_set_rep;
1509             break;
1510          default:
1511             break;
1512          }
1513       }
1514    }
1515    return state->type;
1516 }
1517 
1518 template <class charT, class traits>
probe_leading_repeat(re_syntax_base * state)1519 void basic_regex_creator<charT, traits>::probe_leading_repeat(re_syntax_base* state)
1520 {
1521    // enumerate our states, and see if we have a leading repeat
1522    // for which failed search restarts can be optimized;
1523    do
1524    {
1525       switch(state->type)
1526       {
1527       case syntax_element_startmark:
1528          if(static_cast<re_brace*>(state)->index >= 0)
1529          {
1530             state = state->next.p;
1531             continue;
1532          }
1533 #ifdef BOOST_MSVC
1534 #  pragma warning(push)
1535 #pragma warning(disable:6011)
1536 #endif
1537          if((static_cast<re_brace*>(state)->index == -1)
1538             || (static_cast<re_brace*>(state)->index == -2))
1539          {
1540             // skip past the zero width assertion:
1541             state = static_cast<const re_jump*>(state->next.p)->alt.p->next.p;
1542             continue;
1543          }
1544 #ifdef BOOST_MSVC
1545 #  pragma warning(pop)
1546 #endif
1547          if(static_cast<re_brace*>(state)->index == -3)
1548          {
1549             // Have to skip the leading jump state:
1550             state = state->next.p->next.p;
1551             continue;
1552          }
1553          return;
1554       case syntax_element_endmark:
1555       case syntax_element_start_line:
1556       case syntax_element_end_line:
1557       case syntax_element_word_boundary:
1558       case syntax_element_within_word:
1559       case syntax_element_word_start:
1560       case syntax_element_word_end:
1561       case syntax_element_buffer_start:
1562       case syntax_element_buffer_end:
1563       case syntax_element_restart_continue:
1564          state = state->next.p;
1565          break;
1566       case syntax_element_dot_rep:
1567       case syntax_element_char_rep:
1568       case syntax_element_short_set_rep:
1569       case syntax_element_long_set_rep:
1570          if(this->m_has_backrefs == 0)
1571             static_cast<re_repeat*>(state)->leading = true;
1572          BOOST_FALLTHROUGH;
1573       default:
1574          return;
1575       }
1576    }while(state);
1577 }
1578 
1579 } // namespace BOOST_REGEX_DETAIL_NS
1580 
1581 } // namespace boost
1582 
1583 #ifdef BOOST_MSVC
1584 #  pragma warning(pop)
1585 #endif
1586 
1587 #ifdef BOOST_MSVC
1588 #pragma warning(push)
1589 #pragma warning(disable: 4103)
1590 #endif
1591 #ifdef BOOST_HAS_ABI_HEADERS
1592 #  include BOOST_ABI_SUFFIX
1593 #endif
1594 #ifdef BOOST_MSVC
1595 #pragma warning(pop)
1596 #endif
1597 
1598 #endif
1599