1 /* Definitions of target machine for GNU compiler.  MIPS version.
2    Copyright (C) 1989-2014 Free Software Foundation, Inc.
3    Contributed by A. Lichnewsky (lich@inria.inria.fr).
4    Changed by Michael Meissner	(meissner@osf.org).
5    64-bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
6    Brendan Eich (brendan@microunity.com).
7 
8 This file is part of GCC.
9 
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14 
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 GNU General Public License for more details.
19 
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3.  If not see
22 <http://www.gnu.org/licenses/>.  */
23 
24 
25 #include "config/vxworks-dummy.h"
26 
27 #ifdef GENERATOR_FILE
28 /* This is used in some insn conditions, so needs to be declared, but
29    does not need to be defined.  */
30 extern int target_flags_explicit;
31 #endif
32 
33 /* MIPS external variables defined in mips.c.  */
34 
35 /* Which ABI to use.  ABI_32 (original 32, or o32), ABI_N32 (n32),
36    ABI_64 (n64) are all defined by SGI.  ABI_O64 is o32 extended
37    to work on a 64-bit machine.  */
38 
39 #define ABI_32  0
40 #define ABI_N32 1
41 #define ABI_64  2
42 #define ABI_EABI 3
43 #define ABI_O64  4
44 
45 /* Masks that affect tuning.
46 
47    PTF_AVOID_BRANCHLIKELY
48 	Set if it is usually not profitable to use branch-likely instructions
49 	for this target, typically because the branches are always predicted
50 	taken and so incur a large overhead when not taken.
51 
52    PTF_AVOID_IMADD
53 	Set if it is usually not profitable to use the integer MADD or MSUB
54 	instructions because of the overhead of getting the result out of
55 	the HI/LO registers.  */
56 
57 #define PTF_AVOID_BRANCHLIKELY	0x1
58 #define PTF_AVOID_IMADD		0x2
59 
60 /* Information about one recognized processor.  Defined here for the
61    benefit of TARGET_CPU_CPP_BUILTINS.  */
62 struct mips_cpu_info {
63   /* The 'canonical' name of the processor as far as GCC is concerned.
64      It's typically a manufacturer's prefix followed by a numerical
65      designation.  It should be lowercase.  */
66   const char *name;
67 
68   /* The internal processor number that most closely matches this
69      entry.  Several processors can have the same value, if there's no
70      difference between them from GCC's point of view.  */
71   enum processor cpu;
72 
73   /* The ISA level that the processor implements.  */
74   int isa;
75 
76   /* A mask of PTF_* values.  */
77   unsigned int tune_flags;
78 };
79 
80 #include "config/mips/mips-opts.h"
81 
82 /* Macros to silence warnings about numbers being signed in traditional
83    C and unsigned in ISO C when compiled on 32-bit hosts.  */
84 
85 #define BITMASK_HIGH	(((unsigned long)1) << 31)	/* 0x80000000 */
86 #define BITMASK_UPPER16	((unsigned long)0xffff << 16)	/* 0xffff0000 */
87 #define BITMASK_LOWER16	((unsigned long)0xffff)		/* 0x0000ffff */
88 
89 
90 /* Run-time compilation parameters selecting different hardware subsets.  */
91 
92 /* True if we are generating position-independent VxWorks RTP code.  */
93 #define TARGET_RTP_PIC (TARGET_VXWORKS_RTP && flag_pic)
94 
95 /* True if the output file is marked as ".abicalls; .option pic0"
96    (-call_nonpic).  */
97 #define TARGET_ABICALLS_PIC0 \
98   (TARGET_ABSOLUTE_ABICALLS && TARGET_PLT)
99 
100 /* True if the output file is marked as ".abicalls; .option pic2" (-KPIC).  */
101 #define TARGET_ABICALLS_PIC2 \
102   (TARGET_ABICALLS && !TARGET_ABICALLS_PIC0)
103 
104 /* True if the call patterns should be split into a jalr followed by
105    an instruction to restore $gp.  It is only safe to split the load
106    from the call when every use of $gp is explicit.
107 
108    See mips_must_initialize_gp_p for details about how we manage the
109    global pointer.  */
110 
111 #define TARGET_SPLIT_CALLS \
112   (TARGET_EXPLICIT_RELOCS && TARGET_CALL_CLOBBERED_GP && epilogue_completed)
113 
114 /* True if we're generating a form of -mabicalls in which we can use
115    operators like %hi and %lo to refer to locally-binding symbols.
116    We can only do this for -mno-shared, and only then if we can use
117    relocation operations instead of assembly macros.  It isn't really
118    worth using absolute sequences for 64-bit symbols because GOT
119    accesses are so much shorter.  */
120 
121 #define TARGET_ABSOLUTE_ABICALLS	\
122   (TARGET_ABICALLS			\
123    && !TARGET_SHARED			\
124    && TARGET_EXPLICIT_RELOCS		\
125    && !ABI_HAS_64BIT_SYMBOLS)
126 
127 /* True if we can optimize sibling calls.  For simplicity, we only
128    handle cases in which call_insn_operand will reject invalid
129    sibcall addresses.  There are two cases in which this isn't true:
130 
131       - TARGET_MIPS16.  call_insn_operand accepts constant addresses
132 	but there is no direct jump instruction.  It isn't worth
133 	using sibling calls in this case anyway; they would usually
134 	be longer than normal calls.
135 
136       - TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS.  call_insn_operand
137 	accepts global constants, but all sibcalls must be indirect.  */
138 #define TARGET_SIBCALLS \
139   (!TARGET_MIPS16 && (!TARGET_USE_GOT || TARGET_EXPLICIT_RELOCS))
140 
141 /* True if we need to use a global offset table to access some symbols.  */
142 #define TARGET_USE_GOT (TARGET_ABICALLS || TARGET_RTP_PIC)
143 
144 /* True if TARGET_USE_GOT and if $gp is a call-clobbered register.  */
145 #define TARGET_CALL_CLOBBERED_GP (TARGET_ABICALLS && TARGET_OLDABI)
146 
147 /* True if TARGET_USE_GOT and if $gp is a call-saved register.  */
148 #define TARGET_CALL_SAVED_GP (TARGET_USE_GOT && !TARGET_CALL_CLOBBERED_GP)
149 
150 /* True if we should use .cprestore to store to the cprestore slot.
151 
152    We continue to use .cprestore for explicit-reloc code so that JALs
153    inside inline asms will work correctly.  */
154 #define TARGET_CPRESTORE_DIRECTIVE \
155   (TARGET_ABICALLS_PIC2 && !TARGET_MIPS16)
156 
157 /* True if we can use the J and JAL instructions.  */
158 #define TARGET_ABSOLUTE_JUMPS \
159   (!flag_pic || TARGET_ABSOLUTE_ABICALLS)
160 
161 /* True if indirect calls must use register class PIC_FN_ADDR_REG.
162    This is true for both the PIC and non-PIC VxWorks RTP modes.  */
163 #define TARGET_USE_PIC_FN_ADDR_REG (TARGET_ABICALLS || TARGET_VXWORKS_RTP)
164 
165 /* True if .gpword or .gpdword should be used for switch tables.  */
166 #define TARGET_GPWORD				\
167   (TARGET_ABICALLS && !TARGET_ABSOLUTE_ABICALLS)
168 
169 /* True if the output must have a writable .eh_frame.
170    See ASM_PREFERRED_EH_DATA_FORMAT for details.  */
171 #ifdef HAVE_LD_PERSONALITY_RELAXATION
172 #define TARGET_WRITABLE_EH_FRAME 0
173 #else
174 #define TARGET_WRITABLE_EH_FRAME (flag_pic && TARGET_SHARED)
175 #endif
176 
177 /* Test the assembler to set ISA_HAS_DSP_MULT to DSP Rev 1 or 2.  */
178 #ifdef HAVE_AS_DSPR1_MULT
179 #define ISA_HAS_DSP_MULT ISA_HAS_DSP
180 #else
181 #define ISA_HAS_DSP_MULT ISA_HAS_DSPR2
182 #endif
183 
184 /* The ISA compression flags that are currently in effect.  */
185 #define TARGET_COMPRESSION (target_flags & (MASK_MIPS16 | MASK_MICROMIPS))
186 
187 /* Generate mips16 code */
188 #define TARGET_MIPS16		((target_flags & MASK_MIPS16) != 0)
189 /* Generate mips16e code. Default 16bit ASE for mips32* and mips64* */
190 #define GENERATE_MIPS16E	(TARGET_MIPS16 && mips_isa >= 32)
191 /* Generate mips16e register save/restore sequences.  */
192 #define GENERATE_MIPS16E_SAVE_RESTORE (GENERATE_MIPS16E && mips_abi == ABI_32)
193 
194 /* True if we're generating a form of MIPS16 code in which general
195    text loads are allowed.  */
196 #define TARGET_MIPS16_TEXT_LOADS \
197   (TARGET_MIPS16 && mips_code_readable == CODE_READABLE_YES)
198 
199 /* True if we're generating a form of MIPS16 code in which PC-relative
200    loads are allowed.  */
201 #define TARGET_MIPS16_PCREL_LOADS \
202   (TARGET_MIPS16 && mips_code_readable >= CODE_READABLE_PCREL)
203 
204 /* Generic ISA defines.  */
205 #define ISA_MIPS1		    (mips_isa == 1)
206 #define ISA_MIPS2		    (mips_isa == 2)
207 #define ISA_MIPS3                   (mips_isa == 3)
208 #define ISA_MIPS4		    (mips_isa == 4)
209 #define ISA_MIPS32		    (mips_isa == 32)
210 #define ISA_MIPS32R2		    (mips_isa == 33)
211 #define ISA_MIPS64                  (mips_isa == 64)
212 #define ISA_MIPS64R2		    (mips_isa == 65)
213 
214 /* Architecture target defines.  */
215 #define TARGET_LOONGSON_2E          (mips_arch == PROCESSOR_LOONGSON_2E)
216 #define TARGET_LOONGSON_2F          (mips_arch == PROCESSOR_LOONGSON_2F)
217 #define TARGET_LOONGSON_2EF         (TARGET_LOONGSON_2E || TARGET_LOONGSON_2F)
218 #define TARGET_LOONGSON_3A          (mips_arch == PROCESSOR_LOONGSON_3A)
219 #define TARGET_MIPS3900             (mips_arch == PROCESSOR_R3900)
220 #define TARGET_MIPS4000             (mips_arch == PROCESSOR_R4000)
221 #define TARGET_MIPS4120             (mips_arch == PROCESSOR_R4120)
222 #define TARGET_MIPS4130             (mips_arch == PROCESSOR_R4130)
223 #define TARGET_MIPS5400             (mips_arch == PROCESSOR_R5400)
224 #define TARGET_MIPS5500             (mips_arch == PROCESSOR_R5500)
225 #define TARGET_MIPS5900             (mips_arch == PROCESSOR_R5900)
226 #define TARGET_MIPS7000             (mips_arch == PROCESSOR_R7000)
227 #define TARGET_MIPS9000             (mips_arch == PROCESSOR_R9000)
228 #define TARGET_OCTEON		    (mips_arch == PROCESSOR_OCTEON	\
229 				     || mips_arch == PROCESSOR_OCTEON2)
230 #define TARGET_OCTEON2		    (mips_arch == PROCESSOR_OCTEON2)
231 #define TARGET_SB1                  (mips_arch == PROCESSOR_SB1		\
232 				     || mips_arch == PROCESSOR_SB1A)
233 #define TARGET_SR71K                (mips_arch == PROCESSOR_SR71000)
234 #define TARGET_XLP                  (mips_arch == PROCESSOR_XLP)
235 
236 /* Scheduling target defines.  */
237 #define TUNE_20KC		    (mips_tune == PROCESSOR_20KC)
238 #define TUNE_24K		    (mips_tune == PROCESSOR_24KC	\
239 				     || mips_tune == PROCESSOR_24KF2_1	\
240 				     || mips_tune == PROCESSOR_24KF1_1)
241 #define TUNE_74K                    (mips_tune == PROCESSOR_74KC	\
242 				     || mips_tune == PROCESSOR_74KF2_1	\
243 				     || mips_tune == PROCESSOR_74KF1_1  \
244 				     || mips_tune == PROCESSOR_74KF3_2)
245 #define TUNE_LOONGSON_2EF           (mips_tune == PROCESSOR_LOONGSON_2E	\
246 				     || mips_tune == PROCESSOR_LOONGSON_2F)
247 #define TUNE_LOONGSON_3A            (mips_tune == PROCESSOR_LOONGSON_3A)
248 #define TUNE_MIPS3000               (mips_tune == PROCESSOR_R3000)
249 #define TUNE_MIPS3900               (mips_tune == PROCESSOR_R3900)
250 #define TUNE_MIPS4000               (mips_tune == PROCESSOR_R4000)
251 #define TUNE_MIPS4120               (mips_tune == PROCESSOR_R4120)
252 #define TUNE_MIPS4130               (mips_tune == PROCESSOR_R4130)
253 #define TUNE_MIPS5000               (mips_tune == PROCESSOR_R5000)
254 #define TUNE_MIPS5400               (mips_tune == PROCESSOR_R5400)
255 #define TUNE_MIPS5500               (mips_tune == PROCESSOR_R5500)
256 #define TUNE_MIPS6000               (mips_tune == PROCESSOR_R6000)
257 #define TUNE_MIPS7000               (mips_tune == PROCESSOR_R7000)
258 #define TUNE_MIPS9000               (mips_tune == PROCESSOR_R9000)
259 #define TUNE_OCTEON		    (mips_tune == PROCESSOR_OCTEON	\
260 				     || mips_tune == PROCESSOR_OCTEON2)
261 #define TUNE_SB1                    (mips_tune == PROCESSOR_SB1		\
262 				     || mips_tune == PROCESSOR_SB1A)
263 
264 /* Whether vector modes and intrinsics for ST Microelectronics
265    Loongson-2E/2F processors should be enabled.  In o32 pairs of
266    floating-point registers provide 64-bit values.  */
267 #define TARGET_LOONGSON_VECTORS	    (TARGET_HARD_FLOAT_ABI		\
268 				     && (TARGET_LOONGSON_2EF		\
269 					 || TARGET_LOONGSON_3A))
270 
271 /* True if the pre-reload scheduler should try to create chains of
272    multiply-add or multiply-subtract instructions.  For example,
273    suppose we have:
274 
275 	t1 = a * b
276 	t2 = t1 + c * d
277 	t3 = e * f
278 	t4 = t3 - g * h
279 
280    t1 will have a higher priority than t2 and t3 will have a higher
281    priority than t4.  However, before reload, there is no dependence
282    between t1 and t3, and they can often have similar priorities.
283    The scheduler will then tend to prefer:
284 
285 	t1 = a * b
286 	t3 = e * f
287 	t2 = t1 + c * d
288 	t4 = t3 - g * h
289 
290    which stops us from making full use of macc/madd-style instructions.
291    This sort of situation occurs frequently in Fourier transforms and
292    in unrolled loops.
293 
294    To counter this, the TUNE_MACC_CHAINS code will reorder the ready
295    queue so that chained multiply-add and multiply-subtract instructions
296    appear ahead of any other instruction that is likely to clobber lo.
297    In the example above, if t2 and t3 become ready at the same time,
298    the code ensures that t2 is scheduled first.
299 
300    Multiply-accumulate instructions are a bigger win for some targets
301    than others, so this macro is defined on an opt-in basis.  */
302 #define TUNE_MACC_CHAINS	    (TUNE_MIPS5500		\
303 				     || TUNE_MIPS4120		\
304 				     || TUNE_MIPS4130		\
305 				     || TUNE_24K)
306 
307 #define TARGET_OLDABI		    (mips_abi == ABI_32 || mips_abi == ABI_O64)
308 #define TARGET_NEWABI		    (mips_abi == ABI_N32 || mips_abi == ABI_64)
309 
310 /* TARGET_HARD_FLOAT and TARGET_SOFT_FLOAT reflect whether the FPU is
311    directly accessible, while the command-line options select
312    TARGET_HARD_FLOAT_ABI and TARGET_SOFT_FLOAT_ABI to reflect the ABI
313    in use.  */
314 #define TARGET_HARD_FLOAT (TARGET_HARD_FLOAT_ABI && !TARGET_MIPS16)
315 #define TARGET_SOFT_FLOAT (TARGET_SOFT_FLOAT_ABI || TARGET_MIPS16)
316 
317 /* False if SC acts as a memory barrier with respect to itself,
318    otherwise a SYNC will be emitted after SC for atomic operations
319    that require ordering between the SC and following loads and
320    stores.  It does not tell anything about ordering of loads and
321    stores prior to and following the SC, only about the SC itself and
322    those loads and stores follow it.  */
323 #define TARGET_SYNC_AFTER_SC (!TARGET_OCTEON && !TARGET_XLP)
324 
325 /* Define preprocessor macros for the -march and -mtune options.
326    PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
327    processor.  If INFO's canonical name is "foo", define PREFIX to
328    be "foo", and define an additional macro PREFIX_FOO.  */
329 #define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO)			\
330   do								\
331     {								\
332       char *macro, *p;						\
333 								\
334       macro = concat ((PREFIX), "_", (INFO)->name, NULL);	\
335       for (p = macro; *p != 0; p++)				\
336         if (*p == '+')                                          \
337           *p = 'P';                                             \
338         else                                                    \
339           *p = TOUPPER (*p);                                    \
340 								\
341       builtin_define (macro);					\
342       builtin_define_with_value ((PREFIX), (INFO)->name, 1);	\
343       free (macro);						\
344     }								\
345   while (0)
346 
347 /* Target CPU builtins.  */
348 #define TARGET_CPU_CPP_BUILTINS()					\
349   do									\
350     {									\
351       builtin_assert ("machine=mips");                        		\
352       builtin_assert ("cpu=mips");					\
353       builtin_define ("__mips__");     					\
354       builtin_define ("_mips");						\
355 									\
356       /* We do this here because __mips is defined below and so we	\
357 	 can't use builtin_define_std.  We don't ever want to define	\
358 	 "mips" for VxWorks because some of the VxWorks headers		\
359 	 construct include filenames from a root directory macro,	\
360 	 an architecture macro and a filename, where the architecture	\
361 	 macro expands to 'mips'.  If we define 'mips' to 1, the	\
362 	 architecture macro expands to 1 as well.  */			\
363       if (!flag_iso && !TARGET_VXWORKS)					\
364 	builtin_define ("mips");					\
365 									\
366       if (TARGET_64BIT)							\
367 	builtin_define ("__mips64");					\
368 									\
369       /* Treat _R3000 and _R4000 like register-size			\
370 	 defines, which is how they've historically			\
371 	 been used.  */							\
372       if (TARGET_64BIT)							\
373 	{								\
374 	  builtin_define_std ("R4000");					\
375 	  builtin_define ("_R4000");					\
376 	}								\
377       else								\
378 	{								\
379 	  builtin_define_std ("R3000");					\
380 	  builtin_define ("_R3000");					\
381 	}								\
382 									\
383       if (TARGET_FLOAT64)						\
384 	builtin_define ("__mips_fpr=64");				\
385       else								\
386 	builtin_define ("__mips_fpr=32");				\
387 									\
388       if (mips_base_compression_flags & MASK_MIPS16)			\
389 	builtin_define ("__mips16");					\
390 									\
391       if (TARGET_MIPS3D)						\
392 	builtin_define ("__mips3d");					\
393 									\
394       if (TARGET_SMARTMIPS)						\
395 	builtin_define ("__mips_smartmips");				\
396 									\
397       if (mips_base_compression_flags & MASK_MICROMIPS)			\
398 	builtin_define ("__mips_micromips");				\
399 									\
400       if (TARGET_MCU)							\
401 	builtin_define ("__mips_mcu");					\
402 									\
403       if (TARGET_EVA)							\
404 	builtin_define ("__mips_eva");					\
405 									\
406       if (TARGET_DSP)							\
407 	{								\
408 	  builtin_define ("__mips_dsp");				\
409 	  if (TARGET_DSPR2)						\
410 	    {								\
411 	      builtin_define ("__mips_dspr2");				\
412 	      builtin_define ("__mips_dsp_rev=2");			\
413 	    }								\
414 	  else								\
415 	    builtin_define ("__mips_dsp_rev=1");			\
416 	}								\
417 									\
418       MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info);		\
419       MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info);		\
420 									\
421       if (ISA_MIPS1)							\
422 	{								\
423 	  builtin_define ("__mips=1");					\
424 	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1");			\
425 	}								\
426       else if (ISA_MIPS2)						\
427 	{								\
428 	  builtin_define ("__mips=2");					\
429 	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2");			\
430 	}								\
431       else if (ISA_MIPS3)						\
432 	{								\
433 	  builtin_define ("__mips=3");					\
434 	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3");			\
435 	}								\
436       else if (ISA_MIPS4)						\
437 	{								\
438 	  builtin_define ("__mips=4");					\
439 	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4");			\
440 	}								\
441       else if (ISA_MIPS32)						\
442 	{								\
443 	  builtin_define ("__mips=32");					\
444 	  builtin_define ("__mips_isa_rev=1");				\
445 	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32");		\
446 	}								\
447       else if (ISA_MIPS32R2)						\
448 	{								\
449 	  builtin_define ("__mips=32");					\
450 	  builtin_define ("__mips_isa_rev=2");				\
451 	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32");		\
452 	}								\
453       else if (ISA_MIPS64)						\
454 	{								\
455 	  builtin_define ("__mips=64");					\
456 	  builtin_define ("__mips_isa_rev=1");				\
457 	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64");		\
458 	}								\
459       else if (ISA_MIPS64R2)						\
460 	{								\
461 	  builtin_define ("__mips=64");					\
462 	  builtin_define ("__mips_isa_rev=2");				\
463 	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64");		\
464 	}								\
465 									\
466       switch (mips_abi)							\
467 	{								\
468 	case ABI_32:							\
469 	  builtin_define ("_ABIO32=1");					\
470 	  builtin_define ("_MIPS_SIM=_ABIO32");				\
471 	  break;							\
472 									\
473 	case ABI_N32:							\
474 	  builtin_define ("_ABIN32=2");					\
475 	  builtin_define ("_MIPS_SIM=_ABIN32");				\
476 	  break;							\
477 									\
478 	case ABI_64:							\
479 	  builtin_define ("_ABI64=3");					\
480 	  builtin_define ("_MIPS_SIM=_ABI64");				\
481 	  break;							\
482 									\
483 	case ABI_O64:							\
484 	  builtin_define ("_ABIO64=4");					\
485 	  builtin_define ("_MIPS_SIM=_ABIO64");				\
486 	  break;							\
487 	}								\
488 									\
489       builtin_define_with_int_value ("_MIPS_SZINT", INT_TYPE_SIZE);	\
490       builtin_define_with_int_value ("_MIPS_SZLONG", LONG_TYPE_SIZE);	\
491       builtin_define_with_int_value ("_MIPS_SZPTR", POINTER_SIZE);	\
492       builtin_define_with_int_value ("_MIPS_FPSET",			\
493 				     32 / MAX_FPRS_PER_FMT);		\
494 									\
495       /* These defines reflect the ABI in use, not whether the  	\
496 	 FPU is directly accessible.  */				\
497       if (TARGET_NO_FLOAT)						\
498 	builtin_define ("__mips_no_float");				\
499       else if (TARGET_HARD_FLOAT_ABI)					\
500 	builtin_define ("__mips_hard_float");				\
501       else								\
502 	builtin_define ("__mips_soft_float");				\
503 									\
504       if (TARGET_SINGLE_FLOAT)						\
505 	builtin_define ("__mips_single_float");				\
506 									\
507       if (TARGET_PAIRED_SINGLE_FLOAT)					\
508 	builtin_define ("__mips_paired_single_float");			\
509 									\
510       if (mips_abs == MIPS_IEEE_754_2008)				\
511 	builtin_define ("__mips_abs2008");				\
512 									\
513       if (mips_nan == MIPS_IEEE_754_2008)				\
514 	builtin_define ("__mips_nan2008");				\
515 									\
516       if (TARGET_BIG_ENDIAN)						\
517 	{								\
518 	  builtin_define_std ("MIPSEB");				\
519 	  builtin_define ("_MIPSEB");					\
520 	}								\
521       else								\
522 	{								\
523 	  builtin_define_std ("MIPSEL");				\
524 	  builtin_define ("_MIPSEL");					\
525 	}								\
526                                                                         \
527       /* Whether calls should go through $25.  The separate __PIC__	\
528 	 macro indicates whether abicalls code might use a GOT.  */	\
529       if (TARGET_ABICALLS)						\
530 	builtin_define ("__mips_abicalls");				\
531 									\
532       /* Whether Loongson vector modes are enabled.  */                 \
533       if (TARGET_LOONGSON_VECTORS)					\
534         builtin_define ("__mips_loongson_vector_rev");                  \
535 									\
536       /* Historical Octeon macro.  */					\
537       if (TARGET_OCTEON)						\
538 	builtin_define ("__OCTEON__");					\
539 									\
540       if (TARGET_SYNCI)							\
541 	builtin_define ("__mips_synci");				\
542 									\
543       /* Macros dependent on the C dialect.  */				\
544       if (preprocessing_asm_p ())					\
545 	{								\
546 	  builtin_define_std ("LANGUAGE_ASSEMBLY");			\
547 	  builtin_define ("_LANGUAGE_ASSEMBLY");			\
548 	}								\
549       else if (c_dialect_cxx ())					\
550 	{								\
551 	  builtin_define ("_LANGUAGE_C_PLUS_PLUS");			\
552 	  builtin_define ("__LANGUAGE_C_PLUS_PLUS");			\
553 	  builtin_define ("__LANGUAGE_C_PLUS_PLUS__");			\
554 	}								\
555       else								\
556 	{								\
557 	  builtin_define_std ("LANGUAGE_C");				\
558 	  builtin_define ("_LANGUAGE_C");				\
559 	}								\
560       if (c_dialect_objc ())						\
561 	{								\
562 	  builtin_define ("_LANGUAGE_OBJECTIVE_C");			\
563 	  builtin_define ("__LANGUAGE_OBJECTIVE_C");			\
564 	  /* Bizarre, but retained for backwards compatibility.  */	\
565 	  builtin_define_std ("LANGUAGE_C");				\
566 	  builtin_define ("_LANGUAGE_C");				\
567 	}								\
568 									\
569       if (mips_abi == ABI_EABI)						\
570 	builtin_define ("__mips_eabi");					\
571 									\
572       if (TARGET_CACHE_BUILTIN)						\
573 	builtin_define ("__GCC_HAVE_BUILTIN_MIPS_CACHE");		\
574     }									\
575   while (0)
576 
577 /* Default target_flags if no switches are specified  */
578 
579 #ifndef TARGET_DEFAULT
580 #define TARGET_DEFAULT 0
581 #endif
582 
583 #ifndef TARGET_CPU_DEFAULT
584 #define TARGET_CPU_DEFAULT 0
585 #endif
586 
587 #ifndef TARGET_ENDIAN_DEFAULT
588 #define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
589 #endif
590 
591 #ifdef IN_LIBGCC2
592 #undef TARGET_64BIT
593 /* Make this compile time constant for libgcc2 */
594 #ifdef __mips64
595 #define TARGET_64BIT		1
596 #else
597 #define TARGET_64BIT		0
598 #endif
599 #endif /* IN_LIBGCC2 */
600 
601 /* Force the call stack unwinders in unwind.inc not to be MIPS16 code
602    when compiled with hardware floating point.  This is because MIPS16
603    code cannot save and restore the floating-point registers, which is
604    important if in a mixed MIPS16/non-MIPS16 environment.  */
605 
606 #ifdef IN_LIBGCC2
607 #if __mips_hard_float
608 #define LIBGCC2_UNWIND_ATTRIBUTE __attribute__((__nomips16__))
609 #endif
610 #endif /* IN_LIBGCC2 */
611 
612 #define TARGET_LIBGCC_SDATA_SECTION ".sdata"
613 
614 #ifndef MULTILIB_ENDIAN_DEFAULT
615 #if TARGET_ENDIAN_DEFAULT == 0
616 #define MULTILIB_ENDIAN_DEFAULT "EL"
617 #else
618 #define MULTILIB_ENDIAN_DEFAULT "EB"
619 #endif
620 #endif
621 
622 #ifndef MULTILIB_ISA_DEFAULT
623 #if MIPS_ISA_DEFAULT == 1
624 #define MULTILIB_ISA_DEFAULT "mips1"
625 #elif MIPS_ISA_DEFAULT == 2
626 #define MULTILIB_ISA_DEFAULT "mips2"
627 #elif MIPS_ISA_DEFAULT == 3
628 #define MULTILIB_ISA_DEFAULT "mips3"
629 #elif MIPS_ISA_DEFAULT == 4
630 #define MULTILIB_ISA_DEFAULT "mips4"
631 #elif MIPS_ISA_DEFAULT == 32
632 #define MULTILIB_ISA_DEFAULT "mips32"
633 #elif MIPS_ISA_DEFAULT == 33
634 #define MULTILIB_ISA_DEFAULT "mips32r2"
635 #elif MIPS_ISA_DEFAULT == 64
636 #define MULTILIB_ISA_DEFAULT "mips64"
637 #elif MIPS_ISA_DEFAULT == 65
638 #define MULTILIB_ISA_DEFAULT "mips64r2"
639 #else
640 #define MULTILIB_ISA_DEFAULT "mips1"
641 #endif
642 #endif
643 
644 #ifndef MIPS_ABI_DEFAULT
645 #define MIPS_ABI_DEFAULT ABI_32
646 #endif
647 
648 /* Use the most portable ABI flag for the ASM specs.  */
649 
650 #if MIPS_ABI_DEFAULT == ABI_32
651 #define MULTILIB_ABI_DEFAULT "mabi=32"
652 #elif MIPS_ABI_DEFAULT == ABI_O64
653 #define MULTILIB_ABI_DEFAULT "mabi=o64"
654 #elif MIPS_ABI_DEFAULT == ABI_N32
655 #define MULTILIB_ABI_DEFAULT "mabi=n32"
656 #elif MIPS_ABI_DEFAULT == ABI_64
657 #define MULTILIB_ABI_DEFAULT "mabi=64"
658 #elif MIPS_ABI_DEFAULT == ABI_EABI
659 #define MULTILIB_ABI_DEFAULT "mabi=eabi"
660 #endif
661 
662 #ifndef MULTILIB_DEFAULTS
663 #define MULTILIB_DEFAULTS \
664     { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
665 #endif
666 
667 /* We must pass -EL to the linker by default for little endian embedded
668    targets using linker scripts with a OUTPUT_FORMAT line.  Otherwise, the
669    linker will default to using big-endian output files.  The OUTPUT_FORMAT
670    line must be in the linker script, otherwise -EB/-EL will not work.  */
671 
672 #ifndef ENDIAN_SPEC
673 #if TARGET_ENDIAN_DEFAULT == 0
674 #define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
675 #else
676 #define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
677 #endif
678 #endif
679 
680 /* A spec condition that matches all non-mips16 -mips arguments.  */
681 
682 #define MIPS_ISA_LEVEL_OPTION_SPEC \
683   "mips1|mips2|mips3|mips4|mips32*|mips64*"
684 
685 /* A spec condition that matches all non-mips16 architecture arguments.  */
686 
687 #define MIPS_ARCH_OPTION_SPEC \
688   MIPS_ISA_LEVEL_OPTION_SPEC "|march=*"
689 
690 /* A spec that infers a -mips argument from an -march argument,
691    or injects the default if no architecture is specified.  */
692 
693 #define MIPS_ISA_LEVEL_SPEC \
694   "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
695      %{march=mips1|march=r2000|march=r3000|march=r3900:-mips1} \
696      %{march=mips2|march=r6000:-mips2} \
697      %{march=mips3|march=r4*|march=vr4*|march=orion|march=loongson2*:-mips3} \
698      %{march=mips4|march=r8000|march=vr5*|march=rm7000|march=rm9000 \
699        |march=r10000|march=r12000|march=r14000|march=r16000:-mips4} \
700      %{march=mips32|march=4kc|march=4km|march=4kp|march=4ksc:-mips32} \
701      %{march=mips32r2|march=m4k|march=4ke*|march=4ksd|march=24k* \
702        |march=34k*|march=74k*|march=m14k*|march=1004k*: -mips32r2} \
703      %{march=mips64|march=5k*|march=20k*|march=sb1*|march=sr71000 \
704        |march=xlr: -mips64} \
705      %{march=mips64r2|march=loongson3a|march=octeon|march=xlp: -mips64r2} \
706      %{!march=*: -" MULTILIB_ISA_DEFAULT "}}"
707 
708 /* A spec that infers a -mhard-float or -msoft-float setting from an
709    -march argument.  Note that soft-float and hard-float code are not
710    link-compatible.  */
711 
712 #define MIPS_ARCH_FLOAT_SPEC \
713   "%{mhard-float|msoft-float|mno-float|march=mips*:; \
714      march=vr41*|march=m4k|march=4k*|march=24kc|march=24kec \
715      |march=34kc|march=34kn|march=74kc|march=1004kc|march=5kc \
716      |march=m14k*|march=octeon|march=xlr: -msoft-float;		  \
717      march=*: -mhard-float}"
718 
719 /* A spec condition that matches 32-bit options.  It only works if
720    MIPS_ISA_LEVEL_SPEC has been applied.  */
721 
722 #define MIPS_32BIT_OPTION_SPEC \
723   "mips1|mips2|mips32*|mgp32"
724 
725 /* Infer a -msynci setting from a -mips argument, on the assumption that
726    -msynci is desired where possible.  */
727 #define MIPS_ISA_SYNCI_SPEC \
728   "%{msynci|mno-synci:;:%{mips32r2|mips64r2:-msynci;:-mno-synci}}"
729 
730 #if (MIPS_ABI_DEFAULT == ABI_O64 \
731      || MIPS_ABI_DEFAULT == ABI_N32 \
732      || MIPS_ABI_DEFAULT == ABI_64)
733 #define OPT_ARCH64 "mabi=32|mgp32:;"
734 #define OPT_ARCH32 "mabi=32|mgp32"
735 #else
736 #define OPT_ARCH64 "mabi=o64|mabi=n32|mabi=64|mgp64"
737 #define OPT_ARCH32 "mabi=o64|mabi=n32|mabi=64|mgp64:;"
738 #endif
739 
740 /* Support for a compile-time default CPU, et cetera.  The rules are:
741    --with-arch is ignored if -march is specified or a -mips is specified
742      (other than -mips16); likewise --with-arch-32 and --with-arch-64.
743    --with-tune is ignored if -mtune is specified; likewise
744      --with-tune-32 and --with-tune-64.
745    --with-abi is ignored if -mabi is specified.
746    --with-float is ignored if -mhard-float or -msoft-float are
747      specified.
748    --with-nan is ignored if -mnan is specified.
749    --with-divide is ignored if -mdivide-traps or -mdivide-breaks are
750      specified. */
751 #define OPTION_DEFAULT_SPECS \
752   {"arch", "%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}" }, \
753   {"arch_32", "%{" OPT_ARCH32 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
754   {"arch_64", "%{" OPT_ARCH64 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
755   {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
756   {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
757   {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
758   {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
759   {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
760   {"fpu", "%{!msingle-float:%{!mdouble-float:-m%(VALUE)-float}}" }, \
761   {"nan", "%{!mnan=*:-mnan=%(VALUE)}" }, \
762   {"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }, \
763   {"llsc", "%{!mllsc:%{!mno-llsc:-m%(VALUE)}}" }, \
764   {"mips-plt", "%{!mplt:%{!mno-plt:-m%(VALUE)}}" }, \
765   {"synci", "%{!msynci:%{!mno-synci:-m%(VALUE)}}" }
766 
767 /* A spec that infers the -mdsp setting from an -march argument.  */
768 #define BASE_DRIVER_SELF_SPECS \
769   "%{!mno-dsp: \
770      %{march=24ke*|march=34kc*|march=34kf*|march=34kx*|march=1004k*: -mdsp} \
771      %{march=74k*|march=m14ke*: %{!mno-dspr2: -mdspr2 -mdsp}}}"
772 
773 #define DRIVER_SELF_SPECS BASE_DRIVER_SELF_SPECS
774 
775 #define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
776                                && ISA_HAS_COND_TRAP)
777 
778 #define GENERATE_BRANCHLIKELY   (TARGET_BRANCHLIKELY && !TARGET_MIPS16)
779 
780 /* True if the ABI can only work with 64-bit integer registers.  We
781    generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
782    otherwise floating-point registers must also be 64-bit.  */
783 #define ABI_NEEDS_64BIT_REGS	(TARGET_NEWABI || mips_abi == ABI_O64)
784 
785 /* Likewise for 32-bit regs.  */
786 #define ABI_NEEDS_32BIT_REGS	(mips_abi == ABI_32)
787 
788 /* True if the file format uses 64-bit symbols.  At present, this is
789    only true for n64, which uses 64-bit ELF.  */
790 #define FILE_HAS_64BIT_SYMBOLS	(mips_abi == ABI_64)
791 
792 /* True if symbols are 64 bits wide.  This is usually determined by
793    the ABI's file format, but it can be overridden by -msym32.  Note that
794    overriding the size with -msym32 changes the ABI of relocatable objects,
795    although it doesn't change the ABI of a fully-linked object.  */
796 #define ABI_HAS_64BIT_SYMBOLS	(FILE_HAS_64BIT_SYMBOLS \
797 				 && Pmode == DImode	\
798 				 && !TARGET_SYM32)
799 
800 /* ISA has instructions for managing 64-bit fp and gp regs (e.g. mips3).  */
801 #define ISA_HAS_64BIT_REGS	(ISA_MIPS3				\
802 				 || ISA_MIPS4				\
803 				 || ISA_MIPS64				\
804 				 || ISA_MIPS64R2)
805 
806 /* ISA has branch likely instructions (e.g. mips2).  */
807 /* Disable branchlikely for tx39 until compare rewrite.  They haven't
808    been generated up to this point.  */
809 #define ISA_HAS_BRANCHLIKELY	(!ISA_MIPS1)
810 
811 /* ISA has a three-operand multiplication instruction (usually spelt "mul").  */
812 #define ISA_HAS_MUL3		((TARGET_MIPS3900                       \
813 				  || TARGET_MIPS5400			\
814 				  || TARGET_MIPS5500			\
815 				  || TARGET_MIPS5900			\
816 				  || TARGET_MIPS7000			\
817 				  || TARGET_MIPS9000			\
818 				  || TARGET_MAD				\
819 				  || ISA_MIPS32				\
820 				  || ISA_MIPS32R2			\
821 				  || ISA_MIPS64				\
822 				  || ISA_MIPS64R2)			\
823 				 && !TARGET_MIPS16)
824 
825 /* ISA has a three-operand multiplication instruction.  */
826 #define ISA_HAS_DMUL3		(TARGET_64BIT				\
827 				 && TARGET_OCTEON			\
828 				 && !TARGET_MIPS16)
829 
830 /* ISA supports instructions DMULT and DMULTU. */
831 #define ISA_HAS_DMULT		(TARGET_64BIT && !TARGET_MIPS5900)
832 
833 /* ISA supports instructions MULT and MULTU.
834    This is always true, but the macro is needed for ISA_HAS_<D>MULT
835    in mips.md.  */
836 #define ISA_HAS_MULT		(1)
837 
838 /* ISA supports instructions DDIV and DDIVU. */
839 #define ISA_HAS_DDIV		(TARGET_64BIT && !TARGET_MIPS5900)
840 
841 /* ISA supports instructions DIV and DIVU.
842    This is always true, but the macro is needed for ISA_HAS_<D>DIV
843    in mips.md.  */
844 #define ISA_HAS_DIV		(1)
845 
846 #define ISA_HAS_DIV3		((TARGET_LOONGSON_2EF			\
847 				  || TARGET_LOONGSON_3A)		\
848 				 && !TARGET_MIPS16)
849 
850 /* ISA has the floating-point conditional move instructions introduced
851    in mips4.  */
852 #define ISA_HAS_FP_CONDMOVE	((ISA_MIPS4				\
853 				  || ISA_MIPS32				\
854 				  || ISA_MIPS32R2			\
855 				  || ISA_MIPS64				\
856 				  || ISA_MIPS64R2)			\
857 				 && !TARGET_MIPS5500			\
858 				 && !TARGET_MIPS16)
859 
860 /* ISA has the integer conditional move instructions introduced in mips4 and
861    ST Loongson 2E/2F.  */
862 #define ISA_HAS_CONDMOVE        (ISA_HAS_FP_CONDMOVE			\
863 				 || TARGET_MIPS5900			\
864 				 || TARGET_LOONGSON_2EF)
865 
866 /* ISA has LDC1 and SDC1.  */
867 #define ISA_HAS_LDC1_SDC1	(!ISA_MIPS1				\
868 				 && !TARGET_MIPS5900			\
869 				 && !TARGET_MIPS16)
870 
871 /* ISA has the mips4 FP condition code instructions: FP-compare to CC,
872    branch on CC, and move (both FP and non-FP) on CC.  */
873 #define ISA_HAS_8CC		(ISA_MIPS4				\
874 				 || ISA_MIPS32				\
875 				 || ISA_MIPS32R2			\
876 				 || ISA_MIPS64				\
877 				 || ISA_MIPS64R2)
878 
879 /* This is a catch all for other mips4 instructions: indexed load, the
880    FP madd and msub instructions, and the FP recip and recip sqrt
881    instructions.  Note that this macro should only be used by other
882    ISA_HAS_* macros.  */
883 #define ISA_HAS_FP4		((ISA_MIPS4				\
884 				  || ISA_MIPS32R2			\
885 				  || ISA_MIPS64				\
886 				  || ISA_MIPS64R2)			\
887 				 && !TARGET_MIPS16)
888 
889 /* ISA has floating-point indexed load and store instructions
890    (LWXC1, LDXC1, SWXC1 and SDXC1).  */
891 #define ISA_HAS_LXC1_SXC1	ISA_HAS_FP4
892 
893 /* ISA has paired-single instructions.  */
894 #define ISA_HAS_PAIRED_SINGLE	(ISA_MIPS32R2 || ISA_MIPS64 || ISA_MIPS64R2)
895 
896 /* ISA has conditional trap instructions.  */
897 #define ISA_HAS_COND_TRAP	(!ISA_MIPS1				\
898 				 && !TARGET_MIPS16)
899 
900 /* ISA has integer multiply-accumulate instructions, madd and msub.  */
901 #define ISA_HAS_MADD_MSUB	(ISA_MIPS32				\
902 				 || ISA_MIPS32R2			\
903 				 || ISA_MIPS64				\
904 				 || ISA_MIPS64R2)
905 
906 /* Integer multiply-accumulate instructions should be generated.  */
907 #define GENERATE_MADD_MSUB	(TARGET_IMADD && !TARGET_MIPS16)
908 
909 /* ISA has floating-point madd and msub instructions 'd = a * b [+-] c'.  */
910 #define ISA_HAS_FP_MADD4_MSUB4  ISA_HAS_FP4
911 
912 /* ISA has floating-point madd and msub instructions 'c = a * b [+-] c'.  */
913 #define ISA_HAS_FP_MADD3_MSUB3  TARGET_LOONGSON_2EF
914 
915 /* ISA has floating-point nmadd and nmsub instructions
916    'd = -((a * b) [+-] c)'.  */
917 #define ISA_HAS_NMADD4_NMSUB4	ISA_HAS_FP4
918 
919 /* ISA has floating-point nmadd and nmsub instructions
920    'c = -((a * b) [+-] c)'.  */
921 #define ISA_HAS_NMADD3_NMSUB3	TARGET_LOONGSON_2EF
922 
923 /* ISA has floating-point RECIP.fmt and RSQRT.fmt instructions.  The
924    MIPS64 rev. 1 ISA says that RECIP.D and RSQRT.D are unpredictable when
925    doubles are stored in pairs of FPRs, so for safety's sake, we apply
926    this restriction to the MIPS IV ISA too.  */
927 #define ISA_HAS_FP_RECIP_RSQRT(MODE)					\
928 				(((ISA_HAS_FP4				\
929 				   && ((MODE) == SFmode			\
930 				       || ((TARGET_FLOAT64		\
931 					    || ISA_MIPS32R2		\
932 					    || ISA_MIPS64R2)		\
933 					   && (MODE) == DFmode)))	\
934 				  || (TARGET_SB1			\
935 				      && (MODE) == V2SFmode))		\
936 				 && !TARGET_MIPS16)
937 
938 /* ISA has count leading zeroes/ones instruction (not implemented).  */
939 #define ISA_HAS_CLZ_CLO		((ISA_MIPS32				\
940 				  || ISA_MIPS32R2			\
941 				  || ISA_MIPS64				\
942 				  || ISA_MIPS64R2)			\
943 				 && !TARGET_MIPS16)
944 
945 /* ISA has three operand multiply instructions that put
946    the high part in an accumulator: mulhi or mulhiu.  */
947 #define ISA_HAS_MULHI		((TARGET_MIPS5400			 \
948 				  || TARGET_MIPS5500			 \
949 				  || TARGET_SR71K)			 \
950 				 && !TARGET_MIPS16)
951 
952 /* ISA has three operand multiply instructions that negate the
953    result and put the result in an accumulator.  */
954 #define ISA_HAS_MULS		((TARGET_MIPS5400			\
955 				  || TARGET_MIPS5500			\
956 				  || TARGET_SR71K)			\
957 				 && !TARGET_MIPS16)
958 
959 /* ISA has three operand multiply instructions that subtract the
960    result from a 4th operand and put the result in an accumulator.  */
961 #define ISA_HAS_MSAC		((TARGET_MIPS5400			\
962 				  || TARGET_MIPS5500			\
963 				  || TARGET_SR71K)			\
964 				 && !TARGET_MIPS16)
965 
966 /* ISA has three operand multiply instructions that add the result
967    to a 4th operand and put the result in an accumulator.  */
968 #define ISA_HAS_MACC		((TARGET_MIPS4120			\
969 				  || TARGET_MIPS4130			\
970 				  || TARGET_MIPS5400			\
971 				  || TARGET_MIPS5500			\
972 				  || TARGET_SR71K)			\
973 				 && !TARGET_MIPS16)
974 
975 /* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions.  */
976 #define ISA_HAS_MACCHI		((TARGET_MIPS4120			\
977 				  || TARGET_MIPS4130)			\
978 				 && !TARGET_MIPS16)
979 
980 /* ISA has the "ror" (rotate right) instructions.  */
981 #define ISA_HAS_ROR		((ISA_MIPS32R2				\
982 				  || ISA_MIPS64R2			\
983 				  || TARGET_MIPS5400			\
984 				  || TARGET_MIPS5500			\
985 				  || TARGET_SR71K			\
986 				  || TARGET_SMARTMIPS)			\
987 				 && !TARGET_MIPS16)
988 
989 /* ISA has the WSBH (word swap bytes within halfwords) instruction.
990    64-bit targets also provide DSBH and DSHD.  */
991 #define ISA_HAS_WSBH		((ISA_MIPS32R2 || ISA_MIPS64R2)		\
992 				 && !TARGET_MIPS16)
993 
994 /* ISA has data prefetch instructions.  This controls use of 'pref'.  */
995 #define ISA_HAS_PREFETCH	((ISA_MIPS4				\
996 				  || TARGET_LOONGSON_2EF		\
997 				  || TARGET_MIPS5900			\
998 				  || ISA_MIPS32				\
999 				  || ISA_MIPS32R2			\
1000 				  || ISA_MIPS64				\
1001 				  || ISA_MIPS64R2)			\
1002 				 && !TARGET_MIPS16)
1003 
1004 /* ISA has data indexed prefetch instructions.  This controls use of
1005    'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
1006    (prefx is a cop1x instruction, so can only be used if FP is
1007    enabled.)  */
1008 #define ISA_HAS_PREFETCHX	ISA_HAS_FP4
1009 
1010 /* True if trunc.w.s and trunc.w.d are real (not synthetic)
1011    instructions.  Both require TARGET_HARD_FLOAT, and trunc.w.d
1012    also requires TARGET_DOUBLE_FLOAT.  */
1013 #define ISA_HAS_TRUNC_W		(!ISA_MIPS1)
1014 
1015 /* ISA includes the MIPS32r2 seb and seh instructions.  */
1016 #define ISA_HAS_SEB_SEH		((ISA_MIPS32R2		\
1017 				  || ISA_MIPS64R2)	\
1018 				 && !TARGET_MIPS16)
1019 
1020 /* ISA includes the MIPS32/64 rev 2 ext and ins instructions.  */
1021 #define ISA_HAS_EXT_INS		((ISA_MIPS32R2		\
1022 				  || ISA_MIPS64R2)	\
1023 				 && !TARGET_MIPS16)
1024 
1025 /* ISA has instructions for accessing top part of 64-bit fp regs.  */
1026 #define ISA_HAS_MXHC1		(TARGET_FLOAT64		\
1027 				 && (ISA_MIPS32R2	\
1028 				     || ISA_MIPS64R2))
1029 
1030 /* ISA has lwxs instruction (load w/scaled index address.  */
1031 #define ISA_HAS_LWXS		((TARGET_SMARTMIPS || TARGET_MICROMIPS) \
1032 				 && !TARGET_MIPS16)
1033 
1034 /* ISA has lbx, lbux, lhx, lhx, lhux, lwx, lwux, or ldx instruction. */
1035 #define ISA_HAS_LBX		(TARGET_OCTEON2)
1036 #define ISA_HAS_LBUX		(ISA_HAS_DSP || TARGET_OCTEON2)
1037 #define ISA_HAS_LHX		(ISA_HAS_DSP || TARGET_OCTEON2)
1038 #define ISA_HAS_LHUX		(TARGET_OCTEON2)
1039 #define ISA_HAS_LWX		(ISA_HAS_DSP || TARGET_OCTEON2)
1040 #define ISA_HAS_LWUX		(TARGET_OCTEON2 && TARGET_64BIT)
1041 #define ISA_HAS_LDX		((ISA_HAS_DSP || TARGET_OCTEON2) \
1042 				 && TARGET_64BIT)
1043 
1044 /* The DSP ASE is available.  */
1045 #define ISA_HAS_DSP		(TARGET_DSP && !TARGET_MIPS16)
1046 
1047 /* Revision 2 of the DSP ASE is available.  */
1048 #define ISA_HAS_DSPR2		(TARGET_DSPR2 && !TARGET_MIPS16)
1049 
1050 /* True if the result of a load is not available to the next instruction.
1051    A nop will then be needed between instructions like "lw $4,..."
1052    and "addiu $4,$4,1".  */
1053 #define ISA_HAS_LOAD_DELAY	(ISA_MIPS1				\
1054 				 && !TARGET_MIPS3900			\
1055 				 && !TARGET_MIPS5900			\
1056 				 && !TARGET_MIPS16			\
1057 				 && !TARGET_MICROMIPS)
1058 
1059 /* Likewise mtc1 and mfc1.  */
1060 #define ISA_HAS_XFER_DELAY	(mips_isa <= 3			\
1061 				 && !TARGET_MIPS5900		\
1062 				 && !TARGET_LOONGSON_2EF)
1063 
1064 /* Likewise floating-point comparisons.  */
1065 #define ISA_HAS_FCMP_DELAY	(mips_isa <= 3			\
1066 				 && !TARGET_MIPS5900		\
1067 				 && !TARGET_LOONGSON_2EF)
1068 
1069 /* True if mflo and mfhi can be immediately followed by instructions
1070    which write to the HI and LO registers.
1071 
1072    According to MIPS specifications, MIPS ISAs I, II, and III need
1073    (at least) two instructions between the reads of HI/LO and
1074    instructions which write them, and later ISAs do not.  Contradicting
1075    the MIPS specifications, some MIPS IV processor user manuals (e.g.
1076    the UM for the NEC Vr5000) document needing the instructions between
1077    HI/LO reads and writes, as well.  Therefore, we declare only MIPS32,
1078    MIPS64 and later ISAs to have the interlocks, plus any specific
1079    earlier-ISA CPUs for which CPU documentation declares that the
1080    instructions are really interlocked.  */
1081 #define ISA_HAS_HILO_INTERLOCKS	(ISA_MIPS32				\
1082 				 || ISA_MIPS32R2			\
1083 				 || ISA_MIPS64				\
1084 				 || ISA_MIPS64R2			\
1085 				 || TARGET_MIPS5500			\
1086 				 || TARGET_MIPS5900			\
1087 				 || TARGET_LOONGSON_2EF)
1088 
1089 /* ISA includes synci, jr.hb and jalr.hb.  */
1090 #define ISA_HAS_SYNCI ((ISA_MIPS32R2		\
1091 			|| ISA_MIPS64R2)	\
1092 		       && !TARGET_MIPS16)
1093 
1094 /* ISA includes sync.  */
1095 #define ISA_HAS_SYNC ((mips_isa >= 2 || TARGET_MIPS3900) && !TARGET_MIPS16)
1096 #define GENERATE_SYNC			\
1097   (target_flags_explicit & MASK_LLSC	\
1098    ? TARGET_LLSC && !TARGET_MIPS16	\
1099    : ISA_HAS_SYNC)
1100 
1101 /* ISA includes ll and sc.  Note that this implies ISA_HAS_SYNC
1102    because the expanders use both ISA_HAS_SYNC and ISA_HAS_LL_SC
1103    instructions.  */
1104 #define ISA_HAS_LL_SC (mips_isa >= 2 && !TARGET_MIPS5900 && !TARGET_MIPS16)
1105 #define GENERATE_LL_SC			\
1106   (target_flags_explicit & MASK_LLSC	\
1107    ? TARGET_LLSC && !TARGET_MIPS16	\
1108    : ISA_HAS_LL_SC)
1109 
1110 #define ISA_HAS_SWAP (TARGET_XLP)
1111 #define ISA_HAS_LDADD (TARGET_XLP)
1112 
1113 /* ISA includes the baddu instruction.  */
1114 #define ISA_HAS_BADDU		(TARGET_OCTEON && !TARGET_MIPS16)
1115 
1116 /* ISA includes the bbit* instructions.  */
1117 #define ISA_HAS_BBIT		(TARGET_OCTEON && !TARGET_MIPS16)
1118 
1119 /* ISA includes the cins instruction.  */
1120 #define ISA_HAS_CINS		(TARGET_OCTEON && !TARGET_MIPS16)
1121 
1122 /* ISA includes the exts instruction.  */
1123 #define ISA_HAS_EXTS		(TARGET_OCTEON && !TARGET_MIPS16)
1124 
1125 /* ISA includes the seq and sne instructions.  */
1126 #define ISA_HAS_SEQ_SNE		(TARGET_OCTEON && !TARGET_MIPS16)
1127 
1128 /* ISA includes the pop instruction.  */
1129 #define ISA_HAS_POP		(TARGET_OCTEON && !TARGET_MIPS16)
1130 
1131 /* The CACHE instruction is available in non-MIPS16 code.  */
1132 #define TARGET_CACHE_BUILTIN (mips_isa >= 3)
1133 
1134 /* The CACHE instruction is available.  */
1135 #define ISA_HAS_CACHE (TARGET_CACHE_BUILTIN && !TARGET_MIPS16)
1136 
1137 /* Tell collect what flags to pass to nm.  */
1138 #ifndef NM_FLAGS
1139 #define NM_FLAGS "-Bn"
1140 #endif
1141 
1142 
1143 /* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
1144    the assembler.  It may be overridden by subtargets.
1145 
1146    Beginning with gas 2.13, -mdebug must be passed to correctly handle
1147    COFF debugging info.  */
1148 
1149 #ifndef SUBTARGET_ASM_DEBUGGING_SPEC
1150 #define SUBTARGET_ASM_DEBUGGING_SPEC "\
1151 %{g} %{g0} %{g1} %{g2} %{g3} \
1152 %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
1153 %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
1154 %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
1155 %{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
1156 %{gcoff*:-mdebug} %{!gcoff*:-no-mdebug}"
1157 #endif
1158 
1159 /* SUBTARGET_ASM_SPEC is always passed to the assembler.  It may be
1160    overridden by subtargets.  */
1161 
1162 #ifndef SUBTARGET_ASM_SPEC
1163 #define SUBTARGET_ASM_SPEC ""
1164 #endif
1165 
1166 #undef ASM_SPEC
1167 #define ASM_SPEC "\
1168 %{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
1169 %{mips32*} %{mips64*} \
1170 %{mips16} %{mno-mips16:-no-mips16} \
1171 %{mmicromips} %{mno-micromips} \
1172 %{mips3d} %{mno-mips3d:-no-mips3d} \
1173 %{mdmx} %{mno-mdmx:-no-mdmx} \
1174 %{mdsp} %{mno-dsp} \
1175 %{mdspr2} %{mno-dspr2} \
1176 %{mmcu} %{mno-mcu} \
1177 %{meva} %{mno-eva} \
1178 %{mvirt} %{mno-virt} \
1179 %{msmartmips} %{mno-smartmips} \
1180 %{mmt} %{mno-mt} \
1181 %{mfix-rm7000} %{mno-fix-rm7000} \
1182 %{mfix-vr4120} %{mfix-vr4130} \
1183 %{mfix-24k} \
1184 %{noasmopt:-O0; O0|fno-delayed-branch:-O1; O*:-O2; :-O1} \
1185 %(subtarget_asm_debugging_spec) \
1186 %{mabi=*} %{!mabi=*: %(asm_abi_default_spec)} \
1187 %{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
1188 %{mfp32} %{mfp64} %{mnan=*} \
1189 %{mshared} %{mno-shared} \
1190 %{msym32} %{mno-sym32} \
1191 %{mtune=*} \
1192 %(subtarget_asm_spec)"
1193 
1194 /* Extra switches sometimes passed to the linker.  */
1195 
1196 #ifndef LINK_SPEC
1197 #define LINK_SPEC "\
1198 %(endian_spec) \
1199 %{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32*} %{mips64*} \
1200 %{shared}"
1201 #endif  /* LINK_SPEC defined */
1202 
1203 
1204 /* Specs for the compiler proper */
1205 
1206 /* SUBTARGET_CC1_SPEC is passed to the compiler proper.  It may be
1207    overridden by subtargets.  */
1208 #ifndef SUBTARGET_CC1_SPEC
1209 #define SUBTARGET_CC1_SPEC ""
1210 #endif
1211 
1212 /* CC1_SPEC is the set of arguments to pass to the compiler proper.  */
1213 
1214 #undef CC1_SPEC
1215 #define CC1_SPEC "\
1216 %{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
1217 %(subtarget_cc1_spec)"
1218 
1219 /* Preprocessor specs.  */
1220 
1221 /* SUBTARGET_CPP_SPEC is passed to the preprocessor.  It may be
1222    overridden by subtargets.  */
1223 #ifndef SUBTARGET_CPP_SPEC
1224 #define SUBTARGET_CPP_SPEC ""
1225 #endif
1226 
1227 #define CPP_SPEC "%(subtarget_cpp_spec)"
1228 
1229 /* This macro defines names of additional specifications to put in the specs
1230    that can be used in various specifications like CC1_SPEC.  Its definition
1231    is an initializer with a subgrouping for each command option.
1232 
1233    Each subgrouping contains a string constant, that defines the
1234    specification name, and a string constant that used by the GCC driver
1235    program.
1236 
1237    Do not define this macro if it does not need to do anything.  */
1238 
1239 #define EXTRA_SPECS							\
1240   { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC },				\
1241   { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },				\
1242   { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC },	\
1243   { "subtarget_asm_spec", SUBTARGET_ASM_SPEC },				\
1244   { "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT },			\
1245   { "endian_spec", ENDIAN_SPEC },					\
1246   SUBTARGET_EXTRA_SPECS
1247 
1248 #ifndef SUBTARGET_EXTRA_SPECS
1249 #define SUBTARGET_EXTRA_SPECS
1250 #endif
1251 
1252 #define DBX_DEBUGGING_INFO 1		/* generate stabs (OSF/rose) */
1253 #define DWARF2_DEBUGGING_INFO 1         /* dwarf2 debugging info */
1254 
1255 #ifndef PREFERRED_DEBUGGING_TYPE
1256 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1257 #endif
1258 
1259 /* The size of DWARF addresses should be the same as the size of symbols
1260    in the target file format.  They shouldn't depend on things like -msym32,
1261    because many DWARF consumers do not allow the mixture of address sizes
1262    that one would then get from linking -msym32 code with -msym64 code.
1263 
1264    Note that the default POINTER_SIZE test is not appropriate for MIPS.
1265    EABI64 has 64-bit pointers but uses 32-bit ELF.  */
1266 #define DWARF2_ADDR_SIZE (FILE_HAS_64BIT_SYMBOLS ? 8 : 4)
1267 
1268 /* By default, turn on GDB extensions.  */
1269 #define DEFAULT_GDB_EXTENSIONS 1
1270 
1271 /* Local compiler-generated symbols must have a prefix that the assembler
1272    understands.   By default, this is $, although some targets (e.g.,
1273    NetBSD-ELF) need to override this.  */
1274 
1275 #ifndef LOCAL_LABEL_PREFIX
1276 #define LOCAL_LABEL_PREFIX	"$"
1277 #endif
1278 
1279 /* By default on the mips, external symbols do not have an underscore
1280    prepended, but some targets (e.g., NetBSD) require this.  */
1281 
1282 #ifndef USER_LABEL_PREFIX
1283 #define USER_LABEL_PREFIX	""
1284 #endif
1285 
1286 /* On Sun 4, this limit is 2048.  We use 1500 to be safe,
1287    since the length can run past this up to a continuation point.  */
1288 #undef DBX_CONTIN_LENGTH
1289 #define DBX_CONTIN_LENGTH 1500
1290 
1291 /* How to renumber registers for dbx and gdb.  */
1292 #define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[REGNO]
1293 
1294 /* The mapping from gcc register number to DWARF 2 CFA column number.  */
1295 #define DWARF_FRAME_REGNUM(REGNO) mips_dwarf_regno[REGNO]
1296 
1297 /* The DWARF 2 CFA column which tracks the return address.  */
1298 #define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
1299 
1300 /* Before the prologue, RA lives in r31.  */
1301 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, RETURN_ADDR_REGNUM)
1302 
1303 /* Describe how we implement __builtin_eh_return.  */
1304 #define EH_RETURN_DATA_REGNO(N) \
1305   ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
1306 
1307 #define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
1308 
1309 #define EH_USES(N) mips_eh_uses (N)
1310 
1311 /* Offsets recorded in opcodes are a multiple of this alignment factor.
1312    The default for this in 64-bit mode is 8, which causes problems with
1313    SFmode register saves.  */
1314 #define DWARF_CIE_DATA_ALIGNMENT -4
1315 
1316 /* Correct the offset of automatic variables and arguments.  Note that
1317    the MIPS debug format wants all automatic variables and arguments
1318    to be in terms of the virtual frame pointer (stack pointer before
1319    any adjustment in the function), while the MIPS 3.0 linker wants
1320    the frame pointer to be the stack pointer after the initial
1321    adjustment.  */
1322 
1323 #define DEBUGGER_AUTO_OFFSET(X)				\
1324   mips_debugger_offset (X, (HOST_WIDE_INT) 0)
1325 #define DEBUGGER_ARG_OFFSET(OFFSET, X)			\
1326   mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
1327 
1328 /* Target machine storage layout */
1329 
1330 #define BITS_BIG_ENDIAN 0
1331 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1332 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1333 
1334 #define MAX_BITS_PER_WORD 64
1335 
1336 /* Width of a word, in units (bytes).  */
1337 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
1338 #ifndef IN_LIBGCC2
1339 #define MIN_UNITS_PER_WORD 4
1340 #endif
1341 
1342 /* For MIPS, width of a floating point register.  */
1343 #define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
1344 
1345 /* The number of consecutive floating-point registers needed to store the
1346    largest format supported by the FPU.  */
1347 #define MAX_FPRS_PER_FMT (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
1348 
1349 /* The number of consecutive floating-point registers needed to store the
1350    smallest format supported by the FPU.  */
1351 #define MIN_FPRS_PER_FMT \
1352   (ISA_MIPS32 || ISA_MIPS32R2 || ISA_MIPS64 || ISA_MIPS64R2 \
1353    ? 1 : MAX_FPRS_PER_FMT)
1354 
1355 /* The largest size of value that can be held in floating-point
1356    registers and moved with a single instruction.  */
1357 #define UNITS_PER_HWFPVALUE \
1358   (TARGET_SOFT_FLOAT_ABI ? 0 : MAX_FPRS_PER_FMT * UNITS_PER_FPREG)
1359 
1360 /* The largest size of value that can be held in floating-point
1361    registers.  */
1362 #define UNITS_PER_FPVALUE			\
1363   (TARGET_SOFT_FLOAT_ABI ? 0			\
1364    : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG	\
1365    : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
1366 
1367 /* The number of bytes in a double.  */
1368 #define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
1369 
1370 /* Set the sizes of the core types.  */
1371 #define SHORT_TYPE_SIZE 16
1372 #define INT_TYPE_SIZE 32
1373 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1374 #define LONG_LONG_TYPE_SIZE 64
1375 
1376 #define FLOAT_TYPE_SIZE 32
1377 #define DOUBLE_TYPE_SIZE 64
1378 #define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
1379 
1380 /* Define the sizes of fixed-point types.  */
1381 #define SHORT_FRACT_TYPE_SIZE 8
1382 #define FRACT_TYPE_SIZE 16
1383 #define LONG_FRACT_TYPE_SIZE 32
1384 #define LONG_LONG_FRACT_TYPE_SIZE 64
1385 
1386 #define SHORT_ACCUM_TYPE_SIZE 16
1387 #define ACCUM_TYPE_SIZE 32
1388 #define LONG_ACCUM_TYPE_SIZE 64
1389 /* FIXME.  LONG_LONG_ACCUM_TYPE_SIZE should be 128 bits, but GCC
1390    doesn't support 128-bit integers for MIPS32 currently.  */
1391 #define LONG_LONG_ACCUM_TYPE_SIZE (TARGET_64BIT ? 128 : 64)
1392 
1393 /* long double is not a fixed mode, but the idea is that, if we
1394    support long double, we also want a 128-bit integer type.  */
1395 #define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
1396 
1397 #ifdef IN_LIBGCC2
1398 #if ((defined _ABIN32 && _MIPS_SIM == _ABIN32) \
1399      || (defined _ABI64 && _MIPS_SIM == _ABI64))
1400 #  define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
1401 # else
1402 #  define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
1403 # endif
1404 #endif
1405 
1406 /* Width in bits of a pointer.  */
1407 #ifndef POINTER_SIZE
1408 #define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
1409 #endif
1410 
1411 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
1412 #define PARM_BOUNDARY BITS_PER_WORD
1413 
1414 /* Allocation boundary (in *bits*) for the code of a function.  */
1415 #define FUNCTION_BOUNDARY 32
1416 
1417 /* Alignment of field after `int : 0' in a structure.  */
1418 #define EMPTY_FIELD_BOUNDARY 32
1419 
1420 /* Every structure's size must be a multiple of this.  */
1421 /* 8 is observed right on a DECstation and on riscos 4.02.  */
1422 #define STRUCTURE_SIZE_BOUNDARY 8
1423 
1424 /* There is no point aligning anything to a rounder boundary than this.  */
1425 #define BIGGEST_ALIGNMENT LONG_DOUBLE_TYPE_SIZE
1426 
1427 /* All accesses must be aligned.  */
1428 #define STRICT_ALIGNMENT 1
1429 
1430 /* Define this if you wish to imitate the way many other C compilers
1431    handle alignment of bitfields and the structures that contain
1432    them.
1433 
1434    The behavior is that the type written for a bit-field (`int',
1435    `short', or other integer type) imposes an alignment for the
1436    entire structure, as if the structure really did contain an
1437    ordinary field of that type.  In addition, the bit-field is placed
1438    within the structure so that it would fit within such a field,
1439    not crossing a boundary for it.
1440 
1441    Thus, on most machines, a bit-field whose type is written as `int'
1442    would not cross a four-byte boundary, and would force four-byte
1443    alignment for the whole structure.  (The alignment used may not
1444    be four bytes; it is controlled by the other alignment
1445    parameters.)
1446 
1447    If the macro is defined, its definition should be a C expression;
1448    a nonzero value for the expression enables this behavior.  */
1449 
1450 #define PCC_BITFIELD_TYPE_MATTERS 1
1451 
1452 /* If defined, a C expression to compute the alignment given to a
1453    constant that is being placed in memory.  CONSTANT is the constant
1454    and ALIGN is the alignment that the object would ordinarily have.
1455    The value of this macro is used instead of that alignment to align
1456    the object.
1457 
1458    If this macro is not defined, then ALIGN is used.
1459 
1460    The typical use of this macro is to increase alignment for string
1461    constants to be word aligned so that `strcpy' calls that copy
1462    constants can be done inline.  */
1463 
1464 #define CONSTANT_ALIGNMENT(EXP, ALIGN)					\
1465   ((TREE_CODE (EXP) == STRING_CST  || TREE_CODE (EXP) == CONSTRUCTOR)	\
1466    && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
1467 
1468 /* If defined, a C expression to compute the alignment for a static
1469    variable.  TYPE is the data type, and ALIGN is the alignment that
1470    the object would ordinarily have.  The value of this macro is used
1471    instead of that alignment to align the object.
1472 
1473    If this macro is not defined, then ALIGN is used.
1474 
1475    One use of this macro is to increase alignment of medium-size
1476    data to make it all fit in fewer cache lines.  Another is to
1477    cause character arrays to be word-aligned so that `strcpy' calls
1478    that copy constants to character arrays can be done inline.  */
1479 
1480 #undef DATA_ALIGNMENT
1481 #define DATA_ALIGNMENT(TYPE, ALIGN)					\
1482   ((((ALIGN) < BITS_PER_WORD)						\
1483     && (TREE_CODE (TYPE) == ARRAY_TYPE					\
1484 	|| TREE_CODE (TYPE) == UNION_TYPE				\
1485 	|| TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1486 
1487 /* We need this for the same reason as DATA_ALIGNMENT, namely to cause
1488    character arrays to be word-aligned so that `strcpy' calls that copy
1489    constants to character arrays can be done inline, and 'strcmp' can be
1490    optimised to use word loads. */
1491 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
1492   DATA_ALIGNMENT (TYPE, ALIGN)
1493 
1494 #define PAD_VARARGS_DOWN \
1495   (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1496 
1497 /* Define if operations between registers always perform the operation
1498    on the full register even if a narrower mode is specified.  */
1499 #define WORD_REGISTER_OPERATIONS
1500 
1501 /* When in 64-bit mode, move insns will sign extend SImode and CCmode
1502    moves.  All other references are zero extended.  */
1503 #define LOAD_EXTEND_OP(MODE) \
1504   (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1505    ? SIGN_EXTEND : ZERO_EXTEND)
1506 
1507 /* Define this macro if it is advisable to hold scalars in registers
1508    in a wider mode than that declared by the program.  In such cases,
1509    the value is constrained to be within the bounds of the declared
1510    type, but kept valid in the wider mode.  The signedness of the
1511    extension may differ from that of the type.  */
1512 
1513 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)	\
1514   if (GET_MODE_CLASS (MODE) == MODE_INT		\
1515       && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
1516     {                                           \
1517       if ((MODE) == SImode)                     \
1518         (UNSIGNEDP) = 0;                        \
1519       (MODE) = Pmode;                           \
1520     }
1521 
1522 /* Pmode is always the same as ptr_mode, but not always the same as word_mode.
1523    Extensions of pointers to word_mode must be signed.  */
1524 #define POINTERS_EXTEND_UNSIGNED false
1525 
1526 /* Define if loading short immediate values into registers sign extends.  */
1527 #define SHORT_IMMEDIATES_SIGN_EXTEND
1528 
1529 /* The [d]clz instructions have the natural values at 0.  */
1530 
1531 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1532   ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
1533 
1534 /* Standard register usage.  */
1535 
1536 /* Number of hardware registers.  We have:
1537 
1538    - 32 integer registers
1539    - 32 floating point registers
1540    - 8 condition code registers
1541    - 2 accumulator registers (hi and lo)
1542    - 32 registers each for coprocessors 0, 2 and 3
1543    - 4 fake registers:
1544 	- ARG_POINTER_REGNUM
1545 	- FRAME_POINTER_REGNUM
1546 	- GOT_VERSION_REGNUM (see the comment above load_call<mode> for details)
1547 	- CPRESTORE_SLOT_REGNUM
1548    - 2 dummy entries that were used at various times in the past.
1549    - 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
1550    - 6 DSP control registers  */
1551 
1552 #define FIRST_PSEUDO_REGISTER 188
1553 
1554 /* By default, fix the kernel registers ($26 and $27), the global
1555    pointer ($28) and the stack pointer ($29).  This can change
1556    depending on the command-line options.
1557 
1558    Regarding coprocessor registers: without evidence to the contrary,
1559    it's best to assume that each coprocessor register has a unique
1560    use.  This can be overridden, in, e.g., mips_option_override or
1561    TARGET_CONDITIONAL_REGISTER_USAGE should the assumption be
1562    inappropriate for a particular target.  */
1563 
1564 #define FIXED_REGISTERS							\
1565 {									\
1566   1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1567   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0,			\
1568   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1569   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1570   0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,			\
1571   /* COP0 registers */							\
1572   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1573   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1574   /* COP2 registers */							\
1575   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1576   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1577   /* COP3 registers */							\
1578   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1579   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1580   /* 6 DSP accumulator registers & 6 control registers */		\
1581   0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1					\
1582 }
1583 
1584 
1585 /* Set up this array for o32 by default.
1586 
1587    Note that we don't mark $31 as a call-clobbered register.  The idea is
1588    that it's really the call instructions themselves which clobber $31.
1589    We don't care what the called function does with it afterwards.
1590 
1591    This approach makes it easier to implement sibcalls.  Unlike normal
1592    calls, sibcalls don't clobber $31, so the register reaches the
1593    called function in tact.  EPILOGUE_USES says that $31 is useful
1594    to the called function.  */
1595 
1596 #define CALL_USED_REGISTERS						\
1597 {									\
1598   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1599   0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0,			\
1600   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1601   1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1602   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1603   /* COP0 registers */							\
1604   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1605   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1606   /* COP2 registers */							\
1607   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1608   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1609   /* COP3 registers */							\
1610   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1611   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1612   /* 6 DSP accumulator registers & 6 control registers */		\
1613   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1					\
1614 }
1615 
1616 
1617 /* Define this since $28, though fixed, is call-saved in many ABIs.  */
1618 
1619 #define CALL_REALLY_USED_REGISTERS                                      \
1620 { /* General registers.  */                                             \
1621   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1622   0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0,                       \
1623   /* Floating-point registers.  */                                      \
1624   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1625   1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1626   /* Others.  */                                                        \
1627   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,			\
1628   /* COP0 registers */							\
1629   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1630   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1631   /* COP2 registers */							\
1632   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1633   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1634   /* COP3 registers */							\
1635   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1636   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1637   /* 6 DSP accumulator registers & 6 control registers */		\
1638   1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0					\
1639 }
1640 
1641 /* Internal macros to classify a register number as to whether it's a
1642    general purpose register, a floating point register, a
1643    multiply/divide register, or a status register.  */
1644 
1645 #define GP_REG_FIRST 0
1646 #define GP_REG_LAST  31
1647 #define GP_REG_NUM   (GP_REG_LAST - GP_REG_FIRST + 1)
1648 #define GP_DBX_FIRST 0
1649 #define K0_REG_NUM   (GP_REG_FIRST + 26)
1650 #define K1_REG_NUM   (GP_REG_FIRST + 27)
1651 #define KERNEL_REG_P(REGNO)	(IN_RANGE (REGNO, K0_REG_NUM, K1_REG_NUM))
1652 
1653 #define FP_REG_FIRST 32
1654 #define FP_REG_LAST  63
1655 #define FP_REG_NUM   (FP_REG_LAST - FP_REG_FIRST + 1)
1656 #define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1657 
1658 #define MD_REG_FIRST 64
1659 #define MD_REG_LAST  65
1660 #define MD_REG_NUM   (MD_REG_LAST - MD_REG_FIRST + 1)
1661 #define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
1662 
1663 /* The DWARF 2 CFA column which tracks the return address from a
1664    signal handler context.  This means that to maintain backwards
1665    compatibility, no hard register can be assigned this column if it
1666    would need to be handled by the DWARF unwinder.  */
1667 #define DWARF_ALT_FRAME_RETURN_COLUMN 66
1668 
1669 #define ST_REG_FIRST 67
1670 #define ST_REG_LAST  74
1671 #define ST_REG_NUM   (ST_REG_LAST - ST_REG_FIRST + 1)
1672 
1673 
1674 /* FIXME: renumber.  */
1675 #define COP0_REG_FIRST 80
1676 #define COP0_REG_LAST 111
1677 #define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1678 
1679 #define COP0_STATUS_REG_NUM	(COP0_REG_FIRST + 12)
1680 #define COP0_CAUSE_REG_NUM	(COP0_REG_FIRST + 13)
1681 #define COP0_EPC_REG_NUM	(COP0_REG_FIRST + 14)
1682 
1683 #define COP2_REG_FIRST 112
1684 #define COP2_REG_LAST 143
1685 #define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1686 
1687 #define COP3_REG_FIRST 144
1688 #define COP3_REG_LAST 175
1689 #define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
1690 
1691 /* These definitions assume that COP0, 2 and 3 are numbered consecutively.  */
1692 #define ALL_COP_REG_FIRST COP0_REG_FIRST
1693 #define ALL_COP_REG_LAST COP3_REG_LAST
1694 #define ALL_COP_REG_NUM (ALL_COP_REG_LAST - ALL_COP_REG_FIRST + 1)
1695 
1696 #define DSP_ACC_REG_FIRST 176
1697 #define DSP_ACC_REG_LAST 181
1698 #define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
1699 
1700 #define AT_REGNUM	(GP_REG_FIRST + 1)
1701 #define HI_REGNUM	(TARGET_BIG_ENDIAN ? MD_REG_FIRST : MD_REG_FIRST + 1)
1702 #define LO_REGNUM	(TARGET_BIG_ENDIAN ? MD_REG_FIRST + 1 : MD_REG_FIRST)
1703 
1704 /* A few bitfield locations for the coprocessor registers.  */
1705 /* Request Interrupt Priority Level is from bit 10 to bit 15 of
1706    the cause register for the EIC interrupt mode.  */
1707 #define CAUSE_IPL	10
1708 /* Interrupt Priority Level is from bit 10 to bit 15 of the status register.  */
1709 #define SR_IPL		10
1710 /* Exception Level is at bit 1 of the status register.  */
1711 #define SR_EXL		1
1712 /* Interrupt Enable is at bit 0 of the status register.  */
1713 #define SR_IE		0
1714 
1715 /* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
1716    If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
1717    should be used instead.  */
1718 #define FPSW_REGNUM	ST_REG_FIRST
1719 
1720 #define GP_REG_P(REGNO)	\
1721   ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1722 #define M16_REG_P(REGNO) \
1723   (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
1724 #define M16STORE_REG_P(REGNO) \
1725   (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 0 || (REGNO) == 17)
1726 #define FP_REG_P(REGNO)  \
1727   ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1728 #define MD_REG_P(REGNO) \
1729   ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1730 #define ST_REG_P(REGNO) \
1731   ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1732 #define COP0_REG_P(REGNO) \
1733   ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1734 #define COP2_REG_P(REGNO) \
1735   ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1736 #define COP3_REG_P(REGNO) \
1737   ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1738 #define ALL_COP_REG_P(REGNO) \
1739   ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
1740 /* Test if REGNO is one of the 6 new DSP accumulators.  */
1741 #define DSP_ACC_REG_P(REGNO) \
1742   ((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
1743 /* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators.  */
1744 #define ACC_REG_P(REGNO) \
1745   (MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
1746 
1747 #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
1748 
1749 /* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)).  This is used
1750    to initialize the mips16 gp pseudo register.  */
1751 #define CONST_GP_P(X)				\
1752   (GET_CODE (X) == CONST			\
1753    && GET_CODE (XEXP (X, 0)) == UNSPEC		\
1754    && XINT (XEXP (X, 0), 1) == UNSPEC_GP)
1755 
1756 /* Return coprocessor number from register number.  */
1757 
1758 #define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) 				\
1759   (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2'			\
1760    : COP3_REG_P (REGNO) ? '3' : '?')
1761 
1762 
1763 #define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
1764 
1765 #define HARD_REGNO_MODE_OK(REGNO, MODE)					\
1766   mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1767 
1768 #define MODES_TIEABLE_P mips_modes_tieable_p
1769 
1770 /* Register to use for pushing function arguments.  */
1771 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1772 
1773 /* These two registers don't really exist: they get eliminated to either
1774    the stack or hard frame pointer.  */
1775 #define ARG_POINTER_REGNUM 77
1776 #define FRAME_POINTER_REGNUM 78
1777 
1778 /* $30 is not available on the mips16, so we use $17 as the frame
1779    pointer.  */
1780 #define HARD_FRAME_POINTER_REGNUM \
1781   (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
1782 
1783 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
1784 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
1785 
1786 /* Register in which static-chain is passed to a function.  */
1787 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 15)
1788 
1789 /* Registers used as temporaries in prologue/epilogue code:
1790 
1791    - If a MIPS16 PIC function needs access to _gp, it first loads
1792      the value into MIPS16_PIC_TEMP and then copies it to $gp.
1793 
1794    - The prologue can use MIPS_PROLOGUE_TEMP as a general temporary
1795      register.  The register must not conflict with MIPS16_PIC_TEMP.
1796 
1797    - If we aren't generating MIPS16 code, the prologue can also use
1798      MIPS_PROLOGUE_TEMP2 as a general temporary register.
1799 
1800    - The epilogue can use MIPS_EPILOGUE_TEMP as a general temporary
1801      register.
1802 
1803    If we're generating MIPS16 code, these registers must come from the
1804    core set of 8.  The prologue registers mustn't conflict with any
1805    incoming arguments, the static chain pointer, or the frame pointer.
1806    The epilogue temporary mustn't conflict with the return registers,
1807    the PIC call register ($25), the frame pointer, the EH stack adjustment,
1808    or the EH data registers.
1809 
1810    If we're generating interrupt handlers, we use K0 as a temporary register
1811    in prologue/epilogue code.  */
1812 
1813 #define MIPS16_PIC_TEMP_REGNUM (GP_REG_FIRST + 2)
1814 #define MIPS_PROLOGUE_TEMP_REGNUM \
1815   (cfun->machine->interrupt_handler_p ? K0_REG_NUM : GP_REG_FIRST + 3)
1816 #define MIPS_PROLOGUE_TEMP2_REGNUM \
1817   (TARGET_MIPS16 \
1818    ? (gcc_unreachable (), INVALID_REGNUM) \
1819    : cfun->machine->interrupt_handler_p ? K1_REG_NUM : GP_REG_FIRST + 12)
1820 #define MIPS_EPILOGUE_TEMP_REGNUM		\
1821   (cfun->machine->interrupt_handler_p		\
1822    ? K0_REG_NUM					\
1823    : GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
1824 
1825 #define MIPS16_PIC_TEMP gen_rtx_REG (Pmode, MIPS16_PIC_TEMP_REGNUM)
1826 #define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
1827 #define MIPS_PROLOGUE_TEMP2(MODE) \
1828   gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP2_REGNUM)
1829 #define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
1830 
1831 /* Define this macro if it is as good or better to call a constant
1832    function address than to call an address kept in a register.  */
1833 #define NO_FUNCTION_CSE 1
1834 
1835 /* The ABI-defined global pointer.  Sometimes we use a different
1836    register in leaf functions: see PIC_OFFSET_TABLE_REGNUM.  */
1837 #define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
1838 
1839 /* We normally use $28 as the global pointer.  However, when generating
1840    n32/64 PIC, it is better for leaf functions to use a call-clobbered
1841    register instead.  They can then avoid saving and restoring $28
1842    and perhaps avoid using a frame at all.
1843 
1844    When a leaf function uses something other than $28, mips_expand_prologue
1845    will modify pic_offset_table_rtx in place.  Take the register number
1846    from there after reload.  */
1847 #define PIC_OFFSET_TABLE_REGNUM \
1848   (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
1849 
1850 /* Define the classes of registers for register constraints in the
1851    machine description.  Also define ranges of constants.
1852 
1853    One of the classes must always be named ALL_REGS and include all hard regs.
1854    If there is more than one class, another class must be named NO_REGS
1855    and contain no registers.
1856 
1857    The name GENERAL_REGS must be the name of a class (or an alias for
1858    another name such as ALL_REGS).  This is the class of registers
1859    that is allowed by "g" or "r" in a register constraint.
1860    Also, registers outside this class are allocated only when
1861    instructions express preferences for them.
1862 
1863    The classes must be numbered in nondecreasing order; that is,
1864    a larger-numbered class must never be contained completely
1865    in a smaller-numbered class.
1866 
1867    For any two classes, it is very desirable that there be another
1868    class that represents their union.  */
1869 
1870 enum reg_class
1871 {
1872   NO_REGS,			/* no registers in set */
1873   M16_REGS,			/* mips16 directly accessible registers */
1874   T_REG,			/* mips16 T register ($24) */
1875   M16_T_REGS,			/* mips16 registers plus T register */
1876   PIC_FN_ADDR_REG,		/* SVR4 PIC function address register */
1877   V1_REG,			/* Register $v1 ($3) used for TLS access.  */
1878   LEA_REGS,			/* Every GPR except $25 */
1879   GR_REGS,			/* integer registers */
1880   FP_REGS,			/* floating point registers */
1881   MD0_REG,			/* first multiply/divide register */
1882   MD1_REG,			/* second multiply/divide register */
1883   MD_REGS,			/* multiply/divide registers (hi/lo) */
1884   COP0_REGS,			/* generic coprocessor classes */
1885   COP2_REGS,
1886   COP3_REGS,
1887   ST_REGS,			/* status registers (fp status) */
1888   DSP_ACC_REGS,			/* DSP accumulator registers */
1889   ACC_REGS,			/* Hi/Lo and DSP accumulator registers */
1890   FRAME_REGS,			/* $arg and $frame */
1891   GR_AND_MD0_REGS,		/* union classes */
1892   GR_AND_MD1_REGS,
1893   GR_AND_MD_REGS,
1894   GR_AND_ACC_REGS,
1895   ALL_REGS,			/* all registers */
1896   LIM_REG_CLASSES		/* max value + 1 */
1897 };
1898 
1899 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1900 
1901 #define GENERAL_REGS GR_REGS
1902 
1903 /* An initializer containing the names of the register classes as C
1904    string constants.  These names are used in writing some of the
1905    debugging dumps.  */
1906 
1907 #define REG_CLASS_NAMES							\
1908 {									\
1909   "NO_REGS",								\
1910   "M16_REGS",								\
1911   "T_REG",								\
1912   "M16_T_REGS",								\
1913   "PIC_FN_ADDR_REG",							\
1914   "V1_REG",								\
1915   "LEA_REGS",								\
1916   "GR_REGS",								\
1917   "FP_REGS",								\
1918   "MD0_REG",								\
1919   "MD1_REG",								\
1920   "MD_REGS",								\
1921   /* coprocessor registers */						\
1922   "COP0_REGS",								\
1923   "COP2_REGS",								\
1924   "COP3_REGS",								\
1925   "ST_REGS",								\
1926   "DSP_ACC_REGS",							\
1927   "ACC_REGS",								\
1928   "FRAME_REGS",								\
1929   "GR_AND_MD0_REGS",							\
1930   "GR_AND_MD1_REGS",							\
1931   "GR_AND_MD_REGS",							\
1932   "GR_AND_ACC_REGS",							\
1933   "ALL_REGS"								\
1934 }
1935 
1936 /* An initializer containing the contents of the register classes,
1937    as integers which are bit masks.  The Nth integer specifies the
1938    contents of class N.  The way the integer MASK is interpreted is
1939    that register R is in the class if `MASK & (1 << R)' is 1.
1940 
1941    When the machine has more than 32 registers, an integer does not
1942    suffice.  Then the integers are replaced by sub-initializers,
1943    braced groupings containing several integers.  Each
1944    sub-initializer must be suitable as an initializer for the type
1945    `HARD_REG_SET' which is defined in `hard-reg-set.h'.  */
1946 
1947 #define REG_CLASS_CONTENTS						                                \
1948 {									                                \
1949   { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* NO_REGS */		\
1950   { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* M16_REGS */		\
1951   { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* T_REG */		\
1952   { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* M16_T_REGS */	\
1953   { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* PIC_FN_ADDR_REG */	\
1954   { 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* V1_REG */		\
1955   { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* LEA_REGS */		\
1956   { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* GR_REGS */		\
1957   { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* FP_REGS */		\
1958   { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 },	/* MD0_REG */		\
1959   { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 },	/* MD1_REG */		\
1960   { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 },	/* MD_REGS */		\
1961   { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 },   /* COP0_REGS */		\
1962   { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 },   /* COP2_REGS */		\
1963   { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff },   /* COP3_REGS */		\
1964   { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 },	/* ST_REGS */		\
1965   { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 },	/* DSP_ACC_REGS */	\
1966   { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 },	/* ACC_REGS */		\
1967   { 0x00000000, 0x00000000, 0x00006000, 0x00000000, 0x00000000, 0x00000000 },	/* FRAME_REGS */	\
1968   { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 },	/* GR_AND_MD0_REGS */	\
1969   { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 },	/* GR_AND_MD1_REGS */	\
1970   { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 },	/* GR_AND_MD_REGS */	\
1971   { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 },	/* GR_AND_ACC_REGS */	\
1972   { 0xffffffff, 0xffffffff, 0xffff67ff, 0xffffffff, 0xffffffff, 0x0fffffff }	/* ALL_REGS */		\
1973 }
1974 
1975 
1976 /* A C expression whose value is a register class containing hard
1977    register REGNO.  In general there is more that one such class;
1978    choose a class which is "minimal", meaning that no smaller class
1979    also contains the register.  */
1980 
1981 #define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
1982 
1983 /* A macro whose definition is the name of the class to which a
1984    valid base register must belong.  A base register is one used in
1985    an address which is the register value plus a displacement.  */
1986 
1987 #define BASE_REG_CLASS  (TARGET_MIPS16 ? M16_REGS : GR_REGS)
1988 
1989 /* A macro whose definition is the name of the class to which a
1990    valid index register must belong.  An index register is one used
1991    in an address where its value is either multiplied by a scale
1992    factor or added to another register (as well as added to a
1993    displacement).  */
1994 
1995 #define INDEX_REG_CLASS NO_REGS
1996 
1997 /* We generally want to put call-clobbered registers ahead of
1998    call-saved ones.  (IRA expects this.)  */
1999 
2000 #define REG_ALLOC_ORDER							\
2001 { /* Accumulator registers.  When GPRs and accumulators have equal	\
2002      cost, we generally prefer to use accumulators.  For example,	\
2003      a division of multiplication result is better allocated to LO,	\
2004      so that we put the MFLO at the point of use instead of at the	\
2005      point of definition.  It's also needed if we're to take advantage	\
2006      of the extra accumulators available with -mdspr2.  In some cases,	\
2007      it can also help to reduce register pressure.  */			\
2008   64, 65,176,177,178,179,180,181,					\
2009   /* Call-clobbered GPRs.  */						\
2010   1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,		\
2011   24, 25, 31,								\
2012   /* The global pointer.  This is call-clobbered for o32 and o64	\
2013      abicalls, call-saved for n32 and n64 abicalls, and a program	\
2014      invariant otherwise.  Putting it between the call-clobbered	\
2015      and call-saved registers should cope with all eventualities.  */	\
2016   28,									\
2017   /* Call-saved GPRs.  */						\
2018   16, 17, 18, 19, 20, 21, 22, 23, 30,					\
2019   /* GPRs that can never be exposed to the register allocator.  */	\
2020   0,  26, 27, 29,							\
2021   /* Call-clobbered FPRs.  */						\
2022   32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,	\
2023   48, 49, 50, 51,							\
2024   /* FPRs that are usually call-saved.  The odd ones are actually	\
2025      call-clobbered for n32, but listing them ahead of the even		\
2026      registers might encourage the register allocator to fragment	\
2027      the available FPR pairs.  We need paired FPRs to store long	\
2028      doubles, so it isn't clear that using a different order		\
2029      for n32 would be a win.  */					\
2030   52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,			\
2031   /* None of the remaining classes have defined call-saved		\
2032      registers.  */							\
2033   66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,		\
2034   80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,	\
2035   96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111,	\
2036   112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,	\
2037   128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,	\
2038   144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,	\
2039   160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,	\
2040   182,183,184,185,186,187						\
2041 }
2042 
2043 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
2044    to be rearranged based on a particular function.  On the mips16, we
2045    want to allocate $24 (T_REG) before other registers for
2046    instructions for which it is possible.  */
2047 
2048 #define ADJUST_REG_ALLOC_ORDER mips_order_regs_for_local_alloc ()
2049 
2050 /* True if VALUE is an unsigned 6-bit number.  */
2051 
2052 #define UIMM6_OPERAND(VALUE) \
2053   (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
2054 
2055 /* True if VALUE is a signed 10-bit number.  */
2056 
2057 #define IMM10_OPERAND(VALUE) \
2058   ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
2059 
2060 /* True if VALUE is a signed 16-bit number.  */
2061 
2062 #define SMALL_OPERAND(VALUE) \
2063   ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
2064 
2065 /* True if VALUE is an unsigned 16-bit number.  */
2066 
2067 #define SMALL_OPERAND_UNSIGNED(VALUE) \
2068   (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
2069 
2070 /* True if VALUE can be loaded into a register using LUI.  */
2071 
2072 #define LUI_OPERAND(VALUE)					\
2073   (((VALUE) | 0x7fff0000) == 0x7fff0000				\
2074    || ((VALUE) | 0x7fff0000) + 0x10000 == 0)
2075 
2076 /* Return a value X with the low 16 bits clear, and such that
2077    VALUE - X is a signed 16-bit value.  */
2078 
2079 #define CONST_HIGH_PART(VALUE) \
2080   (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
2081 
2082 #define CONST_LOW_PART(VALUE) \
2083   ((VALUE) - CONST_HIGH_PART (VALUE))
2084 
2085 #define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
2086 #define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
2087 #define LUI_INT(X) LUI_OPERAND (INTVAL (X))
2088 #define UMIPS_12BIT_OFFSET_P(OFFSET) (IN_RANGE (OFFSET, -2048, 2047))
2089 
2090 /* The HI and LO registers can only be reloaded via the general
2091    registers.  Condition code registers can only be loaded to the
2092    general registers, and from the floating point registers.  */
2093 
2094 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X)			\
2095   mips_secondary_reload_class (CLASS, MODE, X, true)
2096 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X)			\
2097   mips_secondary_reload_class (CLASS, MODE, X, false)
2098 
2099 /* Return the maximum number of consecutive registers
2100    needed to represent mode MODE in a register of class CLASS.  */
2101 
2102 #define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
2103 
2104 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
2105   mips_cannot_change_mode_class (FROM, TO, CLASS)
2106 
2107 /* Stack layout; function entry, exit and calling.  */
2108 
2109 #define STACK_GROWS_DOWNWARD
2110 
2111 #define FRAME_GROWS_DOWNWARD flag_stack_protect
2112 
2113 /* Size of the area allocated in the frame to save the GP.  */
2114 
2115 #define MIPS_GP_SAVE_AREA_SIZE \
2116   (TARGET_CALL_CLOBBERED_GP ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0)
2117 
2118 /* The offset of the first local variable from the frame pointer.  See
2119    mips_compute_frame_info for details about the frame layout.  */
2120 
2121 #define STARTING_FRAME_OFFSET				\
2122   (FRAME_GROWS_DOWNWARD					\
2123    ? 0							\
2124    : crtl->outgoing_args_size + MIPS_GP_SAVE_AREA_SIZE)
2125 
2126 #define RETURN_ADDR_RTX mips_return_addr
2127 
2128 /* Mask off the MIPS16 ISA bit in unwind addresses.
2129 
2130    The reason for this is a little subtle.  When unwinding a call,
2131    we are given the call's return address, which on most targets
2132    is the address of the following instruction.  However, what we
2133    actually want to find is the EH region for the call itself.
2134    The target-independent unwind code therefore searches for "RA - 1".
2135 
2136    In the MIPS16 case, RA is always an odd-valued (ISA-encoded) address.
2137    RA - 1 is therefore the real (even-valued) start of the return
2138    instruction.  EH region labels are usually odd-valued MIPS16 symbols
2139    too, so a search for an even address within a MIPS16 region would
2140    usually work.
2141 
2142    However, there is an exception.  If the end of an EH region is also
2143    the end of a function, the end label is allowed to be even.  This is
2144    necessary because a following non-MIPS16 function may also need EH
2145    information for its first instruction.
2146 
2147    Thus a MIPS16 region may be terminated by an ISA-encoded or a
2148    non-ISA-encoded address.  This probably isn't ideal, but it is
2149    the traditional (legacy) behavior.  It is therefore only safe
2150    to search MIPS EH regions for an _odd-valued_ address.
2151 
2152    Masking off the ISA bit means that the target-independent code
2153    will search for "(RA & -2) - 1", which is guaranteed to be odd.  */
2154 #define MASK_RETURN_ADDR GEN_INT (-2)
2155 
2156 
2157 /* Similarly, don't use the least-significant bit to tell pointers to
2158    code from vtable index.  */
2159 
2160 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
2161 
2162 /* The eliminations to $17 are only used for mips16 code.  See the
2163    definition of HARD_FRAME_POINTER_REGNUM.  */
2164 
2165 #define ELIMINABLE_REGS							\
2166 {{ ARG_POINTER_REGNUM,   STACK_POINTER_REGNUM},				\
2167  { ARG_POINTER_REGNUM,   GP_REG_FIRST + 30},				\
2168  { ARG_POINTER_REGNUM,   GP_REG_FIRST + 17},				\
2169  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},				\
2170  { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30},				\
2171  { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
2172 
2173 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
2174   (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
2175 
2176 /* Allocate stack space for arguments at the beginning of each function.  */
2177 #define ACCUMULATE_OUTGOING_ARGS 1
2178 
2179 /* The argument pointer always points to the first argument.  */
2180 #define FIRST_PARM_OFFSET(FNDECL) 0
2181 
2182 /* o32 and o64 reserve stack space for all argument registers.  */
2183 #define REG_PARM_STACK_SPACE(FNDECL) 			\
2184   (TARGET_OLDABI					\
2185    ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD)		\
2186    : 0)
2187 
2188 /* Define this if it is the responsibility of the caller to
2189    allocate the area reserved for arguments passed in registers.
2190    If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
2191    of this macro is to determine whether the space is included in
2192    `crtl->outgoing_args_size'.  */
2193 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
2194 
2195 #define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
2196 
2197 /* Symbolic macros for the registers used to return integer and floating
2198    point values.  */
2199 
2200 #define GP_RETURN (GP_REG_FIRST + 2)
2201 #define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
2202 
2203 #define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
2204 
2205 /* Symbolic macros for the first/last argument registers.  */
2206 
2207 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
2208 #define GP_ARG_LAST  (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2209 #define FP_ARG_FIRST (FP_REG_FIRST + 12)
2210 #define FP_ARG_LAST  (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2211 
2212 /* 1 if N is a possible register number for function argument passing.
2213    We have no FP argument registers when soft-float.  When FP registers
2214    are 32 bits, we can't directly reference the odd numbered ones.  */
2215 
2216 #define FUNCTION_ARG_REGNO_P(N)					\
2217   ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST)			\
2218     || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST)))		\
2219    && !fixed_regs[N])
2220 
2221 /* This structure has to cope with two different argument allocation
2222    schemes.  Most MIPS ABIs view the arguments as a structure, of which
2223    the first N words go in registers and the rest go on the stack.  If I
2224    < N, the Ith word might go in Ith integer argument register or in a
2225    floating-point register.  For these ABIs, we only need to remember
2226    the offset of the current argument into the structure.
2227 
2228    The EABI instead allocates the integer and floating-point arguments
2229    separately.  The first N words of FP arguments go in FP registers,
2230    the rest go on the stack.  Likewise, the first N words of the other
2231    arguments go in integer registers, and the rest go on the stack.  We
2232    need to maintain three counts: the number of integer registers used,
2233    the number of floating-point registers used, and the number of words
2234    passed on the stack.
2235 
2236    We could keep separate information for the two ABIs (a word count for
2237    the standard ABIs, and three separate counts for the EABI).  But it
2238    seems simpler to view the standard ABIs as forms of EABI that do not
2239    allocate floating-point registers.
2240 
2241    So for the standard ABIs, the first N words are allocated to integer
2242    registers, and mips_function_arg decides on an argument-by-argument
2243    basis whether that argument should really go in an integer register,
2244    or in a floating-point one.  */
2245 
2246 typedef struct mips_args {
2247   /* Always true for varargs functions.  Otherwise true if at least
2248      one argument has been passed in an integer register.  */
2249   int gp_reg_found;
2250 
2251   /* The number of arguments seen so far.  */
2252   unsigned int arg_number;
2253 
2254   /* The number of integer registers used so far.  For all ABIs except
2255      EABI, this is the number of words that have been added to the
2256      argument structure, limited to MAX_ARGS_IN_REGISTERS.  */
2257   unsigned int num_gprs;
2258 
2259   /* For EABI, the number of floating-point registers used so far.  */
2260   unsigned int num_fprs;
2261 
2262   /* The number of words passed on the stack.  */
2263   unsigned int stack_words;
2264 
2265   /* On the mips16, we need to keep track of which floating point
2266      arguments were passed in general registers, but would have been
2267      passed in the FP regs if this were a 32-bit function, so that we
2268      can move them to the FP regs if we wind up calling a 32-bit
2269      function.  We record this information in fp_code, encoded in base
2270      four.  A zero digit means no floating point argument, a one digit
2271      means an SFmode argument, and a two digit means a DFmode argument,
2272      and a three digit is not used.  The low order digit is the first
2273      argument.  Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
2274      an SFmode argument.  ??? A more sophisticated approach will be
2275      needed if MIPS_ABI != ABI_32.  */
2276   int fp_code;
2277 
2278   /* True if the function has a prototype.  */
2279   int prototype;
2280 } CUMULATIVE_ARGS;
2281 
2282 /* Initialize a variable CUM of type CUMULATIVE_ARGS
2283    for a call to a function whose data type is FNTYPE.
2284    For a library call, FNTYPE is 0.  */
2285 
2286 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
2287   mips_init_cumulative_args (&CUM, FNTYPE)
2288 
2289 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
2290   (mips_pad_arg_upward (MODE, TYPE) ? upward : downward)
2291 
2292 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
2293   (mips_pad_reg_upward (MODE, TYPE) ? upward : downward)
2294 
2295 /* True if using EABI and varargs can be passed in floating-point
2296    registers.  Under these conditions, we need a more complex form
2297    of va_list, which tracks GPR, FPR and stack arguments separately.  */
2298 #define EABI_FLOAT_VARARGS_P \
2299 	(mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
2300 
2301 
2302 #define EPILOGUE_USES(REGNO)	mips_epilogue_uses (REGNO)
2303 
2304 /* Treat LOC as a byte offset from the stack pointer and round it up
2305    to the next fully-aligned offset.  */
2306 #define MIPS_STACK_ALIGN(LOC) \
2307   (TARGET_NEWABI ? ((LOC) + 15) & -16 : ((LOC) + 7) & -8)
2308 
2309 
2310 /* Output assembler code to FILE to increment profiler label # LABELNO
2311    for profiling a function entry.  */
2312 
2313 #define FUNCTION_PROFILER(FILE, LABELNO) mips_function_profiler ((FILE))
2314 
2315 /* The profiler preserves all interesting registers, including $31.  */
2316 #define MIPS_SAVE_REG_FOR_PROFILING_P(REGNO) false
2317 
2318 /* No mips port has ever used the profiler counter word, so don't emit it
2319    or the label for it.  */
2320 
2321 #define NO_PROFILE_COUNTERS 1
2322 
2323 /* Define this macro if the code for function profiling should come
2324    before the function prologue.  Normally, the profiling code comes
2325    after.  */
2326 
2327 /* #define PROFILE_BEFORE_PROLOGUE */
2328 
2329 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2330    the stack pointer does not matter.  The value is tested only in
2331    functions that have frame pointers.
2332    No definition is equivalent to always zero.  */
2333 
2334 #define EXIT_IGNORE_STACK 1
2335 
2336 
2337 /* Trampolines are a block of code followed by two pointers.  */
2338 
2339 #define TRAMPOLINE_SIZE \
2340   (mips_trampoline_code_size () + GET_MODE_SIZE (ptr_mode) * 2)
2341 
2342 /* Forcing a 64-bit alignment for 32-bit targets allows us to load two
2343    pointers from a single LUI base.  */
2344 
2345 #define TRAMPOLINE_ALIGNMENT 64
2346 
2347 /* mips_trampoline_init calls this library function to flush
2348    program and data caches.  */
2349 
2350 #ifndef CACHE_FLUSH_FUNC
2351 #define CACHE_FLUSH_FUNC "_flush_cache"
2352 #endif
2353 
2354 #define MIPS_ICACHE_SYNC(ADDR, SIZE)					\
2355   /* Flush both caches.  We need to flush the data cache in case	\
2356      the system has a write-back cache.  */				\
2357   emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func),	\
2358 		     LCT_NORMAL, VOIDmode, 3, ADDR, Pmode, SIZE, Pmode,	\
2359 		     GEN_INT (3), TYPE_MODE (integer_type_node))
2360 
2361 
2362 /* Addressing modes, and classification of registers for them.  */
2363 
2364 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
2365 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
2366   mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
2367 
2368 /* Maximum number of registers that can appear in a valid memory address.  */
2369 
2370 #define MAX_REGS_PER_ADDRESS 1
2371 
2372 /* Check for constness inline but use mips_legitimate_address_p
2373    to check whether a constant really is an address.  */
2374 
2375 #define CONSTANT_ADDRESS_P(X) \
2376   (CONSTANT_P (X) && memory_address_p (SImode, X))
2377 
2378 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
2379    'the start of the function that this code is output in'.  */
2380 
2381 #define ASM_OUTPUT_LABELREF(FILE,NAME)  \
2382   if (strcmp (NAME, "..CURRENT_FUNCTION") == 0)				\
2383     asm_fprintf ((FILE), "%U%s",					\
2384 		 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0));	\
2385   else									\
2386     asm_fprintf ((FILE), "%U%s", (NAME))
2387 
2388 /* Flag to mark a function decl symbol that requires a long call.  */
2389 #define SYMBOL_FLAG_LONG_CALL	(SYMBOL_FLAG_MACH_DEP << 0)
2390 #define SYMBOL_REF_LONG_CALL_P(X)					\
2391   ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
2392 
2393 /* This flag marks functions that cannot be lazily bound.  */
2394 #define SYMBOL_FLAG_BIND_NOW (SYMBOL_FLAG_MACH_DEP << 1)
2395 #define SYMBOL_REF_BIND_NOW_P(RTX) \
2396   ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_BIND_NOW) != 0)
2397 
2398 /* True if we're generating a form of MIPS16 code in which jump tables
2399    are stored in the text section and encoded as 16-bit PC-relative
2400    offsets.  This is only possible when general text loads are allowed,
2401    since the table access itself will be an "lh" instruction.  If the
2402    PC-relative offsets grow too large, 32-bit offsets are used instead.  */
2403 #define TARGET_MIPS16_SHORT_JUMP_TABLES TARGET_MIPS16_TEXT_LOADS
2404 
2405 #define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16_SHORT_JUMP_TABLES
2406 
2407 #define CASE_VECTOR_MODE (TARGET_MIPS16_SHORT_JUMP_TABLES ? SImode : ptr_mode)
2408 
2409 /* Only use short offsets if their range will not overflow.  */
2410 #define CASE_VECTOR_SHORTEN_MODE(MIN, MAX, BODY) \
2411   (!TARGET_MIPS16_SHORT_JUMP_TABLES ? ptr_mode \
2412    : ((MIN) >= -32768 && (MAX) < 32768) ? HImode \
2413    : SImode)
2414 
2415 #define CASE_VECTOR_PC_RELATIVE TARGET_MIPS16_SHORT_JUMP_TABLES
2416 
2417 /* Define this as 1 if `char' should by default be signed; else as 0.  */
2418 #ifndef DEFAULT_SIGNED_CHAR
2419 #define DEFAULT_SIGNED_CHAR 1
2420 #endif
2421 
2422 /* Although LDC1 and SDC1 provide 64-bit moves on 32-bit targets,
2423    we generally don't want to use them for copying arbitrary data.
2424    A single N-word move is usually the same cost as N single-word moves.  */
2425 #define MOVE_MAX UNITS_PER_WORD
2426 #define MAX_MOVE_MAX 8
2427 
2428 /* Define this macro as a C expression which is nonzero if
2429    accessing less than a word of memory (i.e. a `char' or a
2430    `short') is no faster than accessing a word of memory, i.e., if
2431    such access require more than one instruction or if there is no
2432    difference in cost between byte and (aligned) word loads.
2433 
2434    On RISC machines, it tends to generate better code to define
2435    this as 1, since it avoids making a QI or HI mode register.
2436 
2437    But, generating word accesses for -mips16 is generally bad as shifts
2438    (often extended) would be needed for byte accesses.  */
2439 #define SLOW_BYTE_ACCESS (!TARGET_MIPS16)
2440 
2441 /* Standard MIPS integer shifts truncate the shift amount to the
2442    width of the shifted operand.  However, Loongson vector shifts
2443    do not truncate the shift amount at all.  */
2444 #define SHIFT_COUNT_TRUNCATED (!TARGET_LOONGSON_VECTORS)
2445 
2446 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2447    is done just by pretending it is already truncated.  */
2448 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
2449   (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
2450 
2451 
2452 /* Specify the machine mode that pointers have.
2453    After generation of rtl, the compiler makes no further distinction
2454    between pointers and any other objects of this machine mode.  */
2455 
2456 #ifndef Pmode
2457 #define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
2458 #endif
2459 
2460 /* Give call MEMs SImode since it is the "most permissive" mode
2461    for both 32-bit and 64-bit targets.  */
2462 
2463 #define FUNCTION_MODE SImode
2464 
2465 
2466 /* We allocate $fcc registers by hand and can't cope with moves of
2467    CCmode registers to and from pseudos (or memory).  */
2468 #define AVOID_CCMODE_COPIES
2469 
2470 /* A C expression for the cost of a branch instruction.  A value of
2471    1 is the default; other values are interpreted relative to that.  */
2472 
2473 #define BRANCH_COST(speed_p, predictable_p) mips_branch_cost
2474 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
2475 
2476 /* The MIPS port has several functions that return an instruction count.
2477    Multiplying the count by this value gives the number of bytes that
2478    the instructions occupy.  */
2479 #define BASE_INSN_LENGTH (TARGET_MIPS16 ? 2 : 4)
2480 
2481 /* The length of a NOP in bytes.  */
2482 #define NOP_INSN_LENGTH (TARGET_COMPRESSION ? 2 : 4)
2483 
2484 /* If defined, modifies the length assigned to instruction INSN as a
2485    function of the context in which it is used.  LENGTH is an lvalue
2486    that contains the initially computed length of the insn and should
2487    be updated with the correct length of the insn.  */
2488 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2489   ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
2490 
2491 /* Return the asm template for a non-MIPS16 conditional branch instruction.
2492    OPCODE is the opcode's mnemonic and OPERANDS is the asm template for
2493    its operands.  */
2494 #define MIPS_BRANCH(OPCODE, OPERANDS) \
2495   "%*" OPCODE "%?\t" OPERANDS "%/"
2496 
2497 /* Return an asm string that forces INSN to be treated as an absolute
2498    J or JAL instruction instead of an assembler macro.  */
2499 #define MIPS_ABSOLUTE_JUMP(INSN) \
2500   (TARGET_ABICALLS_PIC2						\
2501    ? ".option\tpic0\n\t" INSN "\n\t.option\tpic2"		\
2502    : INSN)
2503 
2504 /* Return the asm template for a call.  INSN is the instruction's mnemonic
2505    ("j" or "jal"), OPERANDS are its operands, TARGET_OPNO is the operand
2506    number of the target.  SIZE_OPNO is the operand number of the argument size
2507    operand that can optionally hold the call attributes.  If SIZE_OPNO is not
2508    -1 and the call is indirect, use the function symbol from the call
2509    attributes to attach a R_MIPS_JALR relocation to the call.
2510 
2511    When generating GOT code without explicit relocation operators,
2512    all calls should use assembly macros.  Otherwise, all indirect
2513    calls should use "jr" or "jalr"; we will arrange to restore $gp
2514    afterwards if necessary.  Finally, we can only generate direct
2515    calls for -mabicalls by temporarily switching to non-PIC mode.
2516 
2517    For microMIPS jal(r), we try to generate jal(r)s when a 16-bit
2518    instruction is in the delay slot of jal(r).  */
2519 #define MIPS_CALL(INSN, OPERANDS, TARGET_OPNO, SIZE_OPNO)	\
2520   (TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS			\
2521    ? "%*" INSN "\t%" #TARGET_OPNO "%/"				\
2522    : REG_P (OPERANDS[TARGET_OPNO])				\
2523    ? (mips_get_pic_call_symbol (OPERANDS, SIZE_OPNO)		\
2524       ? ("%*.reloc\t1f,R_MIPS_JALR,%" #SIZE_OPNO "\n"		\
2525 	 "1:\t" INSN "r\t%" #TARGET_OPNO "%/")			\
2526       : TARGET_MICROMIPS && !TARGET_INTERLINK_COMPRESSED	\
2527       ? "%*" INSN "r%!\t%" #TARGET_OPNO "%/"			\
2528       : "%*" INSN "r\t%" #TARGET_OPNO "%/")			\
2529    : TARGET_MICROMIPS && !TARGET_INTERLINK_COMPRESSED		\
2530      ? MIPS_ABSOLUTE_JUMP ("%*" INSN "%!\t%" #TARGET_OPNO "%/")	\
2531      : MIPS_ABSOLUTE_JUMP ("%*" INSN "\t%" #TARGET_OPNO "%/"))	\
2532 
2533 /* Similar to MIPS_CALL, but this is for MICROMIPS "j" to generate
2534    "jrc" when nop is in the delay slot of "jr".  */
2535 
2536 #define MICROMIPS_J(INSN, OPERANDS, OPNO)			\
2537   (TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS			\
2538    ? "%*j\t%" #OPNO "%/"					\
2539    : REG_P (OPERANDS[OPNO])					\
2540    ? "%*jr%:\t%" #OPNO						\
2541    : MIPS_ABSOLUTE_JUMP ("%*" INSN "\t%" #OPNO "%/"))
2542 
2543 
2544 /* Control the assembler format that we output.  */
2545 
2546 /* Output to assembler file text saying following lines
2547    may contain character constants, extra white space, comments, etc.  */
2548 
2549 #ifndef ASM_APP_ON
2550 #define ASM_APP_ON " #APP\n"
2551 #endif
2552 
2553 /* Output to assembler file text saying following lines
2554    no longer contain unusual constructs.  */
2555 
2556 #ifndef ASM_APP_OFF
2557 #define ASM_APP_OFF " #NO_APP\n"
2558 #endif
2559 
2560 #define REGISTER_NAMES							   \
2561 { "$0",   "$1",   "$2",   "$3",   "$4",   "$5",   "$6",   "$7",		   \
2562   "$8",   "$9",   "$10",  "$11",  "$12",  "$13",  "$14",  "$15",	   \
2563   "$16",  "$17",  "$18",  "$19",  "$20",  "$21",  "$22",  "$23",	   \
2564   "$24",  "$25",  "$26",  "$27",  "$28",  "$sp",  "$fp",  "$31",	   \
2565   "$f0",  "$f1",  "$f2",  "$f3",  "$f4",  "$f5",  "$f6",  "$f7",	   \
2566   "$f8",  "$f9",  "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",	   \
2567   "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",	   \
2568   "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31",	   \
2569   "hi",   "lo",   "",     "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4",	   \
2570   "$fcc5","$fcc6","$fcc7","", "$cprestore", "$arg", "$frame", "$fakec",	   \
2571   "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7",  \
2572   "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
2573   "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
2574   "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
2575   "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7",  \
2576   "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
2577   "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
2578   "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
2579   "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7",  \
2580   "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
2581   "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
2582   "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
2583   "$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
2584   "$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
2585 
2586 /* List the "software" names for each register.  Also list the numerical
2587    names for $fp and $sp.  */
2588 
2589 #define ADDITIONAL_REGISTER_NAMES					\
2590 {									\
2591   { "$29",	29 + GP_REG_FIRST },					\
2592   { "$30",	30 + GP_REG_FIRST },					\
2593   { "at",	 1 + GP_REG_FIRST },					\
2594   { "v0",	 2 + GP_REG_FIRST },					\
2595   { "v1",	 3 + GP_REG_FIRST },					\
2596   { "a0",	 4 + GP_REG_FIRST },					\
2597   { "a1",	 5 + GP_REG_FIRST },					\
2598   { "a2",	 6 + GP_REG_FIRST },					\
2599   { "a3",	 7 + GP_REG_FIRST },					\
2600   { "t0",	 8 + GP_REG_FIRST },					\
2601   { "t1",	 9 + GP_REG_FIRST },					\
2602   { "t2",	10 + GP_REG_FIRST },					\
2603   { "t3",	11 + GP_REG_FIRST },					\
2604   { "t4",	12 + GP_REG_FIRST },					\
2605   { "t5",	13 + GP_REG_FIRST },					\
2606   { "t6",	14 + GP_REG_FIRST },					\
2607   { "t7",	15 + GP_REG_FIRST },					\
2608   { "s0",	16 + GP_REG_FIRST },					\
2609   { "s1",	17 + GP_REG_FIRST },					\
2610   { "s2",	18 + GP_REG_FIRST },					\
2611   { "s3",	19 + GP_REG_FIRST },					\
2612   { "s4",	20 + GP_REG_FIRST },					\
2613   { "s5",	21 + GP_REG_FIRST },					\
2614   { "s6",	22 + GP_REG_FIRST },					\
2615   { "s7",	23 + GP_REG_FIRST },					\
2616   { "t8",	24 + GP_REG_FIRST },					\
2617   { "t9",	25 + GP_REG_FIRST },					\
2618   { "k0",	26 + GP_REG_FIRST },					\
2619   { "k1",	27 + GP_REG_FIRST },					\
2620   { "gp",	28 + GP_REG_FIRST },					\
2621   { "sp",	29 + GP_REG_FIRST },					\
2622   { "fp",	30 + GP_REG_FIRST },					\
2623   { "ra",	31 + GP_REG_FIRST }					\
2624 }
2625 
2626 #define DBR_OUTPUT_SEQEND(STREAM)					\
2627 do									\
2628   {									\
2629     /* Undo the effect of '%*'.  */					\
2630     mips_pop_asm_switch (&mips_nomacro);				\
2631     mips_pop_asm_switch (&mips_noreorder);				\
2632     /* Emit a blank line after the delay slot for emphasis.  */		\
2633     fputs ("\n", STREAM);						\
2634   }									\
2635 while (0)
2636 
2637 /* The MIPS implementation uses some labels for its own purpose.  The
2638    following lists what labels are created, and are all formed by the
2639    pattern $L[a-z].*.  The machine independent portion of GCC creates
2640    labels matching:  $L[A-Z][0-9]+ and $L[0-9]+.
2641 
2642 	LM[0-9]+	Silicon Graphics/ECOFF stabs label before each stmt.
2643 	$Lb[0-9]+	Begin blocks for MIPS debug support
2644 	$Lc[0-9]+	Label for use in s<xx> operation.
2645 	$Le[0-9]+	End blocks for MIPS debug support  */
2646 
2647 #undef ASM_DECLARE_OBJECT_NAME
2648 #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
2649   mips_declare_object (STREAM, NAME, "", ":\n")
2650 
2651 /* Globalizing directive for a label.  */
2652 #define GLOBAL_ASM_OP "\t.globl\t"
2653 
2654 /* This says how to define a global common symbol.  */
2655 
2656 #define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
2657 
2658 /* This says how to define a local common symbol (i.e., not visible to
2659    linker).  */
2660 
2661 #ifndef ASM_OUTPUT_ALIGNED_LOCAL
2662 #define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
2663   mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
2664 #endif
2665 
2666 /* This says how to output an external.  It would be possible not to
2667    output anything and let undefined symbol become external. However
2668    the assembler uses length information on externals to allocate in
2669    data/sdata bss/sbss, thereby saving exec time.  */
2670 
2671 #undef ASM_OUTPUT_EXTERNAL
2672 #define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
2673   mips_output_external(STREAM,DECL,NAME)
2674 
2675 /* This is how to declare a function name.  The actual work of
2676    emitting the label is moved to function_prologue, so that we can
2677    get the line number correctly emitted before the .ent directive,
2678    and after any .file directives.  Define as empty so that the function
2679    is not declared before the .ent directive elsewhere.  */
2680 
2681 #undef ASM_DECLARE_FUNCTION_NAME
2682 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
2683 
2684 /* This is how to store into the string LABEL
2685    the symbol_ref name of an internal numbered label where
2686    PREFIX is the class of label and NUM is the number within the class.
2687    This is suitable for output with `assemble_name'.  */
2688 
2689 #undef ASM_GENERATE_INTERNAL_LABEL
2690 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)			\
2691   sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
2692 
2693 /* Print debug labels as "foo = ." rather than "foo:" because they should
2694    represent a byte pointer rather than an ISA-encoded address.  This is
2695    particularly important for code like:
2696 
2697 	$LFBxxx = .
2698 		.cfi_startproc
2699 		...
2700 		.section .gcc_except_table,...
2701 		...
2702 		.uleb128 foo-$LFBxxx
2703 
2704    The .uleb128 requies $LFBxxx to match the FDE start address, which is
2705    likewise a byte pointer rather than an ISA-encoded address.
2706 
2707    At the time of writing, this hook is not used for the function end
2708    label:
2709 
2710    	$LFExxx:
2711 		.end foo
2712 
2713    But this doesn't matter, because GAS doesn't treat a pre-.end label
2714    as a MIPS16 one anyway.  */
2715 
2716 #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM)			\
2717   fprintf (FILE, "%s%s%d = .\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
2718 
2719 /* This is how to output an element of a case-vector that is absolute.  */
2720 
2721 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE)				\
2722   fprintf (STREAM, "\t%s\t%sL%d\n",					\
2723 	   ptr_mode == DImode ? ".dword" : ".word",			\
2724 	   LOCAL_LABEL_PREFIX,						\
2725 	   VALUE)
2726 
2727 /* This is how to output an element of a case-vector.  We can make the
2728    entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
2729    is supported.  */
2730 
2731 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL)		\
2732 do {									\
2733   if (TARGET_MIPS16_SHORT_JUMP_TABLES)					\
2734     {									\
2735       if (GET_MODE (BODY) == HImode)					\
2736 	fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n",			\
2737 		 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL);	\
2738       else								\
2739 	fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n",			\
2740 		 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL);	\
2741     }									\
2742   else if (TARGET_GPWORD)						\
2743     fprintf (STREAM, "\t%s\t%sL%d\n",					\
2744 	     ptr_mode == DImode ? ".gpdword" : ".gpword",		\
2745 	     LOCAL_LABEL_PREFIX, VALUE);				\
2746   else if (TARGET_RTP_PIC)						\
2747     {									\
2748       /* Make the entry relative to the start of the function.  */	\
2749       rtx fnsym = XEXP (DECL_RTL (current_function_decl), 0);		\
2750       fprintf (STREAM, "\t%s\t%sL%d-",					\
2751 	       Pmode == DImode ? ".dword" : ".word",			\
2752 	       LOCAL_LABEL_PREFIX, VALUE);				\
2753       assemble_name (STREAM, XSTR (fnsym, 0));				\
2754       fprintf (STREAM, "\n");						\
2755     }									\
2756   else									\
2757     fprintf (STREAM, "\t%s\t%sL%d\n",					\
2758 	     ptr_mode == DImode ? ".dword" : ".word",			\
2759 	     LOCAL_LABEL_PREFIX, VALUE);				\
2760 } while (0)
2761 
2762 /* This is how to output an assembler line
2763    that says to advance the location counter
2764    to a multiple of 2**LOG bytes.  */
2765 
2766 #define ASM_OUTPUT_ALIGN(STREAM,LOG)					\
2767   fprintf (STREAM, "\t.align\t%d\n", (LOG))
2768 
2769 /* This is how to output an assembler line to advance the location
2770    counter by SIZE bytes.  */
2771 
2772 #undef ASM_OUTPUT_SKIP
2773 #define ASM_OUTPUT_SKIP(STREAM,SIZE)					\
2774   fprintf (STREAM, "\t.space\t"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2775 
2776 /* This is how to output a string.  */
2777 #undef ASM_OUTPUT_ASCII
2778 #define ASM_OUTPUT_ASCII mips_output_ascii
2779 
2780 
2781 /* Default to -G 8 */
2782 #ifndef MIPS_DEFAULT_GVALUE
2783 #define MIPS_DEFAULT_GVALUE 8
2784 #endif
2785 
2786 /* Define the strings to put out for each section in the object file.  */
2787 #define TEXT_SECTION_ASM_OP	"\t.text"	/* instructions */
2788 #define DATA_SECTION_ASM_OP	"\t.data"	/* large data */
2789 
2790 #undef READONLY_DATA_SECTION_ASM_OP
2791 #define READONLY_DATA_SECTION_ASM_OP	"\t.rdata"	/* read-only data */
2792 
2793 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO)				\
2794 do									\
2795   {									\
2796     fprintf (STREAM, "\t%s\t%s,%s,-8\n\t%s\t%s,0(%s)\n",		\
2797 	     TARGET_64BIT ? "daddiu" : "addiu",				\
2798 	     reg_names[STACK_POINTER_REGNUM],				\
2799 	     reg_names[STACK_POINTER_REGNUM],				\
2800 	     TARGET_64BIT ? "sd" : "sw",				\
2801 	     reg_names[REGNO],						\
2802 	     reg_names[STACK_POINTER_REGNUM]);				\
2803   }									\
2804 while (0)
2805 
2806 #define ASM_OUTPUT_REG_POP(STREAM,REGNO)				\
2807 do									\
2808   {									\
2809     mips_push_asm_switch (&mips_noreorder);				\
2810     fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n",			\
2811 	     TARGET_64BIT ? "ld" : "lw",				\
2812 	     reg_names[REGNO],						\
2813 	     reg_names[STACK_POINTER_REGNUM],				\
2814 	     TARGET_64BIT ? "daddu" : "addu",				\
2815 	     reg_names[STACK_POINTER_REGNUM],				\
2816 	     reg_names[STACK_POINTER_REGNUM]);				\
2817     mips_pop_asm_switch (&mips_noreorder);				\
2818   }									\
2819 while (0)
2820 
2821 /* How to start an assembler comment.
2822    The leading space is important (the mips native assembler requires it).  */
2823 #ifndef ASM_COMMENT_START
2824 #define ASM_COMMENT_START " #"
2825 #endif
2826 
2827 #undef SIZE_TYPE
2828 #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
2829 
2830 #undef PTRDIFF_TYPE
2831 #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
2832 
2833 /* The maximum number of bytes that can be copied by one iteration of
2834    a movmemsi loop; see mips_block_move_loop.  */
2835 #define MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER \
2836   (UNITS_PER_WORD * 4)
2837 
2838 /* The maximum number of bytes that can be copied by a straight-line
2839    implementation of movmemsi; see mips_block_move_straight.  We want
2840    to make sure that any loop-based implementation will iterate at
2841    least twice.  */
2842 #define MIPS_MAX_MOVE_BYTES_STRAIGHT \
2843   (MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER * 2)
2844 
2845 /* The base cost of a memcpy call, for MOVE_RATIO and friends.  These
2846    values were determined experimentally by benchmarking with CSiBE.
2847    In theory, the call overhead is higher for TARGET_ABICALLS (especially
2848    for o32 where we have to restore $gp afterwards as well as make an
2849    indirect call), but in practice, bumping this up higher for
2850    TARGET_ABICALLS doesn't make much difference to code size.  */
2851 
2852 #define MIPS_CALL_RATIO 8
2853 
2854 /* Any loop-based implementation of movmemsi will have at least
2855    MIPS_MAX_MOVE_BYTES_STRAIGHT / UNITS_PER_WORD memory-to-memory
2856    moves, so allow individual copies of fewer elements.
2857 
2858    When movmemsi is not available, use a value approximating
2859    the length of a memcpy call sequence, so that move_by_pieces
2860    will generate inline code if it is shorter than a function call.
2861    Since move_by_pieces_ninsns counts memory-to-memory moves, but
2862    we'll have to generate a load/store pair for each, halve the
2863    value of MIPS_CALL_RATIO to take that into account.  */
2864 
2865 #define MOVE_RATIO(speed)				\
2866   (HAVE_movmemsi					\
2867    ? MIPS_MAX_MOVE_BYTES_STRAIGHT / MOVE_MAX		\
2868    : MIPS_CALL_RATIO / 2)
2869 
2870 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
2871   mips_move_by_pieces_p (SIZE, ALIGN)
2872 
2873 /* For CLEAR_RATIO, when optimizing for size, give a better estimate
2874    of the length of a memset call, but use the default otherwise.  */
2875 
2876 #define CLEAR_RATIO(speed)\
2877   ((speed) ? 15 : MIPS_CALL_RATIO)
2878 
2879 /* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
2880    optimizing for size adjust the ratio to account for the overhead of
2881    loading the constant and replicating it across the word.  */
2882 
2883 #define SET_RATIO(speed) \
2884   ((speed) ? 15 : MIPS_CALL_RATIO - 2)
2885 
2886 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
2887   mips_store_by_pieces_p (SIZE, ALIGN)
2888 
2889 /* Since the bits of the _init and _fini function is spread across
2890    many object files, each potentially with its own GP, we must assume
2891    we need to load our GP.  We don't preserve $gp or $ra, since each
2892    init/fini chunk is supposed to initialize $gp, and crti/crtn
2893    already take care of preserving $ra and, when appropriate, $gp.  */
2894 #if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
2895 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)	\
2896    asm (SECTION_OP "\n\
2897 	.set push\n\
2898 	.set nomips16\n\
2899 	.set noreorder\n\
2900 	bal 1f\n\
2901 	nop\n\
2902 1:	.cpload $31\n\
2903 	.set reorder\n\
2904 	jal " USER_LABEL_PREFIX #FUNC "\n\
2905 	.set pop\n\
2906 	" TEXT_SECTION_ASM_OP);
2907 #elif ((defined _ABIN32 && _MIPS_SIM == _ABIN32) \
2908        || (defined _ABI64 && _MIPS_SIM == _ABI64))
2909 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)	\
2910    asm (SECTION_OP "\n\
2911 	.set push\n\
2912 	.set nomips16\n\
2913 	.set noreorder\n\
2914 	bal 1f\n\
2915 	nop\n\
2916 1:	.set reorder\n\
2917 	.cpsetup $31, $2, 1b\n\
2918 	jal " USER_LABEL_PREFIX #FUNC "\n\
2919 	.set pop\n\
2920 	" TEXT_SECTION_ASM_OP);
2921 #endif
2922 
2923 #ifndef HAVE_AS_TLS
2924 #define HAVE_AS_TLS 0
2925 #endif
2926 
2927 #ifndef HAVE_AS_NAN
2928 #define HAVE_AS_NAN 0
2929 #endif
2930 
2931 #ifndef USED_FOR_TARGET
2932 /* Information about ".set noFOO; ...; .set FOO" blocks.  */
2933 struct mips_asm_switch {
2934   /* The FOO in the description above.  */
2935   const char *name;
2936 
2937   /* The current block nesting level, or 0 if we aren't in a block.  */
2938   int nesting_level;
2939 };
2940 
2941 extern const enum reg_class mips_regno_to_class[];
2942 extern bool mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
2943 extern const char *current_function_file; /* filename current function is in */
2944 extern int num_source_filenames;	/* current .file # */
2945 extern struct mips_asm_switch mips_noreorder;
2946 extern struct mips_asm_switch mips_nomacro;
2947 extern struct mips_asm_switch mips_noat;
2948 extern int mips_dbx_regno[];
2949 extern int mips_dwarf_regno[];
2950 extern bool mips_split_p[];
2951 extern bool mips_split_hi_p[];
2952 extern bool mips_use_pcrel_pool_p[];
2953 extern const char *mips_lo_relocs[];
2954 extern const char *mips_hi_relocs[];
2955 extern enum processor mips_arch;        /* which cpu to codegen for */
2956 extern enum processor mips_tune;        /* which cpu to schedule for */
2957 extern int mips_isa;			/* architectural level */
2958 extern const struct mips_cpu_info *mips_arch_info;
2959 extern const struct mips_cpu_info *mips_tune_info;
2960 extern unsigned int mips_base_compression_flags;
2961 extern GTY(()) struct target_globals *mips16_globals;
2962 #endif
2963 
2964 /* Enable querying of DFA units.  */
2965 #define CPU_UNITS_QUERY 1
2966 
2967 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)	\
2968   mips_final_prescan_insn (INSN, OPVEC, NOPERANDS)
2969 
2970 /* As on most targets, we want the .eh_frame section to be read-only where
2971    possible.  And as on most targets, this means two things:
2972 
2973      (a) Non-locally-binding pointers must have an indirect encoding,
2974 	 so that the addresses in the .eh_frame section itself become
2975 	 locally-binding.
2976 
2977      (b) A shared library's .eh_frame section must encode locally-binding
2978 	 pointers in a relative (relocation-free) form.
2979 
2980    However, MIPS has traditionally not allowed directives like:
2981 
2982 	.long	x-.
2983 
2984    in cases where "x" is in a different section, or is not defined in the
2985    same assembly file.  We are therefore unable to emit the PC-relative
2986    form required by (b) at assembly time.
2987 
2988    Fortunately, the linker is able to convert absolute addresses into
2989    PC-relative addresses on our behalf.  Unfortunately, only certain
2990    versions of the linker know how to do this for indirect pointers,
2991    and for personality data.  We must fall back on using writable
2992    .eh_frame sections for shared libraries if the linker does not
2993    support this feature.  */
2994 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
2995   (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_absptr)
2996 
2997 /* For switching between MIPS16 and non-MIPS16 modes.  */
2998 #define SWITCHABLE_TARGET 1
2999 
3000 /* Several named MIPS patterns depend on Pmode.  These patterns have the
3001    form <NAME>_si for Pmode == SImode and <NAME>_di for Pmode == DImode.
3002    Add the appropriate suffix to generator function NAME and invoke it
3003    with arguments ARGS.  */
3004 #define PMODE_INSN(NAME, ARGS) \
3005   (Pmode == SImode ? NAME ## _si ARGS : NAME ## _di ARGS)
3006