1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/random/exponential_distribution.h"
16 
17 #include <algorithm>
18 #include <cfloat>
19 #include <cmath>
20 #include <cstddef>
21 #include <cstdint>
22 #include <iterator>
23 #include <limits>
24 #include <random>
25 #include <sstream>
26 #include <string>
27 #include <type_traits>
28 #include <vector>
29 
30 #include "gmock/gmock.h"
31 #include "gtest/gtest.h"
32 #include "absl/base/internal/raw_logging.h"
33 #include "absl/base/macros.h"
34 #include "absl/numeric/internal/representation.h"
35 #include "absl/random/internal/chi_square.h"
36 #include "absl/random/internal/distribution_test_util.h"
37 #include "absl/random/internal/pcg_engine.h"
38 #include "absl/random/internal/sequence_urbg.h"
39 #include "absl/random/random.h"
40 #include "absl/strings/str_cat.h"
41 #include "absl/strings/str_format.h"
42 #include "absl/strings/str_replace.h"
43 #include "absl/strings/strip.h"
44 
45 namespace {
46 
47 using absl::random_internal::kChiSquared;
48 
49 template <typename RealType>
50 class ExponentialDistributionTypedTest : public ::testing::Test {};
51 
52 // double-double arithmetic is not supported well by either GCC or Clang; see
53 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99048,
54 // https://bugs.llvm.org/show_bug.cgi?id=49131, and
55 // https://bugs.llvm.org/show_bug.cgi?id=49132. Don't bother running these tests
56 // with double doubles until compiler support is better.
57 using RealTypes =
58     std::conditional<absl::numeric_internal::IsDoubleDouble(),
59                      ::testing::Types<float, double>,
60                      ::testing::Types<float, double, long double>>::type;
61 TYPED_TEST_CASE(ExponentialDistributionTypedTest, RealTypes);
62 
TYPED_TEST(ExponentialDistributionTypedTest,SerializeTest)63 TYPED_TEST(ExponentialDistributionTypedTest, SerializeTest) {
64   using param_type =
65       typename absl::exponential_distribution<TypeParam>::param_type;
66 
67   const TypeParam kParams[] = {
68       // Cases around 1.
69       1,                                           //
70       std::nextafter(TypeParam(1), TypeParam(0)),  // 1 - epsilon
71       std::nextafter(TypeParam(1), TypeParam(2)),  // 1 + epsilon
72       // Typical cases.
73       TypeParam(1e-8), TypeParam(1e-4), TypeParam(1), TypeParam(2),
74       TypeParam(1e4), TypeParam(1e8), TypeParam(1e20), TypeParam(2.5),
75       // Boundary cases.
76       std::numeric_limits<TypeParam>::max(),
77       std::numeric_limits<TypeParam>::epsilon(),
78       std::nextafter(std::numeric_limits<TypeParam>::min(),
79                      TypeParam(1)),           // min + epsilon
80       std::numeric_limits<TypeParam>::min(),  // smallest normal
81       // There are some errors dealing with denorms on apple platforms.
82       std::numeric_limits<TypeParam>::denorm_min(),  // smallest denorm
83       std::numeric_limits<TypeParam>::min() / 2,     // denorm
84       std::nextafter(std::numeric_limits<TypeParam>::min(),
85                      TypeParam(0)),  // denorm_max
86   };
87 
88   constexpr int kCount = 1000;
89   absl::InsecureBitGen gen;
90 
91   for (const TypeParam lambda : kParams) {
92     // Some values may be invalid; skip those.
93     if (!std::isfinite(lambda)) continue;
94     ABSL_ASSERT(lambda > 0);
95 
96     const param_type param(lambda);
97 
98     absl::exponential_distribution<TypeParam> before(lambda);
99     EXPECT_EQ(before.lambda(), param.lambda());
100 
101     {
102       absl::exponential_distribution<TypeParam> via_param(param);
103       EXPECT_EQ(via_param, before);
104       EXPECT_EQ(via_param.param(), before.param());
105     }
106 
107     // Smoke test.
108     auto sample_min = before.max();
109     auto sample_max = before.min();
110     for (int i = 0; i < kCount; i++) {
111       auto sample = before(gen);
112       EXPECT_GE(sample, before.min()) << before;
113       EXPECT_LE(sample, before.max()) << before;
114       if (sample > sample_max) sample_max = sample;
115       if (sample < sample_min) sample_min = sample;
116     }
117     if (!std::is_same<TypeParam, long double>::value) {
118       ABSL_INTERNAL_LOG(INFO,
119                         absl::StrFormat("Range {%f}: %f, %f, lambda=%f", lambda,
120                                         sample_min, sample_max, lambda));
121     }
122 
123     std::stringstream ss;
124     ss << before;
125 
126     if (!std::isfinite(lambda)) {
127       // Streams do not deserialize inf/nan correctly.
128       continue;
129     }
130     // Validate stream serialization.
131     absl::exponential_distribution<TypeParam> after(34.56f);
132 
133     EXPECT_NE(before.lambda(), after.lambda());
134     EXPECT_NE(before.param(), after.param());
135     EXPECT_NE(before, after);
136 
137     ss >> after;
138 
139     EXPECT_EQ(before.lambda(), after.lambda())  //
140         << ss.str() << " "                      //
141         << (ss.good() ? "good " : "")           //
142         << (ss.bad() ? "bad " : "")             //
143         << (ss.eof() ? "eof " : "")             //
144         << (ss.fail() ? "fail " : "");
145   }
146 }
147 
148 // http://www.itl.nist.gov/div898/handbook/eda/section3/eda3667.htm
149 
150 class ExponentialModel {
151  public:
ExponentialModel(double lambda)152   explicit ExponentialModel(double lambda)
153       : lambda_(lambda), beta_(1.0 / lambda) {}
154 
lambda() const155   double lambda() const { return lambda_; }
156 
mean() const157   double mean() const { return beta_; }
variance() const158   double variance() const { return beta_ * beta_; }
stddev() const159   double stddev() const { return std::sqrt(variance()); }
skew() const160   double skew() const { return 2; }
kurtosis() const161   double kurtosis() const { return 6.0; }
162 
CDF(double x)163   double CDF(double x) { return 1.0 - std::exp(-lambda_ * x); }
164 
165   // The inverse CDF, or PercentPoint function of the distribution
InverseCDF(double p)166   double InverseCDF(double p) {
167     ABSL_ASSERT(p >= 0.0);
168     ABSL_ASSERT(p < 1.0);
169     return -beta_ * std::log(1.0 - p);
170   }
171 
172  private:
173   const double lambda_;
174   const double beta_;
175 };
176 
177 struct Param {
178   double lambda;
179   double p_fail;
180   int trials;
181 };
182 
183 class ExponentialDistributionTests : public testing::TestWithParam<Param>,
184                                      public ExponentialModel {
185  public:
ExponentialDistributionTests()186   ExponentialDistributionTests() : ExponentialModel(GetParam().lambda) {}
187 
188   // SingleZTest provides a basic z-squared test of the mean vs. expected
189   // mean for data generated by the poisson distribution.
190   template <typename D>
191   bool SingleZTest(const double p, const size_t samples);
192 
193   // SingleChiSquaredTest provides a basic chi-squared test of the normal
194   // distribution.
195   template <typename D>
196   double SingleChiSquaredTest();
197 
198   // We use a fixed bit generator for distribution accuracy tests.  This allows
199   // these tests to be deterministic, while still testing the qualify of the
200   // implementation.
201   absl::random_internal::pcg64_2018_engine rng_{0x2B7E151628AED2A6};
202 };
203 
204 template <typename D>
SingleZTest(const double p,const size_t samples)205 bool ExponentialDistributionTests::SingleZTest(const double p,
206                                                const size_t samples) {
207   D dis(lambda());
208 
209   std::vector<double> data;
210   data.reserve(samples);
211   for (size_t i = 0; i < samples; i++) {
212     const double x = dis(rng_);
213     data.push_back(x);
214   }
215 
216   const auto m = absl::random_internal::ComputeDistributionMoments(data);
217   const double max_err = absl::random_internal::MaxErrorTolerance(p);
218   const double z = absl::random_internal::ZScore(mean(), m);
219   const bool pass = absl::random_internal::Near("z", z, 0.0, max_err);
220 
221   if (!pass) {
222     ABSL_INTERNAL_LOG(
223         INFO, absl::StrFormat("p=%f max_err=%f\n"
224                               " lambda=%f\n"
225                               " mean=%f vs. %f\n"
226                               " stddev=%f vs. %f\n"
227                               " skewness=%f vs. %f\n"
228                               " kurtosis=%f vs. %f\n"
229                               " z=%f vs. 0",
230                               p, max_err, lambda(), m.mean, mean(),
231                               std::sqrt(m.variance), stddev(), m.skewness,
232                               skew(), m.kurtosis, kurtosis(), z));
233   }
234   return pass;
235 }
236 
237 template <typename D>
SingleChiSquaredTest()238 double ExponentialDistributionTests::SingleChiSquaredTest() {
239   const size_t kSamples = 10000;
240   const int kBuckets = 50;
241 
242   // The InverseCDF is the percent point function of the distribution, and can
243   // be used to assign buckets roughly uniformly.
244   std::vector<double> cutoffs;
245   const double kInc = 1.0 / static_cast<double>(kBuckets);
246   for (double p = kInc; p < 1.0; p += kInc) {
247     cutoffs.push_back(InverseCDF(p));
248   }
249   if (cutoffs.back() != std::numeric_limits<double>::infinity()) {
250     cutoffs.push_back(std::numeric_limits<double>::infinity());
251   }
252 
253   D dis(lambda());
254 
255   std::vector<int32_t> counts(cutoffs.size(), 0);
256   for (int j = 0; j < kSamples; j++) {
257     const double x = dis(rng_);
258     auto it = std::upper_bound(cutoffs.begin(), cutoffs.end(), x);
259     counts[std::distance(cutoffs.begin(), it)]++;
260   }
261 
262   // Null-hypothesis is that the distribution is exponentially distributed
263   // with the provided lambda (not estimated from the data).
264   const int dof = static_cast<int>(counts.size()) - 1;
265 
266   // Our threshold for logging is 1-in-50.
267   const double threshold = absl::random_internal::ChiSquareValue(dof, 0.98);
268 
269   const double expected =
270       static_cast<double>(kSamples) / static_cast<double>(counts.size());
271 
272   double chi_square = absl::random_internal::ChiSquareWithExpected(
273       std::begin(counts), std::end(counts), expected);
274   double p = absl::random_internal::ChiSquarePValue(chi_square, dof);
275 
276   if (chi_square > threshold) {
277     for (int i = 0; i < cutoffs.size(); i++) {
278       ABSL_INTERNAL_LOG(
279           INFO, absl::StrFormat("%d : (%f) = %d", i, cutoffs[i], counts[i]));
280     }
281 
282     ABSL_INTERNAL_LOG(INFO,
283                       absl::StrCat("lambda ", lambda(), "\n",     //
284                                    " expected ", expected, "\n",  //
285                                    kChiSquared, " ", chi_square, " (", p, ")\n",
286                                    kChiSquared, " @ 0.98 = ", threshold));
287   }
288   return p;
289 }
290 
TEST_P(ExponentialDistributionTests,ZTest)291 TEST_P(ExponentialDistributionTests, ZTest) {
292   const size_t kSamples = 10000;
293   const auto& param = GetParam();
294   const int expected_failures =
295       std::max(1, static_cast<int>(std::ceil(param.trials * param.p_fail)));
296   const double p = absl::random_internal::RequiredSuccessProbability(
297       param.p_fail, param.trials);
298 
299   int failures = 0;
300   for (int i = 0; i < param.trials; i++) {
301     failures += SingleZTest<absl::exponential_distribution<double>>(p, kSamples)
302                     ? 0
303                     : 1;
304   }
305   EXPECT_LE(failures, expected_failures);
306 }
307 
TEST_P(ExponentialDistributionTests,ChiSquaredTest)308 TEST_P(ExponentialDistributionTests, ChiSquaredTest) {
309   const int kTrials = 20;
310   int failures = 0;
311 
312   for (int i = 0; i < kTrials; i++) {
313     double p_value =
314         SingleChiSquaredTest<absl::exponential_distribution<double>>();
315     if (p_value < 0.005) {  // 1/200
316       failures++;
317     }
318   }
319 
320   // There is a 0.10% chance of producing at least one failure, so raise the
321   // failure threshold high enough to allow for a flake rate < 10,000.
322   EXPECT_LE(failures, 4);
323 }
324 
GenParams()325 std::vector<Param> GenParams() {
326   return {
327       Param{1.0, 0.02, 100},
328       Param{2.5, 0.02, 100},
329       Param{10, 0.02, 100},
330       // large
331       Param{1e4, 0.02, 100},
332       Param{1e9, 0.02, 100},
333       // small
334       Param{0.1, 0.02, 100},
335       Param{1e-3, 0.02, 100},
336       Param{1e-5, 0.02, 100},
337   };
338 }
339 
ParamName(const::testing::TestParamInfo<Param> & info)340 std::string ParamName(const ::testing::TestParamInfo<Param>& info) {
341   const auto& p = info.param;
342   std::string name = absl::StrCat("lambda_", absl::SixDigits(p.lambda));
343   return absl::StrReplaceAll(name, {{"+", "_"}, {"-", "_"}, {".", "_"}});
344 }
345 
346 INSTANTIATE_TEST_CASE_P(All, ExponentialDistributionTests,
347                         ::testing::ValuesIn(GenParams()), ParamName);
348 
349 // NOTE: absl::exponential_distribution is not guaranteed to be stable.
TEST(ExponentialDistributionTest,StabilityTest)350 TEST(ExponentialDistributionTest, StabilityTest) {
351   // absl::exponential_distribution stability relies on std::log1p and
352   // absl::uniform_real_distribution.
353   absl::random_internal::sequence_urbg urbg(
354       {0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
355        0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
356        0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
357        0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
358 
359   std::vector<int> output(14);
360 
361   {
362     absl::exponential_distribution<double> dist;
363     std::generate(std::begin(output), std::end(output),
364                   [&] { return static_cast<int>(10000.0 * dist(urbg)); });
365 
366     EXPECT_EQ(14, urbg.invocations());
367     EXPECT_THAT(output,
368                 testing::ElementsAre(0, 71913, 14375, 5039, 1835, 861, 25936,
369                                      804, 126, 12337, 17984, 27002, 0, 71913));
370   }
371 
372   urbg.reset();
373   {
374     absl::exponential_distribution<float> dist;
375     std::generate(std::begin(output), std::end(output),
376                   [&] { return static_cast<int>(10000.0f * dist(urbg)); });
377 
378     EXPECT_EQ(14, urbg.invocations());
379     EXPECT_THAT(output,
380                 testing::ElementsAre(0, 71913, 14375, 5039, 1835, 861, 25936,
381                                      804, 126, 12337, 17984, 27002, 0, 71913));
382   }
383 }
384 
TEST(ExponentialDistributionTest,AlgorithmBounds)385 TEST(ExponentialDistributionTest, AlgorithmBounds) {
386   // Relies on absl::uniform_real_distribution, so some of these comments
387   // reference that.
388 
389 #if (defined(__i386__) || defined(_M_IX86)) && FLT_EVAL_METHOD != 0
390   // We're using an x87-compatible FPU, and intermediate operations can be
391   // performed with 80-bit floats. This produces slightly different results from
392   // what we expect below.
393   GTEST_SKIP()
394       << "Skipping the test because we detected x87 floating-point semantics";
395 #endif
396 
397   absl::exponential_distribution<double> dist;
398 
399   {
400     // This returns the smallest value >0 from absl::uniform_real_distribution.
401     absl::random_internal::sequence_urbg urbg({0x0000000000000001ull});
402     double a = dist(urbg);
403     EXPECT_EQ(a, 5.42101086242752217004e-20);
404   }
405 
406   {
407     // This returns a value very near 0.5 from absl::uniform_real_distribution.
408     absl::random_internal::sequence_urbg urbg({0x7fffffffffffffefull});
409     double a = dist(urbg);
410     EXPECT_EQ(a, 0.693147180559945175204);
411   }
412 
413   {
414     // This returns the largest value <1 from absl::uniform_real_distribution.
415     // WolframAlpha: ~39.1439465808987766283058547296341915292187253
416     absl::random_internal::sequence_urbg urbg({0xFFFFFFFFFFFFFFeFull});
417     double a = dist(urbg);
418     EXPECT_EQ(a, 36.7368005696771007251);
419   }
420   {
421     // This *ALSO* returns the largest value <1.
422     absl::random_internal::sequence_urbg urbg({0xFFFFFFFFFFFFFFFFull});
423     double a = dist(urbg);
424     EXPECT_EQ(a, 36.7368005696771007251);
425   }
426 }
427 
428 }  // namespace
429