1------------------------------------------------------------------------------ 2-- -- 3-- GNAT RUN-TIME COMPONENTS -- 4-- -- 5-- A D A . N U M E R I C S . A U X -- 6-- -- 7-- S p e c -- 8-- (Apple OS X Version) -- 9-- -- 10-- Copyright (C) 1992-2018, Free Software Foundation, Inc. -- 11-- -- 12-- GNAT is free software; you can redistribute it and/or modify it under -- 13-- terms of the GNU General Public License as published by the Free Soft- -- 14-- ware Foundation; either version 3, or (at your option) any later ver- -- 15-- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- 16-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- 17-- or FITNESS FOR A PARTICULAR PURPOSE. -- 18-- -- 19-- As a special exception under Section 7 of GPL version 3, you are granted -- 20-- additional permissions described in the GCC Runtime Library Exception, -- 21-- version 3.1, as published by the Free Software Foundation. -- 22-- -- 23-- You should have received a copy of the GNU General Public License and -- 24-- a copy of the GCC Runtime Library Exception along with this program; -- 25-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- 26-- <http://www.gnu.org/licenses/>. -- 27-- -- 28-- GNAT was originally developed by the GNAT team at New York University. -- 29-- Extensive contributions were provided by Ada Core Technologies Inc. -- 30-- -- 31------------------------------------------------------------------------------ 32 33-- This version is for use on OS X. It uses the normal Unix math functions, 34-- except for sine/cosine which have been implemented directly in Ada to get 35-- the required accuracy. 36 37package Ada.Numerics.Aux is 38 pragma Pure; 39 40 pragma Linker_Options ("-lm"); 41 42 type Double is new Long_Float; 43 -- Type Double is the type used to call the C routines 44 45 -- The following functions have been implemented in Ada, since 46 -- the OS X math library didn't meet accuracy requirements for 47 -- argument reduction. The implementation here has been tailored 48 -- to match Ada strict mode Numerics requirements while maintaining 49 -- maximum efficiency. 50 function Sin (X : Double) return Double; 51 pragma Inline (Sin); 52 53 function Cos (X : Double) return Double; 54 pragma Inline (Cos); 55 56 -- We import these functions directly from C. Note that we label them 57 -- all as pure functions, because indeed all of them are in fact pure. 58 59 function Tan (X : Double) return Double; 60 pragma Import (C, Tan, "tan"); 61 pragma Pure_Function (Tan); 62 63 function Exp (X : Double) return Double; 64 pragma Import (C, Exp, "exp"); 65 pragma Pure_Function (Exp); 66 67 function Sqrt (X : Double) return Double; 68 pragma Import (C, Sqrt, "sqrt"); 69 pragma Pure_Function (Sqrt); 70 71 function Log (X : Double) return Double; 72 pragma Import (C, Log, "log"); 73 pragma Pure_Function (Log); 74 75 function Acos (X : Double) return Double; 76 pragma Import (C, Acos, "acos"); 77 pragma Pure_Function (Acos); 78 79 function Asin (X : Double) return Double; 80 pragma Import (C, Asin, "asin"); 81 pragma Pure_Function (Asin); 82 83 function Atan (X : Double) return Double; 84 pragma Import (C, Atan, "atan"); 85 pragma Pure_Function (Atan); 86 87 function Sinh (X : Double) return Double; 88 pragma Import (C, Sinh, "sinh"); 89 pragma Pure_Function (Sinh); 90 91 function Cosh (X : Double) return Double; 92 pragma Import (C, Cosh, "cosh"); 93 pragma Pure_Function (Cosh); 94 95 function Tanh (X : Double) return Double; 96 pragma Import (C, Tanh, "tanh"); 97 pragma Pure_Function (Tanh); 98 99 function Pow (X, Y : Double) return Double; 100 pragma Import (C, Pow, "pow"); 101 pragma Pure_Function (Pow); 102 103end Ada.Numerics.Aux; 104