1 //===-- sanitizer_common.h --------------------------------------*- C++ -*-===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is shared between run-time libraries of sanitizers.
9 //
10 // It declares common functions and classes that are used in both runtimes.
11 // Implementation of some functions are provided in sanitizer_common, while
12 // others must be defined by run-time library itself.
13 //===----------------------------------------------------------------------===//
14 #ifndef SANITIZER_COMMON_H
15 #define SANITIZER_COMMON_H
16 
17 #include "sanitizer_flags.h"
18 #include "sanitizer_interface_internal.h"
19 #include "sanitizer_internal_defs.h"
20 #include "sanitizer_libc.h"
21 #include "sanitizer_list.h"
22 #include "sanitizer_mutex.h"
23 
24 #if defined(_MSC_VER) && !defined(__clang__)
25 extern "C" void _ReadWriteBarrier();
26 #pragma intrinsic(_ReadWriteBarrier)
27 #endif
28 
29 namespace __sanitizer {
30 
31 struct AddressInfo;
32 struct BufferedStackTrace;
33 struct SignalContext;
34 struct StackTrace;
35 
36 // Constants.
37 const uptr kWordSize = SANITIZER_WORDSIZE / 8;
38 const uptr kWordSizeInBits = 8 * kWordSize;
39 
40 #if defined(__powerpc__) || defined(__powerpc64__)
41   const uptr kCacheLineSize = 128;
42 #else
43   const uptr kCacheLineSize = 64;
44 #endif
45 
46 const uptr kMaxPathLength = 4096;
47 
48 const uptr kMaxThreadStackSize = 1 << 30;  // 1Gb
49 
50 static const uptr kErrorMessageBufferSize = 1 << 16;
51 
52 // Denotes fake PC values that come from JIT/JAVA/etc.
53 // For such PC values __tsan_symbolize_external() will be called.
54 const u64 kExternalPCBit = 1ULL << 60;
55 
56 extern const char *SanitizerToolName;  // Can be changed by the tool.
57 
58 extern atomic_uint32_t current_verbosity;
SetVerbosity(int verbosity)59 INLINE void SetVerbosity(int verbosity) {
60   atomic_store(&current_verbosity, verbosity, memory_order_relaxed);
61 }
Verbosity()62 INLINE int Verbosity() {
63   return atomic_load(&current_verbosity, memory_order_relaxed);
64 }
65 
66 uptr GetPageSize();
67 extern uptr PageSizeCached;
GetPageSizeCached()68 INLINE uptr GetPageSizeCached() {
69   if (!PageSizeCached)
70     PageSizeCached = GetPageSize();
71   return PageSizeCached;
72 }
73 uptr GetMmapGranularity();
74 uptr GetMaxVirtualAddress();
75 // Threads
76 tid_t GetTid();
77 uptr GetThreadSelf();
78 void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
79                                 uptr *stack_bottom);
80 void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
81                           uptr *tls_addr, uptr *tls_size);
82 
83 // Memory management
84 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report = false);
MmapOrDieQuietly(uptr size,const char * mem_type)85 INLINE void *MmapOrDieQuietly(uptr size, const char *mem_type) {
86   return MmapOrDie(size, mem_type, /*raw_report*/ true);
87 }
88 void UnmapOrDie(void *addr, uptr size);
89 // Behaves just like MmapOrDie, but tolerates out of memory condition, in that
90 // case returns nullptr.
91 void *MmapOrDieOnFatalError(uptr size, const char *mem_type);
92 void *MmapFixedNoReserve(uptr fixed_addr, uptr size,
93                          const char *name = nullptr);
94 void *MmapNoReserveOrDie(uptr size, const char *mem_type);
95 void *MmapFixedOrDie(uptr fixed_addr, uptr size);
96 // Behaves just like MmapFixedOrDie, but tolerates out of memory condition, in
97 // that case returns nullptr.
98 void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size);
99 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name = nullptr);
100 void *MmapNoAccess(uptr size);
101 // Map aligned chunk of address space; size and alignment are powers of two.
102 // Dies on all but out of memory errors, in the latter case returns nullptr.
103 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
104                                    const char *mem_type);
105 // Disallow access to a memory range.  Use MmapFixedNoAccess to allocate an
106 // unaccessible memory.
107 bool MprotectNoAccess(uptr addr, uptr size);
108 bool MprotectReadOnly(uptr addr, uptr size);
109 
110 // Find an available address space.
111 uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
112                               uptr *largest_gap_found);
113 
114 // Used to check if we can map shadow memory to a fixed location.
115 bool MemoryRangeIsAvailable(uptr range_start, uptr range_end);
116 // Releases memory pages entirely within the [beg, end] address range. Noop if
117 // the provided range does not contain at least one entire page.
118 void ReleaseMemoryPagesToOS(uptr beg, uptr end);
119 void IncreaseTotalMmap(uptr size);
120 void DecreaseTotalMmap(uptr size);
121 uptr GetRSS();
122 void NoHugePagesInRegion(uptr addr, uptr length);
123 void DontDumpShadowMemory(uptr addr, uptr length);
124 // Check if the built VMA size matches the runtime one.
125 void CheckVMASize();
126 void RunMallocHooks(const void *ptr, uptr size);
127 void RunFreeHooks(const void *ptr);
128 
129 typedef void (*fill_profile_f)(uptr start, uptr rss, bool file,
130                                /*out*/uptr *stats, uptr stats_size);
131 
132 // Parse the contents of /proc/self/smaps and generate a memory profile.
133 // |cb| is a tool-specific callback that fills the |stats| array containing
134 // |stats_size| elements.
135 void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size);
136 
137 // InternalScopedBuffer can be used instead of large stack arrays to
138 // keep frame size low.
139 // FIXME: use InternalAlloc instead of MmapOrDie once
140 // InternalAlloc is made libc-free.
141 template <typename T>
142 class InternalScopedBuffer {
143  public:
InternalScopedBuffer(uptr cnt)144   explicit InternalScopedBuffer(uptr cnt) {
145     cnt_ = cnt;
146     ptr_ = (T *)MmapOrDie(cnt * sizeof(T), "InternalScopedBuffer");
147   }
~InternalScopedBuffer()148   ~InternalScopedBuffer() { UnmapOrDie(ptr_, cnt_ * sizeof(T)); }
149   T &operator[](uptr i) { return ptr_[i]; }
data()150   T *data() { return ptr_; }
size()151   uptr size() { return cnt_ * sizeof(T); }
152 
153  private:
154   T *ptr_;
155   uptr cnt_;
156   // Disallow copies and moves.
157   InternalScopedBuffer(const InternalScopedBuffer &) = delete;
158   InternalScopedBuffer &operator=(const InternalScopedBuffer &) = delete;
159   InternalScopedBuffer(InternalScopedBuffer &&) = delete;
160   InternalScopedBuffer &operator=(InternalScopedBuffer &&) = delete;
161 };
162 
163 class InternalScopedString : public InternalScopedBuffer<char> {
164  public:
InternalScopedString(uptr max_length)165   explicit InternalScopedString(uptr max_length)
166       : InternalScopedBuffer<char>(max_length), length_(0) {
167     (*this)[0] = '\0';
168   }
length()169   uptr length() { return length_; }
clear()170   void clear() {
171     (*this)[0] = '\0';
172     length_ = 0;
173   }
174   void append(const char *format, ...);
175 
176  private:
177   uptr length_;
178 };
179 
180 // Simple low-level (mmap-based) allocator for internal use. Doesn't have
181 // constructor, so all instances of LowLevelAllocator should be
182 // linker initialized.
183 class LowLevelAllocator {
184  public:
185   // Requires an external lock.
186   void *Allocate(uptr size);
187  private:
188   char *allocated_end_;
189   char *allocated_current_;
190 };
191 typedef void (*LowLevelAllocateCallback)(uptr ptr, uptr size);
192 // Allows to register tool-specific callbacks for LowLevelAllocator.
193 // Passing NULL removes the callback.
194 void SetLowLevelAllocateCallback(LowLevelAllocateCallback callback);
195 
196 // IO
197 void CatastrophicErrorWrite(const char *buffer, uptr length);
198 void RawWrite(const char *buffer);
199 bool ColorizeReports();
200 void RemoveANSIEscapeSequencesFromString(char *buffer);
201 void Printf(const char *format, ...);
202 void Report(const char *format, ...);
203 void SetPrintfAndReportCallback(void (*callback)(const char *));
204 #define VReport(level, ...)                                              \
205   do {                                                                   \
206     if ((uptr)Verbosity() >= (level)) Report(__VA_ARGS__); \
207   } while (0)
208 #define VPrintf(level, ...)                                              \
209   do {                                                                   \
210     if ((uptr)Verbosity() >= (level)) Printf(__VA_ARGS__); \
211   } while (0)
212 
213 // Can be used to prevent mixing error reports from different sanitizers.
214 // FIXME: Replace with ScopedErrorReportLock and hide.
215 extern StaticSpinMutex CommonSanitizerReportMutex;
216 
217 // Lock sanitizer error reporting and protects against nested errors.
218 class ScopedErrorReportLock {
219  public:
220   ScopedErrorReportLock();
221   ~ScopedErrorReportLock();
222 
223   static void CheckLocked();
224 };
225 
226 extern uptr stoptheworld_tracer_pid;
227 extern uptr stoptheworld_tracer_ppid;
228 
229 // Opens the file 'file_name" and reads up to 'max_len' bytes.
230 // The resulting buffer is mmaped and stored in '*buff'.
231 // The size of the mmaped region is stored in '*buff_size'.
232 // The total number of read bytes is stored in '*read_len'.
233 // Returns true if file was successfully opened and read.
234 bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size,
235                       uptr *read_len, uptr max_len = 1 << 26,
236                       error_t *errno_p = nullptr);
237 
238 bool IsAccessibleMemoryRange(uptr beg, uptr size);
239 
240 // Error report formatting.
241 const char *StripPathPrefix(const char *filepath,
242                             const char *strip_file_prefix);
243 // Strip the directories from the module name.
244 const char *StripModuleName(const char *module);
245 
246 // OS
247 uptr ReadBinaryName(/*out*/char *buf, uptr buf_len);
248 uptr ReadBinaryNameCached(/*out*/char *buf, uptr buf_len);
249 uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len);
250 const char *GetProcessName();
251 void UpdateProcessName();
252 void CacheBinaryName();
253 void DisableCoreDumperIfNecessary();
254 void DumpProcessMap();
255 void PrintModuleMap();
256 const char *GetEnv(const char *name);
257 bool SetEnv(const char *name, const char *value);
258 
259 u32 GetUid();
260 void ReExec();
261 char **GetArgv();
262 void PrintCmdline();
263 bool StackSizeIsUnlimited();
264 uptr GetStackSizeLimitInBytes();
265 void SetStackSizeLimitInBytes(uptr limit);
266 bool AddressSpaceIsUnlimited();
267 void SetAddressSpaceUnlimited();
268 void AdjustStackSize(void *attr);
269 void PrepareForSandboxing(__sanitizer_sandbox_arguments *args);
270 void SetSandboxingCallback(void (*f)());
271 
272 void InitializeCoverage(bool enabled, const char *coverage_dir);
273 
274 void InitTlsSize();
275 uptr GetTlsSize();
276 
277 // Other
278 void SleepForSeconds(int seconds);
279 void SleepForMillis(int millis);
280 u64 NanoTime();
281 int Atexit(void (*function)(void));
282 void SortArray(uptr *array, uptr size);
283 void SortArray(u32 *array, uptr size);
284 bool TemplateMatch(const char *templ, const char *str);
285 
286 // Exit
287 void NORETURN Abort();
288 void NORETURN Die();
289 void NORETURN
290 CheckFailed(const char *file, int line, const char *cond, u64 v1, u64 v2);
291 void NORETURN ReportMmapFailureAndDie(uptr size, const char *mem_type,
292                                       const char *mmap_type, error_t err,
293                                       bool raw_report = false);
294 
295 // Set the name of the current thread to 'name', return true on succees.
296 // The name may be truncated to a system-dependent limit.
297 bool SanitizerSetThreadName(const char *name);
298 // Get the name of the current thread (no more than max_len bytes),
299 // return true on succees. name should have space for at least max_len+1 bytes.
300 bool SanitizerGetThreadName(char *name, int max_len);
301 
302 // Specific tools may override behavior of "Die" and "CheckFailed" functions
303 // to do tool-specific job.
304 typedef void (*DieCallbackType)(void);
305 
306 // It's possible to add several callbacks that would be run when "Die" is
307 // called. The callbacks will be run in the opposite order. The tools are
308 // strongly recommended to setup all callbacks during initialization, when there
309 // is only a single thread.
310 bool AddDieCallback(DieCallbackType callback);
311 bool RemoveDieCallback(DieCallbackType callback);
312 
313 void SetUserDieCallback(DieCallbackType callback);
314 
315 typedef void (*CheckFailedCallbackType)(const char *, int, const char *,
316                                        u64, u64);
317 void SetCheckFailedCallback(CheckFailedCallbackType callback);
318 
319 // Callback will be called if soft_rss_limit_mb is given and the limit is
320 // exceeded (exceeded==true) or if rss went down below the limit
321 // (exceeded==false).
322 // The callback should be registered once at the tool init time.
323 void SetSoftRssLimitExceededCallback(void (*Callback)(bool exceeded));
324 
325 // Functions related to signal handling.
326 typedef void (*SignalHandlerType)(int, void *, void *);
327 HandleSignalMode GetHandleSignalMode(int signum);
328 void InstallDeadlySignalHandlers(SignalHandlerType handler);
329 
330 // Signal reporting.
331 // Each sanitizer uses slightly different implementation of stack unwinding.
332 typedef void (*UnwindSignalStackCallbackType)(const SignalContext &sig,
333                                               const void *callback_context,
334                                               BufferedStackTrace *stack);
335 // Print deadly signal report and die.
336 void HandleDeadlySignal(void *siginfo, void *context, u32 tid,
337                         UnwindSignalStackCallbackType unwind,
338                         const void *unwind_context);
339 
340 // Part of HandleDeadlySignal, exposed for asan.
341 void StartReportDeadlySignal();
342 // Part of HandleDeadlySignal, exposed for asan.
343 void ReportDeadlySignal(const SignalContext &sig, u32 tid,
344                         UnwindSignalStackCallbackType unwind,
345                         const void *unwind_context);
346 
347 // Alternative signal stack (POSIX-only).
348 void SetAlternateSignalStack();
349 void UnsetAlternateSignalStack();
350 
351 // We don't want a summary too long.
352 const int kMaxSummaryLength = 1024;
353 // Construct a one-line string:
354 //   SUMMARY: SanitizerToolName: error_message
355 // and pass it to __sanitizer_report_error_summary.
356 // If alt_tool_name is provided, it's used in place of SanitizerToolName.
357 void ReportErrorSummary(const char *error_message,
358                         const char *alt_tool_name = nullptr);
359 // Same as above, but construct error_message as:
360 //   error_type file:line[:column][ function]
361 void ReportErrorSummary(const char *error_type, const AddressInfo &info,
362                         const char *alt_tool_name = nullptr);
363 // Same as above, but obtains AddressInfo by symbolizing top stack trace frame.
364 void ReportErrorSummary(const char *error_type, const StackTrace *trace,
365                         const char *alt_tool_name = nullptr);
366 
367 // Math
368 #if SANITIZER_WINDOWS && !defined(__clang__) && !defined(__GNUC__)
369 extern "C" {
370 unsigned char _BitScanForward(unsigned long *index, unsigned long mask);  // NOLINT
371 unsigned char _BitScanReverse(unsigned long *index, unsigned long mask);  // NOLINT
372 #if defined(_WIN64)
373 unsigned char _BitScanForward64(unsigned long *index, unsigned __int64 mask);  // NOLINT
374 unsigned char _BitScanReverse64(unsigned long *index, unsigned __int64 mask);  // NOLINT
375 #endif
376 }
377 #endif
378 
MostSignificantSetBitIndex(uptr x)379 INLINE uptr MostSignificantSetBitIndex(uptr x) {
380   CHECK_NE(x, 0U);
381   unsigned long up;  // NOLINT
382 #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__)
383 # ifdef _WIN64
384   up = SANITIZER_WORDSIZE - 1 - __builtin_clzll(x);
385 # else
386   up = SANITIZER_WORDSIZE - 1 - __builtin_clzl(x);
387 # endif
388 #elif defined(_WIN64)
389   _BitScanReverse64(&up, x);
390 #else
391   _BitScanReverse(&up, x);
392 #endif
393   return up;
394 }
395 
LeastSignificantSetBitIndex(uptr x)396 INLINE uptr LeastSignificantSetBitIndex(uptr x) {
397   CHECK_NE(x, 0U);
398   unsigned long up;  // NOLINT
399 #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__)
400 # ifdef _WIN64
401   up = __builtin_ctzll(x);
402 # else
403   up = __builtin_ctzl(x);
404 # endif
405 #elif defined(_WIN64)
406   _BitScanForward64(&up, x);
407 #else
408   _BitScanForward(&up, x);
409 #endif
410   return up;
411 }
412 
IsPowerOfTwo(uptr x)413 INLINE bool IsPowerOfTwo(uptr x) {
414   return (x & (x - 1)) == 0;
415 }
416 
RoundUpToPowerOfTwo(uptr size)417 INLINE uptr RoundUpToPowerOfTwo(uptr size) {
418   CHECK(size);
419   if (IsPowerOfTwo(size)) return size;
420 
421   uptr up = MostSignificantSetBitIndex(size);
422   CHECK_LT(size, (1ULL << (up + 1)));
423   CHECK_GT(size, (1ULL << up));
424   return 1ULL << (up + 1);
425 }
426 
RoundUpTo(uptr size,uptr boundary)427 INLINE uptr RoundUpTo(uptr size, uptr boundary) {
428   RAW_CHECK(IsPowerOfTwo(boundary));
429   return (size + boundary - 1) & ~(boundary - 1);
430 }
431 
RoundDownTo(uptr x,uptr boundary)432 INLINE uptr RoundDownTo(uptr x, uptr boundary) {
433   return x & ~(boundary - 1);
434 }
435 
IsAligned(uptr a,uptr alignment)436 INLINE bool IsAligned(uptr a, uptr alignment) {
437   return (a & (alignment - 1)) == 0;
438 }
439 
Log2(uptr x)440 INLINE uptr Log2(uptr x) {
441   CHECK(IsPowerOfTwo(x));
442   return LeastSignificantSetBitIndex(x);
443 }
444 
445 // Don't use std::min, std::max or std::swap, to minimize dependency
446 // on libstdc++.
Min(T a,T b)447 template<class T> T Min(T a, T b) { return a < b ? a : b; }
Max(T a,T b)448 template<class T> T Max(T a, T b) { return a > b ? a : b; }
Swap(T & a,T & b)449 template<class T> void Swap(T& a, T& b) {
450   T tmp = a;
451   a = b;
452   b = tmp;
453 }
454 
455 // Char handling
IsSpace(int c)456 INLINE bool IsSpace(int c) {
457   return (c == ' ') || (c == '\n') || (c == '\t') ||
458          (c == '\f') || (c == '\r') || (c == '\v');
459 }
IsDigit(int c)460 INLINE bool IsDigit(int c) {
461   return (c >= '0') && (c <= '9');
462 }
ToLower(int c)463 INLINE int ToLower(int c) {
464   return (c >= 'A' && c <= 'Z') ? (c + 'a' - 'A') : c;
465 }
466 
467 // A low-level vector based on mmap. May incur a significant memory overhead for
468 // small vectors.
469 // WARNING: The current implementation supports only POD types.
470 template<typename T>
471 class InternalMmapVectorNoCtor {
472  public:
Initialize(uptr initial_capacity)473   void Initialize(uptr initial_capacity) {
474     capacity_ = Max(initial_capacity, (uptr)1);
475     size_ = 0;
476     data_ = (T *)MmapOrDie(capacity_ * sizeof(T), "InternalMmapVectorNoCtor");
477   }
Destroy()478   void Destroy() {
479     UnmapOrDie(data_, capacity_ * sizeof(T));
480   }
481   T &operator[](uptr i) {
482     CHECK_LT(i, size_);
483     return data_[i];
484   }
485   const T &operator[](uptr i) const {
486     CHECK_LT(i, size_);
487     return data_[i];
488   }
push_back(const T & element)489   void push_back(const T &element) {
490     CHECK_LE(size_, capacity_);
491     if (size_ == capacity_) {
492       uptr new_capacity = RoundUpToPowerOfTwo(size_ + 1);
493       Resize(new_capacity);
494     }
495     internal_memcpy(&data_[size_++], &element, sizeof(T));
496   }
back()497   T &back() {
498     CHECK_GT(size_, 0);
499     return data_[size_ - 1];
500   }
pop_back()501   void pop_back() {
502     CHECK_GT(size_, 0);
503     size_--;
504   }
size()505   uptr size() const {
506     return size_;
507   }
data()508   const T *data() const {
509     return data_;
510   }
data()511   T *data() {
512     return data_;
513   }
capacity()514   uptr capacity() const {
515     return capacity_;
516   }
resize(uptr new_size)517   void resize(uptr new_size) {
518     Resize(new_size);
519     if (new_size > size_) {
520       internal_memset(&data_[size_], 0, sizeof(T) * (new_size - size_));
521     }
522     size_ = new_size;
523   }
524 
clear()525   void clear() { size_ = 0; }
empty()526   bool empty() const { return size() == 0; }
527 
begin()528   const T *begin() const {
529     return data();
530   }
begin()531   T *begin() {
532     return data();
533   }
end()534   const T *end() const {
535     return data() + size();
536   }
end()537   T *end() {
538     return data() + size();
539   }
540 
541  private:
Resize(uptr new_capacity)542   void Resize(uptr new_capacity) {
543     CHECK_GT(new_capacity, 0);
544     CHECK_LE(size_, new_capacity);
545     T *new_data = (T *)MmapOrDie(new_capacity * sizeof(T),
546                                  "InternalMmapVector");
547     internal_memcpy(new_data, data_, size_ * sizeof(T));
548     T *old_data = data_;
549     data_ = new_data;
550     UnmapOrDie(old_data, capacity_ * sizeof(T));
551     capacity_ = new_capacity;
552   }
553 
554   T *data_;
555   uptr capacity_;
556   uptr size_;
557 };
558 
559 template<typename T>
560 class InternalMmapVector : public InternalMmapVectorNoCtor<T> {
561  public:
InternalMmapVector(uptr initial_capacity)562   explicit InternalMmapVector(uptr initial_capacity) {
563     InternalMmapVectorNoCtor<T>::Initialize(initial_capacity);
564   }
~InternalMmapVector()565   ~InternalMmapVector() { InternalMmapVectorNoCtor<T>::Destroy(); }
566   // Disallow evil constructors.
567   InternalMmapVector(const InternalMmapVector&);
568   void operator=(const InternalMmapVector&);
569 };
570 
571 // HeapSort for arrays and InternalMmapVector.
572 template<class Container, class Compare>
InternalSort(Container * v,uptr size,Compare comp)573 void InternalSort(Container *v, uptr size, Compare comp) {
574   if (size < 2)
575     return;
576   // Stage 1: insert elements to the heap.
577   for (uptr i = 1; i < size; i++) {
578     uptr j, p;
579     for (j = i; j > 0; j = p) {
580       p = (j - 1) / 2;
581       if (comp((*v)[p], (*v)[j]))
582         Swap((*v)[j], (*v)[p]);
583       else
584         break;
585     }
586   }
587   // Stage 2: swap largest element with the last one,
588   // and sink the new top.
589   for (uptr i = size - 1; i > 0; i--) {
590     Swap((*v)[0], (*v)[i]);
591     uptr j, max_ind;
592     for (j = 0; j < i; j = max_ind) {
593       uptr left = 2 * j + 1;
594       uptr right = 2 * j + 2;
595       max_ind = j;
596       if (left < i && comp((*v)[max_ind], (*v)[left]))
597         max_ind = left;
598       if (right < i && comp((*v)[max_ind], (*v)[right]))
599         max_ind = right;
600       if (max_ind != j)
601         Swap((*v)[j], (*v)[max_ind]);
602       else
603         break;
604     }
605   }
606 }
607 
608 // Works like std::lower_bound: finds the first element that is not less
609 // than the val.
610 template <class Container, class Value, class Compare>
InternalLowerBound(const Container & v,uptr first,uptr last,const Value & val,Compare comp)611 uptr InternalLowerBound(const Container &v, uptr first, uptr last,
612                         const Value &val, Compare comp) {
613   while (last > first) {
614     uptr mid = (first + last) / 2;
615     if (comp(v[mid], val))
616       first = mid + 1;
617     else
618       last = mid;
619   }
620   return first;
621 }
622 
623 enum ModuleArch {
624   kModuleArchUnknown,
625   kModuleArchI386,
626   kModuleArchX86_64,
627   kModuleArchX86_64H,
628   kModuleArchARMV6,
629   kModuleArchARMV7,
630   kModuleArchARMV7S,
631   kModuleArchARMV7K,
632   kModuleArchARM64
633 };
634 
635 // When adding a new architecture, don't forget to also update
636 // script/asan_symbolize.py and sanitizer_symbolizer_libcdep.cc.
ModuleArchToString(ModuleArch arch)637 inline const char *ModuleArchToString(ModuleArch arch) {
638   switch (arch) {
639     case kModuleArchUnknown:
640       return "";
641     case kModuleArchI386:
642       return "i386";
643     case kModuleArchX86_64:
644       return "x86_64";
645     case kModuleArchX86_64H:
646       return "x86_64h";
647     case kModuleArchARMV6:
648       return "armv6";
649     case kModuleArchARMV7:
650       return "armv7";
651     case kModuleArchARMV7S:
652       return "armv7s";
653     case kModuleArchARMV7K:
654       return "armv7k";
655     case kModuleArchARM64:
656       return "arm64";
657   }
658   CHECK(0 && "Invalid module arch");
659   return "";
660 }
661 
662 const uptr kModuleUUIDSize = 16;
663 const uptr kMaxSegName = 16;
664 
665 // Represents a binary loaded into virtual memory (e.g. this can be an
666 // executable or a shared object).
667 class LoadedModule {
668  public:
LoadedModule()669   LoadedModule()
670       : full_name_(nullptr),
671         base_address_(0),
672         max_executable_address_(0),
673         arch_(kModuleArchUnknown),
674         instrumented_(false) {
675     internal_memset(uuid_, 0, kModuleUUIDSize);
676     ranges_.clear();
677   }
678   void set(const char *module_name, uptr base_address);
679   void set(const char *module_name, uptr base_address, ModuleArch arch,
680            u8 uuid[kModuleUUIDSize], bool instrumented);
681   void clear();
682   void addAddressRange(uptr beg, uptr end, bool executable, bool writable,
683                        const char *name = nullptr);
684   bool containsAddress(uptr address) const;
685 
full_name()686   const char *full_name() const { return full_name_; }
base_address()687   uptr base_address() const { return base_address_; }
max_executable_address()688   uptr max_executable_address() const { return max_executable_address_; }
arch()689   ModuleArch arch() const { return arch_; }
uuid()690   const u8 *uuid() const { return uuid_; }
instrumented()691   bool instrumented() const { return instrumented_; }
692 
693   struct AddressRange {
694     AddressRange *next;
695     uptr beg;
696     uptr end;
697     bool executable;
698     bool writable;
699     char name[kMaxSegName];
700 
AddressRangeAddressRange701     AddressRange(uptr beg, uptr end, bool executable, bool writable,
702                  const char *name)
703         : next(nullptr),
704           beg(beg),
705           end(end),
706           executable(executable),
707           writable(writable) {
708       internal_strncpy(this->name, (name ? name : ""), ARRAY_SIZE(this->name));
709     }
710   };
711 
ranges()712   const IntrusiveList<AddressRange> &ranges() const { return ranges_; }
713 
714  private:
715   char *full_name_;  // Owned.
716   uptr base_address_;
717   uptr max_executable_address_;
718   ModuleArch arch_;
719   u8 uuid_[kModuleUUIDSize];
720   bool instrumented_;
721   IntrusiveList<AddressRange> ranges_;
722 };
723 
724 // List of LoadedModules. OS-dependent implementation is responsible for
725 // filling this information.
726 class ListOfModules {
727  public:
ListOfModules()728   ListOfModules() : initialized(false) {}
~ListOfModules()729   ~ListOfModules() { clear(); }
730   void init();
731   void fallbackInit();  // Uses fallback init if available, otherwise clears
begin()732   const LoadedModule *begin() const { return modules_.begin(); }
begin()733   LoadedModule *begin() { return modules_.begin(); }
end()734   const LoadedModule *end() const { return modules_.end(); }
end()735   LoadedModule *end() { return modules_.end(); }
size()736   uptr size() const { return modules_.size(); }
737   const LoadedModule &operator[](uptr i) const {
738     CHECK_LT(i, modules_.size());
739     return modules_[i];
740   }
741 
742  private:
clear()743   void clear() {
744     for (auto &module : modules_) module.clear();
745     modules_.clear();
746   }
clearOrInit()747   void clearOrInit() {
748     initialized ? clear() : modules_.Initialize(kInitialCapacity);
749     initialized = true;
750   }
751 
752   InternalMmapVectorNoCtor<LoadedModule> modules_;
753   // We rarely have more than 16K loaded modules.
754   static const uptr kInitialCapacity = 1 << 14;
755   bool initialized;
756 };
757 
758 // Callback type for iterating over a set of memory ranges.
759 typedef void (*RangeIteratorCallback)(uptr begin, uptr end, void *arg);
760 
761 enum AndroidApiLevel {
762   ANDROID_NOT_ANDROID = 0,
763   ANDROID_KITKAT = 19,
764   ANDROID_LOLLIPOP_MR1 = 22,
765   ANDROID_POST_LOLLIPOP = 23
766 };
767 
768 void WriteToSyslog(const char *buffer);
769 
770 #if SANITIZER_MAC
771 void LogFullErrorReport(const char *buffer);
772 #else
LogFullErrorReport(const char * buffer)773 INLINE void LogFullErrorReport(const char *buffer) {}
774 #endif
775 
776 #if SANITIZER_LINUX || SANITIZER_MAC
777 void WriteOneLineToSyslog(const char *s);
778 void LogMessageOnPrintf(const char *str);
779 #else
WriteOneLineToSyslog(const char * s)780 INLINE void WriteOneLineToSyslog(const char *s) {}
LogMessageOnPrintf(const char * str)781 INLINE void LogMessageOnPrintf(const char *str) {}
782 #endif
783 
784 #if SANITIZER_LINUX
785 // Initialize Android logging. Any writes before this are silently lost.
786 void AndroidLogInit();
787 void SetAbortMessage(const char *);
788 #else
AndroidLogInit()789 INLINE void AndroidLogInit() {}
790 // FIXME: MacOS implementation could use CRSetCrashLogMessage.
SetAbortMessage(const char *)791 INLINE void SetAbortMessage(const char *) {}
792 #endif
793 
794 #if SANITIZER_ANDROID
795 void SanitizerInitializeUnwinder();
796 AndroidApiLevel AndroidGetApiLevel();
797 #else
AndroidLogWrite(const char * buffer_unused)798 INLINE void AndroidLogWrite(const char *buffer_unused) {}
SanitizerInitializeUnwinder()799 INLINE void SanitizerInitializeUnwinder() {}
AndroidGetApiLevel()800 INLINE AndroidApiLevel AndroidGetApiLevel() { return ANDROID_NOT_ANDROID; }
801 #endif
802 
GetPthreadDestructorIterations()803 INLINE uptr GetPthreadDestructorIterations() {
804 #if SANITIZER_ANDROID
805   return (AndroidGetApiLevel() == ANDROID_LOLLIPOP_MR1) ? 8 : 4;
806 #elif SANITIZER_POSIX
807   return 4;
808 #else
809 // Unused on Windows.
810   return 0;
811 #endif
812 }
813 
814 void *internal_start_thread(void(*func)(void*), void *arg);
815 void internal_join_thread(void *th);
816 void MaybeStartBackgroudThread();
817 
818 // Make the compiler think that something is going on there.
819 // Use this inside a loop that looks like memset/memcpy/etc to prevent the
820 // compiler from recognising it and turning it into an actual call to
821 // memset/memcpy/etc.
SanitizerBreakOptimization(void * arg)822 static inline void SanitizerBreakOptimization(void *arg) {
823 #if defined(_MSC_VER) && !defined(__clang__)
824   _ReadWriteBarrier();
825 #else
826   __asm__ __volatile__("" : : "r" (arg) : "memory");
827 #endif
828 }
829 
830 struct SignalContext {
831   void *siginfo;
832   void *context;
833   uptr addr;
834   uptr pc;
835   uptr sp;
836   uptr bp;
837   bool is_memory_access;
838   enum WriteFlag { UNKNOWN, READ, WRITE } write_flag;
839 
840   // VS2013 doesn't implement unrestricted unions, so we need a trivial default
841   // constructor
842   SignalContext() = default;
843 
844   // Creates signal context in a platform-specific manner.
845   // SignalContext is going to keep pointers to siginfo and context without
846   // owning them.
SignalContextSignalContext847   SignalContext(void *siginfo, void *context)
848       : siginfo(siginfo),
849         context(context),
850         addr(GetAddress()),
851         is_memory_access(IsMemoryAccess()),
852         write_flag(GetWriteFlag()) {
853     InitPcSpBp();
854   }
855 
856   static void DumpAllRegisters(void *context);
857 
858   // Type of signal e.g. SIGSEGV or EXCEPTION_ACCESS_VIOLATION.
859   int GetType() const;
860 
861   // String description of the signal.
862   const char *Describe() const;
863 
864   // Returns true if signal is stack overflow.
865   bool IsStackOverflow() const;
866 
867  private:
868   // Platform specific initialization.
869   void InitPcSpBp();
870   uptr GetAddress() const;
871   WriteFlag GetWriteFlag() const;
872   bool IsMemoryAccess() const;
873 };
874 
875 void MaybeReexec();
876 
877 template <typename Fn>
878 class RunOnDestruction {
879  public:
RunOnDestruction(Fn fn)880   explicit RunOnDestruction(Fn fn) : fn_(fn) {}
~RunOnDestruction()881   ~RunOnDestruction() { fn_(); }
882 
883  private:
884   Fn fn_;
885 };
886 
887 // A simple scope guard. Usage:
888 // auto cleanup = at_scope_exit([]{ do_cleanup; });
889 template <typename Fn>
at_scope_exit(Fn fn)890 RunOnDestruction<Fn> at_scope_exit(Fn fn) {
891   return RunOnDestruction<Fn>(fn);
892 }
893 
894 // Linux on 64-bit s390 had a nasty bug that crashes the whole machine
895 // if a process uses virtual memory over 4TB (as many sanitizers like
896 // to do).  This function will abort the process if running on a kernel
897 // that looks vulnerable.
898 #if SANITIZER_LINUX && SANITIZER_S390_64
899 void AvoidCVE_2016_2143();
900 #else
AvoidCVE_2016_2143()901 INLINE void AvoidCVE_2016_2143() {}
902 #endif
903 
904 struct StackDepotStats {
905   uptr n_uniq_ids;
906   uptr allocated;
907 };
908 
909 // The default value for allocator_release_to_os_interval_ms common flag to
910 // indicate that sanitizer allocator should not attempt to release memory to OS.
911 const s32 kReleaseToOSIntervalNever = -1;
912 
913 void CheckNoDeepBind(const char *filename, int flag);
914 
915 // Returns the requested amount of random data (up to 256 bytes) that can then
916 // be used to seed a PRNG. Defaults to blocking like the underlying syscall.
917 bool GetRandom(void *buffer, uptr length, bool blocking = true);
918 
919 }  // namespace __sanitizer
920 
new(__sanitizer::operator_new_size_type size,__sanitizer::LowLevelAllocator & alloc)921 inline void *operator new(__sanitizer::operator_new_size_type size,
922                           __sanitizer::LowLevelAllocator &alloc) {
923   return alloc.Allocate(size);
924 }
925 
926 #endif  // SANITIZER_COMMON_H
927