1 /* Definitions of target machine for GNU compiler.
2    Vitesse IQ2000 processors
3    Copyright (C) 2003-2018 Free Software Foundation, Inc.
4 
5    This file is part of GCC.
6 
7    GCC is free software; you can redistribute it and/or modify it
8    under the terms of the GNU General Public License as published
9    by the Free Software Foundation; either version 3, or (at your
10    option) any later version.
11 
12    GCC is distributed in the hope that it will be useful, but WITHOUT
13    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15    License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with GCC; see the file COPYING3.  If not see
19    <http://www.gnu.org/licenses/>.  */
20 
21 /* Driver configuration.  */
22 
23 /* A generic LIB_SPEC with -leval and --*group tacked on.  */
24 #undef  LIB_SPEC
25 #define LIB_SPEC "%{!shared:%{!symbolic:--start-group -lc -leval -lgcc --end-group}}"
26 
27 #undef STARTFILE_SPEC
28 #undef ENDFILE_SPEC
29 
30 #undef  LINK_SPEC
31 #define LINK_SPEC "%{h*} %{v:-V} \
32 		   %{static:-Bstatic} %{shared:-shared} %{symbolic:-Bsymbolic}"
33 
34 
35 /* Run-time target specifications.  */
36 
37 #define TARGET_CPU_CPP_BUILTINS()               \
38   do                                            \
39     {                                           \
40       builtin_define ("__iq2000__"); 		\
41       builtin_assert ("cpu=iq2000"); 		\
42       builtin_assert ("machine=iq2000");	\
43     }                                           \
44   while (0)
45 
46 /* Macros used in the machine description to test the flags.  */
47 
48 #define TARGET_STATS		0
49 
50 #define TARGET_DEBUG_MODE	0
51 #define TARGET_DEBUG_A_MODE	0
52 #define TARGET_DEBUG_B_MODE	0
53 #define TARGET_DEBUG_C_MODE	0
54 #define TARGET_DEBUG_D_MODE	0
55 
56 #ifndef IQ2000_ISA_DEFAULT
57 #define IQ2000_ISA_DEFAULT 1
58 #endif
59 
60 /* Storage Layout.  */
61 
62 #define BITS_BIG_ENDIAN 		0
63 #define BYTES_BIG_ENDIAN 		1
64 #define WORDS_BIG_ENDIAN 		1
65 #define BITS_PER_WORD 			32
66 #define MAX_BITS_PER_WORD 		64
67 #define UNITS_PER_WORD 			4
68 #define MIN_UNITS_PER_WORD 		4
69 #define POINTER_SIZE 			32
70 
71 /* Define this macro if it is advisable to hold scalars in registers
72    in a wider mode than that declared by the program.  In such cases,
73    the value is constrained to be within the bounds of the declared
74    type, but kept valid in the wider mode.  The signedness of the
75    extension may differ from that of the type.
76 
77    We promote any value smaller than SImode up to SImode.  */
78 
79 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)	\
80   if (GET_MODE_CLASS (MODE) == MODE_INT		\
81       && GET_MODE_SIZE (MODE) < 4)		\
82     (MODE) = SImode;
83 
84 #define PARM_BOUNDARY 32
85 
86 #define STACK_BOUNDARY 64
87 
88 #define FUNCTION_BOUNDARY 32
89 
90 #define BIGGEST_ALIGNMENT 64
91 
92 #undef  DATA_ALIGNMENT
93 #define DATA_ALIGNMENT(TYPE, ALIGN)					\
94   ((((ALIGN) < BITS_PER_WORD)						\
95     && (TREE_CODE (TYPE) == ARRAY_TYPE					\
96 	|| TREE_CODE (TYPE) == UNION_TYPE				\
97 	|| TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
98 
99 #define EMPTY_FIELD_BOUNDARY 32
100 
101 #define STRUCTURE_SIZE_BOUNDARY 8
102 
103 #define STRICT_ALIGNMENT 1
104 
105 #define PCC_BITFIELD_TYPE_MATTERS 1
106 
107 
108 /* Layout of Source Language Data Types.  */
109 
110 #define INT_TYPE_SIZE 		32
111 #define SHORT_TYPE_SIZE 	16
112 #define LONG_TYPE_SIZE 		32
113 #define LONG_LONG_TYPE_SIZE 	64
114 #define CHAR_TYPE_SIZE		BITS_PER_UNIT
115 #define FLOAT_TYPE_SIZE 	32
116 #define DOUBLE_TYPE_SIZE 	64
117 #define LONG_DOUBLE_TYPE_SIZE	64
118 #define DEFAULT_SIGNED_CHAR	1
119 
120 #undef  SIZE_TYPE
121 #define SIZE_TYPE "unsigned int"
122 
123 #undef  PTRDIFF_TYPE
124 #define PTRDIFF_TYPE "int"
125 
126 #undef  WCHAR_TYPE
127 #define WCHAR_TYPE "long int"
128 
129 #undef  WCHAR_TYPE_SIZE
130 #define WCHAR_TYPE_SIZE BITS_PER_WORD
131 
132 
133 /* Register Basics.  */
134 
135 /* On the IQ2000, we have 32 integer registers.  */
136 #define FIRST_PSEUDO_REGISTER 33
137 
138 #define FIXED_REGISTERS							\
139 {									\
140   1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
141   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1			\
142 }
143 
144 #define CALL_USED_REGISTERS						\
145 {									\
146   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
147   0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1			\
148 }
149 
150 
151 /* Order of allocation of registers.  */
152 
153 #define REG_ALLOC_ORDER							\
154 {  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,	\
155   16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31	\
156 }
157 
158 
159 
160 #define AVOID_CCMODE_COPIES
161 
162 
163 /* Register Classes.  */
164 
165 enum reg_class
166 {
167   NO_REGS,			/* No registers in set.  */
168   GR_REGS,			/* Integer registers.  */
169   ALL_REGS,			/* All registers.  */
170   LIM_REG_CLASSES		/* Max value + 1.  */
171 };
172 
173 #define GENERAL_REGS GR_REGS
174 
175 #define N_REG_CLASSES (int) LIM_REG_CLASSES
176 
177 #define REG_CLASS_NAMES						\
178 {								\
179   "NO_REGS",							\
180   "GR_REGS",							\
181   "ALL_REGS"							\
182 }
183 
184 #define REG_CLASS_CONTENTS					\
185 {								\
186   { 0x00000000, 0x00000000 },	/* No registers,  */		\
187   { 0xffffffff, 0x00000000 },	/* Integer registers.  */	\
188   { 0xffffffff, 0x00000001 }	/* All registers.  */		\
189 }
190 
191 #define REGNO_REG_CLASS(REGNO) \
192 ((REGNO) <= GP_REG_LAST + 1 ? GR_REGS : NO_REGS)
193 
194 #define BASE_REG_CLASS  (GR_REGS)
195 
196 #define INDEX_REG_CLASS NO_REGS
197 
198 #define REGNO_OK_FOR_INDEX_P(regno)	0
199 
200 #define PREFERRED_RELOAD_CLASS(X,CLASS)				\
201   ((CLASS) != ALL_REGS						\
202    ? (CLASS)							\
203    : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT		\
204        || GET_MODE_CLASS (GET_MODE (X)) == MODE_COMPLEX_FLOAT)	\
205       ? (GR_REGS)						\
206       : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_INT		\
207 	  || GET_MODE (X) == VOIDmode)				\
208 	 ? (GR_REGS)						\
209 	 : (CLASS))))
210 
211 
212 /* Basic Stack Layout.  */
213 
214 #define STACK_GROWS_DOWNWARD 1
215 
216 #define FRAME_GROWS_DOWNWARD 0
217 
218 /* Use the default value zero.  */
219 /* #define STACK_POINTER_OFFSET 0 */
220 
221 #define FIRST_PARM_OFFSET(FNDECL) 0
222 
223 /* The return address for the current frame is in r31 if this is a leaf
224    function.  Otherwise, it is on the stack.  It is at a variable offset
225    from sp/fp/ap, so we define a fake hard register rap which is a
226    pointer to the return address on the stack.  This always gets eliminated
227    during reload to be either the frame pointer or the stack pointer plus
228    an offset.  */
229 
230 #define RETURN_ADDR_RTX(count, frame)                                   \
231   (((count) == 0)                                                       \
232    ? (leaf_function_p ()                                                \
233       ? gen_rtx_REG (Pmode, GP_REG_FIRST + 31)                          \
234       : gen_rtx_MEM (Pmode, gen_rtx_REG (Pmode,                         \
235                                          RETURN_ADDRESS_POINTER_REGNUM))) \
236     : (rtx) 0)
237 
238 /* Before the prologue, RA lives in r31.  */
239 #define INCOMING_RETURN_ADDR_RTX  gen_rtx_REG (Pmode, GP_REG_FIRST + 31)
240 
241 
242 /* Register That Address the Stack Frame.  */
243 
244 #define STACK_POINTER_REGNUM 		(GP_REG_FIRST + 29)
245 #define FRAME_POINTER_REGNUM 		(GP_REG_FIRST + 1)
246 #define HARD_FRAME_POINTER_REGNUM 	(GP_REG_FIRST + 27)
247 #define ARG_POINTER_REGNUM 		GP_REG_FIRST
248 #define RETURN_ADDRESS_POINTER_REGNUM	RAP_REG_NUM
249 #define STATIC_CHAIN_REGNUM 		(GP_REG_FIRST + 2)
250 
251 
252 /* Eliminating the Frame Pointer and the Arg Pointer.  */
253 
254 #define ELIMINABLE_REGS							\
255 {{ ARG_POINTER_REGNUM,   STACK_POINTER_REGNUM},				\
256  { ARG_POINTER_REGNUM,   HARD_FRAME_POINTER_REGNUM},			\
257  { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
258  { RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},		\
259  { RETURN_ADDRESS_POINTER_REGNUM, GP_REG_FIRST + 31},			\
260  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},				\
261  { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
262 
263 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			 \
264         (OFFSET) = iq2000_initial_elimination_offset ((FROM), (TO))
265 
266 /* Passing Function Arguments on the Stack.  */
267 
268 /* #define PUSH_ROUNDING(BYTES) 0 */
269 
270 #define ACCUMULATE_OUTGOING_ARGS 1
271 
272 #define REG_PARM_STACK_SPACE(FNDECL) 0
273 
274 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
275 
276 
277 /* Function Arguments in Registers.  */
278 
279 #define MAX_ARGS_IN_REGISTERS 8
280 
281 typedef struct iq2000_args
282 {
283   int gp_reg_found;		/* Whether a gp register was found yet.  */
284   unsigned int arg_number;	/* Argument number.  */
285   unsigned int arg_words;	/* # total words the arguments take.  */
286   unsigned int fp_arg_words;	/* # words for FP args (IQ2000_EABI only).  */
287   int last_arg_fp;		/* Nonzero if last arg was FP (EABI only).  */
288   int fp_code;			/* Mode of FP arguments.  */
289   unsigned int num_adjusts;	/* Number of adjustments made.  */
290 				/* Adjustments made to args pass in regs.  */
291   rtx adjust[MAX_ARGS_IN_REGISTERS * 2];
292 } CUMULATIVE_ARGS;
293 
294 /* Initialize a variable CUM of type CUMULATIVE_ARGS
295    for a call to a function whose data type is FNTYPE.
296    For a library call, FNTYPE is 0.  */
297 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
298   init_cumulative_args (& CUM, FNTYPE, LIBNAME)				\
299 
300 #define FUNCTION_ARG_REGNO_P(N)						\
301   (((N) >= GP_ARG_FIRST && (N) <= GP_ARG_LAST))
302 
303 
304 /* On the IQ2000, R2 and R3 are the only register thus used.  */
305 
306 #define FUNCTION_VALUE_REGNO_P(N) iq2000_function_value_regno_p (N)
307 
308 
309 /* How Large Values are Returned.  */
310 
311 #define DEFAULT_PCC_STRUCT_RETURN 0
312 
313 /* Function Entry and Exit.  */
314 
315 #define EXIT_IGNORE_STACK 1
316 
317 
318 /* Generating Code for Profiling.  */
319 
320 #define FUNCTION_PROFILER(FILE, LABELNO)				\
321 {									\
322   fprintf (FILE, "\t.set\tnoreorder\n");				\
323   fprintf (FILE, "\t.set\tnoat\n");					\
324   fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n",	\
325 	   reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]);	\
326   fprintf (FILE, "\tjal\t_mcount\n");					\
327   fprintf (FILE,							\
328 	   "\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from  stack\n",	\
329 	   "subu",							\
330 	   reg_names[STACK_POINTER_REGNUM],				\
331 	   reg_names[STACK_POINTER_REGNUM],				\
332 	   Pmode == DImode ? 16 : 8);					\
333   fprintf (FILE, "\t.set\treorder\n");					\
334   fprintf (FILE, "\t.set\tat\n");					\
335 }
336 
337 
338 /* Trampolines for Nested Functions.  */
339 
340 #define TRAMPOLINE_CODE_SIZE  (8*4)
341 #define TRAMPOLINE_SIZE       (TRAMPOLINE_CODE_SIZE + 2*GET_MODE_SIZE (Pmode))
342 #define TRAMPOLINE_ALIGNMENT  GET_MODE_ALIGNMENT (Pmode)
343 
344 
345 /* Addressing Modes.  */
346 
347 #define CONSTANT_ADDRESS_P(X)						\
348   (   (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF		\
349     || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH		\
350     || (GET_CODE (X) == CONST)))
351 
352 #define MAX_REGS_PER_ADDRESS 1
353 
354 #define REG_OK_FOR_INDEX_P(X) 0
355 
356 
357 /* Describing Relative Costs of Operations.  */
358 
359 #define REGISTER_MOVE_COST(MODE, FROM, TO)	2
360 
361 #define MEMORY_MOVE_COST(MODE,CLASS,TO_P)	\
362   (TO_P ? 2 : 16)
363 
364 #define BRANCH_COST(speed_p, predictable_p) 2
365 
366 #define SLOW_BYTE_ACCESS 1
367 
368 #define NO_FUNCTION_CSE 1
369 
370 #define ADJUST_COST(INSN,LINK,DEP_INSN,COST)				\
371   if (REG_NOTE_KIND (LINK) != 0)					\
372     (COST) = 0; /* Anti or output dependence.  */
373 
374 
375 /* Dividing the output into sections.  */
376 
377 #define TEXT_SECTION_ASM_OP	"\t.text"	/* Instructions.  */
378 
379 #define DATA_SECTION_ASM_OP	"\t.data"	/* Large data.  */
380 
381 
382 /* The Overall Framework of an Assembler File.  */
383 
384 #define ASM_COMMENT_START " #"
385 
386 #define ASM_APP_ON "#APP\n"
387 
388 #define ASM_APP_OFF "#NO_APP\n"
389 
390 
391 /* Output and Generation of Labels.  */
392 
393 #undef ASM_GENERATE_INTERNAL_LABEL
394 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)			\
395   sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long) (NUM))
396 
397 #define GLOBAL_ASM_OP "\t.globl\t"
398 
399 
400 /* Output of Assembler Instructions.  */
401 
402 #define REGISTER_NAMES							\
403 {									\
404  "%0",   "%1",   "%2",   "%3",   "%4",   "%5",   "%6",   "%7",		\
405  "%8",   "%9",   "%10",  "%11",  "%12",  "%13",  "%14",  "%15",		\
406  "%16",  "%17",  "%18",  "%19",  "%20",  "%21",  "%22",  "%23",		\
407  "%24",  "%25",  "%26",  "%27",  "%28",  "%29",  "%30",  "%31",  "%rap"	\
408 }
409 
410 #define ADDITIONAL_REGISTER_NAMES					\
411 {									\
412   { "%0",	 0 + GP_REG_FIRST },					\
413   { "%1",	 1 + GP_REG_FIRST },					\
414   { "%2",	 2 + GP_REG_FIRST },					\
415   { "%3",	 3 + GP_REG_FIRST },					\
416   { "%4",	 4 + GP_REG_FIRST },					\
417   { "%5",	 5 + GP_REG_FIRST },					\
418   { "%6",	 6 + GP_REG_FIRST },					\
419   { "%7",	 7 + GP_REG_FIRST },					\
420   { "%8",	 8 + GP_REG_FIRST },					\
421   { "%9",	 9 + GP_REG_FIRST },					\
422   { "%10",	10 + GP_REG_FIRST },					\
423   { "%11",	11 + GP_REG_FIRST },					\
424   { "%12",	12 + GP_REG_FIRST },					\
425   { "%13",	13 + GP_REG_FIRST },					\
426   { "%14",	14 + GP_REG_FIRST },					\
427   { "%15",	15 + GP_REG_FIRST },					\
428   { "%16",	16 + GP_REG_FIRST },					\
429   { "%17",	17 + GP_REG_FIRST },					\
430   { "%18",	18 + GP_REG_FIRST },					\
431   { "%19",	19 + GP_REG_FIRST },					\
432   { "%20",	20 + GP_REG_FIRST },					\
433   { "%21",	21 + GP_REG_FIRST },					\
434   { "%22",	22 + GP_REG_FIRST },					\
435   { "%23",	23 + GP_REG_FIRST },					\
436   { "%24",	24 + GP_REG_FIRST },					\
437   { "%25",	25 + GP_REG_FIRST },					\
438   { "%26",	26 + GP_REG_FIRST },					\
439   { "%27",	27 + GP_REG_FIRST },					\
440   { "%28",	28 + GP_REG_FIRST },					\
441   { "%29",	29 + GP_REG_FIRST },					\
442   { "%30",	27 + GP_REG_FIRST },					\
443   { "%31",	31 + GP_REG_FIRST },					\
444   { "%rap",	32 + GP_REG_FIRST },					\
445 }
446 
447 /* Check if the current insn needs a nop in front of it
448    because of load delays, and also update the delay slot statistics.  */
449 
450 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)			\
451   final_prescan_insn (INSN, OPVEC, NOPERANDS)
452 
453 #define DBR_OUTPUT_SEQEND(STREAM)					\
454 do									\
455   {									\
456     fputs ("\n", STREAM);						\
457   }									\
458 while (0)
459 
460 #define LOCAL_LABEL_PREFIX	"$"
461 
462 #define USER_LABEL_PREFIX	""
463 
464 
465 /* Output of dispatch tables.  */
466 
467 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL)		\
468   do									\
469     {									\
470       fprintf (STREAM, "\t%s\t%sL%d\n",					\
471 	       Pmode == DImode ? ".dword" : ".word",			\
472 	       LOCAL_LABEL_PREFIX, VALUE);				\
473     }									\
474   while (0)
475 
476 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE)				\
477   fprintf (STREAM, "\t%s\t%sL%d\n",					\
478 	   Pmode == DImode ? ".dword" : ".word",			\
479 	   LOCAL_LABEL_PREFIX,						\
480 	   VALUE)
481 
482 
483 /* Assembler Commands for Alignment.  */
484 
485 #undef ASM_OUTPUT_SKIP
486 #define ASM_OUTPUT_SKIP(STREAM,SIZE)					\
487   fprintf (STREAM, "\t.space\t" HOST_WIDE_INT_PRINT_UNSIGNED "\n",	\
488            (unsigned HOST_WIDE_INT)(SIZE))
489 
490 #define ASM_OUTPUT_ALIGN(STREAM,LOG)					\
491   if ((LOG) != 0)                       				\
492     fprintf (STREAM, "\t.balign %d\n", 1<<(LOG))
493 
494 
495 /* Macros Affecting all Debug Formats.  */
496 
497 #define DEBUGGER_AUTO_OFFSET(X)  \
498   iq2000_debugger_offset (X, (HOST_WIDE_INT) 0)
499 
500 #define DEBUGGER_ARG_OFFSET(OFFSET, X)  \
501   iq2000_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
502 
503 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
504 
505 #define DWARF2_DEBUGGING_INFO 1
506 
507 
508 /* Miscellaneous Parameters.  */
509 
510 #define CASE_VECTOR_MODE SImode
511 
512 #define WORD_REGISTER_OPERATIONS 1
513 
514 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
515 
516 #define MOVE_MAX 4
517 
518 #define MAX_MOVE_MAX 8
519 
520 #define SHIFT_COUNT_TRUNCATED 1
521 
522 #define STORE_FLAG_VALUE 1
523 
524 #define Pmode SImode
525 
526 #define FUNCTION_MODE SImode
527 
528 /* IQ2000 external variables defined in iq2000.c.  */
529 
530 /* Comparison type.  */
531 enum cmp_type
532 {
533   CMP_SI,				/* Compare four byte integers.  */
534   CMP_DI,				/* Compare eight byte integers.  */
535   CMP_SF,				/* Compare single precision floats.  */
536   CMP_DF,				/* Compare double precision floats.  */
537   CMP_MAX				/* Max comparison type.  */
538 };
539 
540 /* Types of delay slot.  */
541 enum delay_type
542 {
543   DELAY_NONE,				/* No delay slot.  */
544   DELAY_LOAD,				/* Load from memory delay.  */
545   DELAY_FCMP				/* Delay after doing c.<xx>.{d,s}.  */
546 };
547 
548 /* Recast the cpu class to be the cpu attribute.  */
549 #define iq2000_cpu_attr ((enum attr_cpu) iq2000_tune)
550 
551 #define BITMASK_UPPER16	((unsigned long) 0xffff << 16)	/* 0xffff0000 */
552 #define BITMASK_LOWER16	((unsigned long) 0xffff)	/* 0x0000ffff */
553 
554 
555 #define GENERATE_BRANCHLIKELY  (ISA_HAS_BRANCHLIKELY)
556 
557 /* Macros to decide whether certain features are available or not,
558    depending on the instruction set architecture level.  */
559 
560 #define BRANCH_LIKELY_P()	GENERATE_BRANCHLIKELY
561 
562 /* ISA has branch likely instructions.  */
563 #define ISA_HAS_BRANCHLIKELY	(iq2000_isa == 1)
564 
565 
566 #undef ASM_SPEC
567 
568 
569 /* The mapping from gcc register number to DWARF 2 CFA column number.  */
570 #define DWARF_FRAME_REGNUM(REG)        (REG)
571 
572 /* The DWARF 2 CFA column which tracks the return address.  */
573 #define DWARF_FRAME_RETURN_COLUMN (GP_REG_FIRST + 31)
574 
575 /* Describe how we implement __builtin_eh_return.  */
576 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
577 
578 /* The EH_RETURN_STACKADJ_RTX macro returns RTL which describes the
579    location used to store the amount to adjust the stack.  This is
580    usually a register that is available from end of the function's body
581    to the end of the epilogue. Thus, this cannot be a register used as a
582    temporary by the epilogue.
583 
584    This must be an integer register.  */
585 #define EH_RETURN_STACKADJ_REGNO        3
586 #define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, EH_RETURN_STACKADJ_REGNO)
587 
588 /* The EH_RETURN_HANDLER_RTX macro returns RTL which describes the
589    location used to store the address the processor should jump to
590    catch exception.  This is usually a registers that is available from
591    end of the function's body to the end of the epilogue. Thus, this
592    cannot be a register used as a temporary by the epilogue.
593 
594    This must be an address register.  */
595 #define EH_RETURN_HANDLER_REGNO         26
596 #define EH_RETURN_HANDLER_RTX           \
597         gen_rtx_REG (Pmode, EH_RETURN_HANDLER_REGNO)
598 
599 /* Offsets recorded in opcodes are a multiple of this alignment factor.  */
600 #define DWARF_CIE_DATA_ALIGNMENT 4
601 
602 /* For IQ2000, width of a floating point register.  */
603 #define UNITS_PER_FPREG 4
604 
605 /* Force right-alignment for small varargs in 32 bit little_endian mode */
606 
607 #define PAD_VARARGS_DOWN !BYTES_BIG_ENDIAN
608 
609 /* Internal macros to classify a register number as to whether it's a
610    general purpose register, a floating point register, a
611    multiply/divide register, or a status register.  */
612 
613 #define GP_REG_FIRST 0
614 #define GP_REG_LAST  31
615 #define GP_REG_NUM   (GP_REG_LAST - GP_REG_FIRST + 1)
616 
617 #define RAP_REG_NUM   32
618 #define AT_REGNUM	(GP_REG_FIRST + 1)
619 
620 #define GP_REG_P(REGNO)	\
621   ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
622 
623 /* IQ2000 registers used in prologue/epilogue code when the stack frame
624    is larger than 32K bytes.  These registers must come from the
625    scratch register set, and not used for passing and returning
626    arguments and any other information used in the calling sequence.  */
627 
628 #define IQ2000_TEMP1_REGNUM (GP_REG_FIRST + 12)
629 #define IQ2000_TEMP2_REGNUM (GP_REG_FIRST + 13)
630 
631 /* This macro is used later on in the file.  */
632 #define GR_REG_CLASS_P(CLASS)						\
633   ((CLASS) == GR_REGS)
634 
635 #define SMALL_INT(X) ((unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
636 #define SMALL_INT_UNSIGNED(X) ((unsigned HOST_WIDE_INT) (INTVAL (X)) < 0x10000)
637 
638 /* Certain machines have the property that some registers cannot be
639    copied to some other registers without using memory.  Define this
640    macro on those machines to be a C expression that is nonzero if
641    objects of mode MODE in registers of CLASS1 can only be copied to
642    registers of class CLASS2 by storing a register of CLASS1 into
643    memory and loading that memory location into a register of CLASS2.
644 
645    Do not define this macro if its value would always be zero.  */
646 
647 /* Return the maximum number of consecutive registers
648    needed to represent mode MODE in a register of class CLASS.  */
649 
650 #define CLASS_UNITS(mode, size)						\
651   ((GET_MODE_SIZE (mode) + (size) - 1) / (size))
652 
653 /* If defined, gives a class of registers that cannot be used as the
654    operand of a SUBREG that changes the mode of the object illegally.  */
655 
656 #define CLASS_CANNOT_CHANGE_MODE 0
657 
658 /* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE.  */
659 
660 #define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
661   (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
662 
663 /* Make sure 4 words are always allocated on the stack.  */
664 
665 #ifndef STACK_ARGS_ADJUST
666 #define STACK_ARGS_ADJUST(SIZE)						\
667   {									\
668     if (SIZE.constant < 4 * UNITS_PER_WORD)				\
669       SIZE.constant = 4 * UNITS_PER_WORD;				\
670   }
671 #endif
672 
673 
674 /* Symbolic macros for the registers used to return integer and floating
675    point values.  */
676 
677 #define GP_RETURN (GP_REG_FIRST + 2)
678 
679 /* Symbolic macros for the first/last argument registers.  */
680 
681 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
682 #define GP_ARG_LAST  (GP_REG_FIRST + 11)
683 
684 #define MAX_ARGS_IN_REGISTERS	8
685 
686 
687 /* Tell prologue and epilogue if register REGNO should be saved / restored.  */
688 
689 #define MUST_SAVE_REGISTER(regno) \
690   ((df_regs_ever_live_p (regno) && !call_used_regs[regno])		\
691   || (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed)	\
692    || (regno == (GP_REG_FIRST + 31) && df_regs_ever_live_p (GP_REG_FIRST + 31)))
693 
694 /* ALIGN FRAMES on double word boundaries */
695 #ifndef IQ2000_STACK_ALIGN
696 #define IQ2000_STACK_ALIGN(LOC) (((LOC) + 7) & ~7)
697 #endif
698 
699 
700 /* These assume that REGNO is a hard or pseudo reg number.
701    They give nonzero only if REGNO is a hard reg of the suitable class
702    or a pseudo reg currently allocated to a suitable hard reg.
703    These definitions are NOT overridden anywhere.  */
704 
705 #define BASE_REG_P(regno, mode)					\
706   (GP_REG_P (regno))
707 
708 #define GP_REG_OR_PSEUDO_STRICT_P(regno, mode)				    \
709   BASE_REG_P((regno < FIRST_PSEUDO_REGISTER) ? regno : reg_renumber[regno], \
710 	     (mode))
711 
712 #define GP_REG_OR_PSEUDO_NONSTRICT_P(regno, mode) \
713   (((regno) >= FIRST_PSEUDO_REGISTER) || (BASE_REG_P ((regno), (mode))))
714 
715 #define REGNO_MODE_OK_FOR_BASE_P(regno, mode) \
716   GP_REG_OR_PSEUDO_STRICT_P ((int) (regno), (mode))
717 
718 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
719    and check its validity for a certain class.
720    We have two alternate definitions for each of them.
721    The usual definition accepts all pseudo regs; the other rejects them all.
722    The symbol REG_OK_STRICT causes the latter definition to be used.
723 
724    Most source files want to accept pseudo regs in the hope that
725    they will get allocated to the class that the insn wants them to be in.
726    Some source files that are used after register allocation
727    need to be strict.  */
728 
729 #ifndef REG_OK_STRICT
730 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
731   iq2000_reg_mode_ok_for_base_p (X, MODE, 0)
732 #else
733 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
734   iq2000_reg_mode_ok_for_base_p (X, MODE, 1)
735 #endif
736 
737 #if 1
738 #define GO_PRINTF(x)	fprintf (stderr, (x))
739 #define GO_PRINTF2(x,y)	fprintf (stderr, (x), (y))
740 #define GO_DEBUG_RTX(x) debug_rtx (x)
741 
742 #else
743 #define GO_PRINTF(x)
744 #define GO_PRINTF2(x,y)
745 #define GO_DEBUG_RTX(x)
746 #endif
747 
748 /* If defined, modifies the length assigned to instruction INSN as a
749    function of the context in which it is used.  LENGTH is an lvalue
750    that contains the initially computed length of the insn and should
751    be updated with the correct length of the insn.  */
752 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
753   ((LENGTH) = iq2000_adjust_insn_length ((INSN), (LENGTH)))
754 
755 
756 
757 
758 /* How to tell the debugger about changes of source files.  */
759 
760 #ifndef SET_FILE_NUMBER
761 #define SET_FILE_NUMBER() ++ num_source_filenames
762 #endif
763 
764 /* This is how to output a note the debugger telling it the line number
765    to which the following sequence of instructions corresponds.  */
766 
767 #ifndef LABEL_AFTER_LOC
768 #define LABEL_AFTER_LOC(STREAM)
769 #endif
770 
771 
772 /* Default to -G 8 */
773 #ifndef IQ2000_DEFAULT_GVALUE
774 #define IQ2000_DEFAULT_GVALUE 8
775 #endif
776 
777 #define SDATA_SECTION_ASM_OP	"\t.sdata"	/* Small data.  */
778 
779 
780 /* Which instruction set architecture to use.  */
781 extern int iq2000_isa;
782 
783 enum iq2000_builtins
784 {
785   IQ2000_BUILTIN_ADO16,
786   IQ2000_BUILTIN_CFC0,
787   IQ2000_BUILTIN_CFC1,
788   IQ2000_BUILTIN_CFC2,
789   IQ2000_BUILTIN_CFC3,
790   IQ2000_BUILTIN_CHKHDR,
791   IQ2000_BUILTIN_CTC0,
792   IQ2000_BUILTIN_CTC1,
793   IQ2000_BUILTIN_CTC2,
794   IQ2000_BUILTIN_CTC3,
795   IQ2000_BUILTIN_LU,
796   IQ2000_BUILTIN_LUC32L,
797   IQ2000_BUILTIN_LUC64,
798   IQ2000_BUILTIN_LUC64L,
799   IQ2000_BUILTIN_LUK,
800   IQ2000_BUILTIN_LULCK,
801   IQ2000_BUILTIN_LUM32,
802   IQ2000_BUILTIN_LUM32L,
803   IQ2000_BUILTIN_LUM64,
804   IQ2000_BUILTIN_LUM64L,
805   IQ2000_BUILTIN_LUR,
806   IQ2000_BUILTIN_LURL,
807   IQ2000_BUILTIN_MFC0,
808   IQ2000_BUILTIN_MFC1,
809   IQ2000_BUILTIN_MFC2,
810   IQ2000_BUILTIN_MFC3,
811   IQ2000_BUILTIN_MRGB,
812   IQ2000_BUILTIN_MTC0,
813   IQ2000_BUILTIN_MTC1,
814   IQ2000_BUILTIN_MTC2,
815   IQ2000_BUILTIN_MTC3,
816   IQ2000_BUILTIN_PKRL,
817   IQ2000_BUILTIN_RAM,
818   IQ2000_BUILTIN_RB,
819   IQ2000_BUILTIN_RX,
820   IQ2000_BUILTIN_SRRD,
821   IQ2000_BUILTIN_SRRDL,
822   IQ2000_BUILTIN_SRULC,
823   IQ2000_BUILTIN_SRULCK,
824   IQ2000_BUILTIN_SRWR,
825   IQ2000_BUILTIN_SRWRU,
826   IQ2000_BUILTIN_TRAPQF,
827   IQ2000_BUILTIN_TRAPQFL,
828   IQ2000_BUILTIN_TRAPQN,
829   IQ2000_BUILTIN_TRAPQNE,
830   IQ2000_BUILTIN_TRAPRE,
831   IQ2000_BUILTIN_TRAPREL,
832   IQ2000_BUILTIN_WB,
833   IQ2000_BUILTIN_WBR,
834   IQ2000_BUILTIN_WBU,
835   IQ2000_BUILTIN_WX,
836   IQ2000_BUILTIN_SYSCALL
837 };
838