1 /* Copyright (C) 2008-2018 Free Software Foundation, Inc.
2    Contributor: Joern Rennecke <joern.rennecke@embecosm.com>
3 		on behalf of Synopsys Inc.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
20 
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
24 <http://www.gnu.org/licenses/>.  */
25 
26 /* We use a polynom similar to a Tchebycheff polynom to get an initial
27    seed, and then use a newton-raphson iteration step to get an
28    approximate result
29    If this result can't be rounded to the exact result with confidence, we
30    round to the value between the two closest representable values, and
31    test if the correctly rounded value is above or below this value.
32 
33    Because of the Newton-raphson iteration step, an error in the seed at X
34    is amplified by X.  Therefore, we don't want a Tchebycheff polynom
35    or a polynom that is close to optimal according to the maximum norm
36    on the errro of the seed value; we want one that is close to optimal
37    according to the maximum norm on the error of the result, i.e. we
38    want the maxima of the polynom to increase linearily.
39    Given an interval [X0,X2) over which to approximate,
40    with X1 := (X0+X2)/2,  D := X1-X0, F := 1/D, and S := D/X1 we have,
41    like for Tchebycheff polynoms:
42    P(0) := 1
43    but then we have:
44    P(1) := X + S*D
45    P(2) := 2 * X^2 + S*D * X - D^2
46    Then again:
47    P(n+1) := 2 * X * P(n) - D^2 * P (n-1)
48  */
49 
50 int
main(void)51 main (void)
52 {
53   long double T[5]; /* Taylor polynom */
54   long double P[5][5];
55   int i, j;
56   long double X0, X1, X2, S;
57   long double inc = 1./64;
58   long double D = inc*0.5;
59   long i0, i1, i2;
60 
61   memset (P, 0, sizeof (P));
62   P[0][0] = 1.;
63   for (i = 1; i < 5; i++)
64     P[i][i] = 1 << i-1;
65   P[2][0] = -D*D;
66   for (X0 = 1.; X0 < 2.; X0 += inc)
67     {
68       X1 = X0 + inc * 0.5;
69       X2 = X1 + inc;
70       S = D / X1;
71       T[0] = 1./X1;
72       for (i = 1; i < 5; i++)
73 	T[i] = T[i-1] * -T[0];
74 #if 0
75       printf ("T %1.8f %f %f %f %f\n", (double)T[0], (double)T[1], (double)T[2],
76 (double)T[3], (double)T[4]);
77 #endif
78       P[1][0] = S*D;
79       P[2][1] = S*D;
80       for (i = 3; i < 5; i++)
81 	{
82 	  P[i][0] = -D*D*P[i-2][0];
83 	  for (j = 1; j < i; j++)
84 	    P[i][j] = 2*P[i-1][j-1]-D*D*P[i-2][j];
85 	}
86 #if 0
87       printf ("P3 %1.8f %f %f %f %f\n", (double)P[3][0], (double)P[3][1], (double)P[3][2],
88 (double)P[3][3], (double)P[3][4]);
89       printf ("P4 %1.8f %f %f %f %f\n", (double)P[4][0], (double)P[4][1], (double)P[4][2],
90 (double)P[4][3], (double)P[4][4]);
91 #endif
92       for (i = 4; i > 1; i--)
93 	{
94 	  long double a = T[i]/P[i][i];
95 
96 	  for (j = 0; j < i; j++)
97 	    T[j] -= a * P[i][j];
98 	}
99 #if 0
100       printf ("A %1.8f %f %f\n", (double)T[0], (double)T[1], (double)T[2]);
101 #endif
102 #if 0
103       i2 = T[2]*512;
104       long double a = (T[2]-i/512.)/P[2][2];
105       for (j = 0; j < 2; j++)
106 	T[j] -= a * P[2][j];
107 #else
108       i2 = 0;
109 #endif
110       for (i = 0, i0 = 0; i < 4; i++)
111 	{
112 	  long double T0, Ti1;
113 
114 	  i1 = T[1]*8192. + i0 / (long double)(1 << 19) - 0.5;
115 	  i1 = - (-i1 & 0x1fff);
116 	  Ti1 = ((unsigned)(-i1 << 19) | i0) /-(long double)(1LL<<32LL);
117 	  T0 = T[0] - (T[1]-Ti1)/P[1][1] * P[1][0] - (X1 - 1) * Ti1;
118 	  i0 = T0 * 512 * 1024 + 0.5;
119 	  i0 &= 0x7ffff;
120 	}
121 #if 0
122       printf ("A %1.8f %f %f\n", (double)T[0], (double)T[1], (double)T[2]);
123 #endif
124       printf ("\t.long 0x%x\n", (-i1 << 19) | i0);
125    }
126   return 0;
127 }
128